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Abstract

Chat logs provide a rich source of information
about LLM users, but patterns of user behavior
are often masked by the variability of queries.
We present a new task, segmenting chat queries
into contents of requests, roles, query-specific
context, and additional expressions. We find
that, despite the familiarity of chat-based inter-
action, request-making in LLM queries remains
significantly different from comparable human-
human interactions. With the data resource,
we introduce an important perspective of di-
achronic analyses with user expressions. We
find that query patterns vary between early ones
emphasizing requests, and individual users ex-
plore patterns but tend to converge with experi-
ence. Finally, we show that model capabilities
affect user behavior, particularly with the intro-
duction of new models, which are traceable at
the community level.

1 Introduction

Chat-based interfaces with underlying LLMs have
created an unprecedented paradigm for Al (Zhu
et al., 2025; Gao et al., 2024). The versatile con-
versation format enables open-ended, customized
user inputs, creating a new form of interaction.
Meanwhile, these dynamics present interesting
challenges. How do users learn and adapt their
behaviors and expectations to converse with the
system (Choi et al., 2024; Schroeder et al., 2024)?
Do users apply similar expressions in such inter-
actions to natural conversations (Nass and Moon,
2000)? And, how do their utterances change when
the model itself is updated (Ma et al., 2024)?
Nonetheless, very limited attention has been
given to these language aspects, much less the evo-
lution of use patterns in the textual expressions
across time. More often, studies of real-world
chat logs focus on the semantics and tasks con-
veyed (Tamkin et al., 2024; Cheng et al., 2025;
Handa et al., 2025), whereas users’ expressions, a

more fundamental and generalized linguistic fea-
ture of user-LLM interaction, remain understudied.

In this work, we take first steps to analyze how
these linguistic inquiries are formed, with a user’s
intent and the information they provide. and pro-
vide detailed analysis of patterns in interactions
over relative and absolute time. First, we introduce
a new task of request segmentation to tackle the
challenge of users freely embedding requests in
their expressions, together with other parts with
substantial presence like contexts and assigned
roles. Via an extendable, semi-automatic LLM
annotation workflow, we present a dataset on top
of WildChat (Zhao et al., 2024) with 211,414
parsed user utterances consisting Request Content,
Context, Roles, and Expressions (ReCCRE). The
dataset features clean separation of the content and
context specific to a request from the generic natu-
ral language expressions used to deliver the request.

Using this dataset, we make several key ob-
servations and conclusions. We show that the
LLM chat modality is fundamentally different from
similar natural request-making conversations be-
tween humans, by comparing with the Stanford Po-
liteness Datasets (Danescu-Niculescu-Mizil et al.,
2013), a primary resource in computational prag-
matics. We identify key repeating patterns in
queries, which range on an axis between request-
centric and context-infused. More importantly, we
introduce how the perspective of expressions en-
ables diachronic user modeling, with use records
as a time-lapse data source. We discuss how the
dimension of time provides new angles in under-
standing user lifecycles and the collective user base.
We find clear traces that, as users gain familiarity
with the system, they tend to change expression for-
mats less, and they migrate from simple chunks of
requests to more context-heavy combinations. Fi-
nally, we exhibit the possibilty of full-scale commu-
nity analysis and discuss patterns, e.g., the impact
of the introduction of new models.



2 Related Work

Interpreting Real-World Human-LLLM Conversa-
tions has been a rising topic thanks to new data
resources (Zhao et al., 2024; Zheng et al., 2024a).
However, the major body of work has focused on
the detection and categorization of what tasks users
use LLMs for (Zhang et al., 2025b; Cheng et al.,
2025; Mireshghallah et al., 2024) and their im-
pacts (Handa et al., 2025; Tamkin et al., 2024;
Kirk et al., 2024), as well as specific features
such as values (Huang et al., 2025) and jailbreak-
ing attempts (Jin et al., 2025). Beyond NLP,
the formatting of prompts as well as the broader
user experience with LLM input interfaces has
also been core topics in Human-Computer Inter-
action (Zamfirescu-Pereira et al., 2023; He et al.,
2025; Gao et al., 2024; Zhang et al., 2025a).

