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Abstract001

Chat logs provide a rich source of information002
about LLM users, but patterns of user behavior003
are often masked by the variability of queries.004
We present a new task, segmenting chat queries005
into contents of requests, roles, query-specific006
context, and additional expressions. We find007
that, despite the familiarity of chat-based inter-008
action, request-making in LLM queries remains009
significantly different from comparable human-010
human interactions. With the data resource,011
we introduce an important perspective of di-012
achronic analyses with user expressions. We013
find that query patterns vary between early ones014
emphasizing requests, and individual users ex-015
plore patterns but tend to converge with experi-016
ence. Finally, we show that model capabilities017
affect user behavior, particularly with the intro-018
duction of new models, which are traceable at019
the community level.020

1 Introduction021

Chat-based interfaces with underlying LLMs have022

created an unprecedented paradigm for AI (Zhu023

et al., 2025; Gao et al., 2024). The versatile con-024

versation format enables open-ended, customized025

user inputs, creating a new form of interaction.026

Meanwhile, these dynamics present interesting027

challenges. How do users learn and adapt their028

behaviors and expectations to converse with the029

system (Choi et al., 2024; Schroeder et al., 2024)?030

Do users apply similar expressions in such inter-031

actions to natural conversations (Nass and Moon,032

2000)? And, how do their utterances change when033

the model itself is updated (Ma et al., 2024)?034

Nonetheless, very limited attention has been035

given to these language aspects, much less the evo-036

lution of use patterns in the textual expressions037

across time. More often, studies of real-world038

chat logs focus on the semantics and tasks con-039

veyed (Tamkin et al., 2024; Cheng et al., 2025;040

Handa et al., 2025), whereas users’ expressions, a041

more fundamental and generalized linguistic fea- 042

ture of user-LLM interaction, remain understudied. 043

In this work, we take first steps to analyze how 044

these linguistic inquiries are formed, with a user’s 045

intent and the information they provide. and pro- 046

vide detailed analysis of patterns in interactions 047

over relative and absolute time. First, we introduce 048

a new task of request segmentation to tackle the 049

challenge of users freely embedding requests in 050

their expressions, together with other parts with 051

substantial presence like contexts and assigned 052

roles. Via an extendable, semi-automatic LLM 053

annotation workflow, we present a dataset on top 054

of WildChat (Zhao et al., 2024) with 211,414 055

parsed user utterances consisting Request Content, 056

Context, Roles, and Expressions (ReCCRE). The 057

dataset features clean separation of the content and 058

context specific to a request from the generic natu- 059

ral language expressions used to deliver the request. 060

Using this dataset, we make several key ob- 061

servations and conclusions. We show that the 062

LLM chat modality is fundamentally different from 063

similar natural request-making conversations be- 064

tween humans, by comparing with the Stanford Po- 065

liteness Datasets (Danescu-Niculescu-Mizil et al., 066

2013), a primary resource in computational prag- 067

matics. We identify key repeating patterns in 068

queries, which range on an axis between request- 069

centric and context-infused. More importantly, we 070

introduce how the perspective of expressions en- 071

ables diachronic user modeling, with use records 072

as a time-lapse data source. We discuss how the 073

dimension of time provides new angles in under- 074

standing user lifecycles and the collective user base. 075

We find clear traces that, as users gain familiarity 076

with the system, they tend to change expression for- 077

mats less, and they migrate from simple chunks of 078

requests to more context-heavy combinations. Fi- 079

nally, we exhibit the possibilty of full-scale commu- 080

nity analysis and discuss patterns, e.g., the impact 081

of the introduction of new models. 082
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2 Related Work083

