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Abstract

In this paper, we face the challenge of online learning in adversarial Markov
decision processes with known transitions and off-policy feedback. In this setting,
the learner chooses a policy, but, differently from the traditional on-policy setting,
the environment is explored by means of a different, fixed, and possibly unknown
policy (named colleague’s policy), whose losses are revealed to the learner. The
off-policy feedback presents an additional technical issue that is not present in
traditional exploration-exploitation trade-off problems: the learner is charged with
the regret of its chosen policy (w.r.t. a comparator policy) but it observes only the
losses suffered by the colleague’s policy. We first show that the state-of-the-art
optimistic algorithms might suffer regret bounds which depend on the dissimilarity
between the learner’s policy and the colleague’s one, which is guaranteed to be finite
only under a uniform-coverage assumption of the colleague’s policy. Contrariwise,
we propose novel algorithms that, by employing pessimistic estimators—commonly
adopted in the off-line reinforcement learning literature—ensure sublinear regret
bounds depending on the more desirable dissimilarity between any comparator
policy and the colleague’s policy, even when the latter is unknown.

1 Introduction

Reinforcement learning (RL) has emerged as a powerful paradigm for training intelligent agents to
make optimal decisions in complex and uncertain environments (Sutton and Barto, 2018). Within RL
research, there has been a growing interest in online learning applied to adversarial Markov Decision
Processes (MDPs, Even-Dar et al., 2009; Neu et al., 2010). This framework relaxes traditional
stochastic and stationary assumptions to represent dynamic environments and address real-world
decision-making scenarios that are constantly changing, misspecified, or corrupted. This is achieved
by introducing an adversary that chooses the reward in a potentially arbitrary way, while the transitions
are still stochastic.

One of the primary challenges in online RL lies in balancing exploration and exploitation (Sutton
and Barto, 2018). Agents must explore the environment to discover new information and learn
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from it, while also exploiting the knowledge they have already acquired to make optimal decisions.
Finding the right balance is crucial to ensure that the agent neither becomes overly conservative
and fails to explore potentially rewarding options, nor fails to exploit actions it confidently knows
to be good. To tackle this challenge, both in the stochastic and adversarial MDP setting, a large
variety of algorithms have been developed leveraging several techniques, often inspired by the bandit
literature (Lattimore and Szepesvári, 2020). To effectively navigate the exploration-exploitation
trade-off, the great majority of algorithms rely on the principle of optimism in the face of uncertainty.
Some examples are Upper Confidence Bound (UCB) algorithms for the stochastic-reward setting (e.g.,
Jaksch et al., 2010; Azar et al., 2017) and optimistic versions of mirror descent for the adversarial
case (Jin et al., 2019). All these approaches consider on-policy feedback, meaning that the learner
observes the trajectory and loss (or reward) generated by playing their own currently elected policy.

In this work, we consider a different form of feedback, that is off-policy feedback. In such a setting,
the learner observes the trajectory and losses (or rewards) generated by playing a different policy,
known in literature as behavior policy. We can think of the latter as being played by another agent that
plays in parallel to our learning agent in the same environment, or against the same adversary. We will
refer to this extra agent as the colleague. The behavior policy is fixed during the learning process and
can be either known or unknown to the learner. In this setting, the learner faces a different challenge
compared to the exploration-exploitation trade-off that characterizes the more common on-policy
setting. Indeed, since the environment is explored by the fixed colleague’s policy, the learner has
no control over exploration. Hence, it should exploit available information as much as possible. At
the same time, the learner should avoid over-exploitation of promising but under-explored decisions,
that might lead it to risky or uncertain regions of the environment. Contrary to the on-policy setting,
samples from these uncertain regions might never be collected by the colleague’s policy (Levine
et al., 2020). Intuitively, in such a scenario, optimistic approaches should be avoided, as they would
precisely encourage exploration of the most uncertain regions of the environment, taking great risk
without gaining any information in return.

Off-policy feedback has been widely investigated in the RL literature for the case of stochastic
rewards, particularly in the setting of offline RL (Levine et al., 2020). In this setting, the learning
agent has no direct access to the environment, only to a dataset of past interactions produced by an
expert or by previous versions of the decision system itself, or a combination of different sources.
For simplicity, it is common to consider the dataset as generated by a single, fixed behavior policy,
corresponding to the notion of colleague considered here. Although classic offline RL algorithms
like FQI (Ernst et al., 2005) are essentially pure exploitation, they are only guaranteed to efficiently
find a near-optimal policy under strong assumptions on the behavior policy (Munos and Szepesvári,
2008). More recent algorithms are based on the principle of pessimism in the face of uncertainty,
mirroring the on-policy principle in reverse. Intuitively, employing a pessimistic estimator keeps the
agent away from regions that are too uncertain. Indeed, several pessimistic algorithms (Xiao et al.,
2021; Rashidinejad et al., 2021; Jin et al., 2021; Zanette et al., 2021; Uehara and Sun, 2022; Cheng
et al., 2022) have been proven to be efficient under significantly weaker assumptions on the behavior
policy. However, the difficulty in establishing a meaningful notion of optimality for this setting (Xiao
et al., 2021) leaves the debate open on whether or not pessimism is the ultimate approach to offline
RL (a detailed survey of related work can be found in Appendix A).

Much less has been said on off-policy feedback in the adversarial setting, which is naturally online.
In fact, off-policy learning with adversarial rewards has been first considered by Gabbianelli et al.
(2022) for multi-armed-bandits (i.e., without states), and for linear contextual bandits with i.i.d.
contexts (i.e., without dynamics). Their main motivation was theoretical: to study off-policy learning
in a setting where the uncertainty due to the partial feedback is clearly decoupled from the inherent
uncertainty of the environment, which takes the form of an arbitrary adversary. They showed
how, in this setting, pessimism is crucial to achieve comparator-dependent regret bounds that scale
with a notion of dissimilarity between the behavior policy and the comparator. However, they
also hinted to potential real-world applications. Elaborating on their example, let us consider the
context of big-tech companies, which consist of multiple semi-autonomous departments. Frequently,
multiple departments are responsible for similar tasks, such as sales or procurement. In many cases,
these departments make decisions autonomously while observing feedback related to larger, similar
departments or, in some cases, feedback related to the broader macro-area they are assigned to. In
such a scenario, the design of online algorithms able to achieve good learning performances while
relying on parallel feedback is of paramount importance.
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Given the theoretical appeal and the potential applications of off-policy adversarial learning, we
believe it is of great interest to consider it in the context of dynamical systems. As a natural
intermediate step between bandits and the full RL problem, we consider here MDPs with adversarial
rewards, known stochastic transitions, and a potentially unknown behavior policy.