Some existing work shares the focus on indi-
vidual attributes relevant to our discussions. For
instance, Huang et al. (2024) concerns the “con-
versational tones” shared or (mis)aligned between
human and LLMs, and Zheng et al. (2024b) probes
LLM performance with different role assignments.
However, our work is fundamentally different:
Prior work usually targets what a human-LLM con-
versation should look like, a dominant thread re-
lated to fine-tuning and deployment (Mott et al.,
2024; Mishra et al., 2022; Ivey et al., 2024);
whereas our work focuses on the mining of ex-
isting data and new analysis paradigsms. More
importantly, we present a new systematic view that
is not covered by the studies on single attributes.

At high level, our work is most related to Mysore
et al. (2025) and Kolawole et al. (2025), which
also seek to extract and describe latent patterns
from massive inputs. However, both works have
distinct goals: the former marks “PATHs” as a
dialog proceeds and focuses on assisted writing,
and the latter targets task taxonomies with semantic
similarities.

3 Annotating User Request-Making

User requests are complicated and have many parts,
some of which are more or less responsive to user
choices. For example, a user seeking to generate a
document may start with an external information
need, such as the topic of an email or an essay ques-
tion. Other parts of the request are more subject
to user choices: a user may assign the LLM a role,
specify restrictions on output, or add additional
social cues.

[REQUEST]
2 page summary:
Climate change is ... (@ research paper on environment pasted by user)
no extra words just show the paragraphs

[REQUEST]
(Semantic-Agnostic) Expressions:
[REQUEST]I:\n[CONTEXT]\N[REQUEST]
Type: Non-conversational - [R][C][R]*

QUEST] [REQUEST]

Hey, are you familiar with text recognition? So I'd like you to take a look
at this old file from my grandpa. I found it in her house but I can't
recognize the language. Will you help me transcribe and translate the
text on it from the perspective of a multilingual expert?

(Semantic-Agnostic) Expressions:
Hey, are you familiar with [REQUEST]? So I'd like you to [REQUEST]. [CONTEXT]. Will
you [REQUEST] from the perspective of [ROLE]?

Type: C

| - Complex

Figure 1: Two examples of user input annotated with
request content, context, and roles. The precise defini-
tions of the components are discussed in §3.1, and the
expression types are elaborated in Table 1.

Compared with what LLMs are used for, how
the conversational user-LLM interaction happens
remains largely understudied in the field, especially
from the pragmatics aspect. When studying user
behavior, we may want to ignore the externally de-
fined context and focus on those other aspects. We
start by constructing the data infrastructure for mod-
eling user request-making behaviors by segmenting
requests. Our goal is a generalizable corpus anno-
tation scheme that enables systematic analysis and
comparison of user requests, and allows adapation
to unseen data and natural language conversations
to support comparisons.

3.1 Task Setup

Source Data We collect 317,373 initial user
inputs (i.e., first turns) from the WildChat
dataset (Zhao et al., 2024) as the base corpus.

The Annotation Task As the first step, we need
to distinguish between the making of an effortful
request and the direct retrieval of answers (e.g.,
“who is the 3rd president of the U.S.”). While the
latter represents another common type of usage,
the engagement level is low; it is less likely to
involve a conversational scenario, and the dynamics
are remarkably different from request-making. In
practice, the annotator first reads the input text
thoroughly and determines whether it involves a
request or a direct question, or “both” or “neither”.

Next, for the request-making cases, we out-
line the case-specific core semantics relevant to
the request. This therefore filters out the case-
independent framing templates used to deliver the
request, which would enable comparison across



Other [R]/[C]/[role] compositions

Other more complicated series of [R], [C], and [role],
with simple, non-conversational expressions.