Interpreting Real-World Human-LLM Conversa-084

tions has been a rising topic thanks to new data085

resources (Zhao et al., 2024; Zheng et al., 2024a).086

However, the major body of work has focused on087

the detection and categorization of what tasks users088

use LLMs for (Zhang et al., 2025b; Cheng et al.,089

2025; Mireshghallah et al., 2024) and their im-090

pacts (Handa et al., 2025; Tamkin et al., 2024;091

Kirk et al., 2024), as well as specific features092

such as values (Huang et al., 2025) and jailbreak-093

ing attempts (Jin et al., 2025). Beyond NLP,094

the formatting of prompts as well as the broader095

user experience with LLM input interfaces has096

also been core topics in Human-Computer Inter-097

action (Zamfirescu-Pereira et al., 2023; He et al.,098

2025; Gao et al., 2024; Zhang et al., 2025a).099

Some existing work shares the focus on indi-100

vidual attributes relevant to our discussions. For101

instance, Huang et al. (2024) concerns the “con-102

versational tones” shared or (mis)aligned between103

human and LLMs, and Zheng et al. (2024b) probes104

LLM performance with different role assignments.105

However, our work is fundamentally different:106

Prior work usually targets what a human-LLM con-107

versation should look like, a dominant thread re-108

lated to fine-tuning and deployment (Mott et al.,109

2024; Mishra et al., 2022; Ivey et al., 2024);110

whereas our work focuses on the mining of ex-111

isting data and new analysis paradigsms. More112

importantly, we present a new systematic view that113

is not covered by the studies on single attributes.114

At high level, our work is most related to Mysore115

et al. (2025) and Kolawole et al. (2025), which116

also seek to extract and describe latent patterns117

from massive inputs. However, both works have118

distinct goals: the former marks “PATHs” as a119

dialog proceeds and focuses on assisted writing,120

and the latter targets task taxonomies with semantic121

similarities.122

3 Annotating User Request-Making123

User requests are complicated and have many parts,124

some of which are more or less responsive to user125

choices. For example, a user seeking to generate a126

document may start with an external information127

need, such as the topic of an email or an essay ques-128

tion. Other parts of the request are more subject129

to user choices: a user may assign the LLM a role,130

specify restrictions on output, or add additional131

social cues.132

[REQUEST]
[CONTEXT]

(Semantic-Agnostic) Expressions: 
[REQUEST]:\n[CONTEXT]\n[REQUEST]
Type: Non-conversational – [R][C][R]+

[REQUEST]

2 page summary:
Climate change is … (a research paper on environment pasted by user)
no extra words just show the paragraphs

[ROLE]

[REQUEST]

[CONTEXT]
(Semantic-Agnostic) Expressions: 
Hey, are you familiar with [REQUEST]? So I’d like you to [REQUEST]. [CONTEXT]. Will 
you [REQUEST] from the perspective of [ROLE]?
Type: Conversational – Complex combinations

Hey, are you familiar with text recognition? So I’d like you to take a look 
at this old file from my grandpa. I found it in her house but I can’t 
recognize the language. Will you help me transcribe and translate the 
text on it from the perspective of a multilingual expert?

[REQUEST]

Figure 1: Two examples of user input annotated with
request content, context, and roles. The precise defini-
tions of the components are discussed in §3.1, and the
expression types are elaborated in Table 1.

Compared with what LLMs are used for, how 133

the conversational user-LLM interaction happens 134

remains largely understudied in the field, especially 135

from the pragmatics aspect. When studying user 136

behavior, we may want to ignore the externally de- 137

fined context and focus on those other aspects. We 138

start by constructing the data infrastructure for mod- 139

eling user request-making behaviors by segmenting 140

requests. Our goal is a generalizable corpus anno- 141

tation scheme that enables systematic analysis and 142

comparison of user requests, and allows adapation 143

to unseen data and natural language conversations 144

to support comparisons. 145

3.1 Task Setup 146

Source Data We collect 317,373 initial user 147

inputs (i.e., first turns) from the WildChat 148

dataset (Zhao et al., 2024) as the base corpus. 149

The Annotation Task As the first step, we need 150

to distinguish between the making of an effortful 151

request and the direct retrieval of answers (e.g., 152

“who is the 3rd president of the U.S.”). While the 153

latter represents another common type of usage, 154

the engagement level is low; it is less likely to 155

involve a conversational scenario, and the dynamics 156

are remarkably different from request-making. In 157

practice, the annotator first reads the input text 158

thoroughly and determines whether it involves a 159

request or a direct question, or “both” or “neither”. 160

Next, for the request-making cases, we out- 161

line the case-specific core semantics relevant to 162

the request. This therefore filters out the case- 163

independent framing templates used to deliver the 164

request, which would enable comparison across 165
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Type Description Examples

Non-conversational

[R] A single Request component.
[R]
Give me [R].

[R] ∗ n Multiple Requests concatenated in simple ways,
without conversational expressions.

[R] and [R].
[R]. [R]. Also [R].

[R][C]
One Request followed by One Context component,
without conversational expressions.

[R]: [C]
[R] such as [C].

