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Abstract
Current multi-modal benchmarks primarily fo-001
cus on facts or specific topic-related knowledge002
within individual images. However, they over-003
look the associative relations between multi-004
ple images, which require identifying and an-005
alyzing similarities among entities or content006
present in different images. Therefore, we pro-007
pose the multi-image relation association task008
and a meticulously curated Multi-granularity009
Multi-image Relational Association (MMRA)010
benchmark, comprising 1,024 samples. In011
order to systematically and comprehensively012
evaluate current LVLMs, we establish an asso-013
ciational relation system among images that014
contain 11 subtasks (e.g, UsageSimilarity,015
SubEvent, etc.) at two granularity levels (i.e.,016
“image” and “entity”) according to the rela-017
tions in ConceptNet. Our experiments reveal018
that entity-level multi-image perception tasks019
pose a greater challenge for LVLMs compared020
to image-level tasks. Moreover, LVLMs per-021
form poorly on spatial-related tasks, indicat-022
ing that LVLMs have limited spatial awareness.023
Moreover, we explored the ability of LVLMs to024
perceive image sequences, and our experiments025
show that the majority of current LVLMs do026
not adequately model image sequences during027
the pre-training process.028

1 Introduction029

Multi-modal perception is a crucial factor for030

achieving Artificial General Intelligence (AGI) that031

can perceive the world similarly to humans. Due to032

the development of Large Visual Language Mod-033

els (LVLMs) (Li et al., 2023; Liu et al., 2024b,a;034

Bai et al., 2023; AI et al., 2024), there is grow-035

ing interest in systematically and comprehensively036

defining benchmarks to assess the performance of037

LVLMs and guide future development in this field.038

The capabilities of LVLMs in associating multi-039

image relations can more intuitively and systemati-040

cally reveal potential shortcomings in VLMs when041

it comes to multi-image perception tasks (i.e., if 042

LVLMs struggle to determine the spatial relations 043

between images, they are likely to encounter dif- 044

ficulties in answering question needing perceive 045

spatial information of multiple images). However, 046

the current multi-modal benchmarks (Singh et al., 047

2019; Yuan Liu et al., 2023; Yue et al., 2024) focus 048

on asking questions within a single image and the 049

evaluation of LVLMs’ multi-image association abil- 050

ity (e.g., “those images all depict outdoor scenes” 051

as shown in Fig 1) is overlooked. 052

Currently, no comprehensive benchmark exists 053

that systematically defines the association relation- 054

ships among multiple images, leaving a gap in guid- 055

ing the development of multi-image models. On the 056

one hand, current multi-image benchmarks, such as 057

MuirBench (Wang et al., 2024) and MIRB (Zhao 058

et al., 2024), merely focus on factual questions 059

about visual elements in the images (e.g., How 060

many gloves are there in the two pictures?), or 061

code and text understanding in multiple images. 062

All of these benchmarks overlook models’ ability 063

to understand the underlying associations between 064

the visual elements within two images, which re- 065

quires a much deeper understanding of the relations 066

in their context (e.g., Do the gloves in these two 067

images have a common usage?). On the other hand, 068

mining relations among multiple images at differ- 069

ent granularities (i.e., entity level and image level) 070

and across different properties (e.g., the spatial rela- 071

tion and temporal relation between images) present 072

varying degrees of difficulty. Those categories (i.e., 073

granularities and properties) are helpful to specif- 074

ically investigate the performance deficiencies of 075

LVMLs at different dimensions, thereby enabling 076

targeted improvements to the model’s performance. 077

However, current multi-image benchmarks have 078

not specifically categorized the tasks based on these 079

distinctions. While some prior works have explored 080

potential relationships between textual events or en- 081

tities (Lin et al., 2015; Du et al., 2022; Zhao et al., 082
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Examples of Multi-Image Relation AssociationAssociational Relations between Images

Environment
Layout

ObservationAngle

SimilarEvent

SubEvent
RelativePosition
NearSameEntity

MentalitySimilarity
AppearanceSimilarity
UsageSimilarity
SimilarMaterial

Those images all depict outdoor scenes 
The bench and the tree made of same material
They all show a same event “people sitting”…

Entity Level Image Level

Figure 1: Overview of the MMRA benchmark. Left: image Associational Relations extended from the ConceptNet;
Right: the examples of Multi-Image Relation Association task.