Type Description Ex
[R] A single Request component. [(l‘jle me [R).
[R] Multiple Requests concatenated in simple ways, [R] and [R].
) without conversational expressions. [R]. [R]. Also [R].
(R[C] One Request followed by One Context component, [R]: [C]
without conversational expressions. [R] such as [C].
(CIIR) One Context followed by One Request component, [C]. Now, [R].
. without conversational expressions. [C]\n\n[R]
Non-conversational RICIR A pair of Request and Context, [R], [C]. [R] and [R].
(R]ICIR] followed by additional Request components. [R]: [C]. [R]. [R)]. [R).
(R[Cl[C]* A pair of Request and Context, [R] based of [C]: [C].
followed by additional Context components. [R]. [C]. [C]. [C].
]+ Concatenation of Confext components only. [C].
Usually seen in early requests to complete writings. (o110
[

R],[C]. Then, [R],[C]. Finally, [R], [C].
[C]. [C]. Given [C], [R].

Conversational

Single [R]

One single Request in a conversational expression.

Can you help me to [R]?
Hi I wanna [R].

Simple [R]/[C]/[role] combinations

Simple combinations of Request, Context, and Role
using conversational expressions.

You are [role]. Now, [R].
I'm working on [C] and I'd like you to [R].

Complex compositions

Other more complicated series of [R], [C], and [role],
with full, conversational expressions.

How can I [R]? [R]. Please be sure to [R]!
Act as [role] and [R]. You will [R]: [C].

Table 1: Taxonomy of user expressions, with 8 non-conversational types and 3 conversational types.

different dialogs. Specifically, we introduce the
following annotations of three elements of requests
plus the user expressions, on top of the full user
input text:

* Request Content ([R]): A core span of text
that specifies what task(s) exactly the user
wants the LLM to perform, or what goal(s)
the user wants to achieve;

* Context ([C]): A detailed span of context in-
formation that does not directly constitute the
request, but provides support for neighboring
requests. This includes the chunks of “target
text” that the LLMs are requested to process
(e.g., the pasted article for the request “2 page
summary” in Fig. 1).

* Role ([role]): Any roles that the LLM is asked
to take on to achieve the requests.

* Expression: The remaining text after extract-
ing the above components, which represent
the generic language templates used to embed
and deliver the requests.

Each word in a request is assigned to precisely
one of the four categories, and the labels thus form
a non-overlapping full division of the user input.
This forms the basis of the corpus annotation task,
and we move on to discuss the implementation on
the large-scale data.

3.2 Automating the annotation pipeline

To adapt the annotation to chat logs at the million-
request scale, we seek to balance between automa-
tion and reliability. As the annotation of request

segments is highly context-dependent and may in-
volve intrinsic ambiguity, we implement a review-
and-revise pipeline that simultaneously generates
semi-supervised annotations and extends the avail-
able data for fine-tuning with consistent standards
learned from human annotation.

The pipeline involves three contributors: a hu-
man annotator; an interim SotA LLM specialized in
text understanding (L); and a smaller local LLM as
full-scale annotator (7). We bootstrap from a small
number of hand-labelled data, use L as pseudo-
reference for fine-tuning /, and eventually automate
annotations with the fine-tuned local /.

First, the human annotator manually labeled a
small, random batch of “root” data. This small col-
lection of references is consistent and we denote
this gold dataset as Dy. Both LLM annotators are
then provided with a detailed prompt of annotation
rules' and fine-tuned based on Dy. Next, both L
and [ are evaluated on a separate, randomly sam-
pled set D7**. We then convert this raw subset into
a silver set D as follows:

* If the two models agree on the instance (the to-
tal of different labels by L and [ is lower than
threshold ), the annotation of L is accepted
and added to D;.