Original contributions. In this paper, we investigate the problem of online learning with off-policy
feedback in adversarial Markov decision processes with known transitions. Precisely, we consider
the case of episodic MDPs, where, at each episode t ∈ [T ], the agent plays a policy πt over the
horizon L and then observes the feedback generated by a colleague’s policy πC . We first show that
state-of-the-art optimistic online learning algorithms for MDPs with adversarial losses might achieve
a sublinear regret in T with constants that may be arbitrarily large. In particular, we show that the
multiplicative factors in the regret bound of UOB-REPS (Jin et al., 2019) depend on the dissimilarity
between the (occupancy measures of the) agent’s learning dynamics πt and colleague’s policy πC ,
even when πC and the transition functions are known. Remarkably, we propose two pessimistic
algorithms, namely P-REPS and P-REPS+, which do not suffer from such a weakness, with constants
independent of the learning dynamics. Precisely, P-REPS works in the setting where the colleague’s
policy is known, and, by employing a pessimistic biased estimator, guarantees a sublinear regret
with high probability which depends on the dissimilarity between the (occupancy measures of the)
comparator policy π∗ and the colleague’s one πC . Finally, we show that P-REPS+ achieves similar
results even when the colleague’s policy is unknown. This work answers the question raised by
Gabbianelli et al. (2022), that is, whether it is possible to optimally learn in an online off-policy
setting when the environment is a Markov decision process.

Paper structure. In Section 2, the problem formulation with the necessary notation is reported.
In Section 3, the focus is on optimistic algorithms, precisely on a simplified version for known
transitions of UOB-REPS (Jin et al., 2019), and its theoretical guarantees are provided. In Section 4,
we show that employing pessimism leads to an improvement in the regret upper bound. In Section 5,
we show that similar guarantees w.r.t Section 4 can be obtained when the colleague’s policy is not
known. Finally, in Section 6, conclusions and possible future works are reported.

2 Problem Formulation

In the following section, we present a comprehensive overview of the problem formulation, the
underlying assumptions, and the performance measures employed in this work.

2.1 Adversarial Markov Decision Processes

An adversarial episodic loop-free Markov decision processes (MDPs) is a 4-tuple M =

(X,A,P, {ℓt}Tt=1) where:

• T is the number of episodes, with t ∈ [T ] indexing a specific episode. By the loop-free property,
X is partitioned into L layers X0, . . . , XL such that the first and the last layers are singletons, i.e.,
X0 = {x0} and XL = {xL};

• P : X ×A×X → [0, 1] is the transition function, where we denote by P (x′|x, a) the probability
of moving from state x ∈ X to x′ ∈ X by taking action a ∈ A. By the loop-free property, it holds
that P (x′|x, a) > 0 only if x′ ∈ Xk+1 and x ∈ Xk for some k ∈ [0 . . . L− 1];

• {ℓt}Tt=1 is a sequence of vectors describing the losses at each episode t ∈ [T ], namely ℓt ∈
[0, 1]|X×A|. We refer to the loss of a specific state-action pair x ∈ X, a ∈ A for a specific episode
t ∈ [T ] as ℓt(x, a). Losses are chosen by an adversary, that is, no statistical assumptions are made.

Notice that any episodic MDP with horizon L that is not loop-free can be cast into a loop-free MDP
by suitably duplicating the state space L times, i.e., a state x is mapped to a set of new states (x, k),
where k ∈ [0 . . . L]. The learner chooses a policy π : X × A → [0, 1] at each episode, defining a
probability distribution over actions at each state. For ease of notation, we denote by π(·|x) the action
probability distribution for a state x ∈ X , with π(a|x) denoting the probability of action a ∈ A.

We study an off-policy online setting, following Gabbianelli et al. (2022). In this setting, there is
an external fixed policy πC which is played in parallel to the learner. The feedback received by the
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Algorithm 1 Learner-Environment Interaction
1: for t ∈ [T ] do
2: The environment choses ℓt adversarially
3: The learner chooses a policy πt : X ×A→ [0, 1]
4: The state is initialized to x0

5: for k = 0, . . . , L− 1 do
6: The colleague plays a′

k ∼ πC(·|x′
k) while the learner plays ak ∼ πt(·|xk)

7: The environment evolves to x′
k+1 ∼ P (·|x′

k, a
′
k) for the colleague and to xk+1 ∼ P (·|xk, ak) for

the learner
8: end for
9: The learner observes {x′

k, a
′
k}L−1

k=0 and {ℓt(x′
k, a

′
k)}L−1

k=0 but it suffers {ℓt(xk, ak)}L−1
k=0 ,

10: end for

learner at the end of each episode is the one pertaining to πC . Algorithm 1 describes the interaction
between the learner and environment in an off-policy adversarial MDP.

Remark 2.1. In the second part of the paper we will deal with MDPs where the agent receives
rewards in place of losses, namely rt(x, a) ∀t ∈ [T ], x ∈ X, a ∈ A. It is straightforward to check,
taking rt(x, a) := 1− ℓt(x, a), that the two settings are equivalent.

2.2 Occupancy Measures

We introduce the notion of occupancy measure (Zimin and Neu, 2013). Given a transition function P
and a policy π, the occupancy measure qP,π ∈ [0, 1]X×A induced by P and π is such that, for every
x ∈ Xk, a ∈ A, with k ∈ [0 . . . L− 1], it holds:

qP,π(x, a) = P[xk = x, ak = a|P, π], and qP,π(x) =
∑
a∈A

qP,π(x, a). (1)

It is straightforward to see that the occupancy measure qP,π of any policy π satisfies:∑
a∈A

qP,π(x, a) =
∑

x′∈Xk(x)−1

∑
a′∈A

P (x|x′, a′)qP,π(x′, a′), (2)

where k(x) is the layer of state x (i.e., x ∈ Xk). We denote by ∆(P ) the space of valid occupancy
measures induced by transition function P for any policy π, that are precisely those satisfying
Equation (2). Note that any valid occupancy measure q induces a policy πq defined as:

πq(a|x) = q(x, a)

q(x)
.

2.3 Cumulative Regret

We introduce the notion of cumulative regret over T rounds. We formally define the cumulative regret
with respect to any fixed comparator policy π∗ (and the associated occupancy qP,π∗

) as follows.

Definition 2.1 (Cumulative Regret). The cumulative regret over T rounds is defined as follows:

RT :=

T∑
t=1

ℓ⊤t q
P,πt −

T∑
t=1

ℓ⊤t q
P,π∗

. (3)

In traditional online learning settings, an algorithm presents good performance when its regret is
sublinear in T , namely RT = o(T ). In our setting, this property is not sufficient. Indeed, the regret
necessarily depends on some dissimilarity measure between the comparator’s policy π∗ and the
colleague’s one πC , and the larger the dissimilarity measure, the larger the regret (a formal definition
of dissimilarity measure is provided in the following sections). In order for our algorithm to present
a good performance, we need such a dissimilarity to be constant independently of the learning
dynamics, thus only depending on π∗ and πC . For the sake of notation, we will refer to qP,πt using
qt, thus omitting the dependency on P and π, to qP,π∗

using q∗, and to qP,πC using qπC .
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3 The Failure of Optimism vs. Uncertainty

In this section, we examine the limitations of optimism in our setting. Specifically, we investigate a
simplified version, for MDPs with known transitions, of the Upper Occupancy Bound Relative Entropy
Policy Search algorithm (UOB-REPS, Jin et al., 2019). This algorithm is commonly considered
state-of-the-art in the standard online adversarial-MDP literature. Indeed, it guarantees the best regret
upper bounds (in comparison to the existing literature, not in relation to the lower bound) in high
probability. However, we show that, in our setting, this algorithm might fail to achieve sublinear
regret bounds with constants only depending on the dissimilarity between π∗ and πC . Indeed, the
regret scales with the dissimilarity between the learning dynamics πt and πC .