2023; Gao et al., 2022; Jiang et al., 2021), those083

textual event relations cannot be directly applied to084

define the relation among images.085

To explore the multi-image perception capabil-086

ities of LVLMs, we propose a multi-image rela-087

tion association task, which requires LVLMs to088

discern the potential relations between two im-089

ages (for instance, recognizing that the car and090

the knife, each present in different images, are091

both made of iron). We manually curated a high092

quality Multi-granularity Multi-image Relational093

Association (MMRA) benchmark for evaluating094

the multi-image perception capabilities of LVLMs.095

Based on the relations in ConceptNet and ob-096

servations of potential connections between im-097

ages, we define an associational relation system,098

which consists of 6 subtasks at the entity-level099

granularity (i.e., RelativePosition, NearSameEntity,100

MentalitySimilarity, AppearanceSimilarity, Simi-101

larMaterial and UsageSimilarity) and 5 subtasks102

at the image-level granularity (i.e., Layout, Envi-103

ronments, SimilarEvent, SubEvent and Observa-104

tionAngle) across from different perspectives of105

mining relation between images (see Fig 1). Specif-106

ically, we select a subset of the images in LLaVA-107

665k-multi (Liu et al., 2024a) dataset and employ108

5 annotators to manually label 1,024 image pairs109

with questions and answers on the sampled data.110

Besides, to eliminate the answer leakage within the111

text of the question and its options, we manually112

remove the content in the question and its options,113

which could make LLMs and VLMs directly infer114

the answer to the question without analyzing the115

accompanying images.116

To explore how the image’s content captured by117

visual modules affects the multi-image perception118

capabilities of current LVLMs, we employ the cur-119

rent SOTA model (i.e., LLaVa-Next-110B) to gen-120

erate detailed descriptions of the images. We then121

evaluate both LVLMs and LLMs using our MMRA122

benchmark across four distinct input configura- 123

tions: Image+Question (IQ), Description+Question 124

(DQ), Image+Description+Question (IDQ), and 125

Question Only (QO). We present our key insights 126

as follows: 127

1. Based on the results of the IQ and QO set- 128

ting, we found that closed-source models like 129

GPT-4o, GPT-4v, and Gemini-Flash outper- 130

formed all open-source models. In particular, 131

GPT-4o achieved SOTA overall performance. 132

Additionally, different models exhibit signif- 133

icant performance variations across different 134

subtasks. Some open-source models even sur- 135

passed GPT-4 in certain subtasks. 136

2. Compared to entity-level tasks, models gener- 137

ally perform better on image-level tasks, and 138

their performance tends to be relatively poor 139

in tasks related to spatial awareness. It in- 140

dicates that current LVLMs have weak fine- 141

grained multi-image association capabilities 142

and are not proficient in handling spatial per- 143

ception tasks. 144

3. For image-level tasks, incorporating image 145

descriptions significantly boosts the perfor- 146

mance of LLMs, placing them just below GPT- 147

4o and GPT-4v. In contrast, the performance 148

of LVLMs shows no notable improvement by 149

adding image descriptions. This indicates that 150

the image-level capability of LVLMs mainly 151

relies on the image content perception ability, 152

and the LVLMs are limited by the reasoning 153

ability of their language module. 154

4. We also examined the multi-image sequence 155

perception capabilities of LVLMs by altering 156

the order of input image pairs. With the ex- 157

ception of Idefics2, most open-source LVLMs 158

scored relatively low, suggesting that they are 159

inadequate in addressing the modeling of im- 160

age sequences during the pre-training phase. 161
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2 Related Work162

