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Abstract

Large language models (LLMs) often fail to
recognize their knowledge boundaries, produc-
ing confident yet incorrect answers. In this
paper, we investigate how knowledge popu-
larity affects LLMs’ ability to perceive their
knowledge boundaries. Focusing on entity-
centric factual question answering (QA), we
quantify knowledge popularity from three per-
spectives: the popularity of entities in the ques-
tion, the popularity of entities in the answer,
and relation popularity, defined as their co-
occurrence frequency. Experiments on three
representative datasets containing knowledge
with varying popularity show that LLMs ex-
hibit better QA performance, higher confidence,
and more accurate perception on more popular
knowledge, with relation popularity having the
strongest correlation. Cause knowledge popu-
larity shows strong correlation with LLMs’ QA
performance, we propose to leverage these sig-
nals for confidence calibration. This improves
the accuracy of answer correctness prediction
by an average of 5.24% across all models and
datasets. Furthermore, we explore prompting
LLMs to estimate popularity without external
corpora, which yields a viable alternative.

1 Introduction

Large language models (LLMs) (Achiam et al.,
2023; Yang et al., 2024; Dubey et al., 2024) often
hallucinate—producing fluent but factually incor-
rect answers which is unacceptable in safety-critic
domains such as healthcare. Accurately identi-
fying when LLMs produce correct answers not
only helps determine when to trust their outputs,
but also enables adaptive retrieval-augmented gen-
eration (RAG)—performing retrieval only when
they do not know the answer—thereby enhancing
both the effectiveness and efficiency of RAG (Ni
et al., 2024a). A reliable model should have a clear
perception of its knowledge boundaries—knowing
what it knows and what it does not. This requires its

confidence in an answer, reflected in the generation
probability, to align with the actual likelihood of
the answer being correct (Jiang et al., 2021). While
many studies have examined LLMs’ perception
level of their knowledge boundaries and found that
they tend to be overconfident (Lin et al., 2022; Tian
et al., 2023), the underlying factors influencing the
perception remain poorly understood.

A natural hypothesis is that a model’s perception
level can be influenced by the popularity of the
knowledge—i.e., how frequently the model has
encountered it during training. When asked about
popular knowledge, the model may be more likely
to respond both correctly and confidently. Prior
work (Mallen et al., 2023) has shown that LLLMs
achieve better QA performance on more popular
questions. This raises a key question: how do
the model’s confidence and its alignment with QA
performance vary with knowledge popularity?

To investigate this, we focus on entity-centric
factual QA (Mallen et al., 2023; Yuksekgonul et al.)
where both the question and the answer contain an
entity because this enables us to quantify the popu-
larity of knowledge based on entities. Specifically,
we assess knowledge popularity from the following
three perspectives: 1) Question popularity Pop:
popularity of the entity in the question. 2) Ground-
truth answer popularity Popr: popularity of the
entity in the ground-truth answer. 3) Ground-truth
relation popularity RPopgr: the co-occurrence fre-
quency of the question and ground-truth entities.
Higher entity popularity suggests more accurate
entity representations. Relation popularity directly
influences the model’s ability to comprehend asso-
ciations between entities, but is costly to collect.

Since ground-truth answers are unavailable
in real-world scenarios, we also examine model-
generated answers. Specifically, we investigate
whether the popularity of the generated answer
(Popg.) and the relation popularity between the
generated and question entities (RPopg,) reflect



the model’s QA performance, confidence, and
perception level. We focus in particular on their
correlation with QA performance, as a strong
correlation could allow these signals to be used for
calibrating the model’s confidence.

We conduct experiments on three entity-centric
factual QA datasets—Movies, Songs, and Bas-
ketball—constructed from Wikidata knowledge
triplets by Yuksekgonul et al.. Some question
examples can be seen in Figure 1. We quan-
tify entity popularity by the number of Wiki-
data language editions in which an entity ap-
pears. Relation popularity is measured by the
number of Wikipedia documents where both en-
tities are mentioned together. We use two rep-
resentative open-source models—LLaMA3-8B-
Instruct (Dubey et al., 2024) and Qwen2-7B-
Instruct (Yang et al., 2024)—as well as the black-
box model ChatGPT (Achiam et al., 2023).

Results on Popg,, Popgr, and RPopgr show that
LLMs demonstrate better QA performance, higher
confidence, and more accurate perception of their
knowledge boundaries on more popular knowl-
edge. Although LLMs are generally overconfident,
the extent of overconfidence diminishes as knowl-
edge popularity increases, since QA performance
improves more rapidly than confidence. Among
the three popularity measures, RPopsr shows the
strongest correlation with QA accuracy, confidence,
and perception level most of the cases. Interest-
ingly, question popularity correlates more strongly
with confidence than with QA performance, imply-
ing that LLMs may become overconfident simply
due to familiarity with the question.

Regarding generated answers, RPopg, shows a
strong positive correlation with QA performance,
confidence, and perception level, while Popg, ex-
hibits a weaker correlation. Notably, RPopg,
shows even stronger correlation with QA perfor-
mance than RPopgy, while Popg, correlates more
weakly than Popgr. We further analyze the reason
and reveal that when LLMs make errors, they tend
to generate more popular entities that co-occur
less frequently with the question entity compared
to ground-truth answers, indicating a tendency to-
ward over-generalization. This is consistent with
the findings of Zhang et al. (2024b).

Based on these findings, we propose to leverage
popularity features (i.e., Popg, Popg,, and RPopg,)
to calibrate confidence which aims to improve the
effectiveness of confidence in predicting answer

correctness. Given that computing knowledge pop-
ularity requires access to external corpora and in-
curs additional collection costs, we also investigate
prompting the model to estimate popularity on its
own. Results show that Pop,, and Popg, provide
modest gains in calibration. In contrast, RPopg,
provides substantial gains. Combining all these
three types of popularity yields the best calibration
performance, boosting answer correctness predic-
tion by an average of 5.24% across all models and
datasets. Moreover, leveraging model-estimated
popularity also performs well for confidence cali-
bration. The choice between external corpora and
self-estimation ultimately hinges on the trade-off
between performance and efficiency.