3.1 Algorithm

Algorithm 2 provides the pseudocode of UOB-REPS with known transitions. The initialization of
the occupancy measure is uniform over the state-action space; thus, the policy π1 is the one induced
by the uniform occupancy measure (Line 1). We underline that a uniform occupancy measure does
not ensure a uniform policy. Then, for every episode t ∈ [T ], the policy chosen by the algorithm
is executed, while the feedback received by the learner, in terms of both losses and path, is the one
collected by the policy πC (Line 4). Once the losses are gathered, the algorithm builds an optimistic
biased estimator as follows:

ℓ̂t(x, a) =
ℓt(x, a)

qπC (x, a) + γ
1{xk(x) = x, ak(x) = a} ∀(x, a) ∈ X ×A. (4)

We underline the two main properties of the aforementioned estimator. First, the knowledge of both
the colleague’s policy πC and the transition function P allows inferring qπC , namely the occupancy
measure “played” by the colleague. Second, to have better regret guarantees, a constant factor γ > 0
is added to the denominator of the estimator, leading to an underestimate of the true loss (Line 6).
Finally, Algorithm 2 updates the occupancy measure employing an Online Mirror Descent (OMD)
update (Line 9) as follows:

qt+1 = argmin
q∈∆(P )

η⟨q, ℓ̂t⟩+D(q||qt), (5)

where D(·||·) is the Bregman divergence, defined as the unnormalized KL-divergence. Precisely,

D(q||q′) =
∑
x,a

q(x, a) ln
q(x, a)

q′(x, a)
−
∑
x,a

(q(x, a)− q′(x, a)). (6)

This update can be computed efficiently in the equivalent two-step version (see Jin et al. (2019)):

q̃t+1(x, a) = qt(x, a)e
−ηℓ̂t(x,a), qt+1 = argmin

q∈∆(P )

D(q∥q̃t+1). (7)

Precisely, the first update leading to q̃t+1 can be computed in closed form, while the projection is a
convex problem with linear constraints that can be solved in polynomial time.

3.2 Regret Upper Bound

We state and discuss the main theoretical result concerning Algorithm 2. Precisely, UOB-REPS with
off-policy feedback attains the following regret bound.
Theorem 3.1. With probability at least 1 − 3δ, Algorithm 2 attains, for any valid comparator’s
occupancy measure q∗ ∈ ∆(P ), the regret bound:

RT ≤ γ
∑
t,x,a

qt(x, a)

qπC (x, a)
+ η sup

t,x,a

qt(x, a)

qπC (x, a)

(
|X||A|T +

L2

2γ
ln

(
L

δ

))
+O

(
1

η
+

1

γ
+
√
T

)
.

In particular, setting η = γ = O
(
1/
√
T
)

, we have:

RT ≤ O
(
sup
t,x,a

qt(x, a)

qπC (x, a)

√
T

)
.
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Algorithm 2 UOB-REPS with Known Transitions
Require: state space X , action space A, transition function P , episode number T , colleague’s policy πC

1: For all k ∈ [0, . . . , L− 1], x ∈ Xk, a ∈ A, initialize the occupancy as

q1(x, a) =
1

|Xk||A|

and the policy as π1 = πq1

2: for t ∈ [T ] do
3: Execute policy πt for L steps and obtain the trajectory generated by πC , namely (xk, ak) and
4: losses ℓt(xk, ak) for k ∈ [0, . . . , L− 1]
5: for (x, a) ∈ X ×A do
6:

ℓ̂t(x, a) =
ℓt(x, a)

qπC (x, a) + γ
1{xk(x) = x, ak(x) = a}

7: end for
8: Update occupancy measure:
9:

qt+1 = argmin
q∈∆(P )

η⟨q, ℓ̂t⟩+D(q||qt)

10: Update policy πt+1 = πqt+1

11: end for

The above result is intuitive and self-explanatory. Algorithm 2 attains sublinear regret even with
off-policy feedback. Nevertheless, the factor supt,x,a

qt(x,a)
qπC (x,a) could potentially amplify the regret

arbitrarily, as the learning dynamics qt may be unpredictable. Such a result leads to the need for
developing new tools which take into account the impossibility of receiving on-policy feedback
during the learning process.

4 Pessimistic Algorithm with Known Policy

As previously observed, the problem of optimistic estimators is that they are designed to manage
the exploration-exploitation trade-off. Precisely, the learning dynamics are driven by the need
for exploring new areas of the decision space in order to gather as much information as possible.
Contrariwise, when the feedback is related to an independent policy, the incentive to explore must
be limited, since, in principle, more exploration does not result in a better understanding of the
optimization problem.

To overcome this issue, we employ pessimistic estimators of the rewards. Indeed, in a standard online
learning framework, pessimism would result in a sub-optimal solution to the exploration-exploitation
dilemma. Nevertheless, it does help in off-policy scenarios, limiting the exploration of the learning
agent and guaranteeing regret bounds which depend on the constant factor

D (π∗, πC) :=
∑
x,a

q∗(x, a)

qπC (x, a)
,

for any comparator policy π∗. For the sake of simplicity, in the formulation of pessimistic estimators
used from here on, we will deal with MDPs where the learner receives rewards in place of losses. As
previously argued, this change does not affect the generality of the results.

4.1 Algorithm

Algorithm 3 provides the pseudocode of our Pessimistic Relative Entropy Search (P-REPS). More
specifically, Algorithm 3 is a pessimistic variant of UOB-REPS (Jin et al., 2019) with known
transitions (Algorithm 2). In the following, we describe the algorithm and remark the main differences
compared to the original, optimistic version by Jin et al. (2019).

The occupancy measure is initially set to be uniform over the state-action space and the policy π1

is the one induced by qπ1 (Line 1). We remark that, in the case of off-policy feedback, during each
episode t ∈ [T ], we only receive the rewards and observe the trajectory of the colleague’s policy πC
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Algorithm 3 Pessimistic Relative Entropy Policy Search (P-REPS)
Require: state space X , action space A, transition function P , episode number T , colleague’s policy πC

1: For all k ∈ [0, . . . , L− 1], x ∈ Xk, a ∈ A, initialize occupancy

q1(x, a) =
1

|Xk||A|

and π1 = πq1 .
2: for t ∈ [T ] do
3: Execute policy πt for L steps and obtain trajectory based on πC , namely (xk, ak) for
4: k ∈ [0..L− 1] and rewards rt(xk, ak)
5: for (x, a) ∈ X ×A do
6:

ℓ̂t(x, a) = 1− rt(x, a)

qπC (x, a) + γ
1{xk(x) = x, ak(x) = a}

7: end for
8: Update occupancy measure:

q̃t+1(x, a) =
qt(x, a)e

−ηℓ̂t(x,a)∑
x′∈Xk(x),a

′∈A qt(x′, a′)e−ηℓ̂t(x′,a′)

qt+1 = argmin
q∈∆(P )

D(q∥q̃t+1)

9: Update policy πt+1 = πqt+1

10: end for

(Line 4), while our own policy is executed. Once the rewards are gathered, the algorithm builds a
pessimistic estimator as follows:

r̂t(x, a) =
rt(x, a)

qπC (x, a) + γ
1{xk(x) = x, ak(x) = a} ∀(x, a) ∈ X ×A. (8)

Similarly to Algorithm 2, we add a constant factor γ > 0 in the denominator of the resulting biased
estimator. We remark that, since we employ the rewards in place of losses, this choice leads to an
underestimate of the reward received. Moreover, for the sake of coherence with respect to the online
learning literature, we turn this reward estimate into a loss one (Line 6). Namely, we define:

ℓ̂t(x, a) = 1− r̂t(x, a) ∀(x, a) ∈ X ×A. (9)

Differently from UOB-REPS, Algorithm 3 updates the occupancy measure by employing a normalized
version of OMD (Line 8) as follows:

q̃t+1(x, a) =
qt(x, a)e

−ηℓ̂t(x,a)∑
x′∈Xk(x),a′∈A qt(x′, a′)e−ηℓ̂t(x′,a′)

, qt+1 = argmin
q∈∆(P )

D(q∥q̃t+1). (10)

The peculiarity of this update lies in its first unconstrained step. Specifically, the standard un-
constrained optimization update qt(x, a)e

−ηℓ̂t(x,a) is normalized over the state-action space. This
technical adjustment is necessary to partially bridge the gap between lazy updates, as discussed
by Neu (2015) and Gabbianelli et al. (2022), where the decision point is optimized independently
from the projection, and greedy updates, which are more common in the online adversarial MDPs
literature.

Finally, we remark that the computational complexity of the projection step is the same as in
Algorithm 2. In particular, the projection is again a convex optimization problem with linear
constraints, which can be solved in polynomial time. Therefore, the projection step in Algorithm 3
can be efficiently computed.

4.2 Regret Upper Bound

In this section, we state the theoretical guarantees provided by Algorithm 3 in terms of regret upper
bounds. Precisely, P-REPS attains the following regret bound when the feedback is off-policy.
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Algorithm 4 Pessimistic Relative Entropy Policy Search with unknown colleague policy (P-REPS+)
Require: state space X , action space A, transition function P , number of episodes T .
1: For all (x, a) initialize counters N(x, a) = 0, for all k ∈ [0, . . . , L − 1], x ∈ Xk, a ∈ A, initialize the

occupancy

q1(x, a) =
1

|Xk||A|
and initialize the policy π1 = πq1

2: for t ∈ [T ] do
3: Execute policy πt for L steps and obtain the trajectory generated by πC , namely (xk, ak) and
4: rewards rt(xk, ak) for k ∈ [0..L− 1]
5: for k ∈ [0..L− 1] do
6: Update counters:

N (xk, ak)← N (xk, ak) + 1

7: end for
8: for (x, a) ∈ X ×A do
9:

q̂ πC
t (x, a)← N (x, a)

t

ℓ̂t(x, a) = 1− rt(x, a)

q̂ πC
t (x, a) + γt

1{xk(x) = x, ak(x) = a}

10: end for
11: Update occupancy measure:

q̃t+1(x, a) =
qt(x, a)e

−ηℓ̂t(x,a)∑
x′∈Xk(x),a

′∈A qt(x′, a′)e−ηℓ̂t(x′,a′)

qt+1 = argmin
q∈∆(P )

D(q∥q̃t+1)

12: Update policy πt+1 = πqt+1

13: end for

Theorem 4.1. With probability at least 1 − 2δ, Algorithm 3 with γ = η/2 attains, for any valid
comparator occupancy measure q∗ ∈ ∆(P ), the regret bound:

RT ≤ L ln(|X||A|)
η

+D (π∗, πC)

(√
2T ln

(
|X||A|

δ

)
+ γT

)
+ L

√
2T ln

(
1

δ

)
.

In particular, setting η = 2γ = O
(
1/
√
T
)

,

RT ≤ O
(
D (π∗, πC)

√
T
)
.

We compare this regret bound with that attained by Algorithm 2. The main difference is the constant
factor which affects the regret bound. More precisely, differently from the regret bound of Algorithm 2,
the multiplicative factor in the regret bound of Algorithm 3 is independent of the learning dynamics
of the learner. Furthermore, the constant factor D (π∗, πC) implies that, the closer the colleague’s
policy is to the one of the comparator, the better the bound. When the colleague’s policy is equivalent
to the comparator, namely when q∗ = qπC , the regret bound is almost equivalent to the well-known
ones for the standard on-policy (bandit) feedback.

5 Pessimistic Algorithm with Unknown Policy

We now investigate off-policy feedback in settings where the colleague’s policy is not known, and we
show that, with a slight modification to Algorithm 3, we achieve similar regret guarantees. To address
the uncertainty arising from the unknown policy of the colleague, we employ a time-varying reward
estimator, similarly to what Gabbianelli et al. (2022) did for multi-armed bandits. This allows us to
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introduce an additional level of pessimism in the estimates compared to that used in Algorithm 3.
This extra pessimism helps us to deal with the uncertainty introduced by the unknown policy and
achieve the desired regret guarantees.

5.1 Algorithm

Algorithm 4 provides the pseudocode of our Pessimistic Relative Entropy Search with an unknown
colleague’s policy (P-REPS+). The initialization and the interaction with the environment strictly
follow the one of Algorithm 3 (Line 1- 4), except that a counter for each state-action pair (x, a)
is initialized as N(x, a) = 0. Once the rewards are collected, the algorithm builds a pessimistic
estimator (Line 9) as:

r̂t(x, a) =
rt(x, a)

q̂ πC
t (x, a) + γt

1{xk(x) = x, ak(x) = a} ∀(x, a) ∈ X ×A, (11)

where q̂ πC
t (x, a) is the empirical mean of the occupancy measure for every state-action pair (x, a).

We observe that, in Algorithm 4, the pessimistic factor γt is time-dependent. This is because, when
the colleague’s policy is not known, the pessimistic factor γt should incorporate the uncertainty
related to the empirical estimate of the occupancy measure q̂ πC

t . Specifically, using Hoeffding’s
inequality, it can be shown that, with a failure probability of δt ∈ [0, 1], it holds that:

|q̂ πC
t (x, a)− qπC (x, a)| ≤ ϵt :=

√
ln (|X||A|/δt)

2t
∀(x, a) ∈ X ×A, (12)

with t ≥ 1. Thus, the time-dependent pessism factor is set as γt = ϵt + γ, where the γ is the same
as in Algorithm 3. The intuition behind this choice stems from the idea of introducing additional
pessimism in the biased estimator. This is done to address the uncertainty that arises from the
empirical mean estimation of the occupancy measure q̂ πC

t . To be coherent with the online learning
literature, we turn the rewards estimates into losses (Line 9) as usual:

ℓ̂t(x, a) = 1− r̂t(x, a) ∀(x, a) ∈ X ×A.