Large Visual Language Models. With the163

emergence of LLMs, researchers have applied164

it to the multimodal perception field. More165

and more LVLMs have achieved excellent suc-166

cess on single-image tasks, such as BLIP2 (Li167

et al., 2023), LLaVA (Liu et al., 2024b), LLaVA-168

Next (Liu et al., 2024a), QwenVL (Bai et al.,169

2023), CogVLM(Wang et al., 2023), and Yi-VL(AI170

et al., 2024). Those LVLMs all demonstrate ex-171

ceptional ability on single image tasks, such as172

TextVQA (Singh et al., 2019), VQAV2 (Goyal173

et al., 2017), MMBench(Yuan Liu et al., 2023),174

GQA(Hudson and Manning, 2019). Although175

Fuyu-8B1, Kosmos2 (Peng et al., 2023), and176

Flamingo (Alayrac et al., 2022) support interleaved177

input, they do not optimize in multi-image task.178

Multi-Image Perception Model and Task. Cur-179

rently, some researchers have realized the im-180

portance of the multi-image ability of LVLMs.181

Excepting Kosmos2, Fuyu and Flamingo, there182

are some models which support multi images in-183

put, such as Mantis, Idefic2, Phi3v and Mantis-184

Idefic2 (Sun et al., 2023; Laurençon et al., 2024;185

Rasheed et al., 2024; Jiang et al., 2024). Besides,186

the Emu2(Sun et al., 2023) is the generative mul-187

timodal model that supports the interleaved text-188

image inputs. And the video understanding models189

(Zhang et al., 2023; Ren et al., 2023) also have the190

multi-image perception ability, but it is relatively191

worse than LVLMs. Meanwhile, there is also a192

lack of comprehensive and systematic evaluation193

of multi-image LVLMs. The earliest task is the de-194

scription of the differences in the multi images, and195

researchers have developed many datasets, such as196

Spot-the-Diff and Birds-to-Words (Jhamtani and197

Berg-Kirkpatrick, 2018), etc. However, they are all198

generative tasks. Recently, the MuirBench (Wang199

et al., 2024) and the multi-image understanding200

benchmark (Zhao et al., 2024) focus on evaluating201

the LVLMs’ ability, but they do not systematically202

define relations among images in real-life scenario.203

Commonsense Reasoning. During the previous204

research in NLP, there are numerous works for205

commonsense reasoning (Du et al., 2022; Zhao206

et al., 2023; Gao et al., 2022; Jiang et al., 2021;207

Emelin et al., 2021) and would use many pre-208

defined commonsense knowledge (i.e., Knowledge209

Graph (Sap et al., 2019; Speer et al., 2017; Shen210

1https://www.adept.ai/blog/fuyu-8b

et al., 2023)). The Commonsense Knowledge 211

Graph (CSKG), such as ConceptNet (Speer et al., 212

2017) and ATOMIC (Sap et al., 2019), are compre- 213

hensively used in the commonsense reasoning tasks 214

because they define numerous relations between 215

event node and entity node. The current multi- 216

image benchmarks (Wang et al., 2024; Zhao et al., 217

2024) do not define the relation system among im- 218

ages. Although VCD (Shen et al., 2024) uses the 219

knowledge system in ConceptNet to mine the po- 220

tential knowledge in a single image, it cannot di- 221

rectly apply to the multi-image setting. In this work, 222

we will define a relation system among different 223

images and curate a benchmark. 224

3 Dataset Curation 225

3.1 Image Pair Selection 226

Given that most tasks in the MMRA benchmark 227

require a specific relation between paired images, 228

we use the semantic similarity of image captions 229

to identify and select image pairs with relatively 230

higher relevance. This aims to reduce the com- 231

plexity of annotation. To be specific, we randomly 232

chose the images in the LLaVA-665k-multi dataset 233

to form an image pair. We then utilize the Sentence- 234

BERT (Reimers and Gurevych, 2019) to calculate 235

the semantic similarity and filter the image pair 236

