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Abstract

Large language models (LLMs) often fail to001
recognize their knowledge boundaries, produc-002
ing confident yet incorrect answers. In this003
paper, we investigate how knowledge popu-004
larity affects LLMs’ ability to perceive their005
knowledge boundaries. Focusing on entity-006
centric factual question answering (QA), we007
quantify knowledge popularity from three per-008
spectives: the popularity of entities in the ques-009
tion, the popularity of entities in the answer,010
and relation popularity, defined as their co-011
occurrence frequency. Experiments on three012
representative datasets containing knowledge013
with varying popularity show that LLMs ex-014
hibit better QA performance, higher confidence,015
and more accurate perception on more popular016
knowledge, with relation popularity having the017
strongest correlation. Cause knowledge popu-018
larity shows strong correlation with LLMs’ QA019
performance, we propose to leverage these sig-020
nals for confidence calibration. This improves021
the accuracy of answer correctness prediction022
by an average of 5.24% across all models and023
datasets. Furthermore, we explore prompting024
LLMs to estimate popularity without external025
corpora, which yields a viable alternative.026

1 Introduction027

Large language models (LLMs) (Achiam et al.,028

2023; Yang et al., 2024; Dubey et al., 2024) often029

hallucinate—producing fluent but factually incor-030

rect answers which is unacceptable in safety-critic031

domains such as healthcare. Accurately identi-032

fying when LLMs produce correct answers not033

only helps determine when to trust their outputs,034

but also enables adaptive retrieval-augmented gen-035

eration (RAG)—performing retrieval only when036

they do not know the answer—thereby enhancing037

both the effectiveness and efficiency of RAG (Ni038

et al., 2024a). A reliable model should have a clear039

perception of its knowledge boundaries—knowing040

what it knows and what it does not. This requires its041

confidence in an answer, reflected in the generation 042

probability, to align with the actual likelihood of 043

the answer being correct (Jiang et al., 2021). While 044

many studies have examined LLMs’ perception 045

level of their knowledge boundaries and found that 046

they tend to be overconfident (Lin et al., 2022; Tian 047

et al., 2023), the underlying factors influencing the 048

perception remain poorly understood. 049

A natural hypothesis is that a model’s perception 050

level can be influenced by the popularity of the 051

knowledge—i.e., how frequently the model has 052

encountered it during training. When asked about 053

popular knowledge, the model may be more likely 054

to respond both correctly and confidently. Prior 055

work (Mallen et al., 2023) has shown that LLMs 056

achieve better QA performance on more popular 057

questions. This raises a key question: how do 058

the model’s confidence and its alignment with QA 059

performance vary with knowledge popularity? 060

To investigate this, we focus on entity-centric 061

factual QA (Mallen et al., 2023; Yuksekgonul et al.) 062

where both the question and the answer contain an 063

entity because this enables us to quantify the popu- 064

larity of knowledge based on entities. Specifically, 065

we assess knowledge popularity from the following 066

three perspectives: 1) Question popularity PopQ: 067

popularity of the entity in the question. 2) Ground- 068

truth answer popularity PopGT: popularity of the 069

entity in the ground-truth answer. 3) Ground-truth 070

relation popularity RPopGT: the co-occurrence fre- 071

quency of the question and ground-truth entities. 072

Higher entity popularity suggests more accurate 073

entity representations. Relation popularity directly 074

influences the model’s ability to comprehend asso- 075

ciations between entities, but is costly to collect. 076

Since ground-truth answers are unavailable 077

in real-world scenarios, we also examine model- 078

generated answers. Specifically, we investigate 079

whether the popularity of the generated answer 080

(PopGe) and the relation popularity between the 081

generated and question entities (RPopGe) reflect 082
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the model’s QA performance, confidence, and083