Then, for each state-action pair (x, a) along the path traversed by the colleague, the counters are
updated accordingly (Line 6). Finally, Algorithm 4 updates the occupancy measure employing a
normalized version of OMD as done in Algorithm 3 (Line 11).

5.2 Regret Upper Bound

P-REPS attains the following regret bound when the learner has off-policy feedback and the colleague
policy is not known.
Theorem 5.1. With probability at least 1− 3δ, Algorithm 4 for γt = ϵt + γ = ϵt + η/2 with ϵt =√

ln(|X||A|T/δ)
2t (i.e., δt = δ/T ) attains, for any valid comparator occupancy measure q∗ ∈ ∆(P ):

RT ≤ L ln(|X||A|)
η

+ L

√
2T ln

(
1

δ

)
+D (π∗, πC)

(
4

√
2T ln

(
1

δ

)
+ ln

(
T |X||A|

δ

)√
T + γT

)

In particular, setting η = 2γ = O
(
1/
√
T
)

,

RT ≤ Õ
(
D (π∗, πC)

√
T
)
.

Theorem 5.1 shows that the dependency on the constant factor D (π∗, πC) is still achievable when
the colleague’s policy is not known beforehand, by paying an additional O(lnT ) factor to deal with
the uncertainty in the estimation of qπC .

6 Conclusions and Future Works

In this paper, we study the problem of online learning with off-policy feedback in adversarial Markov
decision processes with known transitions. We first show that state-of-the-art optimistic algorithms

9



might achieve sublinear regret which depends on the maximum dissimilarity between the occupancy
measure of the policies chosen during the learning process and the one of the colleague. Then, we
propose two pessimistic algorithms. P-REPS works in the setting where the colleague’s policy is
known and achieves sublinear regret which depends on the dissimilarity between the comparator
occupancy measure and the one of the colleague, while P-REPS+ guarantees similar results when the
colleague’s policy is unknown, employing an estimator with additional pessimistic bias.

In the future, we aim to extend our results to encompass settings with unknown transition functions,
similarly to what was done by Jin et al. (2019) for on-policy feedback. Specifically, we should
investigate whether a pessimistic estimator is sufficient to achieve comparator-dependent regret
bounds or if additional techniques for dealing with uncertain transitions must be incorporated.
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A Related Work

Off-Policy Reinforcement Learning. Off-policy feedback has been largely studied in the offline, or
“batch” RL literature (Lagoudakis and Parr, 2003; Ernst et al., 2005). In such a setting, the learner
cannot interact with the environment and has instead only access to a fixed dataset collected by
a behavior policy (Levine et al., 2020). Recently, the pessimistic approach has gathered a lot of
interest in this area, especially on the theoretical side (Xiao et al., 2021; Rashidinejad et al., 2021; Jin
et al., 2021; Zanette et al., 2021; Uehara and Sun, 2022; Cheng et al., 2022). Precisely, pessimistic
offline RL methods avoid the strong requirement of the behavior policy covering the whole space
of reachable states and actions, which is often unfeasible in practice, and only require coverage of
optimal decisions. This leads to regret bounds which depend on the partial coverage with respect to
the optimal (or a different comparator) policy (Rashidinejad et al., 2021), rather than the uniform
coverage over policy space that is required, for instance, by FQI (Munos and Szepesvári, 2008).
The minimax sample complexity rate for this problem is O(ϵ−2), corresponding to O(

√
T ) regret.

However, the meaningfullness of minimax optimality in this setting is debated, since greedy and
even optimistic algorithms, besides pessimistic ones, have been shown to attain it. At the same time,
instance-dependent optimality as defined in the online setting is not attainable in the offline setting.
See Xiao et al. (2021) for an extensive discussion. The same authors have proposed a “weighted”
notion of minimax optimality that justifies the use of pessimism. However, comparator-dependent or
“partial coverage” bounds remain the main theoretical appeal of pessimistic algorithms.

Online Learning in MDPs. The body of research focusing on online learning problems (Cesa-
Bianchi and Lugosi, 2006; Hazan, 2019) in MDPs is extensive, as investigated in several notable
works (Auer et al., 2008; Even-Dar et al., 2009; Neu et al., 2010). Azar et al. (2017) study the
challenge of optimal exploration in episodic MDPs where transitions are unknown and losses are
stochastic, and only bandit (partial, on-policy) feedback is available. Their algorithm matches the
Ω(
√
L|X||A|T ) lower bound for this setting (Jaksch et al., 2010), where T represents the number

of episodes, L the episode length, |X| the number of states, and |A| the number of actions. Instead,
Rosenberg and Mansour (2019b) consider the online learning problem in episodic MDPs with
adversarial losses and unknown transitions, but with full-information feedback. They propose an
online-learning algorithm with a regret upper bound of Õ(L|X|

√
|A|T ). The same scenario is

explored by Rosenberg and Mansour (2019a), albeit with the more challenging bandit feedback,
leading to a Õ(T 3/4) regret upper bound, which was subsequently improved to Õ(L|X|

√
|A|T )

by Jin et al. (2019). Matching the Ω(L
√
|X||A|T ) lower bound for this setting is still an open

problem. The most similar setting to the one considered in this paper is the one from Zimin and
Neu (2013): adversarial losses, known transitions and (on-policy) bandit feedback. Their algorithm
matches a Ω(

√
L|X||A|T ) lower bound up to logarithmic factors.

Online Learning with Off-Policy Feedback. Off-policy settings are quite novel in the online
(adversarial) learning literature. To the best of our knowledge, the main existing contribution is by
Gabbianelli et al. (2022), who investigate the setting where the learner observes the rewards sampled
following a behavior policy in multi-armed bandit and linear contextual bandit problems. Off-policy
feedback in adversarial MDPs is uncharted territory.
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B Optimistic Algorithm

In this section, we report the omitted proofs related to the optimistic algorithm. We first show how
the regret can be decomposed. Then, we proceed bounding each term.

B.1 Regret Decomposition

The regret term can be easily decomposed, similarly to Jin et al. (2019), as follows:

RT =

T∑
t=1

ℓ⊤t qt −
T∑

t=1

ℓ⊤t q
∗

=

T∑
t=1

⟨qt, ℓt − ℓ̂t⟩︸ ︷︷ ︸
1

+

T∑
t=1

⟨qt − q∗, ℓ̂t⟩︸ ︷︷ ︸
2

+

T∑
t=1

⟨q∗, ℓ̂t − ℓt⟩︸ ︷︷ ︸
3

.

We underline that the first and the last terms are related to the distance between the optimistic
estimator and the real loss vector, while the second one depends on the learning dynamic of Online
Mirror Descent.

Bound on 1 . We start bounding the first term of the regret bound.
Lemma B.1. With probability at least 1− δ, Algorithm 2 attains:

T∑
t=1

⟨qt, ℓt − ℓ̂t⟩ ≤ γ
∑
t,x,a

qt(x, a)

qπC (x, a)
+ L

√
2T ln

1

δ
.