2 Related Work

Existing research on model knowledge boundary
perception focuses on assessing model confidence
and can be mainly classified into four categories.

Probabilistic Confidence. This line of research
treats the generation probability of the answer as
the confidence of the model (Guo et al., 2017; Desai
and Durrett, 2020; Jiang et al., 2021; Kadavath
et al., 2022; Si et al., 2022; Kuhn et al., 2023). Guo
et al. (2017) examined early neural networks (e.g.,
ResNet (He et al., 2016)) and found them to be
overconfident, proposing temperature scaling as a
remedy. Later, Desai and Durrett (2020) showed
that BERT-style models tend to be relatively well-
calibrated, while Jiang et al. (2021) found that pre-
trained language models such as T5 (Raffel et al.,
2020) remained overconfident. More recent work
has turned to LLMs, with studies showing that they,
too, exhibit overconfidence (Si et al., 2022; Lin
et al., 2022; Tian et al., 2023).

Verbalized Confidence. LLMs have been shown
to express their confidence verbally (Lin et al.,
2022; Yin et al., 2023; Tian et al., 2023; Xiong
et al., 2023; Yang et al., 2023; Ni et al., 2024a).
Some studies (Yin et al., 2023; Ni et al., 2024a)
found that LLMs often fail to recognize their
knowledge limitations verbally and tend to be
overconfident. Xiong et al. (2023) systematically
studied black-box approaches for estimating LLM
confidence. Beyond prompting-based methods,
some studies aim to train LLMs to verbalize more
accurate confidence (Lin et al., 2022; Yang et al.,
2023; Zhang et al., 2024a).



A @: Movies

Who is the director of the movie [Movie Name]? ]
,@: sSongs

Who is the performer of the song [Song Name]? ]

: @: Basketball
Where is the birthplace of the basketball player [Player Name]?]

Figure 1: Question examples for each dataset.

Consistency-based Confidence. If the model is
confident in its answer, it should maintain consis-
tency across multiple generations. Recent studies
have used self-consistency across generations as a
proxy for LLM confidence (Manakul et al., 2023;
Kuhn et al., 2023). Zhang et al. (2023) extended
this by evaluating the consistency of answers across
multiple semantically equivalent inputs and across
different models. Ding et al. (2024) further adapted
this approach to the multilingual setting.

Confidence Estimation via LLM Internal States.
LLMs’ internal states have shown to be effective
in evaluating the factuality of their self-generated
content (Su et al., 2024; Chen et al., 2024; Wang
et al., 2024; Ni et al., 2025). Specifically, Su et al.
(2024) and Chen et al. (2024) focused on internal
states after generation, Wang et al. (2024) exam-
ined those before generation, and Ni et al. (2025)
explored leveraging LLMs’ internal states to en-
hance their perception of knowledge boundaries
from efficiency and risk perspectives.

We focus on probabilistic confidence for the fol-
lowing reasons: 1) Both the model’s generation
probabilities and its knowledge acquisition arise
from the same training objective, and are expected
to align with each other. 2) Models without special-
ized training often struggle to verbalize confidence
accurately (Ni et al., 2024b); consistency-based
methods require multiple generations and incur
high inference costs; and internal-state-based ap-
proaches require access to hidden representations
and additional training. In contrast, probabilis-
tic confidence is readily accessible and has been
shown to perform well, especially when answers
are short (Ding et al., 2024).

3 Task Description

Entity-Centric QA. We focus on entity-centric
knowledge because it allows us to measure knowl-
edge popularity through entities. In entity-centric

QA, questions and answers are derived from knowl-
edge triples in the form of (subject, relation, ob-
ject), where the question queries the relation of a
given subject, and the model is expected to generate
the corresponding object. Examples of knowledge
triples are provided in Table 1, with their trans-
formed question forms shown in Figure 1.

LLM Knowledge Boundary Perception. The
model’s perception of its knowledge boundaries is
evaluated by the alignment between its confidence
and actual QA performance. QA performance is
measured by whether the generated answer con-
tains the ground-truth answer, and confidence is
reflected in generation probability of the answer to-
kens (see Section § 2). Specifically, for a question
q and a model M, the confidence c is computed as:

L I
€= 7 ; P(gilg<i), (D

where {g1,...,gr} is the generated tokens.

4 How Does Knowledge Popularity Affect
LLMs’ Perception Level?

In this section, we investigate how Popg, Popgr,
and RPopgr influence LLMs’ QA performance,
confidence, and perception level.

Datasets Count Subject Relation Object
Movies 10,964 Movie Directed by Director
Songs 2,157 Song Performed by Performer
Basketball 13,309 Player  Birthplace City

Table 1: Sample counts for each dataset, along with the
corresponding subject, relation, and object types.

4.1 Experimental Setup

Datasets. Yuksekgonul et al. constructed entity-
centric QA datasets based on Wikidata', using the
number of sitelinks on a page as a proxy for entity
popularity. They showed that this measure strongly
correlates with an entity’s frequency in the training
data. Building on this, we conduct experiments
on their datasets to ensure reliable entity popular-
ity measurement. We select three representative
datasets—Movies, Song, and Basketball—because
they exhibit clear differences in knowledge pop-
ularity. Specifically, question popularity ranks as
Movies > Songs > Basketball, while ground-truth

1https: //query.wikidata.org/sparql


https://query.wikidata.org/sparql

Accuracy Confidence Alignment

Datasets ~ Models Acc.  Popy Popgpr RPopgr Conf. Popy Popgr RPopgp Align.  Popg,  Popgr RPopgr
Llama3 ~ 72.65 0317 0220 0357 90.68 0.404 0367 0509 7550 0404 0347  0.501

Movies  Qwen2 4285 0433 0299 0494 8232 0413 0371 0507 53.63 038 0279  0.440
ChatGPT 9478 0.134 0.069  0.130 98.80 0210 0230 0280 94.85 0.211 0228  0.279