perception level. We focus in particular on their084

correlation with QA performance, as a strong085

correlation could allow these signals to be used for086

calibrating the model’s confidence.087

We conduct experiments on three entity-centric088

factual QA datasets—Movies, Songs, and Bas-089

ketball—constructed from Wikidata knowledge090

triplets by Yuksekgonul et al.. Some question091

examples can be seen in Figure 1. We quan-092

tify entity popularity by the number of Wiki-093

data language editions in which an entity ap-094

pears. Relation popularity is measured by the095

number of Wikipedia documents where both en-096

tities are mentioned together. We use two rep-097

resentative open-source models—LLaMA3-8B-098

Instruct (Dubey et al., 2024) and Qwen2-7B-099

Instruct (Yang et al., 2024)—as well as the black-100

box model ChatGPT (Achiam et al., 2023).101

Results on PopQ, PopGT, and RPopGT show that102

LLMs demonstrate better QA performance, higher103

confidence, and more accurate perception of their104

knowledge boundaries on more popular knowl-105

edge. Although LLMs are generally overconfident,106

the extent of overconfidence diminishes as knowl-107

edge popularity increases, since QA performance108

improves more rapidly than confidence. Among109

the three popularity measures, RPopGT shows the110

strongest correlation with QA accuracy, confidence,111

and perception level most of the cases. Interest-112

ingly, question popularity correlates more strongly113

with confidence than with QA performance, imply-114

ing that LLMs may become overconfident simply115

due to familiarity with the question.116

Regarding generated answers, RPopGe shows a117

strong positive correlation with QA performance,118

confidence, and perception level, while PopGe ex-119

hibits a weaker correlation. Notably, RPopGe120

shows even stronger correlation with QA perfor-121

mance than RPopGT, while PopGe correlates more122

weakly than PopGT. We further analyze the reason123

and reveal that when LLMs make errors, they tend124

to generate more popular entities that co-occur125

less frequently with the question entity compared126

to ground-truth answers, indicating a tendency to-127

ward over-generalization. This is consistent with128

the findings of Zhang et al. (2024b).129

Based on these findings, we propose to leverage130

popularity features (i.e., PopQ, PopGe, and RPopGe)131

to calibrate confidence which aims to improve the132

effectiveness of confidence in predicting answer133

correctness. Given that computing knowledge pop- 134

ularity requires access to external corpora and in- 135

curs additional collection costs, we also investigate 136

prompting the model to estimate popularity on its 137

own. Results show that PopQ and PopGe provide 138

modest gains in calibration. In contrast, RPopGe 139

provides substantial gains. Combining all these 140

three types of popularity yields the best calibration 141

performance, boosting answer correctness predic- 142

tion by an average of 5.24% across all models and 143

datasets. Moreover, leveraging model-estimated 144

popularity also performs well for confidence cali- 145

bration. The choice between external corpora and 146

self-estimation ultimately hinges on the trade-off 147

between performance and efficiency. 148

2 Related Work 149

Existing research on model knowledge boundary 150

perception focuses on assessing model confidence 151

and can be mainly classified into four categories. 152

Probabilistic Confidence. This line of research 153

treats the generation probability of the answer as 154

the confidence of the model (Guo et al., 2017; Desai 155

and Durrett, 2020; Jiang et al., 2021; Kadavath 156

et al., 2022; Si et al., 2022; Kuhn et al., 2023). Guo 157

et al. (2017) examined early neural networks (e.g., 158

ResNet (He et al., 2016)) and found them to be 159

overconfident, proposing temperature scaling as a 160

remedy. Later, Desai and Durrett (2020) showed 161

that BERT-style models tend to be relatively well- 162

calibrated, while Jiang et al. (2021) found that pre- 163

trained language models such as T5 (Raffel et al., 164

2020) remained overconfident. More recent work 165

has turned to LLMs, with studies showing that they, 166

too, exhibit overconfidence (Si et al., 2022; Lin 167

et al., 2022; Tian et al., 2023). 168

Verbalized Confidence. LLMs have been shown 169

to express their confidence verbally (Lin et al., 170

2022; Yin et al., 2023; Tian et al., 2023; Xiong 171

et al., 2023; Yang et al., 2023; Ni et al., 2024a). 172

Some studies (Yin et al., 2023; Ni et al., 2024a) 173

found that LLMs often fail to recognize their 174

knowledge limitations verbally and tend to be 175

overconfident. Xiong et al. (2023) systematically 176

studied black-box approaches for estimating LLM 177

confidence. Beyond prompting-based methods, 178

some studies aim to train LLMs to verbalize more 179

accurate confidence (Lin et al., 2022; Yang et al., 180

2023; Zhang et al., 2024a). 181
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Who is the director of the movie [Movie Name]?

Who is the performer of the song [Song Name]?

Where is the birthplace of the basketball player [Player Name]?

Movies

Songs

Basketball

Figure 1: Question examples for each dataset.

Consistency-based Confidence. If the model is182

confident in its answer, it should maintain consis-183

tency across multiple generations. Recent studies184

have used self-consistency across generations as a185

proxy for LLM confidence (Manakul et al., 2023;186

Kuhn et al., 2023). Zhang et al. (2023) extended187

this by evaluating the consistency of answers across188

multiple semantically equivalent inputs and across189

different models. Ding et al. (2024) further adapted190

this approach to the multilingual setting.191

Confidence Estimation via LLM Internal States.192

LLMs’ internal states have shown to be effective193

in evaluating the factuality of their self-generated194

content (Su et al., 2024; Chen et al., 2024; Wang195

et al., 2024; Ni et al., 2025). Specifically, Su et al.196

(2024) and Chen et al. (2024) focused on internal197

states after generation, Wang et al. (2024) exam-198

ined those before generation, and Ni et al. (2025)199

explored leveraging LLMs’ internal states to en-200

hance their perception of knowledge boundaries201

from efficiency and risk perspectives.202

We focus on probabilistic confidence for the fol-203

lowing reasons: 1) Both the model’s generation204

probabilities and its knowledge acquisition arise205

from the same training objective, and are expected206

to align with each other. 2) Models without special-207

ized training often struggle to verbalize confidence208

accurately (Ni et al., 2024b); consistency-based209

methods require multiple generations and incur210

high inference costs; and internal-state-based ap-211

proaches require access to hidden representations212

and additional training. In contrast, probabilis-213

tic confidence is readily accessible and has been214

shown to perform well, especially when answers215

are short (Ding et al., 2024).216

3 Task Description217

Entity-Centric QA. We focus on entity-centric218

knowledge because it allows us to measure knowl-219

edge popularity through entities. In entity-centric220

QA, questions and answers are derived from knowl- 221

edge triples in the form of (subject, relation, ob- 222

ject), where the question queries the relation of a 223

given subject, and the model is expected to generate 224

the corresponding object. Examples of knowledge 225

triples are provided in Table 1, with their trans- 226

formed question forms shown in Figure 1. 227

LLM Knowledge Boundary Perception. The 228

model’s perception of its knowledge boundaries is 229

evaluated by the alignment between its confidence 230

and actual QA performance. QA performance is 231

measured by whether the generated answer con- 232

tains the ground-truth answer, and confidence is 233

reflected in generation probability of the answer to- 234

kens (see Section § 2). Specifically, for a question 235

q and a model M , the confidence c is computed as: 236

c =
1

T

T∑
i=1

P (gi|g<i), (1) 237

where {g1, . . . , gT } is the generated tokens. 238

4 How Does Knowledge Popularity Affect 239

LLMs’ Perception Level? 240

In this section, we investigate how PopQ, PopGT, 241

and RPopGT influence LLMs’ QA performance, 242

confidence, and perception level. 243

Datasets Count Subject Relation Object

Movies 10,964 Movie Directed by Director
Songs 2,157 Song Performed by Performer
Basketball 13,309 Player Birthplace City

Table 1: Sample counts for each dataset, along with the
corresponding subject, relation, and object types.

4.1 Experimental Setup 244

Datasets. Yuksekgonul et al. constructed entity- 245

centric QA datasets based on Wikidata1, using the 246

number of sitelinks on a page as a proxy for entity 247

popularity. They showed that this measure strongly 248

correlates with an entity’s frequency in the training 249

data. Building on this, we conduct experiments 250

on their datasets to ensure reliable entity popular- 251

ity measurement. We select three representative 252

datasets—Movies, Song, and Basketball—because 253

they exhibit clear differences in knowledge pop- 254

ularity. Specifically, question popularity ranks as 255

Movies > Songs > Basketball, while ground-truth 256

1https://query.wikidata.org/sparql
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Accuracy Confidence Alignment

Datasets Models Acc. PopQ PopGT RPopGT Conf. PopQ PopGT RPopGT Align. PopQ PopGT RPopGT

Movies
Llama3 72.65 0.317 0.220 0.357 90.68 0.404 0.367 0.509 75.50 0.404 0.347 0.501
Qwen2 42.85 0.433 0.299 0.494 82.32 0.413 0.371 0.507 53.63 0.386 0.279 0.440
ChatGPT 94.78 0.134 0.069 0.130 98.80 0.210 0.230 0.280 94.85 0.211 0.228 0.279