[C][R]
One Context followed by One Request component,
without conversational expressions.

[C]. Now, [R].
[C]\n\n[R]

[R][C][R]+
A pair of Request and Context,
followed by additional Request components.

[R], [C]. [R] and [R].
[R]: [C]. [R]. [R]. [R].

[R][C][C]+
A pair of Request and Context,
followed by additional Context components.

[R] based of [C]: [C].
[R]. [C]. [C]. [C].

[C]+
Concatenation of Context components only.
Usually seen in early requests to complete writings.

[C].
[C] [C]

Other [R]/[C]/[role] compositions
Other more complicated series of [R], [C], and [role],
with simple, non-conversational expressions.

[R], [C]. Then, [R], [C]. Finally, [R], [C].
[C]. [C]. Given [C], [R].

Conversational

Single [R] One single Request in a conversational expression.
Can you help me to [R]?
Hi I wanna [R].

Simple [R]/[C]/[role] combinations
Simple combinations of Request, Context, and Role
using conversational expressions.

You are [role]. Now, [R].
I’m working on [C] and I’d like you to [R].

Complex compositions
Other more complicated series of [R], [C], and [role],
with full, conversational expressions.

How can I [R]? [R]. Please be sure to [R]!
Act as [role] and [R]. You will [R]: [C].

Table 1: Taxonomy of user expressions, with 8 non-conversational types and 3 conversational types.

different dialogs. Specifically, we introduce the166

following annotations of three elements of requests167

plus the user expressions, on top of the full user168

input text:169

• Request Content ([R]): A core span of text170

that specifies what task(s) exactly the user171

wants the LLM to perform, or what goal(s)172

the user wants to achieve;173

• Context ([C]): A detailed span of context in-174

formation that does not directly constitute the175

request, but provides support for neighboring176

requests. This includes the chunks of “target177

text” that the LLMs are requested to process178

(e.g., the pasted article for the request “2 page179

summary” in Fig. 1).180

• Role ([role]): Any roles that the LLM is asked181

to take on to achieve the requests.182

• Expression: The remaining text after extract-183

ing the above components, which represent184

the generic language templates used to embed185

and deliver the requests.186

Each word in a request is assigned to precisely187

one of the four categories, and the labels thus form188

a non-overlapping full division of the user input.189

This forms the basis of the corpus annotation task,190

and we move on to discuss the implementation on191

the large-scale data.192

3.2 Automating the annotation pipeline193

To adapt the annotation to chat logs at the million-194

request scale, we seek to balance between automa-195

tion and reliability. As the annotation of request196

segments is highly context-dependent and may in- 197

volve intrinsic ambiguity, we implement a review- 198

and-revise pipeline that simultaneously generates 199

semi-supervised annotations and extends the avail- 200

able data for fine-tuning with consistent standards 201

learned from human annotation. 202

The pipeline involves three contributors: a hu- 203

man annotator; an interim SotA LLM specialized in 204

text understanding (L); and a smaller local LLM as 205

full-scale annotator (l). We bootstrap from a small 206

number of hand-labelled data, use L as pseudo- 207

reference for fine-tuning l, and eventually automate 208

annotations with the fine-tuned local l. 209

First, the human annotator manually labeled a 210

small, random batch of “root” data. This small col- 211

lection of references is consistent and we denote 212

this gold dataset as D0. Both LLM annotators are 213

then provided with a detailed prompt of annotation 214

rules1 and fine-tuned based on D0. Next, both L 215

and l are evaluated on a separate, randomly sam- 216

pled set Draw
1 . We then convert this raw subset into 217

a silver set D1 as follows: 218

• If the two models agree on the instance (the to- 219

tal of different labels by L and l is lower than 220

threshold δ), the annotation of L is accepted 221

and added to D1. 222

• Otherwise, if the two models disagree, the 223

instance is manually reviewed. The annota- 224

tor determines which of L or l is acceptable, 225

following the standards of D0. If both are in- 226

correct, they manually label the instance. The 227

reviewed/relabelled version is added to D1. 228

1The prompts are available in Appendix B.
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D1 as a silver set is then merged with D0 to form an229