Llama3 3897 0277 0.164 0517 79.74 0369 0210 0.502 53.04 0.182 0.093  0.361

Songs Qwen2 2582 0362 0.255 0.541 78.00 0300 0200 0345 4297 0230 0.180  0.392
ChatGPT 7336 0.171 0266 0399 9484 0249 0295 0381 7528 0.232 0340  0.399

Llama3 13.37 0.118 0.293  0.231 60.09 0.173 0.063 0055 4621 -0.052 0.104 0.097

Basketball Qwen2 990 0.014 0348 0.151 7476 0151 0.076 0009 3235 0.126 0.189  0.105
ChatGPT 34.89 0288 0215 0353 79.06 0351 0.054 0270 5043 0.201 0.164  0.303

Table 2: LLMs’ QA performance, confidence, alignment and the correlations between knowledge popularity and
accuracy, confidence, and alignment across different datasets.

answer popularity follows Movies < Songs < Bas-
ketball. Table 1 lists the knowledge triplets and
data counts for each dataset, and Figure 1 presents
example questions. We apply data filtering to en-
sure reliable results, as detailed in Section §A.

Entity Popularity. Following Mallen et al.
(2023); Yuksekgonul et al., we define the popu-
larity of an entity by the number of sitelinks it
has—i.e., the number of Wikipedia pages in differ-
ent languages that link to it.

Relation Popularity. As Wikipedia is the pri-
mary high-quality source for Wikidata, we esti-
mate relation popularity based on Wikipedia con-
tent. Specifically, for each entity pair, we mea-
sure relation popularity by counting the number of
documents in the Wikipedia dump? in which both
entities co-occur. This reflects relation popularity
in the model’s training data, as it shows a strong
correlation with QA performance (see Table 2).

Notation Definition

Popg Popularity of entities in the question

Popgr Popularity of entities in the ground-truth answer
RPopgr  Relation pop. between question and ground-truth entities
Popg,. Popularity of entities in the generated answer

RPopg.  Relation pop. between question and generated entities

Table 3: Definitions of notations about knowledge pop-
ularity where pop. means popularity.

LLMs. We conduct experiments on three repre-
sentative LLMs: two open-source models, Llama3-
8B-Instruct (Dubey et al., 2024) and Qwen2-
7B-Instruct (Yang et al., 2024), as well as a
black-box model, ChatGPT (i.e., GPT-3.5-Turbo-
1106) (Achiam et al., 2023).

https://huggingface.co/datasets/wikimedia/
wikipedia

Answer Generation. For all the models, we use
greedy search, selecting the token with the highest
probability at each generation step. An example
can be seen in Figure 20.

Metrics. For each question ¢;, we measure an-
swer correctness using accuracy acc;, where the
generated answer is considered correct if it con-
tains the ground-truth answer. The model’s confi-
dence c; is defined as the generation probability of
the answer, as described in Section §3. Alignment
is then computed as 1 — |ace; — ¢;|. To examine
the relationship between knowledge popularity and
QA performance, confidence, and alignment, we
use Spearman correlation coefficients (Hauke and
Kossowski, 2011), which range from -1 to 1. The
sign indicates the direction of the correlation, while
the absolute value reflects its strength.

4.2 Results and Analysis

LLMs’ QA performance, confidence, and percep-
tion levels across different datasets, along with the
Spearman correlation coefficients between knowl-
edge popularity and accuracy, confidence, and
alignment are shown in Table 2. We observe that:

1) LLMs achieve better QA performance and
higher confidence on more popular knowledge.
All three types of popularity are positively corre-
lated with both QA performance and confidence.
For QA performance and confidence, we conduct
the following analyses respectively.

For QA performance, relation popularity gener-
ally shows the strongest correlation, as expected,
while question popularity exhibits a stronger corre-
lation than answer popularity in most cases. This
suggests that learning through co-occurrence is es-
pecially effective for acquiring knowledge, and that
familiarity with the question contributes more to
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Figure 2: The QA performance, confidence, and alignment of ChatGPT under different question popularity.

answering correctly than familiarity with the an-
swer. However, on the Basketball dataset, answer
popularity shows the highest correlation for both
LLaMA3 and Qwen2. This dataset is challeng-
ing because both the question and relation have
low popularity. The models are often unfamiliar
with the question entity and generate a popular city
name instead—a behavior consistent with knowl-
edge overshadowing (Zhang et al., 2024b). Chat-
GPT does not exhibit this pattern, likely due to a
stronger mastery of the relevant knowledge.

For confidence, question and relation popularity
are strongly correlated in most cases, while answer
popularity has a weaker impact. Notably, question
popularity consistently correlates strongly with
confidence and, in 7 of 9 cases, more than with
QA performance. This suggests that LLMs may
become more confident simply because familiarity
with the question, even if they do not know the
answer. On the Basketball dataset, confidence
shows little correlation with answer popularity
across all three models. We hypothesize that the
models are generally familiar with city names, and
thus do not exhibit higher confidence for samples
with more common answers.

2) LLMs better perceive their knowledge bound-
aries on more popular knowledge. To better
understand this, we analyze how the gap between
confidence and QA performance changes with
increasing knowledge popularity. Due to space
constraints, we just present this gap for ChatGPT
as question popularity increases, shown in Figure 2.
We observe that although LL.Ms are consistently
overconfident, their QA performance improves
more rapidly than confidence as question popular-
ity increases, thereby narrowing the gap. Results
for other models, as well as analyses based on
other popularity, are included in the Appendix and
exhibit similar trends. As shown in Table 2, among
the three types of popularity, relation popularity
typically shows the strongest correlation.
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Figure 3: Comparison of the correlation between Chat-
GPT’s QA performance and ground-truth vs. generated
answers: Popgy vs. Popg,, and RPopgy vs. RPopg,.

S Analysis of Model-Generated Answers

In real-world scenarios, ground-truth entities are
often unavailable. This motivates us to investigate
whether the popularity of model-generated enti-
ties—along with their relational popularity with
the question entity—correlates with the model’s
QA performance, confidence, and perception level.
We focus particularly on the relationship between
popularity and QA performance, as a strong corre-
lation could enable us to leverage these signals for
confidence calibration. The experimental settings
are the same as those in Section § 4.