Songs
Llama3 38.97 0.277 0.164 0.517 79.74 0.369 0.210 0.502 53.04 0.182 0.093 0.361
Qwen2 25.82 0.362 0.255 0.541 78.00 0.300 0.200 0.345 42.97 0.230 0.180 0.392
ChatGPT 73.36 0.171 0.266 0.399 94.84 0.249 0.295 0.381 75.28 0.232 0.340 0.399

Basketball
Llama3 13.37 0.118 0.293 0.231 60.09 0.173 0.063 0.055 46.21 -0.052 0.104 0.097
Qwen2 9.90 0.014 0.348 0.151 74.76 0.151 0.076 0.009 32.35 0.126 0.189 0.105
ChatGPT 34.89 0.288 0.215 0.353 79.06 0.351 0.054 0.270 50.43 0.201 0.164 0.303

Table 2: LLMs’ QA performance, confidence, alignment and the correlations between knowledge popularity and
accuracy, confidence, and alignment across different datasets.

answer popularity follows Movies < Songs < Bas-257

ketball. Table 1 lists the knowledge triplets and258

data counts for each dataset, and Figure 1 presents259

example questions. We apply data filtering to en-260

sure reliable results, as detailed in Section §A.261

Entity Popularity. Following Mallen et al.262

(2023); Yuksekgonul et al., we define the popu-263

larity of an entity by the number of sitelinks it264

has—i.e., the number of Wikipedia pages in differ-265

ent languages that link to it.266

Relation Popularity. As Wikipedia is the pri-267

mary high-quality source for Wikidata, we esti-268

mate relation popularity based on Wikipedia con-269

tent. Specifically, for each entity pair, we mea-270

sure relation popularity by counting the number of271

documents in the Wikipedia dump2 in which both272

entities co-occur. This reflects relation popularity273

in the model’s training data, as it shows a strong274

correlation with QA performance (see Table 2).275

Notation Definition

PopQ Popularity of entities in the question
PopGT Popularity of entities in the ground-truth answer
RPopGT Relation pop. between question and ground-truth entities
PopGe Popularity of entities in the generated answer
RPopGe Relation pop. between question and generated entities

Table 3: Definitions of notations about knowledge pop-
ularity where pop. means popularity.

LLMs. We conduct experiments on three repre-276

sentative LLMs: two open-source models, Llama3-277

8B-Instruct (Dubey et al., 2024) and Qwen2-278

7B-Instruct (Yang et al., 2024), as well as a279

black-box model, ChatGPT (i.e., GPT-3.5-Turbo-280

1106) (Achiam et al., 2023).281

2https://huggingface.co/datasets/wikimedia/
wikipedia

Answer Generation. For all the models, we use 282

greedy search, selecting the token with the highest 283

probability at each generation step. An example 284

can be seen in Figure 20. 285

Metrics. For each question qi, we measure an- 286

swer correctness using accuracy acci, where the 287

generated answer is considered correct if it con- 288

tains the ground-truth answer. The model’s confi- 289

dence ci is defined as the generation probability of 290

the answer, as described in Section §3. Alignment 291

is then computed as 1 − |acci − ci|. To examine 292

the relationship between knowledge popularity and 293

QA performance, confidence, and alignment, we 294

use Spearman correlation coefficients (Hauke and 295

Kossowski, 2011), which range from -1 to 1. The 296

sign indicates the direction of the correlation, while 297

the absolute value reflects its strength. 298

4.2 Results and Analysis 299

LLMs’ QA performance, confidence, and percep- 300

tion levels across different datasets, along with the 301

Spearman correlation coefficients between knowl- 302

edge popularity and accuracy, confidence, and 303

alignment are shown in Table 2. We observe that: 304

1) LLMs achieve better QA performance and 305

higher confidence on more popular knowledge. 306

All three types of popularity are positively corre- 307

lated with both QA performance and confidence. 308

For QA performance and confidence, we conduct 309

the following analyses respectively. 310

For QA performance, relation popularity gener- 311

ally shows the strongest correlation, as expected, 312

while question popularity exhibits a stronger corre- 313

lation than answer popularity in most cases. This 314

suggests that learning through co-occurrence is es- 315

pecially effective for acquiring knowledge, and that 316

familiarity with the question contributes more to 317

4
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Figure 2: The QA performance, confidence, and alignment of ChatGPT under different question popularity.

answering correctly than familiarity with the an-318

swer. However, on the Basketball dataset, answer319

popularity shows the highest correlation for both320

LLaMA3 and Qwen2. This dataset is challeng-321

ing because both the question and relation have322

low popularity. The models are often unfamiliar323

with the question entity and generate a popular city324

name instead—a behavior consistent with knowl-325

edge overshadowing (Zhang et al., 2024b). Chat-326

GPT does not exhibit this pattern, likely due to a327

stronger mastery of the relevant knowledge.328

For confidence, question and relation popularity329

are strongly correlated in most cases, while answer330

popularity has a weaker impact. Notably, question331

popularity consistently correlates strongly with332

confidence and, in 7 of 9 cases, more than with333

QA performance. This suggests that LLMs may334

become more confident simply because familiarity335

with the question, even if they do not know the336

answer. On the Basketball dataset, confidence337

shows little correlation with answer popularity338

across all three models. We hypothesize that the339

models are generally familiar with city names, and340

thus do not exhibit higher confidence for samples341

with more common answers.342

2) LLMs better perceive their knowledge bound-343

aries on more popular knowledge. To better344

understand this, we analyze how the gap between345

confidence and QA performance changes with346

increasing knowledge popularity. Due to space347

constraints, we just present this gap for ChatGPT348

as question popularity increases, shown in Figure 2.349

We observe that although LLMs are consistently350

overconfident, their QA performance improves351

more rapidly than confidence as question popular-352

ity increases, thereby narrowing the gap. Results353

for other models, as well as analyses based on354

other popularity, are included in the Appendix and355

exhibit similar trends. As shown in Table 2, among356

the three types of popularity, relation popularity357

typically shows the strongest correlation.358

0
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Figure 3: Comparison of the correlation between Chat-
GPT’s QA performance and ground-truth vs. generated
answers: PopGT vs. PopGe, and RPopGT vs. RPopGe.