expanded annotated dataset for fine-tuning. Both L230

and l are then fine-tuned and evaluated on another231

new batch Draw
2 , and the process is repeated so on232

and so forth. Finally, after fine-tuning the models233

with incremental, semi-supervised data, we migrate234

the model prediction process from the black-box,235

high-cost L to our local model l to perform full-236

scale automated annotation.237

We use gpt-4o-2024-08-06 as the intermediate238

L, and a flagship 10B-level open-source LLM at the239

time of the work, Qwen2.5-14B-Instruct, as the240

full-scale annotator l. The review-and-revise loop241

was repeated 3 times on a total of 762 instances,242

and a template-based verification showed that ill-243

formatted responses are < 0.5%.244

4 The ReCCRE dataset245

4.1 Basic information246

After obtaining the valid annotations, we set up247

a spam filter to remove consecutive dialogs that248

are overly similar or created within a very short249

period, and also remove the instances that do not250

involve request-making. This results in a collection251

of 211,414 user request-making inputs from 18,964252

users. The dataset covers the time window from253

April 2023 to May 2024, and spans 6 versions of254

the gpt-3.5-turbo and gpt-4 models.2255

Long-term Users To track the change of use pat-256

terns over time, we focus on the core users with257

sufficient experience and time to play with and258

adapt to the system. In practice, we seek users (1)259

whose use records (time between first and last dia-260

log created) span more than 14 days, and (2) have261

started at least 10 dialogs. This yields a subset of262

2,092 users with 59,175 request-making user inputs263

in total. We refer to this key group as long-term or264

stable users. Our analyses will primarily focus on265

this group, as it more reliably reflects use patterns266

and provides the legitimacy for diachronic observa-267

tions. We present a full-scale case study comparing268

long-term users with all users and the full data in269

§5.2 under the Lexical Richness framework.270

4.2 Human-LLM requests differ from271

human-human requests272

Factoring out external context and focusing on re-273

quest expression allows us to compare recorded274

LLM chats to human-human interaction. To275

2See Zhao et al. (2024) for the detailed documentation.

Figure 2: The relative amount of formatting in Wildchat
user inputs (left) and the conversational portion only
(right), compared with the Stanford Politeness Dataset.

Figure 3: Distribution of speaker Lexical Richness (mea-
sured by Moving-Average Text-Token Ratio) in Wild-
chat (left) and its conversational portion only (right),
compared with the Stanford Politeness Dataset.

evaluate this difference, we applied the same re- 276

quest segmentation code to the Stanford Politeness 277

Datasets (Danescu-Niculescu-Mizil et al., 2013), a 278

widely used pragmatics corpus relevant to request- 279

making. The corpus involves two datasets col- 280

lected from natural dialog sources, the Wikipedia 281

editor discussions (Stanford-Wiki) and the Stack- 282

Exchange Q&A forum (Stanford-StackEx). Each 283

utterance is designed to involve the speaker mak- 284

ing requests to another member. We can there- 285

fore compare how requests are delivered in the two 286

human-human dialog scenarios and the user-LLM 287

scenario. 288

We note the distinct composition of the ut- 289

terances and the Lexical Richness of expres- 290

sions (Laufer and Nation, 1995; Shen, 2022). Fig- 291

ures 2 and 3 respectively compares (1) the per- 292

centage of input text as expression and (2) the 293

user-level Moving-Average Text-Token Ratio (Cov- 294

ington and McFall, 2010) of ReCCRE and Stan- 295

ford datasets. The two natural subsets share highly 296

similar stats despite distinct sources and contexts; 297

however, ReCCRE from WildChat uses qualita- 298

tively fewer expressions to embed requests, and 299

user language has much lower diversity. One major 300

reason is the presence of non-conversational “im- 301

perative” spans (Table 1); for instance, “Write an 302

article about jogging." is marked as a single [R] 303

component with minimal or no formatting. This 304

is a common paradigm, different from natural con- 305
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[R]. [R]. [R].

[R]:[R].

[R] and [R].
[R] but [R].

[R]!

[R], so that [R].

[R], and [R]. You’ll 
need to [R].

I need [R].

Hi I wanna [R].

Please [R].

Could you please [R]?

Can you help 
me to [R]?
How do I [R]?

Act as [role] and [R]: [C].
Hi, you are [role] and now 

I want you to [R].

I'm working on [C] and I'd like you to [R]. [R] based off [C].

Please [R] based on [C].

Help me [R]: [C].I have [C], so [R]? Let’s say [C]. Now, [R].
[C]. Now [R].
[C]. Next, [R].

[R], [C]. Then, [R], [C]. 
Finally, [R], [C].