* Otherwise, if the two models disagree, the
instance is manually reviewed. The annota-
tor determines which of L or [ is acceptable,
following the standards of Dy. If both are in-
correct, they manually label the instance. The
reviewed/relabelled version is added to D;.

'The prompts are available in Appendix B.



D as asilver set is then merged with Dy to form an
expanded annotated dataset for fine-tuning. Both L
and [ are then fine-tuned and evaluated on another
new batch D5, and the process is repeated so on
and so forth. Finally, after fine-tuning the models
with incremental, semi-supervised data, we migrate
the model prediction process from the black-box,
high-cost L to our local model [ to perform full-
scale automated annotation.

We use gpt-40-2024-08-06 as the intermediate
L, and a flagship 10B-level open-source LLM at the
time of the work, Qwen2.5-14B-Instruct, as the
full-scale annotator /. The review-and-revise loop
was repeated 3 times on a total of 762 instances,
and a template-based verification showed that ill-
formatted responses are < 0.5%.

4 The ReCCRE dataset

4.1 Basic information

After obtaining the valid annotations, we set up
a spam filter to remove consecutive dialogs that
are overly similar or created within a very short
period, and also remove the instances that do not
involve request-making. This results in a collection
of 211,414 user request-making inputs from 18,964
users. The dataset covers the time window from
April 2023 to May 2024, and spans 6 versions of
the gpt-3.5-turbo and gpt-4 models.?

Long-term Users To track the change of use pat-
terns over time, we focus on the core users with
sufficient experience and time to play with and
adapt to the system. In practice, we seek users (1)
whose use records (time between first and last dia-
log created) span more than 14 days, and (2) have
started at least 10 dialogs. This yields a subset of
2,092 users with 59,175 request-making user inputs
in total. We refer to this key group as long-term or
stable users. Our analyses will primarily focus on
this group, as it more reliably reflects use patterns
and provides the legitimacy for diachronic observa-
tions. We present a full-scale case study comparing
long-term users with all users and the full data in
§5.2 under the Lexical Richness framework.

4.2 Human-LLM requests differ from
human-human requests

Factoring out external context and focusing on re-
quest expression allows us to compare recorded
LLM chats to human-human interaction. To

2See Zhao et al. (2024) for the detailed documentation.
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Figure 3: Distribution of speaker Lexical Richness (mea-
sured by Moving-Average Text-Token Ratio) in Wild-
chat (left) and its conversational portion only (right),
compared with the Stanford Politeness Dataset.

evaluate this difference, we applied the same re-
quest segmentation code to the Stanford Politeness
Datasets (Danescu-Niculescu-Mizil et al., 2013), a
widely used pragmatics corpus relevant to request-
making. The corpus involves two datasets col-
lected from natural dialog sources, the Wikipedia
editor discussions (Stanford-Wiki) and the Stack-
Exchange Q&A forum (Stanford-StackEx). Each
utterance is designed to involve the speaker mak-
ing requests to another member. We can there-
fore compare how requests are delivered in the two
human-human dialog scenarios and the user-LLM
scenario.

We note the distinct composition of the ut-
terances and the Lexical Richness of expres-
sions (Laufer and Nation, 1995; Shen, 2022). Fig-
ures 2 and 3 respectively compares (1) the per-
centage of input text as expression and (2) the
user-level Moving-Average Text-Token Ratio (Cov-
ington and McFall, 2010) of ReCCRE and Stan-
ford datasets. The two natural subsets share highly
similar stats despite distinct sources and contexts;
however, ReCCRE from WildChat uses qualita-
tively fewer expressions to embed requests, and
user language has much lower diversity. One major
reason is the presence of non-conversational “im-
perative” spans (Table 1); for instance, “Write an
article about jogging." is marked as a single [R)]
component with minimal or no formatting. This
is a common paradigm, different from natural con-
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Figure 4: The overview of the ReCCRE dataset as a user-level 2-D plot. Each circle represents a user, with its size
matching their total dialogs and color clustered base on closest anchor point. In general, the horizontal axis displays
the ratio of [R] an [C], and the vertical axis ranges from the most to least conversational.

versations, as the latter would require more appro-
priate social grounding. However, if we confine to
the conversational instances (the subplots on the
right in both figures) by removing the simple com-
binations of request content and context, we see
that the difference still holds. In other words, the
existence of the non-conversational imperatives is
not sufficient to account for the difference; there
exist fundamental contrasts of langauge use inde-
pendent from request content that are specific to
the human-LLM scenario.