5 Analysis of Model-Generated Answers 359

In real-world scenarios, ground-truth entities are 360

often unavailable. This motivates us to investigate 361

whether the popularity of model-generated enti- 362

ties—along with their relational popularity with 363

the question entity—correlates with the model’s 364

QA performance, confidence, and perception level. 365

We focus particularly on the relationship between 366

popularity and QA performance, as a strong corre- 367

lation could enable us to leverage these signals for 368

confidence calibration. The experimental settings 369

are the same as those in Section § 4. 370

Datasets Models PopQ PopGe RPopGe

Movies
Llama3 0.317 0.100 0.637
Qwen2 0.433 0.087 0.756

ChatGPT 0.134 0.083 0.208

Songs
Llama3 0.277 0.257 0.621
Qwen2 0.362 0.188 0.666

ChatGPT 0.171 0.218 0.351

Basketball
Llama3 0.118 0.116 0.245
Qwen2 0.014 0.116 0.106

ChatGPT 0.288 -0.164 0.293

Table 4: Correlations between LLMs’ QA performance
and PopQ, PopGe, and RPopGe.
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5.1 Results and Analysis371

Table 4 shows the Spearman correlation coeffi-372

cients between LLMs’ QA performance and knowl-373

edge popularity based on model-generated entities.374

Due to space constraints, results on LLMs’ confi-375

dence and perception levels are provided in Table 7376

in the Appendix. We observe the following.377

The popularity of generated entities (PopGe) and378

their co-occurrence with question entities (RPopGe)379

positively correlate with LLMs’ QA performance,380

confidence, and perception level in most cases.381

RPopGe typically shows the strongest correlation,382

outperforming both PopQ and PopGe. In contrast,383

PopGe often exhibits the weakest correlation. These384

findings are similar to the results based on ground-385

truth entities, as discussed in Section § 4.386

PopGe shows a weaker correlation with QA per-387

formance compared to PopGT while RPopGe ex-388

hibits a comparable or even stronger correlation389

than RPopGT. We present the comparison for Chat-390

GPT in Figure 3, while results for other models391

can be obtained by comparing Table 2 and Table 4.392

To better understand this, we perform a more de-393

tailed comparison between model-generated an-394

swers and ground-truth answers. We only focus on395

cases where the model makes mistakes since the396

generated answer matches the ground-truth answer397

otherwise and analyze in Section § 5.2.398

5.2 What Do LLMs Generate When They399

Hallucinate?400

We focus on the differences in popularity between401

model-generated answers and ground-truth an-402

swers when the model makes errors (See Figure 4),403

as well as the differences in their co-occurrence404

frequency with the question entity (See Figure 5).405

LLMs tend to generate entities that are more406

common and less frequently co-occur with the407

question entities than ground-truth answers408

when they hallucinate. As shown in Figure 4,409

for incorrectly answered samples, the generated en-410

tities are often more popular than the ground-truth411

entities. So the popularity gap between correct and412

incorrect answers is smaller for generated entities413

than for ground-truth entities, leading to a weaker414

correlation between PopGe and QA performance.415

This may be because the model tends to overgen-416

eralize—once it learns high-frequency answers, it417

tends to use them in many similar contexts.418

In incorrectly answered samples, model-419

generated answers typically co-occur less fre-420
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Figure 4: PopGT, PopGe in incorrectly answered samples
and PopGT (also PopGe) in correctly answered samples.
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Figure 5: Proportion of incorrectly answered samples
where RPopGe is less than RPopGT.

quently with question entities compared to ground- 421

truth answers, as shown in Figure 5. As a result, the 422

correlation between RPopGe and QA performance 423

is stronger than that of RPopGT, because the dif- 424

ference in RPopGe between correct and incorrect 425

samples is greater than that of RPopGT. 426

6 Confidence Calibration with 427

Knowledge Popularity 428

Given that PopQ, PopGe, and RPopGe—especially 429

RPopGe—are strongly correlated with QA perfor- 430

mance, we propose to use these signals for con- 431

fidence calibration, i.e., improving the effective- 432

ness of confidence in predicting answer correctness. 433

Since obtaining these signals typically requires ex- 434

ternal corpora and incurs additional costs, we also 435

explore whether LLMs can assess knowledge fa- 436

miliarity on their own. 437

6.1 Knowledge Popularity Acquisition 438

Corpora-based Popularity. As outlined in Sec- 439

tion § 3, we get popularity from external corpora. 440

Model-generated Popularity. To eliminate 441

reliance on external corpora and reduce the 442

overhead of collecting popularity, we investigate 443
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whether LLMs can self-assess their familiarity444