[C], and with [C], [R].
[C], [R].

[C].
[C]. [C].

[R], where [C].
[R] [C] [C] [C].

[R]. [C]. [C].
[R] [C].

[R]: [C].
[R], such as [C].

[R] [C]. [R] and [R].
[R] [C] [R] [R] [R].

[R]. [C]. [R].

[R]. [R]. [R]. [C]. [C].

Figure 4: The overview of the ReCCRE dataset as a user-level 2-D plot. Each circle represents a user, with its size
matching their total dialogs and color clustered base on closest anchor point. In general, the horizontal axis displays
the ratio of [R] an [C], and the vertical axis ranges from the most to least conversational.

versations, as the latter would require more appro-306

priate social grounding. However, if we confine to307

the conversational instances (the subplots on the308

right in both figures) by removing the simple com-309

binations of request content and context, we see310

that the difference still holds. In other words, the311

existence of the non-conversational imperatives is312

not sufficient to account for the difference; there313

exist fundamental contrasts of langauge use inde-314

pendent from request content that are specific to315

the human-LLM scenario.316

4.3 Categorization and Illustration317

4.3.1 Taxonomy of Expressions318

To understand and generalize the annotations, we319

start from a taxonomy of expressions in request-320

making shown in Table 1. We refer to an expression321

as conversational if it involves explicit signs of con-322

versing with another party, such as person (“You”323

and “I”), politeness strategies, and greetings. Con-324

versely, if an utterance is a mere imperative combi-325

nation of [R] and [C] without signs of conversation,326

it is marked as non-conversational. We further327

break down the expressions based on their struc-328

ture and complexity, e.g., whether multiple request329

or context components are involved.330

Anchor Points To calibrate the varied user in-331

puts, we collect 40 different instances of the most332

frequent expressions in the dataset, covering all 11333

categories. We use them as anchor points in our334

analyses (including subsequent figures) to provide335

reference for visualizations, and more importantly,336

to allow categorization of arbitrary unseen expres-337

sions based on their closest anchor points. 338

4.3.2 Visualizing the data distribution 339

We vectorize user expressions with a SotA text- 340

embedding model, gte-large-en-v1.5 (Li et al., 341

2023), with [R], [C], and [role] wrapped as for- 342

matted placeholder tokens (__[REQUEST]__, etc.) 343

Each request-making utterance is encoded as a 344

1024-dim vector, and a user is represented by the 345

average of their utterances. We then map all users 346

as well as the anchor points to a 2-D space using 347

PaCMAP (Wang et al., 2021), a SotA dimension 348

reduction (DR) method. In this way, the collections 349

of user expressions are depicted as a scatter plot in 350

Figure 4, where each bubble represents a long-term 351

user. The bubble size is in proportion to the number 352

of dialogs a user created, and they are categorized 353

and colored based on the type of the closest anchor 354

point. If a user representation is not close enough 355

to any anchor points, it is marked in grey. 356

Note that the horizontal layout corresponds to 357

the composition of Goals ([R]) and Context ([C]), 358

where the leftmost represents the sole [R] and the 359

rightmost corresponds to [C] only, and the com- 360

bined forms are in between. Meanwhile, the ver- 361

tical positions can be interpreted as the “conver- 362

sationality”: the bottommost ones, featuring role 363

assigning and politeness patterns like “please”, are 364

closest to the expressions and force of natural con- 365

versations; the topmost ones, indicating a repet- 366

itive sequence of [R] and [C] with no additional 367

text, is most tool-like and unlikely in human-human 368

request-making. 369
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Figure 5: Distribution of the 1st dialogs (left) and 20th dialogs (right) of eligible long-term users as Kernel Density
Estimation (KDE) plots in the same 2D space from Fig. 4.

Figure 6: Difference of densities between the early and
late inputs of the long-term users (Fig. 5). In the later
stage, the balanced combination of [R] and [C] (upper-
right area in red) sees major inflows, while the type of
non-conversational stacks of [R]s (blue area on the left)
significantly decreases.