with a score below 0.5. Finally, we obtained 3,403 237

image pairs for annotation. 238

3.2 Subtask Definition 239

As shown in the Fig 6 in Appendix D, based on the 240

perspective of humans observing images, we divide 241

our tasks into two granularity levels (i.e., entity and 242

the whole image). Because the ConceptNet com- 243

prehensively defines the relations among different 244

textual event and entity, most of our subtasks are ex- 245

tended from the relations in ConceptNet. Besides, 246

we also designed some subtasks from a visual per- 247

spective (i.e., Layout and ObservationAngle). 248

Entity level. We primarily consider the mental 249

state, appearance, and location information of dif- 250

ferent objects in the images, as well as the psycho- 251

logical characteristics of individual creatures. 252

• RelativePosition (RP): The ‘AtLocation’ is 253

an important relation in ConceptNet to ex- 254

press A is the inherent location of B. As for 255

the entity in two images, we extend this rela- 256

tion into the subtask which judges the relative 257

position of entities in the image. For example, 258
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we would ask LVLMs to judge which two enti-259

ties, respectively in different images, have the260

same relative position (e.g., all at the upper261

left of images).262

• NearSameEntity (NSE): The relation ‘Locat-263

edNear’ in ConceptNet expresses “A and B264

are typically found near each other”. Based265

on it, we design a subtask, ‘NearSameEntity’,266

which requires LVLMs to determine whether267

there are entities, respectively in different im-268

ages, near the same object.269

• MentalitySimilarity (MS): ‘HasProperty’ in270

ConceptNet is a relation that describes the271

characteristics of an entity. We think the emo-272

tional property expressed by the images could273

directly affect humans. Thus, we extend this274

relation to a subtask that requires LVLMs to275

determine whether the creatures in two images276

have similar emotions, attitudes, or feelings277

(e.g., happy, excited, serious, surprised, etc.).278

• AppearanceSimilarity (AS): The physical279

characteristics of the entity is also an impor-280

tant factor. So we design a subtask that is281

also relevant to ‘HasProperty’ and that re-282

quires LVLMs to determine whether two im-283

ages have entities that are physically similar284

in appearance (e.g., the shape and color of285

objects, the body and hairstyle of humans).286

• SimilarMaterial (SM): The relation287

‘MadeOf’ in ConceptNet expresses ‘A is288

made of B’. Therefore, we design the subtask289

‘SimilarMaterial’ which requires LVLMs to290

judge whether there are entities, respectively291

in different images, with the same production292

materials.293

• UsageSimilarity (US): Apart from the afore-294

mentioned aspects, we have also devised295

a subtask that requires LVLMs to discern296

whether the entities, respectively in two im-297

ages, have the same usage according to the298

ConceptNet’s relation ‘UsedFor’ which ex-299

press “the purpose of A is B".300

Image level. We primarily consider the correla-301

tion between the events expressed by the whole302

image as well as the overall spatial structural simi-303

larities of different images.304

• Layout (LO): At the image granularity, we305

regard the layout of the image as a represen-306

tation of the relation “AtLocation”. We de-307

sign a subtask that requires the LVLMs to308

Image Pair
Given SubTask

Environment

A. Those images all depict outdoor park 
scenes (golden answer) 
B. Those images all depict a harbor scenes 
C. Those images all depict a event happened
in stadium
D. Those images all depict scenes of bedroom

Dropping the sample

Q: Are those pictures similar in environment?