Datasets Models  Popg Popg. RPopg,
Llama3 0.317 0.100  0.637
Movies Qwen2 0433 0.087  0.756
ChatGPT 0.134 0.083  0.208
Llama3 0.277 0.257  0.621
Songs Qwen2 0362 0.188  0.666
ChatGPT 0.171 0.218  0.351
Llama3 0.118 0.116  0.245
Basketball Qwen2 0.014 0.116 0.106
ChatGPT 0.288 -0.164  0.293

Table 4: Correlations between LLMs’ QA performance
and Pop,, Popg,, and RPopg,.



5.1 Results and Analysis

Table 4 shows the Spearman correlation coeffi-
cients between LLMs’ QA performance and knowl-
edge popularity based on model-generated entities.
Due to space constraints, results on LLMs’ confi-
dence and perception levels are provided in Table 7
in the Appendix. We observe the following.

The popularity of generated entities (Popg,) and
their co-occurrence with question entities (RPopg,)
positively correlate with LLMs’ QA performance,
confidence, and perception level in most cases.
RPopg, typically shows the strongest correlation,
outperforming both Popg, and Popg,. In contrast,
Popg, often exhibits the weakest correlation. These
findings are similar to the results based on ground-
truth entities, as discussed in Section § 4.

Popg. shows a weaker correlation with QA per-
formance compared to Popgy while RPopg, ex-
hibits a comparable or even stronger correlation
than RPopgr. We present the comparison for Chat-
GPT in Figure 3, while results for other models
can be obtained by comparing Table 2 and Table 4.
To better understand this, we perform a more de-
tailed comparison between model-generated an-
swers and ground-truth answers. We only focus on
cases where the model makes mistakes since the
generated answer matches the ground-truth answer
otherwise and analyze in Section § 5.2.

5.2 What Do LLMs Generate When They
Hallucinate?

We focus on the differences in popularity between
model-generated answers and ground-truth an-
swers when the model makes errors (See Figure 4),
as well as the differences in their co-occurrence
frequency with the question entity (See Figure 5).

LLMs tend to generate entities that are more
common and less frequently co-occur with the
question entities than ground-truth answers
when they hallucinate. As shown in Figure 4,
for incorrectly answered samples, the generated en-
tities are often more popular than the ground-truth
entities. So the popularity gap between correct and
incorrect answers is smaller for generated entities
than for ground-truth entities, leading to a weaker
correlation between Popg, and QA performance.
This may be because the model tends to overgen-
eralize—once it learns high-frequency answers, it
tends to use them in many similar contexts.

In incorrectly answered samples, model-
generated answers typically co-occur less fre-
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Figure 5: Proportion of incorrectly answered samples
where RPopy, is less than RPopg.

quently with question entities compared to ground-
truth answers, as shown in Figure 5. As a result, the
correlation between RPop,. and QA performance
is stronger than that of RPopgr, because the dif-
ference in RPopg, between correct and incorrect
samples is greater than that of RPopgy.

6 Confidence Calibration with
Knowledge Popularity

Given that Popg,, Popg,, and RPopg.—especially
RPopg.—are strongly correlated with QA perfor-
mance, we propose to use these signals for con-
fidence calibration, i.e., improving the effective-
ness of confidence in predicting answer correctness.
Since obtaining these signals typically requires ex-
ternal corpora and incurs additional costs, we also
explore whether LLMs can assess knowledge fa-
miliarity on their own.

6.1 Knowledge Popularity Acquisition
Corpora-based Popularity. As outlined in Sec-

tion § 3, we get popularity from external corpora.

Model-generated Popularity. To eliminate
reliance on external corpora and reduce the
overhead of collecting popularity, we investigate



whether LLMs can self-assess their familiarity
with a given the entity or the relation. Familiarity
is measured on a 10-point scale, where 1 denotes
the lowest and 10 the highest level. The model is
asked to provide its familiarity score accordingly.
We provide the model with varying numbers of
corpora-based popularity examples to examine
whether supplying such examples helps the model
produce more accurate familiarity. We present
examples under both zero-shot and few-shot
settings and all these prompts can be found in
Section § F in the Appendix.

6.2 Baselines

We use representative confidence estimation meth-
ods that do not require access to model parameters
as our baselines.

¢ Verbalized Confidence (Verb) (Yin et al., 2023)
instructs the model to verbally assess whether it
can answer the question correctly. The prompt
can be seen in Figure 21 in the appendix.

* Self-consistency (Consis) (Manakul et al., 2023)
estimates the model’s confidence by measuring
the semantic consistency of multiple sampled an-
swers. The core idea is that if the model knows
the correct answer, multiple sampled answers
should be semantically consistent. For each ques-
tion, we sample 10 additional responses with a
temperature of 1.0. For ChatGPT, due to cost
constraints, we limit sampling to 3 additional re-
sponses. Semantic consistency is assessed using
Qwen2.5-32B-Instruct (Yang et al., 2024).

¢ Probabilistic Confidence (PC) (Kumar et al.,
2024) takes generation probabilities for the to-
kens in the answer as the model’s confidence.
This is the confidence we have been using
throughout the paper, and the one we aim to cali-
brate. Details can be seen in Section § 3.

6.3 Data Construction

For each sample in the datasets, we construct a
data pair {z,y}, where y is a binary correctness
label: y = 1 if the generated answer contains the
ground-truth answer, and y = 0 otherwise. To
study the effect of each type of popularity on confi-
dence calibration, we construct = using the follow-
ing features: 1) PC+Popg, 2) PC + Popg,, 3) PC
+ RPopg,. and 4) PC + ALL — PC and all these
three types of popularity. We also use each type of
popularity itself as x to study its effectiveness in
answer correctness prediction.