4.3 Categorization and Illustration

4.3.1 Taxonomy of Expressions

To understand and generalize the annotations, we
start from a taxonomy of expressions in request-
making shown in Table 1. We refer to an expression
as conversational if it involves explicit signs of con-
versing with another party, such as person (“You”
and “I”), politeness strategies, and greetings. Con-
versely, if an utterance is a mere imperative combi-
nation of [R] and [C] without signs of conversation,
it is marked as non-conversational. We further
break down the expressions based on their struc-
ture and complexity, e.g., whether multiple request
or context components are involved.

Anchor Points To calibrate the varied user in-
puts, we collect 40 different instances of the most
frequent expressions in the dataset, covering all 11
categories. We use them as anchor points in our
analyses (including subsequent figures) to provide
reference for visualizations, and more importantly,
to allow categorization of arbitrary unseen expres-

sions based on their closest anchor points.

4.3.2 Visualizing the data distribution

We vectorize user expressions with a SotA text-
embedding model, gte-large-en-v1.5 (Liet al.,
2023), with [R], [C], and [role] wrapped as for-
matted placeholder tokens (__[REQUEST]__, etc.)
Each request-making utterance is encoded as a
1024-dim vector, and a user is represented by the
average of their utterances. We then map all users
as well as the anchor points to a 2-D space using
PaCMAP (Wang et al., 2021), a SotA dimension
reduction (DR) method. In this way, the collections
of user expressions are depicted as a scatter plot in
Figure 4, where each bubble represents a long-term
user. The bubble size is in proportion to the number
of dialogs a user created, and they are categorized
and colored based on the type of the closest anchor
point. If a user representation is not close enough
to any anchor points, it is marked in grey.

Note that the horizontal layout corresponds to
the composition of Goals ([R]) and Context ([C]),
where the leftmost represents the sole [R] and the
rightmost corresponds to [C] only, and the com-
bined forms are in between. Meanwhile, the ver-
tical positions can be interpreted as the “conver-
sationality”: the bottommost ones, featuring role
assigning and politeness patterns like “please”, are
closest to the expressions and force of natural con-
versations; the topmost ones, indicating a repet-
itive sequence of [R] and [C] with no additional
text, is most tool-like and unlikely in human-human
request-making.
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Figure 5: Distribution of the 1st dialogs (left) and 20th dialogs (right) of eligible long-term users as Kernel Density

Estimation (KDE) plots in the same 2D space from Fig. 4.

KDE Difference between early- and late-stage dialogs

Figure 6: Difference of densities between the early and
late inputs of the long-term users (Fig. 5). In the later
stage, the balanced combination of [R] and [C] (upper-
right area in red) sees major inflows, while the type of
non-conversational stacks of [R]s (blue area on the left)
significantly decreases.

5 Diachronic analysis of Request-making
in the ReCCRE dataset

Enabled by the new data infrastructure, we move on
to discuss a novel paradigm: modeling user behav-
iors and patterns in a diachronic manner, thereby
understanding interaction as a systematic and dy-
namic process. We will first inspect the lifecycles
of individual users, and discuss how the fundamen-
tal properties, such as the diversity of expression
types, change across time. Next, we interpret the
holistic evolution patterns formed by the commu-
nity collectively, and extend further to compare the
core user base and the lay public.