Figure 2: The process of annotation.

determine whether there are similarities in lay- 309

out between images according to the relation 310

‘NearBy’. 311

• Environment (Env): From the visual perspec- 312

tive, the environment of the image is also an 313

important content that humans tend to notice 314

(e.g., both images depict the streets of a Euro- 315

pean country with a Gothic architectural style). 316

So, we design a subtask that lets LVLMs judge 317

if the environments in those images are similar 318

according to the relation ‘AtLocation’. 319

• SubEvent (SubE): The temporary relation is 320

an important connection between two images. 321

Therefore, we extend the relation ‘SubEvent’ 322

to a subtask that requires LVLMs to determine 323

whether the two images describe events that 324

occurred at the same scene in two consecutive 325

moments. 326

• SimilarEvent (SimE): Excepting the 327

‘SubEvent’, the similar event is also a crucial 328

factor when associating multi images. So we 329

devise a subtask to evaluate the LVLMs’ ca- 330

pability to find the same event that happened 331

in the given two images. 332

• ObservationAngle (OA): In addition to the 333

‘Layout’, we create a subtask for the model 334

to determine whether one of the images is 335

a close-up, inside shot, or different parallel 336

angle shot of another image for the sake of ex- 337

ploring the view perception ability of LVLMs 338

according to the relation ‘LocatedNear’ in 339

ConceptNet. 340

3.3 Data Annotation 341

We hired four annotators specializing in multi- 342

modal research to annotate data. Each annotator 343

was assigned 2-3 tasks. 344
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Figure 3: Comparing results before and after textual
answer leakage elimination.

Annotation Process. As shown in Fig 2, each an-345

notator is provided with two images and a certain346

subtask (i.e., Environment). Their responsibility347

is to determine whether they could design a ques-348

tion based on the given task for the image pair. If349

the image pair meets the task requirements, they350

proceed to annotate a question, and options (either351

multiple-choice or true/false) for that pair. The352

annotator terminates annotating a task once they353

reach a predetermined number of labelled samples354

(i.e., 90) or once all the image pairs for that task355

have been annotated.356

Quality Control. We also conducted cross-357

validation on the annotated data. Specifically, each358

annotator reviews 2-3 tasks labeled by their peers.359

If any annotated samples do not meet the task re-360

quirements or if the answers derived from the im-361

ages and options do not match the correct answer,362

those samples are removed. Quality control is con-363

cluded once all annotators agree that their verified364

portion satisfies the specified requirements.365

3.4 Elimination of Answer Leakage from366

Questions and Options367

When designing multiple-choice options at the en-368

tity level, we need to identify potential entities that369

could be regarded as the correct answer to the ques-370

tion and provide justifications. For example, as371

illustrated in Fig 1, ‘both tree and bench are made372

of wood’ can be the answer to the SimilarMaterial373

subtask. However, language models can sometimes374

deduce the correct answer simply by analyzing the375

textual content in options. Additionally, annota-376

tors often unconsciously label the correct answer377

with greater detail and specificity, and the language378

model towards choosing these more detailed op-379

tions. To eliminate these biases, we optimize the380

ObservationAngle
126 (12.28%)

UsageSimilarity
100 (9.65%)

SimilarMaterial
106 (10.33%)

SubEvent
100 (9.74%)

Environment
90 (8.77%)

Layout    
90 (8.77% )

AppearanceSimilarity
90 (8.77% )

SimilarEvent
90 (8.77% )

MentalitySimilarity
89 (8.67% )

RelativePosition
81 (7.90% )

NearSameEntity
63 (6.34% )

Figure 4: The number and ratio of each subtask in
MMRA. The integers in the graph represent the number
of samples in each task, while the percentages in paren-
theses indicate the proportion of each task.