6.4 Answer Correctness Prediction

Based on the constructed =, we predict a binary
judgment on correctness, as shown below.

where £ represents the binary classification func-
tion and ¢ means the predicted correctness (i.e., 1
for correct and O for incorrect).

Single-feature Prediction. For the setting where
x contains only a single feature, we select a thresh-
old X that maximizes prediction accuracy on the
training set, and apply this threshold to perform
binary classification on the test data. This can be
formualted as:

R 1 ifz> A
y—{ (3)

0 otherwise,

Multi-feature Prediction. For the setting where
x contains multiple features, we perform binary
classification using a lightweight MLP network, as
defined below:

P(§=1) =0 (MLP(z)), “4)

where o refers to the softmax function, z € R4*"
represents the input features, d is the count of input
features (e.g., d=2 for PC+Pop,) and h means the
model’s hidden dimension. We use a 3-layer MLP
with 64, 32, and 2 neurons in each layer, respec-
tively. The activation function in MLP is ReLU. We
employ cross-entropy loss as the training objective:

N
Leg == yilog(P)+(1-y;)log(1-Py), (5)
=1

where y; is the ground-truth correctness for the i-th
training sample, N is the count of training sam-
ples, and P; denotes P(¢; = 1). Detailed training
parameters can be found in Section § D.

Metrics. We use answer correctness prediction
accuracy as the metric. To reduce the impact of ran-
domness, all our reported results are the averages
obtained from three random seeds: (0, 42, 100).

Datasets and LLMs. We use the same data and
LLMs as in Section § 4.1. We randomly split each
dataset into two equal parts for training and testing
and select the checkpoint with the highest predic-
tion accuracy on the training set. Detailed settings
can be found in Section § D in the Appendix.



Movies

Songs

Basketball

Avg.
Features Llama3 Qwen2 ChatGPT Llama3 Qwen2 ChatGPT Llama3 Qwen2 ChatGPT £
Baselines
Verb 65.58 45.93 83.41 40.22 29.58 69.25 51.58 50.49 48.89 53.88
Consis 82.21 74.61 96.00 77.62 86.31 83.72 53.76 52.10 77.77 76.01
PC 83.20 79.77 95.95 75.20 83.02 79.11 65.49 66.36 77.87 78.44
Corpora-based Knowledge Popularity
Popg 71.68 70.62 88.24 66.35 76.84 68.00 56.25 50.90 69.32 68.69
Popg. 73.09 58.86 94.22 63.38 74.57 74.41 60.54 60.33 64.86 69.36
RPopg, 89.66 87.92 96.03 82.71 89.59 81.46 67.03 59.64 64.74 79.86
"PC+Pop, 8357 8136 9597 7660 8458  79.01 6593 6695 7839  79.16
PC+Popg, 84.46 80.49 95.58 76.68 83.57 80.12 69.04 68.64 78.62 79.69
PC+RPopg,  90.93 88.58 96.13 80.21 90.46 84.04 71.93 66.33 78.10 82.97
PC+ALL 93.32 92.47 96.37 81.46 88.11 82.71 71.93 68.18 78.59 83.68
Self-generated Knowledge Popularity
PC+Popg 83.91 80.60 95.87 77.85 84.82 79.50 65.30 67.31 78.43 79.29
PC+Popg, 84.02 80.24 95.59 75.20 83.02 78.56 68.40 67.49 78.21 78.97
PC+RPopg,  85.30 80.20 95.80 79.65 84.04 79.81 66.17 67.90 77.59 79.61
PC+ALL 85.95 81.40 95.84 78.87 86.07 80.05 67.69 68.08 78.70 80.29

Table 5: Accuracy of answer correctness prediction. Bold denotes the highest score in either corpora-based or
self-generated knowledge popularity. Self-generated knowledge popularity is obtained under the zero-shot setting.

6.5 Results and Analysis

Results on corpora-based knowledge popular-
ity. Results based on knowledge popularity from
external corpora is shown in the upper half of Ta-
ble 5. We observe that: 1) Compared to the model’s
confidence, RPopg, more accurately reflects an-
swer correctness, outperforming all baselines in 6
out of 9 cases. In contrast, Pop, and Popg, indi-
vidually show limited effectiveness in predicting
correctness. 2) All three types of popularity con-
tribute to calibrating the model’s confidence,
with their combination yielding the most effec-
tive results. In most cases, augmenting PC with
each type of popularity improves upon PC, with
PC+RPopg, achieving the highest average accu-
racy among them. Notably, combining all three
types leads to the most effective calibration, con-
sistently outperforming PC and yielding an aver-
age accuracy improvement of 5.24% across diverse
datasets and models. Further analysis and case
studies are provided in Section § E.

Results on model-generated knowledge popular-
ity. The prediction accuracy based on model self-
generated knowledge popularity under the zero-
shot setting can be found in the lower half of Ta-
ble 5. It show that: 1) All three types of self-
generated popularity contribute to confidence cali-
bration. On average, all three signals can calibrate
PC, and their combination achieves the best calibra-

tion effect, obtaining the optimal value in 6 out of
9 cases. However, the model’s self-generated sig-
nals yield weaker calibration effects compared to
corpus-based knowledge popularity. The choice be-
tween corpus-based popularity and self-generated
popularity depends on the trade-off between effec-
tiveness and efficiency. 2) LLMs can not estimate
popularity better with few-shot learning compared
to zero-shot. Detailed analysis can be found Sec-
tion § C in the Appendix.

7 Conclusion

In this paper, we investigate how knowledge popu-
larity—measured through entity and relation pop-
ularity—affects LLMs’ QA performance, confi-
dence, and perception of their knowledge bound-
aries, and explore its utility for confidence calibra-
tion. We find that LL.Ms perform better, express
higher confidence, and demonstrate more accurate
perception on more popular knowledge, with rela-
tion popularity having the strongest influence. We
further show that the popularity and co-occurrence
of model-generated answers also positively corre-
late with QA accuracy. Leveraging these popularity
signals for confidence calibration yields an average
5.24% improvement in predicting answer correct-
ness. To reduce reliance on external corpora, we
also demonstrate that model-estimated popularity
can serve as a viable alternative, offering a practical
trade-off between performance and efficiency.