with a given the entity or the relation. Familiarity445

is measured on a 10-point scale, where 1 denotes446

the lowest and 10 the highest level. The model is447

asked to provide its familiarity score accordingly.448

We provide the model with varying numbers of449

corpora-based popularity examples to examine450

whether supplying such examples helps the model451

produce more accurate familiarity. We present452

examples under both zero-shot and few-shot453

settings and all these prompts can be found in454

Section § F in the Appendix.455

6.2 Baselines456

We use representative confidence estimation meth-457

ods that do not require access to model parameters458

as our baselines.459

• Verbalized Confidence (Verb) (Yin et al., 2023)460

instructs the model to verbally assess whether it461

can answer the question correctly. The prompt462

can be seen in Figure 21 in the appendix.463

• Self-consistency (Consis) (Manakul et al., 2023)464

estimates the model’s confidence by measuring465

the semantic consistency of multiple sampled an-466

swers. The core idea is that if the model knows467

the correct answer, multiple sampled answers468

should be semantically consistent. For each ques-469

tion, we sample 10 additional responses with a470

temperature of 1.0. For ChatGPT, due to cost471

constraints, we limit sampling to 3 additional re-472

sponses. Semantic consistency is assessed using473

Qwen2.5-32B-Instruct (Yang et al., 2024).474

• Probabilistic Confidence (PC) (Kumar et al.,475

2024) takes generation probabilities for the to-476

kens in the answer as the model’s confidence.477

This is the confidence we have been using478

throughout the paper, and the one we aim to cali-479

brate. Details can be seen in Section § 3.480

6.3 Data Construction481

For each sample in the datasets, we construct a482

data pair {x, y}, where y is a binary correctness483

label: y = 1 if the generated answer contains the484

ground-truth answer, and y = 0 otherwise. To485

study the effect of each type of popularity on confi-486

dence calibration, we construct x using the follow-487

ing features: 1) PC+PopQ, 2) PC + PopGe, 3) PC488

+ RPopGe, and 4) PC + ALL — PC and all these489

three types of popularity. We also use each type of490

popularity itself as x to study its effectiveness in491

answer correctness prediction.492

6.4 Answer Correctness Prediction 493

Based on the constructed x, we predict a binary 494

judgment on correctness, as shown below. 495

ŷ = E(x), (2) 496

where E represents the binary classification func- 497

tion and ŷ means the predicted correctness (i.e., 1 498

for correct and 0 for incorrect). 499

Single-feature Prediction. For the setting where 500

x contains only a single feature, we select a thresh- 501

old λ that maximizes prediction accuracy on the 502

training set, and apply this threshold to perform 503

binary classification on the test data. This can be 504

formualted as: 505

ŷ =

{
1 if x > λ,

0 otherwise,
(3) 506

Multi-feature Prediction. For the setting where 507

x contains multiple features, we perform binary 508

classification using a lightweight MLP network, as 509

defined below: 510

P (ŷ = 1) = σ (MLP (x)) , (4) 511

where σ refers to the softmax function, x ∈ Rd×h 512

represents the input features, d is the count of input 513

features (e.g., d=2 for PC+PopQ) and h means the 514

model’s hidden dimension. We use a 3-layer MLP 515

with 64, 32, and 2 neurons in each layer, respec- 516

tively. The activation function in MLP is ReLU. We 517

employ cross-entropy loss as the training objective: 518

LCE = −
N∑
i=1

yi log(Pi)+(1−yi) log(1−Pi), (5) 519

where yi is the ground-truth correctness for the i-th 520

training sample, N is the count of training sam- 521

ples, and Pi denotes P (ŷi = 1). Detailed training 522

parameters can be found in Section § D. 523

Metrics. We use answer correctness prediction 524

accuracy as the metric. To reduce the impact of ran- 525

domness, all our reported results are the averages 526

obtained from three random seeds: (0, 42, 100). 527

Datasets and LLMs. We use the same data and 528

LLMs as in Section § 4.1. We randomly split each 529

dataset into two equal parts for training and testing 530

and select the checkpoint with the highest predic- 531

tion accuracy on the training set. Detailed settings 532

can be found in Section § D in the Appendix. 533
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Movies Songs Basketball
Avg.

Features Llama3 Qwen2 ChatGPT Llama3 Qwen2 ChatGPT Llama3 Qwen2 ChatGPT

Baselines
Verb 65.58 45.93 83.41 40.22 29.58 69.25 51.58 50.49 48.89 53.88
Consis 82.21 74.61 96.00 77.62 86.31 83.72 53.76 52.10 77.77 76.01
PC 83.20 79.77 95.95 75.20 83.02 79.11 65.49 66.36 77.87 78.44

Corpora-based Knowledge Popularity
PopQ 71.68 70.62 88.24 66.35 76.84 68.00 56.25 50.90 69.32 68.69
PopGe 73.09 58.86 94.22 63.38 74.57 74.41 60.54 60.33 64.86 69.36
RPopGe 89.66 87.92 96.03 82.71 89.59 81.46 67.03 59.64 64.74 79.86
PC+PopQ 83.57 81.36 95.97 76.60 84.58 79.11 65.93 66.95 78.39 79.16
PC+PopGe 84.46 80.49 95.58 76.68 83.57 80.12 69.04 68.64 78.62 79.69
PC+RPopGe 90.93 88.58 96.13 80.21 90.46 84.04 71.93 66.33 78.10 82.97
PC+ALL 93.32 92.47 96.37 81.46 88.11 82.71 71.93 68.18 78.59 83.68

Self-generated Knowledge Popularity
PC+PopQ 83.91 80.60 95.87 77.85 84.82 79.50 65.30 67.31 78.43 79.29
PC+PopGe 84.02 80.24 95.59 75.20 83.02 78.56 68.40 67.49 78.21 78.97
PC+RPopGe 85.30 80.20 95.80 79.65 84.04 79.81 66.17 67.90 77.59 79.61
PC+ALL 85.95 81.40 95.84 78.87 86.07 80.05 67.69 68.08 78.70 80.29

Table 5: Accuracy of answer correctness prediction. Bold denotes the highest score in either corpora-based or
self-generated knowledge popularity. Self-generated knowledge popularity is obtained under the zero-shot setting.

6.5 Results and Analysis534

Results on corpora-based knowledge popular-535

ity. Results based on knowledge popularity from536

external corpora is shown in the upper half of Ta-537

ble 5. We observe that: 1) Compared to the model’s538

confidence, RPopGe more accurately reflects an-539

swer correctness, outperforming all baselines in 6540

out of 9 cases. In contrast, PopQ and PopGe indi-541

vidually show limited effectiveness in predicting542

correctness. 2) All three types of popularity con-543

tribute to calibrating the model’s confidence,544

with their combination yielding the most effec-545

tive results. In most cases, augmenting PC with546

each type of popularity improves upon PC, with547

PC+RPopGe achieving the highest average accu-548

racy among them. Notably, combining all three549

types leads to the most effective calibration, con-550

sistently outperforming PC and yielding an aver-551

age accuracy improvement of 5.24% across diverse552

datasets and models. Further analysis and case553

studies are provided in Section § E.554

Results on model-generated knowledge popular-555

ity. The prediction accuracy based on model self-556

generated knowledge popularity under the zero-557

shot setting can be found in the lower half of Ta-558

ble 5. It show that: 1) All three types of self-559

generated popularity contribute to confidence cali-560

bration. On average, all three signals can calibrate561

PC, and their combination achieves the best calibra-562

tion effect, obtaining the optimal value in 6 out of 563

9 cases. However, the model’s self-generated sig- 564

nals yield weaker calibration effects compared to 565

corpus-based knowledge popularity. The choice be- 566

tween corpus-based popularity and self-generated 567

popularity depends on the trade-off between effec- 568

tiveness and efficiency. 2) LLMs can not estimate 569

popularity better with few-shot learning compared 570

to zero-shot. Detailed analysis can be found Sec- 571

tion § C in the Appendix. 572

7 Conclusion 573

In this paper, we investigate how knowledge popu- 574

larity—measured through entity and relation pop- 575

ularity—affects LLMs’ QA performance, confi- 576

dence, and perception of their knowledge bound- 577

aries, and explore its utility for confidence calibra- 578

tion. We find that LLMs perform better, express 579

higher confidence, and demonstrate more accurate 580

perception on more popular knowledge, with rela- 581

tion popularity having the strongest influence. We 582

further show that the popularity and co-occurrence 583

of model-generated answers also positively corre- 584

late with QA accuracy. Leveraging these popularity 585

signals for confidence calibration yields an average 586

5.24% improvement in predicting answer correct- 587

ness. To reduce reliance on external corpora, we 588

also demonstrate that model-estimated popularity 589

can serve as a viable alternative, offering a practical 590

trade-off between performance and efficiency. 591
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Limitations592