questions and options for subtasks where the lan- 381

guage model scores higher than the expected ac- 382

curacy by randomly answering the question. For 383

instance, the expected accuracy for true/false ques- 384

tions is 50%, and for multiple-choice questions 385

with four options, it is 25%. 386

We refine the options and questions for four sub- 387

tasks (i.e., UsageSimilarity, Environment, MadeOf, 388

and AppearanceSimilarity), because language mod- 389

els exhibit relatively higher performance on them. 390

As shown in Fig 3, we presented the accuracy 391

changes of the Yi-1.5-9B model before and after 392

answer leakage removal. We have significantly re- 393

duced the leakage of answers in the question and 394

option texts. After refining our benchmark, the 395

performances on these subtasks are close to the 396

expected random accuracy rates for their respective 397

task types. 398

For the UsageSimilarity subtask, the perfor- 399

mance of language models remains significantly 400

higher than random expectations. We hypothesize 401

that this is because mining the similarity in usage 402

between two entities, a type of general common- 403

sense knowledge, relies heavily on the language 404

model’s inference capabilities. Additionally, the 405

commonsense reasoning capabilities of language 406

models make them adept at identifying subtle dif- 407

ferences among the options. 408

Data Statistics As shown in Fig 4, we obtain a 409

total of 1,024 annotated samples. To maintain the 410

balance of samples of the subtasks, we endeavored 411

to maintain that the number of samples for all tasks 412

is around 90. The ObservationAngle task has the 413

highest proportion in the entire benchmark, with 414
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a total of 126 samples (12.28%). Due to the diffi-415