Proof. We decompose 1 as follows:

1 =

T∑
t=1

⟨qt, ℓt − ℓ̂t⟩

=

T∑
t=1

⟨qt, ℓt − E[ℓ̂t]⟩+
T∑

t=1

⟨qt,E[ℓ̂t]− ℓ̂t⟩

≤
T∑

t=1

⟨qt, ℓt − E[ℓ̂t]⟩+ L

√
2T ln

1

δ
,

where the last step inequality holds with probability at least 1− δ due to Azuma-Hoeffding.

We then focus on the right term, and we rewrite it as:

T∑
t=1

⟨qt, ℓt − E[ℓ̂t]⟩ =
∑
t,x,a

qt(x, a)ℓt(x, a)

(
1−

Et

[
1
{
xk(x) = x, ak(x) = a

}]
qπC (x, a) + γ

)

=
∑
t,x,a

qt(x, a)ℓt(x, a)

(
1− qπC

qπC (x, a) + γ

)
=
∑
t,x,a

qt(x, a)ℓt(x, a)

qπC (x, a) + γ
(qπC (x, a) + γ − qπC (x, a))

=
∑
t,x,a

qt(x, a)ℓt(x, a)

qπC (x, a) + γ
γ

≤ γ
∑
t,x,a

qt(x, a)

qπC (x, a)
.

Putting everything together we obtain, with probability at least 1− δ:
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1 =

T∑
t=1

⟨qt, ℓt − ℓ̂t⟩

≤ γ
∑
t,x,a

qt(x, a)

qπC (x, a)
+ L

√
2T ln

1

δ
,

which concludes the proof.

Bound on 2 . We proceed bounding the second term of the regret. We start stating a useful lemma
which directly follows from Lemma 11 (Jin et al., 2019).
Lemma B.2. For any sequence of functions α1, . . . αT such that αt is Ft− measurable for all
t ∈ [T ], then with probability of at least 1− δ we have:

T∑
t=1

∑
x,a

αt(x, a)
(
ℓ̂t(x, a)− ℓt(x, a)

)
≤ L ln

(
L

δ

)
.

The previous result is intuitive. Since the estimator employed by Algorithm 2 is optimistic, the sum
over T of the difference between the estimator and real loss vector can be bounded by a constant
factor, independent from T .

Now we are ready to prove the bound of the second term of the regret. The proof follows the standard
one for Online Mirror Descent with entropic regularizer and then focus on bounding the biased
estimator.
Lemma B.3. With probability at least 1−δ, Algorithm 2 attains, for any valid comparator occupancy
measure q∗ ∈ ∆(P ):

T∑
t=1

⟨qt − q∗, ℓ̂t⟩ ≤
L ln(|X||A|)

η
+ η sup

t,x,a

qt(x, a)

qπC (x, a)

(
|X||A|T +

L2

2γ
ln

(
L

δ

))
.

Proof. We focus on bounding,
T∑

t=1

⟨qt − q∗, ℓ̂t⟩.

We first apply Lemma 13 (Jin et al., 2019) with the uniform initialization over the state-action pairs
(x, a), and we obtain,

T∑
t=1

⟨qt − q∗, ℓ̂t⟩ ≤
L ln(|X||A|)

η
+ η

∑
t,x,a

qt(x, a)ℓ̂t(x, a)
2.

We focus on the second term:

η
∑
t,x,a

qt(x, a)ℓ̂t(x, a)
2 ≤ η sup

t,x,a

qt(x, a)

qπC (x, a)

∑
t,x,a

qπC (x, a)
ℓt(x, a)

qπC (x, a) + γ
ℓ̂t(x, a)

≤ η sup
t,x,a

qt(x, a)

qπC (x, a)

∑
t,x,a

ℓ̂t(x, a)

≤ η sup
t,x,a

qt(x, a)

qπC (x, a)

(∑
t,x,a

ℓt(x, a) +
L

2γ
ln

(
L

δ

))

≤ η sup
t,x,a

qt(x, a)

qπC (x, a)

(
|X||A|T +

L

2γ
ln

(
L

δ

))
,
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where the third inequality holds for Lemma B.2, with probability at least 1− δ.

Thus, the final result is the following, with probability at least 1− δ:

T∑
t=1

⟨qt − q∗, ℓ̂t⟩ ≤
L ln(|X||A|)

η
+ η sup

t,x,a

qt(x, a)

qπC (x, a)

(
|X||A|T +

L2

2γ
ln

(
L

δ

))
.

Bound on 3 . We are now ready to bound the last term of the regret decomposition.
Lemma B.4. With probability at least 1−δ, Algorithm 2 attains, for any valid comparator occupancy
measure q∗ ∈ ∆(P ):

T∑
t=1

⟨q∗, ℓ̂t − ℓt⟩ ≤
L

2γ
ln

(
L|X||A|

δ

)
.

Proof. Applying Lemma B.2 with αt = 2γ1(x, a) and a union bound over actions and states we get

T∑
t=1

∑
x,a

ℓ̂t(x, a) ≤
T∑

t=1

∑
x,a

ℓt(x, a) +
1

2γ
L ln

(
L|X||A|

δ

)
,

with probability of at least 1 − δ, for each state-action pair (x, a). Then, by means of the latter
inequality we get:

3 =

T∑
t=1

⟨q∗, ℓ̂t − ℓt⟩ ≤
L

2γ
ln

(
L|X||A|

δ

)
,

which concludes the proof.

B.2 Regret Bound

Once bounded each component resulted from the regret decomposition, the final result on the regret
bound follows immediately. Indeed,
Theorem 3.1. With probability at least 1 − 3δ, Algorithm 2 attains, for any valid comparator’s
occupancy measure q∗ ∈ ∆(P ), the regret bound:

RT ≤ γ
∑
t,x,a

qt(x, a)

qπC (x, a)
+ η sup

t,x,a

qt(x, a)

qπC (x, a)

(
|X||A|T +

L2

2γ
ln

(
L

δ

))
+O

(
1

η
+

1

γ
+
√
T

)
.

In particular, setting η = γ = O
(
1/
√
T
)

, we have:

RT ≤ O
(
sup
t,x,a

qt(x, a)

qπC (x, a)

√
T

)
.

Proof. The result immediately follows from the regret decomposition and Lemmas B.1, B.3 and B.4

C Pessimistic Algorithm with Known Policy

In this section, we report the omitted proof related to the pessimistic algorithm, when the colleague’s
policy is known beforehand.
Theorem 4.1. With probability at least 1 − 2δ, Algorithm 3 with γ = η/2 attains, for any valid
comparator occupancy measure q∗ ∈ ∆(P ), the regret bound:

RT ≤ L ln(|X||A|)
η

+D (π∗, πC)

(√
2T ln

(
|X||A|

δ

)
+ γT

)
+ L

√
2T ln

(
1

δ

)
.
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In particular, setting η = 2γ = O
(
1/
√
T
)

,

RT ≤ O
(
D (π∗, πC)

√
T
)
.