5.1 Modeling User Lifecycle

Long-term, non-intrusive documentary of user-
LLM interactions (Zhu et al., 2025) provides an
interface for the user lifecycles, i.e., the full course
of actions and use history. Here, we discuss how
a fully text-based analysis can help to model the

change of use patterns across time.

5.1.1 What expressions were used and how
are they structured?

As a natural continuation of Figure 4, we further
add the dimension of time and inspect the most
common patterns across myriad individual dialogs
at different stages. To model the user lifecycles,
we position a pair of early- and late-stage input
data from long-term users in the same 2-D space
from Fig. 4 and apply Kernel Density Estimation
to model the frequency of user expressions. Fig-
ure 5 shows the comparison of the 1st (left) and
the 20th (right) request-making dialog of all eligi-
ble long-term users, with the same anchor points
from Fig. 4, and we directly depict the difference
between the two KDEs in Figure 6. For the users’
first explorations, most utterances are made up of
only one [R] or the simple combination of two.
This describes the exploratory stage of interaction
with the system with more concise and generic
requests. However, as users gain familiarity, this
pattern drastly decreases (though still a major type),
and the mass is significantly transitioned to the ad-
dition of more specific contexts on the right side,
as well as the more complex type of multiple goals
and context (top). This suggests a communal shift
towards requests with higher specificity and com-
plexity: Users are accustomed to tailoring requests
with more context details and fine-grained content
later on. This “show or tell” transition reempha-
sizes that, whereas users may develop distinct use
scenarios and tasks, there are indeed fundamental
commonalities to be mined at the expression level.

5.1.2 User-level Evolutions

The user expression space like Fig. 4 enables the
study focusing on individual users. For an intuitive
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Figure 7: Convergence of user expressions over time.

instance, we can visualize individual trajectories
as their latest inputs move along the 2-D space;
this is exemplified by the distinct but discernible
trajectories of 6 random long-term users illustrated
in Figure 9 in Appendix A.

Further, we also wonder if these paths of users
can be collected across users to suggest deeper
trends. As a representative example, we consider
the effect of familiarity on a user’s tendency to
repeat same kinds of expressions they have used
previously. One hypothesis is that a user’s expres-
sions may converge with more experience, as they
develop their “go-to” choices and stick to how that
have worked in previous cases. Alternatively, as
users gain familiarity, they may understand the ca-
pabilities and boundaries of the LLMs better, and
thus rely less on rigorous prompt formats and inter-
act in more casual, arbitrary ways.

To test the contrasting diachronic hypotheses,
we examine the minimal difference between a long-
term user’s input and their most recent inputs, i.e.,
between their i-th and its previous k request ut-
terances, min;—; __—1[1 —sim(U;, U;—;)], for all
valid ¢ given window size k. Then, we collect the
minimal difference across all users and compute
the average for each position i, to illustrate the av-
eraged step-by-step convergence (or divergence) of
expressions within a long-term user’s lifecycle.

Figure 7 displays the results under different win-
dow sizes k. The actual chronological data is
shown as the blue line. It is compared against
the average of 50 random trials where the dialogs
from the same user are randomly shuffled (shown
in orange), thus breaking the diachronic ties. We
observe strong evidence for the convergence hy-
pothesis across time: the difference between a new
input and its immediate predecessors sees a dras-
tic, continuous decline as users continue to interact
with the system. This is quantitatively different
from the baseline level of random shuffles, and the
difference between the two gets more significant

with more input requests. This suggests that users
overall develop rather stable patterns of usage as
they gain familiarity. Meanwhile, we also note that
this pattern is most significant with window size
k = 1 (Fig. 7a), i.e., when comparing each input
with the exact one previous dialog. The gap be-
tween real and random situations is reduced with
k = 3 (Fig. 7b) and further with £ = 5 (Fig. 7¢).
This indicates that the most recent cases consis-
tently serve as more significant references for a
new user request, whereas the effect of earlier in-
puts decreases with their lower recency.