5 Diachronic analysis of Request-making370

in the ReCCRE dataset371

Enabled by the new data infrastructure, we move on372

to discuss a novel paradigm: modeling user behav-373

iors and patterns in a diachronic manner, thereby374

understanding interaction as a systematic and dy-375

namic process. We will first inspect the lifecycles376

of individual users, and discuss how the fundamen-377

tal properties, such as the diversity of expression378

types, change across time. Next, we interpret the379

holistic evolution patterns formed by the commu-380

nity collectively, and extend further to compare the381

core user base and the lay public.382

5.1 Modeling User Lifecycle383

Long-term, non-intrusive documentary of user-384

LLM interactions (Zhu et al., 2025) provides an385

interface for the user lifecycles, i.e., the full course386

of actions and use history. Here, we discuss how387

a fully text-based analysis can help to model the388

change of use patterns across time. 389

5.1.1 What expressions were used and how 390

are they structured? 391

As a natural continuation of Figure 4, we further 392

add the dimension of time and inspect the most 393

common patterns across myriad individual dialogs 394

at different stages. To model the user lifecycles, 395

we position a pair of early- and late-stage input 396

data from long-term users in the same 2-D space 397

from Fig. 4 and apply Kernel Density Estimation 398

to model the frequency of user expressions. Fig- 399

ure 5 shows the comparison of the 1st (left) and 400

the 20th (right) request-making dialog of all eligi- 401

ble long-term users, with the same anchor points 402

from Fig. 4, and we directly depict the difference 403

between the two KDEs in Figure 6. For the users’ 404

first explorations, most utterances are made up of 405

only one [R] or the simple combination of two. 406

This describes the exploratory stage of interaction 407

with the system with more concise and generic 408

requests. However, as users gain familiarity, this 409

pattern drastly decreases (though still a major type), 410

and the mass is significantly transitioned to the ad- 411

dition of more specific contexts on the right side, 412

as well as the more complex type of multiple goals 413

and context (top). This suggests a communal shift 414

towards requests with higher specificity and com- 415

plexity: Users are accustomed to tailoring requests 416

with more context details and fine-grained content 417

later on. This “show or tell” transition reempha- 418

sizes that, whereas users may develop distinct use 419

scenarios and tasks, there are indeed fundamental 420

commonalities to be mined at the expression level. 421

5.1.2 User-level Evolutions 422

The user expression space like Fig. 4 enables the 423

study focusing on individual users. For an intuitive 424
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(a) W=1 (b) W=3 (c) w=5

Figure 7: Convergence of user expressions over time.