Proof. Let γ > 0, we define r̂t(x, a) := rt(x,a)
qπC (x,a)+γ1{xk(x) = x, ak(x) = a}, r̃t(x, a) :=

rt(x,a)
qπC (x,a)1{xk(x) = x, ak(x) = a} and ℓ̃t(x, a) := 1 − r̃t(x, a). Clearly, r̂t(x, a) ≤ r̃t(x, a)

and ℓ̂t(x, a) ≥ ℓ̃t(x, a).

We start employing the analysis of Lemma 13 (Jin et al., 2019) with our uniform initialization over
state-action pairs, for any valid comparator occupancy measure q∗ ∈ ∆(P ):

T∑
t=1

⟨qt − q∗, ℓ̂t⟩ ≤
L ln(|X||A|)

η
+

1

η

T∑
t=1

D(qt∥q̃t+1). (13)

Let us focus on the last term,

D(qt∥q̃t+1) =
∑
(x,a)

qt(x, a) ln

 qt(x, a)

qt(x,a)e−ηℓ̂t(x,a)∑
x′∈Xk(x),a

′∈A qt(x′,a′)e−ηℓ̂t(x
′,a′)


=
∑
(x,a)

qt(x, a)

ηℓ̂t(x, a) + ln

 ∑
x′∈Xk(x),a′∈A

qt(x
′, a′)e−ηℓ̂t(x

′,a′)


=

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)

ηℓ̂t(x, a) + ln

 ∑
x′∈Xk,a′∈A

qt(x
′, a′)e−ηℓ̂t(x

′,a′)


= η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)ℓ̂t(x, a) +

L−1∑
k=0

ln

 ∑
x′∈Xk,a′∈A

qt(x
′, a′)e−ηℓ̂t(x

′,a′)


= η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)(1− r̂t(x, a)) +

L−1∑
k=0

ln

 ∑
x′∈Xk,a′∈A

qt(x
′, a′)e−η(1−r̂t(x

′,a′))


= −η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)r̂t(x, a) +

L−1∑
k=0

ln

 ∑
x′∈Xk,a′∈A

qt(x
′, a′)eηr̂t(x

′,a′)

 .

Now, we use Equation (12) of Gabbianelli et al. (2022), setting γ = η/2:

D(qt∥q̃t+1) ≤ −η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)r̂t(x, a) +

L−1∑
k=0

ln

 ∑
x′∈Xk,a′∈A

qt(x
′, a′)eηr̂t(x

′,a′)


≤ −η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)r̂t(x, a) +

L−1∑
k=0

ln

 ∑
x′∈Xk,a′∈A

qt(x
′, a′) exp

(
η

2γ
ln(1 + 2γr̃t(x

′, a′))

)
≤ −η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)r̂t(x, a) +

L−1∑
k=0

ln

 ∑
x′∈Xk,a′∈A

qt(x
′, a′)(1 + ηr̃t(x

′, a′))


≤ −η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)r̂t(x
′, a′) + η

L−1∑
k=0

∑
x′∈Xk,a′∈A

qt(x
′, a′)r̃t(x

′, a′)

= −η⟨qt, r̂t − r̃t⟩

= η⟨qt, ℓ̂t − ℓ̃t⟩.
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Going back to Equation (13):
T∑

t=1

⟨qt − q∗, ℓ̂t⟩ ≤
L ln(|X||A|)

η
+

T∑
t=1

⟨qt, ℓ̂t − ℓ̃t⟩. (14)

Now, let us come back to the quantity of interest. We get,

RT =

T∑
t=1

⟨qt − q∗, ℓt⟩

≤
T∑

t=1

⟨qt − q∗, ℓ̃t⟩+ L

√
2T ln

(
1

δ

)

=

T∑
t=1

⟨qt − q∗, ℓ̂t⟩+
T∑

t=1

⟨qt − q∗, ℓ̃t − ℓ̂t⟩+ L

√
2T ln

(
1

δ

)

=

T∑
t=1

⟨qt − q∗, ℓ̂t⟩+
T∑

t=1

⟨qt, ℓ̃t − ℓ̂t⟩ −
T∑

t=1

⟨q∗, ℓ̃t − ℓ̂t⟩+ L

√
2T ln

(
1

δ

)
,

where the second inequality holds with probability at least 1− δ for Azuma-Hoeffding inequality.
Now, we apply Equation (14):

RT ≤ L ln(|X||A|)
η

+

T∑
t=1

⟨qt, ℓ̂t − ℓ̃t⟩+
T∑

t=1

⟨qt, ℓ̃t − ℓ̂t⟩ −
T∑

t=1

⟨q∗, ℓ̃t − ℓ̂t⟩+ L

√
2T ln

(
1

δ

)

=
L ln(|X||A|)

η
+

T∑
t=1

⟨q∗, ℓ̂t − ℓ̃t⟩+ L

√
2T ln

(
1

δ

)

=
L ln(|X||A|)

η
+

T∑
t=1

⟨q∗, r̃t − r̂t⟩+ L

√
2T ln

(
1

δ

)

=
L ln(|X||A|)

η
+

T∑
t=1

⟨q∗, r̃t − r̂t ± Et [r̃t − r̂t]⟩+ L

√
2T ln

(
1

δ

)

=
L ln(|X||A|)

η
+

T∑
t=1

⟨q∗, (r̃t − r̂t)− E [r̃t − r̂t]⟩+
T∑

t=1

⟨q∗,Et [r̃t − r̂t]⟩+ L

√
2T ln

(
1

δ

)

=
L ln(|X||A|)

η
+ ⟨q∗,

T∑
t=1

(r̃t − r̂t)− Et [r̃t − r̂t]⟩+ γ

T∑
t=1

⟨q∗, rt
qπC + γ

⟩+ L

√
2T ln

(
1

δ

)

≤ L ln(|X||A|)
η

+ ⟨q∗, 1/qπC ⟩

√
2T ln

(
|X||A|

δ

)
+ γ

T∑
t=1

⟨q∗, rt
qπC + γ

⟩+ L

√
2T ln

(
1

δ

)
,

where the last inequality follows from Azuma-Hoeffding for every state-action pair, noticing that
|r̃t(x, a)− r̂t(x, a)| ≤ 1/qπC (x, a), and applying a union bound over states and actions. The final
result holds with probability 1− 2δ.

D Pessimistic Algorithm with Unknown Policy

In this section, we report the omitted proof related to the pessimistic algorithm, when the colleague’s
policy is not known beforehand.
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Theorem 5.1. With probability at least 1− 3δ, Algorithm 4 for γt = ϵt + γ = ϵt + η/2 with ϵt =√
ln(|X||A|T/δ)

2t (i.e., δt = δ/T ) attains, for any valid comparator occupancy measure q∗ ∈ ∆(P ):

RT ≤ L ln(|X||A|)
η

+ L

√
2T ln

(
1

δ

)
+D (π∗, πC)

(
4

√
2T ln

(
1

δ

)
+ ln

(
T |X||A|

δ

)√
T + γT

)

In particular, setting η = 2γ = O
(
1/
√
T
)

,

RT ≤ Õ
(
D (π∗, πC)

√
T
)
.