5.2 Picturing the community

So far we have modeled the evolving request-
making expressions from the perspectives of in-
dividual users and requests. We finally discuss
a broader horizon of ReCCRE: Is it possible to
draw a full landscape of evolving human-LLM in-
teraction from observations, modeling the complete
evolution trends in the user community as a whole?

5.2.1 Setup

We show that, with metrics as simple as Lexical
Richness, we are poised to delineate the climate
in great detail and discover the subtleties therein.
Specifically, we use MTLD (McCarthy, 2005; Mc-
Carthy and Jarvis, 2010) as it’s almost fully length-
invariant and suitable for random collections. The
intuitive interpretation of batched Lexical Richness
is a measurement of expression diversity across
all users: A higher richness indicates that there
are more distinct presentations of requests, while a
lower richness indicates converged, collective ways
of interactions and clearer system affordances.

Comparing long-term and lay users While our
analyses have focused on long-term users for the
legitimate comparisons over time, the holistic view
here enables us to compare the experience of the
“regulars” and the entire public user base. The
MTLD data for the full dataset with all 18,964
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Figure 8: Lexical Richness of long-term users (upper) and all users (lower) across the full time span.

users is illustrated in Figure 8, where proportionally
larger batch sizes are used to create comparable
densities of data points in the two figures.

5.2.2 Observations

Both long-term and all users share a similar
overall trend. The initial deployment of Wild-
Chat saw heavily heterogenuous attempts, espe-
cially in users who later became long-term. Af-
ter initial oscillations, the diversity level of ex-
pressions stabilized in the extended period of
gpt-3.5-turbo-0613. However, as the most
advanced gpt-4-1106-preview was introduced,
there seemed a paradigm shift towards a new low.
The trend is further different with another major
model replacement around March 2024, and both
groups see drastically more diverse expressions.
The impact of new models involves a strong pat-
tern of “passing on”: new models, especially the
ones from the same family (prefix), take on the
exact use patterns of their predecessors. Simultane-
ous models also see shared evolutions: for instance,
the emerging gpt-4-1106-preview leads users to
also interact with gpt-3.5-turbo-0613 with less
diverse expressions, though the latter is no different
from before. More interestingly, long-term users
and the lay public seem to show flipped perceptions
of model capabilities and usages, as seen in the ear-

liest and latest parts of WildChat. These indicate
further complexities yet to be explored, regarding
the perception of LLMs in relation to familiarity.

6 Conclusions

While the specificity of user queries is important,
how users form queries is also significant. We
introduce a new task, segmenting requests, context-
specific information, assigned roles, and other
forms of expression in recorded chat logs. This
segmentation allows us to identify patterns both
within user experience trajectories and across user
populations.

We see strong effects as users gain experience.
Our strongest finding is that users tend to move
away from making simple requests to combining
requests with context-specific information, such
as examples or text to be analyzed. Despite well-
publicized examples, in all cases users tend to inter-
act with the LLM more as a tool or a search engine
and less like a human collaborator.

For model builders, understanding how users
learn about and react to the capabilities of mod-
els provides clues about how to frame interactions.
Our findings also suggest that changes in models
actively affect how users behave.



Limitations

While our work seeks to provide new resources and
paradigms, the data and analysis work both have
practical limitations. Due to the limited capabilities
of the 14B LM and the author as annotator and
validator, the ReCCRE dataset is selected from the
chat logs with English as the major language in
the original dataset. This limits the reliable scope
of the work, as cultural and language factors can
lead to different interaction patterns. Further, our
work is based fully on WildChat, which represents
a specific type of data collection practice and a
specific time window; it is possible that findings are
different in interesting ways in other documented
chat logs, such as LMSys (Zheng et al., 2024a)
collected earlier with a different protocol. In our
analyses, we largely utilize off-the-shelf metrics
including the gfe embeddings and Lexical Richness
measurements. This is by design, as we would like
to demonstrate the usability and low barrier of the
dataset. However, we also note that this might limit
the boundaries and depth of data analyses, and we
encourage further explorations with the ReCCRE
data, e.g., fine-tuning models with the resource.
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Figure 9: Trajectories of 6 long-term users on the same visualized 2D space as Figure 4.