Limitations

First, due to resource limitations, we are unable to
conduct experiments on more models. However,
we utilize mainstream existing models, which still
demonstrate the reliability of our conclusions. Sec-
ond, we primarily focus on entity-centric factual
QA. For other types of factual reasoning that do
not involve entities and non-factual questions, how
to represent their knowledge popularity remains
an open question. We believe that if the model’s
actual training data is available, computing knowl-
edge popularity from the training data would likely
yield greater improvements.

Ethics Statement

We approach ethics with great care. In this paper,
all the datasets and models we use are open-source.
Our analysis of knowledge popularity does not in-
troduce any harmful information. Moreover, our
proposed method can help accurately determine
whether the model’s answer is trustworthy, prevent-
ing users from being misled by incorrect responses.
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A Data Filtering

The model’s generated response may be empty
or fail to find a corresponding entity in Wikidata.
To ensure comparability of results across different
models on the same dataset, we filter out data where
any model’s generation is empty or the generated
entity cannot be found in Wikidata. Additionally,
for the Movies and Songs datasets, we filter out
cases where the question entity, ground truth entity,
or model-generated entity appears in more than
6,000 documents. This is because entities in these
two datasets typically do not appear in more than
6,000 documents, and those that exceed this thresh-
old often introduce noise. For example, "Queen"
appears more than 6,000 times but is not exclu-
sively used as a band name. We filter these cases
to obtain an accurate co-occurrence counts. After
filtering, the remaining data sizes for the Movies,
Songs, and Basketball datasets are 8,184, 852, and
13,136, respectively.

Movies
Songs
Basketball

R-Pop
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Figure 6: QA performance and NMI calculated based
on ChatGPT. R-Pop means relation popularity, where
P(R|Q) and P(R|A) denote the co-occurrence propor-
tion of question and answer entities relative to their
individual occurrences in documents.

B Analysis on Relationship Strength

We hypothesize that the strength of the relationship
between entities may also influence the model’s
learning. Specifically, when the subject and object
frequently co-occur but are also commonly asso-
ciated with other entities, the model may struggle
to learn their specific relationship. We use normal-
ized mutual information to quantify relationship
strength and find that stronger relationship con-
tributes to better QA performance. Normalized
mutual information is computed as:

I(X;Y)

NMI(X,Y) = THORTY

(6)
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where I(X,Y) is defined as:

m
ZP (xi,y;)log
=1 j=1

n

P(zi,y5)
P(xi)Py;)’
(N
and H(X) and H(Y) serve as regularization terms
to mitigate the influence of the sizes of n and m, as
well as the magnitude of probability values. Their
formulations are:

— Z P(z;)log P(z;),

i=1

H(X) = ®)

m
ZP y;) log P(y;).
=1

€))

Specifically, for a dataset converted from knowl-
edge triplets D = {s;,r,0;}" ;, we define X =
{s1,...,sn}and Y = {o1,...,0,}. We estimate
P(s;), P(oj), and P(s;,0;) using a Wikipedia
dump of d documents, where P(s;) and P(o;) are
the proportions of documents containing s; and o;,
respectively, and P(s;, 0;) is the proportion con-
taining both. If i # j, we set P(s;,0;) = 0, as we
focus only on the relationship between s; and o;.

The results based on ChatGPT are shown in Fig-
ure 6. We observe that, compared to the movies
dataset, the question entity co-occurs more fre-
quently with the ground-truth entity in the songs
dataset, yet the model’s QA performance is lower.
This can be attributed to the lower NMI in the songs
dataset, driven by a low P(R|A). This indicates
that, besides the question entity, the answer entity
also co-occurs with many other entities through var-
ious relations. This may interfere with the model’s
memory of the relationship between the question
entity and the answer entity.

C Effects of Few-Shot Learning on
Popularity Generation

Examples selection. For a given dataset, we sort
all samples by popularity in ascending order, re-
move duplicates, and divide the popularity values
into 10 equal intervals, assigning values from 1 to
10 in ascending order. Each sample is then assigned
to its corresponding interval, updating its popular-
ity accordingly. For 3-shot, we randomly select one
sample from the intervals with popularity values
of 2, 5, and 8. For 5-shot, we randomly select one
sample from the intervals with popularity values of
1,3,5,7,and 9. For 10-shot, we randomly select
one sample from each of the 10 intervals.
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Figure 7: The prediction accuracy obtained by perform-
ing confidence calibration using knowledge popularity
generated from different numbers of examples. Each
point represents the average prediction accuracy of the
model across three datasets.

Results. Figure 7 shows the average prediction
accuracy of Conf-QG-R across three datasets using
model-generated popularity under different shot
settings. As the number of examples increases,
prediction accuracy does not improve, while infer-
ence cost rises. Therefore, we recommend prompt-
ing LLMs to assess their familiarity with enti-
ties and their relationships in a zero-shot setting.
Due to API costs, we first conduct experiments on
LLaMA3-8B-Instruct and Qwen2-7B-Instruct and
find that increasing the number of samples in the
prompt does not yield more effective knowledge
popularity. Therefore, we only perform 0-shot and
3-shot experiments on ChatGPT.

D Detailed Parameter Settings

Inference. For all the models, we use greedy
search, selecting the token with the highest prob-
ability at each generation step. For open-source
models, our experiments are conducted on a single
80GB A800 GPU.

MLP Training. For both corpora-based and
model-generated popularity, we train the model
using the Adam optimizer with a learning rate of
2e-3 and a batch size of 8. The intermediate layer
has a dropout rate of 0.4, and training runs for 100
epochs. All experiments are conducted on two
16GB V100 GPUs. We select the checkpoint with
the highest prediction accuracy on the training set
for evaluation on the test set.