Proof. Let γt > 0 ∀t ∈ [T ], we define r̂t(x, a) := rt(x,a)

q̂
πC

t (x,a)+γt
1{xk(x) = x, ak(x) = a},

r̃t(x, a) :=
rt(x,a)

qπC (x,a)1{xk(x) = x, ak(x) = a} and ℓ̃t(x, a) := 1− r̃t(x, a).

We first notice that the analysis of Lemma 13 of Jin et al. (2019) still holds when the colleague’s
policy πC is not known, namely, with our initialization over the state-action pairs (x, a) we have:

T∑
t=1

⟨qt − q∗, ℓ̂t⟩ ≤
L ln(|X||A|)

η
+

1

η

T∑
t=1

D(qt∥q̃t+1). (15)

To deal with the second terms we need to upperbound the error of the empirical mean on the occupancy
measure q̂ πC

t . Thus we define a tolerance parameter ϵt depending on the failure probability δt ∈ [0, 1],
as follows:

ϵt =

√
ln (|X||A|/δt)

2t
, t ≥ 1.

Furtnermore we let Et be the event defined as follows:

Et = {|q̂ πC
t (x, a)− qπC (x, a)| ≤ ϵt ∀(x, a) ∈ X ×A}.

By Hoeffding inequality and applying a union bound we have that the event Et holds with probability
1− δt. Then, by letting E :=

⋂
t∈[T ] Et we have that:

P(E) = P

 ⋂
t∈[T ]

Et

 ≥ 1−
T∑

t=1

δt = 1− δ

which holds by letting δt = δ/T . Moreover we let γt = ϵt + η/2 = ϵt + γ, where γ is the same as
Algorithm 3, we have a similar result to (Gabbianelli et al., 2022), that is,

r̂t(x, a) ≤
1

η
ln (1 + ηr̃t(x, a)) . (16)

Proceeding as in the known policy setting, we focus on D(qt∥q̃t+1) and we obtain:

D(qt∥q̃t+1) = −η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)r̂t(x, a) +

L−1∑
k=0

ln

 ∑
x′∈Xk,a′∈A

qt(x
′, a′)eηr̂t(x

′,a′)

 .
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Now we apply Eq. (16) to have, under the event E ,

D(qt∥q̃t+1) ≤ −η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)r̂t(x, a) +

L−1∑
k=0

ln

 ∑
x′∈Xk,a′∈A

qt(x
′, a′)eηr̂t(x

′,a′)


≤ −η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)r̂t(x, a) +

L−1∑
k=0

ln

 ∑
x′∈Xk,a′∈A

qt(x
′, a′) exp

(
η

2γ
ln(1 + 2γr̃t(x

′, a′))

)
≤ −η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)r̂t(x, a) +

L−1∑
k=0

ln

 ∑
x′∈Xk,a′∈A

qt(x
′, a′)(1 + ηr̃t(x

′, a′))


≤ −η

L−1∑
k=0

∑
x∈Xk,a∈A

qt(x, a)r̂t(x
′, a′) + η

L−1∑
k=0

∑
x′∈Xk,a′∈A

qt(x
′, a′)r̃t(x

′, a′)

= −η⟨qt, r̂t − r̃t⟩

= η⟨qt, ℓ̂t − ℓ̃t⟩.

Now following the proof of Theorem 4.1, we obtain:

RT ≤
T∑

t=1

⟨qt − q∗, ℓ̂t⟩+
T∑

t=1

⟨qt, ℓ̃t − ℓ̂t⟩ −
T∑

t=1

⟨q∗, ℓ̃t − ℓ̂t⟩+ L

√
2T ln

(
1

δ

)

≤ L ln(|X||A|)
η

+

T∑
t=1

⟨q∗, r̃t − r̂t ± Et [r̃t − r̂t]⟩+ L

√
2T ln

(
1

δ

)
,

where the first inequality holds with probability at least 1− δ for Azuma-Hoeffding inequality. Thus,
we proceed bounding the following:

RT ≤ L ln(|X||A|)
η

+

T∑
t=1

⟨q∗, (r̃t − r̂t)− Et [r̃t − r̂t]⟩+
T∑

t=1

⟨q∗,Et [r̃t − r̂t]⟩+ L

√
2T ln

(
1

δ

)
.

(17)
To bound the second term of the Inequality (17) we first observe:

|⟨q∗, r̃t − r̂t − Et [r̃t − r̂t] |⟩ ≤ 2|⟨q∗, r̃t − r̂t⟩|

= 2

∣∣∣∣⟨q∗, q̂ πC
t − qπC + γt
qπC (q̂ πC

t + γt)
⟩
∣∣∣∣

≤ 2

∣∣∣∣⟨q∗, γ + 2ϵt
qπC (γ + ϵt)

⟩
∣∣∣∣ ≤ 4⟨q∗, 1/qπC ⟩,

where we employed the fact that under the event E it holds q̂ πC
t ≤ qπC + ϵt and the definition of

γt = γ + ϵt. Then by Azuma inequality we have with probability 1− δ:

T∑
t=1

⟨q∗, (r̃t − r̂t)− Et [r̃t − r̂t]⟩ ≤ 4

√
2T ln

(
1

δ

)
⟨q, 1/qπC ⟩.
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We know focus on bounding the third term of the Inequality (17), as follows:

T∑
t=1

⟨q∗,Et [r̃t − r̂t]⟩ =
T∑

t=1

⟨q∗, qπC
q̂ πC
t − qπC + γt
qπC (q̂ πC

t + γt)
rt⟩

≤
T∑

t=1

⟨q∗, γt + ϵt
q̂ πC
t + γt

rt⟩

≤
T∑

t=1

⟨q∗, γ + 2ϵt
qπC + γ

rt⟩

=

T∑
t=1

⟨q∗, γ

qπC + γ
rt⟩+

T∑
t=1

⟨q∗, 2ϵt
qπC + γ

rt⟩

= γ

T∑
t=1

⟨q∗, rt
qπC + γ

⟩+
T∑

t=1

⟨q∗, 2ϵt
qπC + γ

rt⟩

≤ γ

T∑
t=1

⟨q∗, rt
qπC + γ

⟩+ 2⟨q∗, 1

qπC + γ
⟩

T∑
t=1

ϵt

≤ γ

T∑
t=1

⟨q∗, rt
qπC + γ

⟩+ 4⟨q∗, 1

qπC + γ
⟩ ln
(
T |X||A|

δ

)√
T ,

where the first steps follows from the definition of γt and q̂ πC
t and the last inequality follows from

the fact that
∑

t∈[T ]
1
t ≤ 2

√
T .

The final result holds with probability 1− 3δ, namely,

RT ≤L ln(|X||A|)
η

+ 4

√
2T ln

(
1

δ

)
⟨q∗, 1/qπC ⟩+ γ

T∑
t=1

⟨q∗, rt
qπC + γ

⟩

+ 4⟨q∗, 1

qπC + γ
⟩ ln
(
T |X||A|

δ

)√
T + L

√
2T ln

(
1

δ

)
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