First, due to resource limitations, we are unable to593

conduct experiments on more models. However,594

we utilize mainstream existing models, which still595

demonstrate the reliability of our conclusions. Sec-596

ond, we primarily focus on entity-centric factual597

QA. For other types of factual reasoning that do598

not involve entities and non-factual questions, how599

to represent their knowledge popularity remains600

an open question. We believe that if the model’s601

actual training data is available, computing knowl-602

edge popularity from the training data would likely603

yield greater improvements.604

Ethics Statement605

We approach ethics with great care. In this paper,606

all the datasets and models we use are open-source.607

Our analysis of knowledge popularity does not in-608

troduce any harmful information. Moreover, our609

proposed method can help accurately determine610

whether the model’s answer is trustworthy, prevent-611

ing users from being misled by incorrect responses.612
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A Data Filtering762

The model’s generated response may be empty763

or fail to find a corresponding entity in Wikidata.764

To ensure comparability of results across different765

models on the same dataset, we filter out data where766

any model’s generation is empty or the generated767

entity cannot be found in Wikidata. Additionally,768

for the Movies and Songs datasets, we filter out769

cases where the question entity, ground truth entity,770

or model-generated entity appears in more than771

6,000 documents. This is because entities in these772

two datasets typically do not appear in more than773

6,000 documents, and those that exceed this thresh-774

old often introduce noise. For example, "Queen"775

appears more than 6,000 times but is not exclu-776

sively used as a band name. We filter these cases777

to obtain an accurate co-occurrence counts. After778

filtering, the remaining data sizes for the Movies,779

Songs, and Basketball datasets are 8,184, 852, and780

13,136, respectively.781

Acc.

R-Pop

P(R|Q)

P(R|A)

NMI

94.269.635

15.4

23.4

5.010.162

0.457

0.204

0.107

0.08

0.002

0.034

0.032

0.002

Movies
Songs
Basketball

Figure 6: QA performance and NMI calculated based
on ChatGPT. R-Pop means relation popularity, where
P (R|Q) and P (R|A) denote the co-occurrence propor-
tion of question and answer entities relative to their
individual occurrences in documents.

B Analysis on Relationship Strength782

We hypothesize that the strength of the relationship783

between entities may also influence the model’s784

learning. Specifically, when the subject and object785

frequently co-occur but are also commonly asso-786

ciated with other entities, the model may struggle787

to learn their specific relationship. We use normal-788

ized mutual information to quantify relationship789

strength and find that stronger relationship con-790

tributes to better QA performance. Normalized791

mutual information is computed as:792

NMI(X,Y ) =
I(X;Y )√
H(X)H(Y )

, (6)793

where I(X,Y ) is defined as: 794

I(X,Y ) =

n∑
i=1

m∑
j=1

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)
,

(7) 795

and H(X) and H(Y ) serve as regularization terms 796

to mitigate the influence of the sizes of n and m, as 797

well as the magnitude of probability values. Their 798

formulations are: 799

H(X) = −
n∑

i=1

P (xi) logP (xi), (8) 800

801

H(Y ) = −
m∑
j=1

P (yj) logP (yj). (9) 802

Specifically, for a dataset converted from knowl- 803

edge triplets D = {si, r, oi}ni=1, we define X = 804

{s1, . . . , sn} and Y = {o1, . . . , on}. We estimate 805

P (si), P (oj), and P (si, oj) using a Wikipedia 806

dump of d documents, where P (si) and P (oj) are 807

the proportions of documents containing si and oj , 808

respectively, and P (si, oj) is the proportion con- 809

taining both. If i ̸= j, we set P (si, oj) = 0, as we 810

focus only on the relationship between si and oi. 811

The results based on ChatGPT are shown in Fig- 812

ure 6. We observe that, compared to the movies 813

dataset, the question entity co-occurs more fre- 814

quently with the ground-truth entity in the songs 815

dataset, yet the model’s QA performance is lower. 816

This can be attributed to the lower NMI in the songs 817

dataset, driven by a low P (R|A). This indicates 818

that, besides the question entity, the answer entity 819

also co-occurs with many other entities through var- 820

ious relations. This may interfere with the model’s 821

memory of the relationship between the question 822

entity and the answer entity. 823

C Effects of Few-Shot Learning on 824

Popularity Generation 825

Examples selection. For a given dataset, we sort 826

all samples by popularity in ascending order, re- 827

move duplicates, and divide the popularity values 828

into 10 equal intervals, assigning values from 1 to 829

10 in ascending order. Each sample is then assigned 830

to its corresponding interval, updating its popular- 831

ity accordingly. For 3-shot, we randomly select one 832

sample from the intervals with popularity values 833

of 2, 5, and 8. For 5-shot, we randomly select one 834

sample from the intervals with popularity values of 835

1, 3, 5, 7, and 9. For 10-shot, we randomly select 836

one sample from each of the 10 intervals. 837

11



0 3 5 10
Shots

78

79

80

81

82

83

84

85
Pr

ed
ict

io
n 

Ac
cu

ra
cy

 (%
)

LLaMA 8B
Qwen2
ChatGPT

Figure 7: The prediction accuracy obtained by perform-
ing confidence calibration using knowledge popularity
generated from different numbers of examples. Each
point represents the average prediction accuracy of the
model across three datasets.