A Individual Trajectories of Random
Users

See Figure 9.

B Prompts for LLM annotators

System You are an expert in linguistics and NLP,
and we are working on a project studying how peo-
ple interact with Large Language Models to chat,
make requests, deliver commands, etc. You will
annotate some real-world user inputs collected with
users’ knowledge and content. As you might imag-
ine, people have been talking with these models in
drastically varied (and sometimes weird) ways, and
for all sorts of purposes. The goal of this project is
to create basic annotations of the components in a
user input.

Prompt First, read through the user input and
determine whether this input takes the form of:

* Performing tasks: "Can you write a story
about...", "Make this email more polite", "cre-

ate a list of items", etc.

— Generating new text or code usu-
ally counts towards this type, e.g., sum-

marize", "translate", "brainstorm", etc.

* or, Finding answers: "do I need a visa",
"What’s the tallest building in the world?",
"what happened to Elsa", etc.

— This usually corresponds to retrieving a
clear, short answer, e.g., "give me a few
character names that appeared in [book
name]".

e or, both

11

e or, neither

Note that these also apply to briefer inputs that
omit the verb, e.g., just "a list of names" as in-
put, instead of "[create] a list of names", similarly
belongs to "performing tasks".

Next, your main task is to highlight three types of
components that specify the user’s demand. Print
out the input sentence, with annotations of the fol-
lowing components using "__[ ... ]__", i.e., adding
"__[" at the start of a span and "]__" at the end.
Additionally, determine which type it is, and add
it immediately after "]__", so an annotated piece
look like "__[ test input snippet ]__(ROLE)".

* Assigned Roles: Any roles that the LLM is
asked to take on.

— This includes both the explicit instruc-
tions ("You should act like an expert in
math", "From now on you will be Alan,
my personal assistant") and implicit role
assigning ("Does this make sense from
a college student’s view?", "Because I
need the advice from an expert, I’'m here
to ask about...").

— Represent assigned roles with "(ROLE)".

* Request: The core span of text that specifies
what task(s) exactly the user wants the LLM
to perform, or what issue the user wants the
LLM to check and answer, no matter how they
are phrased.

— For instance, "write a poem" is the ac-
tual request content in both "Hey can
you write a poem?" and "Write a poem!",



though the same request is delivered in
different tones.

Another example: "Can I eat food from 2
days ago that hasn’t been fridged?", here
the user wants the LLLM to look into his
plan to "eat food from 2 days ago that
hasn’t been fridge".

Requests are marked as "(REQUEST)".

* Detailed Context: All the detailed context for
a given request/question.

For example: "Please write a story about
two friends. (I can’t think of a good one
for my kids) ..." — "Write a story about
two friends" would be Requests as above,
and then the background information "I
can’t think of a good one for my kids"
will be annotated as Detailed Context.
The text quoted or pasted for the LLM
to process, for instance, the article that
goes after the command to "Summarize
this article: ", usually counts as detailed
context.

Detailed Context is annotated as "(CON-
TEXT)".

Check the text carefully and annotate all the snip-

pets of text that match the three types. Meanwhile,
note that this task doesn’t require you to give every
word a label — some parts of the text are not these
three kinds of components, which is an expected
result of the task. Generally, the remaining text
that isn’t annotated with any type should look like
a "generic" template that does not involve the in-

formation

specific to this one instance. If you think

the input is a broken instance and cannot be inter-

preted, or

if the input is rather toxic or disturbing,

print "__[NONE]__" as the sole output.
Below are some examples:
(3 In-context emamples here)
Now, annotate the following instance:

Input:
(Input t
Output:

ext to be annotated)
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