instance, we can visualize individual trajectories425

as their latest inputs move along the 2-D space;426

this is exemplified by the distinct but discernible427

trajectories of 6 random long-term users illustrated428

in Figure 9 in Appendix A.429

Further, we also wonder if these paths of users430

can be collected across users to suggest deeper431

trends. As a representative example, we consider432

the effect of familiarity on a user’s tendency to433

repeat same kinds of expressions they have used434

previously. One hypothesis is that a user’s expres-435

sions may converge with more experience, as they436

develop their “go-to” choices and stick to how that437

have worked in previous cases. Alternatively, as438

users gain familiarity, they may understand the ca-439

pabilities and boundaries of the LLMs better, and440

thus rely less on rigorous prompt formats and inter-441

act in more casual, arbitrary ways.442

To test the contrasting diachronic hypotheses,443

we examine the minimal difference between a long-444

term user’s input and their most recent inputs, i.e.,445

between their i-th and its previous k request ut-446

terances, minj=1,...,k−1[1−sim(Ui, Ui−j)], for all447

valid i given window size k. Then, we collect the448

minimal difference across all users and compute449

the average for each position i, to illustrate the av-450

eraged step-by-step convergence (or divergence) of451

expressions within a long-term user’s lifecycle.452

Figure 7 displays the results under different win-453

dow sizes k. The actual chronological data is454

shown as the blue line. It is compared against455

the average of 50 random trials where the dialogs456

from the same user are randomly shuffled (shown457

in orange), thus breaking the diachronic ties. We458

observe strong evidence for the convergence hy-459

pothesis across time: the difference between a new460

input and its immediate predecessors sees a dras-461

tic, continuous decline as users continue to interact462

with the system. This is quantitatively different463

from the baseline level of random shuffles, and the464

difference between the two gets more significant465

with more input requests. This suggests that users 466

overall develop rather stable patterns of usage as 467

they gain familiarity. Meanwhile, we also note that 468

this pattern is most significant with window size 469

k = 1 (Fig. 7a), i.e., when comparing each input 470

with the exact one previous dialog. The gap be- 471

tween real and random situations is reduced with 472

k = 3 (Fig. 7b) and further with k = 5 (Fig. 7c). 473

This indicates that the most recent cases consis- 474

tently serve as more significant references for a 475

new user request, whereas the effect of earlier in- 476

puts decreases with their lower recency. 477

5.2 Picturing the community 478

So far we have modeled the evolving request- 479

making expressions from the perspectives of in- 480

dividual users and requests. We finally discuss 481

a broader horizon of ReCCRE: Is it possible to 482

draw a full landscape of evolving human-LLM in- 483

teraction from observations, modeling the complete 484

evolution trends in the user community as a whole? 485

5.2.1 Setup 486

We show that, with metrics as simple as Lexical 487

Richness, we are poised to delineate the climate 488

in great detail and discover the subtleties therein. 489

Specifically, we use MTLD (McCarthy, 2005; Mc- 490

Carthy and Jarvis, 2010) as it’s almost fully length- 491

invariant and suitable for random collections. The 492

intuitive interpretation of batched Lexical Richness 493

is a measurement of expression diversity across 494

all users: A higher richness indicates that there 495

are more distinct presentations of requests, while a 496

lower richness indicates converged, collective ways 497

of interactions and clearer system affordances. 498

Comparing long-term and lay users While our 499

analyses have focused on long-term users for the 500

legitimate comparisons over time, the holistic view 501

here enables us to compare the experience of the 502

“regulars” and the entire public user base. The 503

MTLD data for the full dataset with all 18,964 504

7



Figure 8: Lexical Richness of long-term users (upper) and all users (lower) across the full time span.

users is illustrated in Figure 8, where proportionally505

larger batch sizes are used to create comparable506

densities of data points in the two figures.507

5.2.2 Observations508

Both long-term and all users share a similar509

overall trend. The initial deployment of Wild-510

Chat saw heavily heterogenuous attempts, espe-511

cially in users who later became long-term. Af-512

ter initial oscillations, the diversity level of ex-513

pressions stabilized in the extended period of514

gpt-3.5-turbo-0613. However, as the most515

advanced gpt-4-1106-preview was introduced,516

there seemed a paradigm shift towards a new low.517

The trend is further different with another major518

model replacement around March 2024, and both519

groups see drastically more diverse expressions.520

The impact of new models involves a strong pat-521

tern of “passing on”: new models, especially the522

ones from the same family (prefix), take on the523

exact use patterns of their predecessors. Simultane-524

ous models also see shared evolutions: for instance,525

the emerging gpt-4-1106-preview leads users to526

also interact with gpt-3.5-turbo-0613 with less527

diverse expressions, though the latter is no different528

from before. More interestingly, long-term users529

and the lay public seem to show flipped perceptions530

of model capabilities and usages, as seen in the ear-531

liest and latest parts of WildChat. These indicate 532

further complexities yet to be explored, regarding 533

the perception of LLMs in relation to familiarity. 534

6 Conclusions 535

While the specificity of user queries is important, 536

how users form queries is also significant. We 537

introduce a new task, segmenting requests, context- 538

specific information, assigned roles, and other 539

forms of expression in recorded chat logs. This 540

segmentation allows us to identify patterns both 541

within user experience trajectories and across user 542

populations. 543

We see strong effects as users gain experience. 544

Our strongest finding is that users tend to move 545

away from making simple requests to combining 546

requests with context-specific information, such 547

as examples or text to be analyzed. Despite well- 548

publicized examples, in all cases users tend to inter- 549

act with the LLM more as a tool or a search engine 550

and less like a human collaborator. 551

For model builders, understanding how users 552

learn about and react to the capabilities of mod- 553

els provides clues about how to frame interactions. 554

Our findings also suggest that changes in models 555

actively affect how users behave. 556

8



Limitations557

While our work seeks to provide new resources and558

paradigms, the data and analysis work both have559

practical limitations. Due to the limited capabilities560

of the 14B LM and the author as annotator and561

validator, the ReCCRE dataset is selected from the562

chat logs with English as the major language in563

the original dataset. This limits the reliable scope564

of the work, as cultural and language factors can565

lead to different interaction patterns. Further, our566

work is based fully on WildChat, which represents567

a specific type of data collection practice and a568

specific time window; it is possible that findings are569

different in interesting ways in other documented570

chat logs, such as LMSys (Zheng et al., 2024a)571

collected earlier with a different protocol. In our572

analyses, we largely utilize off-the-shelf metrics573

including the gte embeddings and Lexical Richness574

measurements. This is by design, as we would like575

to demonstrate the usability and low barrier of the576

dataset. However, we also note that this might limit577

the boundaries and depth of data analyses, and we578

encourage further explorations with the ReCCRE579

data, e.g., fine-tuning models with the resource.580
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Figure 9: Trajectories of 6 long-term users on the same visualized 2D space as Figure 4.