Results. Figure 7 shows the average prediction838

accuracy of Conf-QG-R across three datasets using839

model-generated popularity under different shot840

settings. As the number of examples increases,841

prediction accuracy does not improve, while infer-842

ence cost rises. Therefore, we recommend prompt-843

ing LLMs to assess their familiarity with enti-844

ties and their relationships in a zero-shot setting.845

Due to API costs, we first conduct experiments on846

LLaMA3-8B-Instruct and Qwen2-7B-Instruct and847

find that increasing the number of samples in the848

prompt does not yield more effective knowledge849

popularity. Therefore, we only perform 0-shot and850

3-shot experiments on ChatGPT.851

D Detailed Parameter Settings852

Inference. For all the models, we use greedy853

search, selecting the token with the highest prob-854

ability at each generation step. For open-source855

models, our experiments are conducted on a single856

80GB A800 GPU.857

MLP Training. For both corpora-based and858

model-generated popularity, we train the model859

using the Adam optimizer with a learning rate of860

2e-3 and a batch size of 8. The intermediate layer861

has a dropout rate of 0.4, and training runs for 100862

epochs. All experiments are conducted on two863

16GB V100 GPUs. We select the checkpoint with864

the highest prediction accuracy on the training set865

for evaluation on the test set.866

Class Balancing for The Basketball Dataset.867

Since the MLP fails to learn meaningful pat-868

terns on the basketball dataset for Llama3 and 869

Qwen2—consistently classifying all samples as 870

incorrect due to the overwhelming imbalance—we 871

extract all correctly answered samples and ran- 872

domly sample an equal number of incorrect ones 873

(seed = 0) to ensure balanced learning across both 874

classes. The training set and the test set are evenly 875

split from the sampled dataset. 876

E Case Studies 877

We compare PC and PC+ALL on LLaMA3 for an- 878

swer correctness prediction to illustrate how knowl- 879

edge popularity works in confidence calibration. 880

The imperfect alignment between the model’s con- 881

fidence and its actual performance arises from two 882

main factors: 883

• Overconfidence: The model generates incorrect 884

answers with high confidence. When classifi- 885

cation relies on generation probabilities, such 886

answers are incorrectly labeled as correct. 887

• Conservativeness: The model generates correct 888

answers with low confidence. When classifica- 889

tion relies on generation probabilities, such an- 890

swers are incorrectly labeled as incorrect. 891

We collect the samples misclassified by PC but 892

successfully calibrated by PC+ALL. These fall into 893

two categories: 894

• Overconfidence Group: Samples where the 895

model generates an incorrect answer, PC incor- 896

rectly classifies them as correct, while PC+ALL 897

correctly identifies them as incorrect. 898

• Conservativeness Group: Samples where the 899

model generates a correct answer, PC incorrectly 900

classifies them as incorrect, while PC+ALL cor- 901

rectly identifies them as correct. 902

We compute the knowledge popularity for each 903

group, and the results appear in Table 6. The results 904

show that in the overconfidence group, PC+ALL 905

achieves calibration by leveraging low knowledge 906

popularity despite the model’s high confidence. In 907

contrast, in the conservativeness group, it achieves 908

calibration through high knowledge popularity. 909

Although PC+ALL achieves strong calibra- 910

tion performance, it also introduces some over- 911

calibration issues by misclassifying samples that 912

were correctly predicted by PC, as shown in Fig- 913

ure 8. However, the number of correctly calibrated 914

samples significantly exceeds the over-calibrated 915

ones. Moreover, we show some cases on the 916

Movies dataset for Llama3. Figures 9 and Fig- 917

ure 10 illustrate cases where knowledge popularity 918
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Figure 8: The difference in answer correctness predic-
tion on LLaMA3 between using PC+ALL and using
PC. Blue indicates that both methods make the same
prediction, yellow indicates cases where only PC+ALL
predictes correctly, and red indicates cases where only
PC predictes correctly.

effectively calibrated the model’s confidence, while919

Figure 11 shows a failure case. All the results in920

this section are obtained with seed=0.921

Datasets Group PC PopQ PopGe RPopGe

Movies
Overc. 0.91 47.05 20.08 1.03
Conse. 0.78 24.34 23.22 12.91

Songs
Overc. 0.91 38.91 13.04 18.89
Conse. 0.78 131.00 15.50 103.00

Basketball
Overc. 0.78 102.68 10.69 0.97
Conse. 0.62 234.83 10.59 11.47

Table 6: Knowledge popularity of samples that are mis-
classified by PC but correctly classified by PC+ALL.
Overc. refers to the Overconfidence group, in which the
model generates an incorrect answer but PC classifies it
as correct. Conse. refers to the Conservativeness group,
in which the model generates a correct answer but PC
classifies it as incorrect.

From Figure 10, we can see that the model gen-922

erated an incorrect answer with a probabilistic con-923

fidence of 0.95, which is significantly higher than924

the classification threshold for confidence (>0.85),925

leading to it being classified as correct. However,926

knowledge popularity reveals that the question pop,927

generated answer pop, and relation pop are 16, 20,928

and 1, respectively, all below the dataset’s aver-929

age levels. This indicates that both the question930

and the generated entity are relatively uncommon931

and rarely co-occur. As a result, the classification932

outcome was corrected to incorrect. Similarly, in933

Figure 10, the model exhibits low probabilistic con-934

fidence for a correctly generated answer, leading935

to a misclassification as incorrect. However, its936

knowledge popularity was relatively high, resulting937

in a correction to the correct classification.938

Figure 11 presents a case of error correction.939

While similar misclassifications may occur, the940

Question: Who is the director of the movie The Star Maker
Ground-Truth Answer: Giuseppe Tornatore
Generated Answer: Giuseppe Tornatore
Correctness: ✅
Confidence: 0.68
Confidence Threshold: 0.85
Correctness Prediction: ❌
Knowledge Popularity: [Q-Pop: 15, G-Pop: 62, R-Pop: 15]
Average Popularity: [Q-Pop: 26, G-Pop: 40, R-Pop: 15]
Correctness Prediction After Calibration: ✅

Figure 9: The case where Llama3-8B generates incor-
rect answers with high confidence on the Moveis dataset
and is corrected by low knowledge popularity.

Question: Who is the director of the movie Itinéraire d'un enfant gâté
Ground-Truth Answer: Claude Lelouch
Generated Answer: Coline Serreau
Correctness: ❌
Confidence: 0.95
Confidence Threshold: 0.85
Correctness Prediction: ✅
Knowledge Popularity: [Q-Pop: 16, G-Pop: 20, R-Pop: 1]
Average Popularity: [Q-Pop: 26, G-Pop: 40, R-Pop: 15]
Correctness Prediction After Calibration: ❌

Figure 10: The case where Llama3-8B generates correct
answers with low confidence on the Moveis dataset and
is corrected by high knowledge popularity.