Class Balancing for The Basketball Dataset.
Since the MLP fails to learn meaningful pat-
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terns on the basketball dataset for Llama3 and
Qwen2—consistently classifying all samples as
incorrect due to the overwhelming imbalance—we
extract all correctly answered samples and ran-
domly sample an equal number of incorrect ones
(seed = 0) to ensure balanced learning across both
classes. The training set and the test set are evenly
split from the sampled dataset.

E Case Studies

We compare PC and PC+ALL on LLaMA3 for an-
swer correctness prediction to illustrate how knowl-
edge popularity works in confidence calibration.
The imperfect alignment between the model’s con-
fidence and its actual performance arises from two
main factors:
* Overconfidence: The model generates incorrect
answers with high confidence. When classifi-
cation relies on generation probabilities, such
answers are incorrectly labeled as correct.
Conservativeness: The model generates correct
answers with low confidence. When classifica-
tion relies on generation probabilities, such an-
swers are incorrectly labeled as incorrect.
We collect the samples misclassified by PC but
successfully calibrated by PC+ALL. These fall into
two categories:
* Overconfidence Group: Samples where the
model generates an incorrect answer, PC incor-
rectly classifies them as correct, while PC+ALL
correctly identifies them as incorrect.
Conservativeness Group: Samples where the
model generates a correct answer, PC incorrectly
classifies them as incorrect, while PC+ALL cor-
rectly identifies them as correct.
We compute the knowledge popularity for each
group, and the results appear in Table 6. The results
show that in the overconfidence group, PC+ALL
achieves calibration by leveraging low knowledge
popularity despite the model’s high confidence. In
contrast, in the conservativeness group, it achieves
calibration through high knowledge popularity.
Although PC+ALL achieves strong calibra-
tion performance, it also introduces some over-
calibration issues by misclassifying samples that
were correctly predicted by PC, as shown in Fig-
ure 8. However, the number of correctly calibrated
samples significantly exceeds the over-calibrated
ones. Moreover, we show some cases on the
Movies dataset for Llama3. Figures 9 and Fig-
ure 10 illustrate cases where knowledge popularity
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Figure 8: The difference in answer correctness predic-
tion on LLaMA3 between using PC+ALL and using
PC. Blue indicates that both methods make the same
prediction, yellow indicates cases where only PC+ALL
predictes correctly, and red indicates cases where only
PC predictes correctly.

effectively calibrated the model’s confidence, while
Figure 11 shows a failure case. All the results in
this section are obtained with seed=0.

Datasets  Group PC  Popg Popge RPopge
Movies  OVerc. 091 4705 2008 103
Conse. 078 2434 2322 1291
Sopgs | OVere. 091 3891 1304 18.89
£ Conse. 078 131.00 1550  103.00
Overc. 0.78 102.68 10.69  0.97
Basketball o 062 23483 1059 1147

Table 6: Knowledge popularity of samples that are mis-
classified by PC but correctly classified by PC+ALL.
Overc. refers to the Overconfidence group, in which the
model generates an incorrect answer but PC classifies it
as correct. Conse. refers to the Conservativeness group,
in which the model generates a correct answer but PC
classifies it as incorrect.

From Figure 10, we can see that the model gen-
erated an incorrect answer with a probabilistic con-
fidence of 0.95, which is significantly higher than
the classification threshold for confidence (>0.85),
leading to it being classified as correct. However,
knowledge popularity reveals that the question pop,
generated answer pop, and relation pop are 16, 20,
and 1, respectively, all below the dataset’s aver-
age levels. This indicates that both the question
and the generated entity are relatively uncommon
and rarely co-occur. As a result, the classification
outcome was corrected to incorrect. Similarly, in
Figure 10, the model exhibits low probabilistic con-
fidence for a correctly generated answer, leading
to a misclassification as incorrect. However, its
knowledge popularity was relatively high, resulting
in a correction to the correct classification.

Figure 11 presents a case of error correction.
While similar misclassifications may occur, the
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Question: Who is the director of the movie The Star Maker
Ground-Truth Answer: Giuseppe Tornatore

Generated Answer: Giuseppe Tornatore

Correctness: 4

Confidence: 0.68

Confidence Threshold: 0.85

Correctness Prediction:

Knowledge Popularity: [Q-Pop: 15, G-Pop: 62, R-Pop: 15]
Average Popularity: [Q-Pop: 26, G-Pop: 40, R-Pop: 15]
Correctness Prediction After Calibration: E

Figure 9: The case where Llama3-8B generates incor-
rect answers with high confidence on the Moveis dataset
and is corrected by low knowledge popularity.

Question: Who is the director of the movie Itinéraire d'un enfant gaté
Ground-Truth Answer: Claude Lelouch

Generated Answer: Coline Serreau

Correctness:

Confidence: 0.95

Confidence Threshold: 0.85

Correctness Prediction:

Knowledge Popularity: [Q-Pop: 16, G-Pop: 20, R-Pop: 1]

Average Popularity: [Q-Pop: 26, G-Pop: 40, R-Pop: 15]
Correctness Prediction After Calibration:

Figure 10: The case where Llama3-8B generates correct
answers with low confidence on the Moveis dataset and
is corrected by high knowledge popularity.

Question: Who is the director of the movie The Celluloid Closet
Ground-Truth Answer: Rob Epstein

Generated Answer: Rob Epstein

Correctness: 4

Confidence: 0.99

Confidence Threshold: 0.85

Correctness Prediction: 4

Knowledge Popularity: [Q-Pop: 16, G-Pop: 15, R-Pop: 0]
Average Popularity: [Q-Pop: 26, G-Pop: 40, R-Pop: 15]
Correctness Prediction After Calibration:

Figure 11: The case where Llama3-8B generates correct
answers with high confidence on the Moveis dataset and
is misled by low knowledge popularity.

proportion of correctly corrected samples (6.0%) is
significantly higher than that of miscalibrated ones
(1.2%), demonstrating the reliability of knowledge
popularity in confidence calibration.

F Prompts

We display all the prompts used in this paper here
and show some examples.

QA prompt. We just ask the model to give a
short answer without any other words. The exam-
ple is shown in Figure 20.