A Individual Trajectories of Random773

Users774

See Figure 9.775

B Prompts for LLM annotators776

System You are an expert in linguistics and NLP,777

and we are working on a project studying how peo-778

ple interact with Large Language Models to chat,779

make requests, deliver commands, etc. You will780

annotate some real-world user inputs collected with781

users’ knowledge and content. As you might imag-782

ine, people have been talking with these models in783

drastically varied (and sometimes weird) ways, and784

for all sorts of purposes. The goal of this project is785

to create basic annotations of the components in a786

user input.787

Prompt First, read through the user input and788

determine whether this input takes the form of:789

• Performing tasks: "Can you write a story790

about...", "Make this email more polite", "cre-791

ate a list of items", etc.792

– Generating new text or code usu-793

ally counts towards this type, e.g., sum-794

marize", "translate", "brainstorm", etc.795

• or, Finding answers: "do I need a visa",796

"What’s the tallest building in the world?",797

"what happened to Elsa", etc.798

– This usually corresponds to retrieving a799

clear, short answer, e.g., "give me a few800

character names that appeared in [book801

name]".802

• or, both803

• or, neither 804

Note that these also apply to briefer inputs that 805

omit the verb, e.g., just "a list of names" as in- 806

put, instead of "[create] a list of names", similarly 807

belongs to "performing tasks". 808

Next, your main task is to highlight three types of 809

components that specify the user’s demand. Print 810

out the input sentence, with annotations of the fol- 811

lowing components using "__[ ... ]__", i.e., adding 812

"__[" at the start of a span and "]__" at the end. 813

Additionally, determine which type it is, and add 814

it immediately after "]__", so an annotated piece 815

look like "__[ test input snippet ]__(ROLE)". 816

• Assigned Roles: Any roles that the LLM is 817

asked to take on. 818

– This includes both the explicit instruc- 819

tions ("You should act like an expert in 820

math", "From now on you will be Alan, 821

my personal assistant") and implicit role 822

assigning ("Does this make sense from 823

a college student’s view?", "Because I 824

need the advice from an expert, I’m here 825

to ask about..."). 826

– Represent assigned roles with "(ROLE)". 827

• Request: The core span of text that specifies 828

what task(s) exactly the user wants the LLM 829

to perform, or what issue the user wants the 830

LLM to check and answer, no matter how they 831

are phrased. 832

– For instance, "write a poem" is the ac- 833

tual request content in both "Hey can 834

you write a poem?" and "Write a poem!", 835

11



though the same request is delivered in836

different tones.837

– Another example: "Can I eat food from 2838

days ago that hasn’t been fridged?", here839

the user wants the LLM to look into his840

plan to "eat food from 2 days ago that841

hasn’t been fridge".842

– Requests are marked as "(REQUEST)".843

• Detailed Context: All the detailed context for844

a given request/question.845

– For example: "Please write a story about846

two friends. (I can’t think of a good one847

for my kids) ..." – "Write a story about848

two friends" would be Requests as above,849

and then the background information "I850

can’t think of a good one for my kids"851

will be annotated as Detailed Context.852

– The text quoted or pasted for the LLM853

to process, for instance, the article that854

goes after the command to "Summarize855

this article: ", usually counts as detailed856

context.857

– Detailed Context is annotated as "(CON-858

TEXT)".859

Check the text carefully and annotate all the snip-860

pets of text that match the three types. Meanwhile,861

note that this task doesn’t require you to give every862

word a label – some parts of the text are not these863

three kinds of components, which is an expected864

result of the task. Generally, the remaining text865

that isn’t annotated with any type should look like866

a "generic" template that does not involve the in-867

formation specific to this one instance. If you think868

the input is a broken instance and cannot be inter-869

preted, or if the input is rather toxic or disturbing,870

print "__[NONE]__" as the sole output.871

Below are some examples:872

(3 In-context emamples here)873

Now, annotate the following instance:874

Input:875

(Input text to be annotated)876

Output:877
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