Question: Who is the director of the movie The Celluloid Closet
Ground-Truth Answer: Rob Epstein
Generated Answer: Rob Epstein
Correctness: ✅
Confidence: 0.99
Confidence Threshold: 0.85
Correctness Prediction: ✅
Knowledge Popularity: [Q-Pop: 16, G-Pop: 15, R-Pop: 0]
Average Popularity: [Q-Pop: 26, G-Pop: 40, R-Pop: 15]
Correctness Prediction After Calibration: ❌

Figure 11: The case where Llama3-8B generates correct
answers with high confidence on the Moveis dataset and
is misled by low knowledge popularity.

proportion of correctly corrected samples (6.0%) is 941

significantly higher than that of miscalibrated ones 942

(1.2%), demonstrating the reliability of knowledge 943

popularity in confidence calibration. 944

F Prompts 945

We display all the prompts used in this paper here 946

and show some examples. 947

QA prompt. We just ask the model to give a 948

short answer without any other words. The exam- 949

ple is shown in Figure 20. 950

Prompts for knowledge popularity generation. 951

Examples for instructing LLMs to provide question 952

entity popularity, generated answer popularity, and 953

the popularity of their relationship can be found in 954

Figure 22 23 24 25 26 27. 955
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Accuracy Confidence Alignment

Datasets Models Q-Pop G-Pop Co-Occ Q-Pop G-Pop Co-Occ Q-Pop G-Pop Co-Occ

Movies
Llama3-8B 0.317 0.100 0.637 0.404 0.324 0.653 0.404 0.231 0.667
Qwen2-7B 0.433 0.087 0.756 0.413 0.345 0.679 0.386 0.021 0.607
ChatGPT 0.134 0.083 0.208 0.210 0.233 0.304 0.211 0.231 0.304

Songs
Llama3-8B 0.277 0.257 0.621 0.369 0.188 0.680 0.182 0.207 0.358
Qwen2-7B 0.362 0.188 0.666 0.300 0.246 0.511 0.230 0.058 0.405
ChatGPT 0.171 0.218 0.351 0.249 0.305 0.445 0.232 0.297 0.326

Basketball
Llama3-8B 0.118 0.116 0.245 0.173 -0.034 0.010 -0.052 0.083 0.163
Qwen2-7B 0.014 0.116 0.106 0.151 0.114 0.068 -0.126 -0.015 0.018
ChatGPT 0.288 -0.164 0.293 0.351 -0.210 0.257 0.201 -0.107 0.241

Table 7: Spearman correlation coefficients for Accuracy, Confidence, and Alignment scores with the popularity of
question entities, generated entities, and their co-occurrence.
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Figure 12: The QA performance, confidence, and alignment of Llama3 under different question popularity.
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Figure 13: The QA performance, confidence, and alignment of Qwen2 under different question popularity.
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Figure 14: The QA performance, confidence, and alignment of Llama3 under different answer popularity.
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Figure 15: The QA performance, confidence, and alignment of Qwen2 under different answer popularity.
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Figure 16: The QA performance, confidence, and alignment of ChatGPT under different answer popularity.
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Figure 17: The QA performance, confidence, and alignment of Llama3 under different relation popularity.
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Figure 18: The QA performance, confidence, and alignment of Qwen2 under different relation popularity.
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Figure 19: The QA performance, confidence, and alignment of ChatGPT under different relation popularity.
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Input: 
Answer the following question with one or few words.
Question:  Who is the director of the movie The Intouchables
Answer:

Response: Eric Toledano

Figure 20: A question-answering example for Llama3.

Input: 
Judge whether the following answer (this is your self-generated answer) about the question is correct. If you 
are sure the answer is correct, say certain. If not, please say uncertain. Just give your judgement without any 
other words.
Question: Where is the birthplace of the basketball player Jiang Xingquan? 
Answer: Beijing.

Response: Uncertain.

Figure 21: An example for verbalized confidence.

Question: Rate how familiar you are with the movie 'The Intouchables'. The familiarity is rated on a scale from 
1 to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it. 
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.
Number:

Response: 8

Figure 22: An example of obtaining question popularity on the movies dataset using LLaMA3 in a zero-shot setting.

Question: Rate how familiar you are with the director 'Eric Toledano'. The familiarity is rated on a scale from 1 
to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it. 
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.
Number:

Response: 4

Figure 23: An example of obtaining generated answer popularity on the movies dataset using LLaMA3 in a zero-shot
setting.

Question: Rate how familiar you are with the relationship between the movie 'The Intouchables' and the 
director 'Eric Toledano'. The familiarity is rated on a scale from 1 to 10, where 10 means you are highly familiar 
with their relationship, and 1 means you know little to nothing about it. Your answer needs to be a precise 
integer. Provide only the number, without any additional explanation.
Number:

Response: 8

Figure 24: An example of obtaining relation popularity on the movies dataset using LLaMA3 in a zero-shot setting.
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Question: Rate how familiar you are with the movie 'Swept Away'. The familiarity is rated on a scale from 1 
to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it. 
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.
Here are some examples:
The movie: Matchstick Men
Number: 2
The movie: Kick-Ass
Number: 5
The movie: Skyfall
Number: 8
Rate how familiar you are with the movie 'Swept Away'. The familiarity is rated on a scale from 1 to 10, where 
10 means you are highly familiar with it, and 1 means you have little to no knowledge about it. Your answer 
needs to be a precise integer. Provide only the number, without any additional explanation.
Number:

Response: 3

Figure 25: An example of obtaining question popularity on the movies dataset using ChatGPT in a 3-shot setting.

Question: Rate how familiar you are with the director 'Guy Ritchie'. The familiarity is rated on a scale from 1 
to 10, where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it. 
Your answer needs to be a precise integer. Provide only the number, without any additional explanation.
Here are some examples:
The director: James McTeigue
Number: 2
The director: Guy Ritchie
Number: 5
The director: Jodie Foster
Number: 8
Rate how familiar you are with the director 'Guy Ritchie'. The familiarity is rated on a scale from 1 to 10, 
where 10 means you are highly familiar with it, and 1 means you have little to no knowledge about it. Your 
answer needs to be a precise integer. Provide only the number, without any additional explanation.
Number:

Response: 7

Figure 26: An example of obtaining answer popularity on the movies dataset using ChatGPT in a 3-shot setting.
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Question: Rate how familiar you are with the relationship between the movie 'Swept Away' and the director 
'Guy Ritchie'. The familiarity is rated on a scale from 1 to 10, where 10 means you are highly familiar with 
their relationship, and 1 means you know little to nothing about it. Your answer needs to be a precise integer. 
Provide only the number, without any additional explanation.
Here are some examples:
The movie: Kick-Ass; The director: Matthew Vaughn
Number: 2
The movie: Eraserhead; The director: David Lynch
Number: 5
The movie: Heat; The director: Michael Mann
Number: 8
Rate how familiar you are with the relationship between the movie 'Swept Away' and the director 'Guy 
Ritchie'. The familiarity is rated on a scale from 1 to 10, where 10 means you are highly familiar with their 
relationship, and 1 means you know little to nothing about it. Your answer needs to be a precise integer. 
Provide only the number, without any additional explanation.
Number:

Response: 7

Figure 27: An example of obtaining relation popularity on the movies dataset using ChatGPT in a 3-shot setting.
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