Prompts for knowledge popularity generation.
Examples for instructing LLMs to provide question
entity popularity, generated answer popularity, and
the popularity of their relationship can be found in
Figure 22 23 24 25 26 27.



Accuracy Confidence Alignment
Datasets Models Q-Pop G-Pop Co-Occ Q-Pop G-Pop Co-Occ Q-Pop G-Pop Co-Occ

Llama3-8B  0.317 0.100  0.637 0.404 0324 0.653 0404 0231 0.667
Movies Qwen2-7B 0433 0.087 0.756 0413 0345 0.679 0386 0.021  0.607
ChatGPT  0.134 0.083 0.208 0.210 0.233 0304 0.211 0.231  0.304

Llama3-8B  0.277 0.257 0.621  0.369 0.188  0.680 0.182 0.207  0.358
Songs Qwen2-7B 0362 0.188  0.666  0.300 0.246 0.511 0.230 0.058  0.405
ChatGPT 0.171 0218 0351 0249 0305 0445 0232 0.297  0.326

Llama3-8B 0.118 0.116  0.245  0.173 -0.034 0.010 -0.052 0.083  0.163
Basketball Qwen2-7B  0.014 0.116 0.106 0.151 0.114 0.068 -0.126 -0.015  0.018
ChatGPT  0.288 -0.164 0.293 0.351 -0.210 0.257 0.201 -0.107 0.241

Table 7: Spearman correlation coefficients for Accuracy, Confidence, and Alignment scores with the popularity of
question entities, generated entities, and their co-occurrence.
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Figure 12: The QA performance, confidence, and alignment of Llama3 under different question popularity.
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Figure 13: The QA performance, confidence, and alignment of Qwen2 under different question popularity.
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Figure 14: The QA performance, confidence, and alignment of Llama3 under different answer popularity.
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Figure 15: The QA performance, confidence, and alignment of Qwen?2 under different answer popularity.
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Figure 16: The QA performance, confidence, and alignment of ChatGPT under different answer popularity.
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Figure 17: The QA performance, confidence, and alignment of Llama3 under different relation popularity.
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Figure 18: The QA performance, confidence, and alignment of Qwen2 under different relation popularity.
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Figure 19: The QA performance, confidence, and alignment of ChatGPT under different relation popularity.
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Input:
Answer the following question with one or few words.
Question: Who is the director of the movie The Intouchables
Answer:

Response: Eric Toledano

Figure 20: A question-answering example for Llama3.

Input: \

Judge whether the following answer (this is your self-generated answer) about the question is correct. If you
are sure the answer is correct, say certain. If not, please say uncertain. Just give your judgement without any
other words.

Question: Where is the birthplace of the basketball player Jiang Xingquan?

Answer: Beijing.

Response: Uncertain.
- /

Figure 21: An example for verbalized confidence.

1 to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it.
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.
Number:

Question: Rate how familiar you are with the movie 'The Intouchables'. The familiarity is rated on a scale from
Response: 8

Figure 22: An example of obtaining question popularity on the movies dataset using LLaMA3 in a zero-shot setting.

to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it.
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.
Number:

Question: Rate how familiar you are with the director 'Eric Toledano'. The familiarity is rated on a scale from 1
Response: 4

Figure 23: An example of obtaining generated answer popularity on the movies dataset using LLaMA3 in a zero-shot
setting.

with their relationship, and 1 means you know little to nothing about it. Your answer needs to be a precise
integer. Provide only the number, without any additional explanation.
Number:

Question: Rate how familiar you are with the relationship between the movie 'The Intouchables' and the
director 'Eric Toledano'. The familiarity is rated on a scale from 1 to 10, where 10 means you are highly familiar
Response: 8

Figure 24: An example of obtaining relation popularity on the movies dataset using LLaMA3 in a zero-shot setting.
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@stion: Rate how familiar you are with the movie 'Swept Away'. The familiarity is rated on a scale from\
to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it.
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.

Here are some examples:

The movie: Matchstick Men

Number: 2

The movie: Kick-Ass

Number: 5

The movie: Skyfall

Number: 8

Rate how familiar you are with the movie 'Swept Away'. The familiarity is rated on a scale from 1 to 10, where
10 means you are highly familiar with it, and 1 means you have little to no knowledge about it. Your answer
needs to be a precise integer. Provide only the number, without any additional explanation.

Number:

kesponse: 3 /

Figure 25: An example of obtaining question popularity on the movies dataset using ChatGPT in a 3-shot setting.

@estion: Rate how familiar you are with the director 'Guy Ritchie'. The familiarity is rated on a scale froh
to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it.
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.

Here are some examples:

The director: James McTeigue

Number: 2

The director: Guy Ritchie

Number: 5

The director: Jodie Foster

Number: 8

Rate how familiar you are with the director 'Guy Ritchie'. The familiarity is rated on a scale from 1 to 10,
where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it. Your
answer needs to be a precise integer. Provide only the number, without any additional explanation.
Number:

kesponse: 7 /

Figure 26: An example of obtaining answer popularity on the movies dataset using ChatGPT in a 3-shot setting.
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Question: Rate how familiar you are with the relationship between the movie 'Swept Away' and the director
'Guy Ritchie'. The familiarity is rated on a scale from 1 to 10, where 10 means you are highly familiar with
their relationship, and 1 means you know little to nothing about it. Your answer needs to be a precise integer.
Provide only the number, without any additional explanation.

Here are some examples:

The movie: Kick-Ass; The director: Matthew Vaughn

Number: 2

The movie: Eraserhead; The director: David Lynch

Number: 5

The movie: Heat; The director: Michael Mann

Number: 8

Rate how familiar you are with the relationship between the movie 'Swept Away' and the director 'Guy
Ritchie'. The familiarity is rated on a scale from 1 to 10, where 10 means you are highly familiar with their
relationship, and 1 means you know little to nothing about it. Your answer needs to be a precise integer.
Provide only the number, without any additional explanation.

Number:

Response: 7

Figure 27: An example of obtaining relation popularity on the movies dataset using ChatGPT in a 3-shot setting.
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