culty of labeling in the NearSameEntity task, we416

removed some samples with inconsistent opinions417

from different annotators during the quality control418

process and this subtask only has 65 samples.419

4 Experiment420

4.1 Experiments Setting421

We use the LLaVA-NeXT-100B to obtain a detailed422

textual description of the image in the MMRA423

benchmark. To explore the impact of LVLM’s424

image-captioning ability on its multi-image per-425

ception, we design four input settings: (1) Image426

+ Question (IQ). In this setting, we just include427

the image pair and question in the prompt. (2)428

Description + Question (DQ). To investigate the429

impact of the image caption capability of LVLMs430

on the perception of multiple images, we include a431

detailed description of the image pair and question432

in the prompt. (3) Image + Description + Ques-433

tion (IDQ). Besides, we also include the image434

pair, its description, and question in the prompt to435

compensate for the content of the image that cannot436

be described in the text. (4) Question Only (QO).437

For the sake of inspecting whether the answer to438

the questions in our benchmark is leaked in the439

textual information of options and questions, we440

only input the question to let LVLMs answer.441

4.2 Baselines442

As shown in Tab 5 in Appendix, we evaluated443

our benchmark on both mainstream closed-source444

and open-source large models. Regarding close-445

source LVLMs, we choose OpenAI’s GPT4o and446

GPT4v, as well as Google’s Gemini-Flash and447

Gemini-Pro. As for the open-source LVLMs,448

we mainly evaluate those supporting multi-image449

inputs (i.e., Idefics2, Qwen-VL-Chat, Phi3v,450

Mantis-Idefics2). Besides, we also assess the open-451

source LLMs (i.e., LLaMA, Qwen, and Yi) under452

the text-only input setting. In addition to the above453

LVLMs, we further evaluate some small visual en-454

coder models, such as CLIP (Radford et al., 2021)455

and MetaCLIP (Xu et al., 2023, 2024).456

4.3 Evaluation Protocol457

Prompt. As for each task, we all design a prompt458

to make LVLMs directly generate textual format459

answers to the question. Except for including the460

content of different input settings, we let LVLMs461

generate the ‘A’, ‘B’, ‘C’ or ‘D’ for the choice462

questions, and ‘Yes’ or ‘No’ for the T/F questions. 463

Besides, we also add the options to the prompt. As 464

for further details about our prompt design, please 465

refer to the Tab 4 in Appendix A. 466

Retrieval Method. For MetaCLIP and CLIP, we 467

directly calculate the similarity between the query 468

(image+question) and the answer options, and 469

choose the option with the highest similarity as 470

the model-predicted answer. 471

Answer Matching and Metric. Because the 472

golden answer in our benchmark is in the format of 473

option id (i.e., ‘A’, ‘B’, ‘C’ and ‘D’) or judgment 474

(i.e., ‘Yes’ or ‘No’), we design a rule to match 475

the response of LVLMs with the golden answer. 476

Finally, we use accuracy of the matching results 477

as the score of those models. Please refer to Ap- 478

pendix D for details of our designed matching rule. 479

5 Result Analysis 480

5.1 Overall Analysis 481

As shown in Table 1, when inputting question and 482

image pairs (Image+Question setting), the close- 483

source model (i.e., GPT-4v, GPT-4o, Gemini-Pro, 484

and Gemini-Flash) achieves the best performance 485

on our MMRA benchmark, with overall accuracy 486

surpassing 60%. In contrast, the overall perfor- 487

mance of other open-source multi-image LVLMs 488

ranges from 50% to 60%, with the exception of 489

Qwen-VL-Chat whose score is only 47.45%. The 490

Visual Encoder models, such as CLIP and Meta- 491

CLIP, exhibit performance comparable to Qwen- 492

VL-Chat and InternVL2-2B. 493

Although LVLMs demonstrate varying perfor- 494

mances across different subtasks, their average per- 495

formance at the entity level is generally lower than 496

at the image level. The LVLMs’ performance is no- 497

tably high for the Environment (Env) and SubEvent 498

(SubE) subtasks, with most of LVLMs scoring over 499

80%. This may be because these subtasks primarily 500

require abstract image-caption information, which 501

LVLMs have learned during pre-training phase. It 502

is worth mentioning that spatial perception sub- 503

tasks, {i.e., RelativePosition (RP), NearSameEntity 504

(NSE), Layout (LO), and ObservationAngle (OA)}, 505

remain challenging for LVLMs, as most models’ 506

accuracy below 50% for these subtasks. 507

Qt the Question-Only (QO) setting, the perfor- 508

mance of LLMs on the UsageSimilarity (US) task 509

consistently exceeds 60%, which is comparable 510

to the performance of multi-image LVLMs. This 511
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Entity Level Image LevelSetting Model Overall RP US MS SM AS NSE Env LO SimE SubE OA

GPT4o 67.29 45.68 66.67 65.17 44.34 68.89 63.49 88.89 47.78 77.78 97.00 70.75
GPT4v 66.63 38.75 70.71 60.67 44.76 71.11 51.61 87.77 64.44 78.89 92.00 66.04
Gemini-Pro 65.01 48.15 67.68 69.66 47.17 67.78 56.92 82.22 54.44 60.00 82.00 73.02
Gemini-Flash 60.33 34.56 66.66 70.78 25.47 68.88 53.84 83.33 60.00 48.88 93.00 57.14
Idefics2 56.93 37.04 65.66 69.66 28.30 44.44 53.97 87.78 36.67 72.22 88.00 45.24
Mantis-Idefics2 57.59 35.80 62.63 68.54 41.51 52.22 41.27 82.22 20.00 74.44 91.00 56.35
Phi3v 51.75 48.15 64.65 62.92 47.17 61.11 46.03 86.67 34.44 56.67 51.00 20.63
Qwen-VL-Chat 47.45 37.04 58.59 68.54 34.91 48.89 41.27 73.33 33.33 61.11 50.00 23.02
InternVL2-26B 58.78 48.15 64.65 76.40 37.73 63.33 57.14 93.33 42.22 63.33 52.00 53.17
InternVL2-2B 47.97 11.90 61.11 67.42 44.44 58.73 46.67 50.00 31.11 59.05 46.67 40.57
InternVL2-1B 43.71 16.67 62.22 64.04 34.57 42.86 47.78 32.00 30.00 52.38 53.33 34.91
CLIP 45.05 50.00 50.00 44.94 43.21 30.16 57.78 51.00 45.56 32.32 50.00 40.57

IQ

MetaCLIP 48.37 51.59 68.89 65.17 33.33 31.75 42.22 61.00 28.89 64.65 47.78 36.79

LLaMA-3-8B-Instruct 31.76 34.57 62.63 24.72 34.91 32.22 42.86 28.89 31.11 31.11 6.00 25.40
LLaMA-3-70B-Instruct 23.66 38.27 60.61 12.36 26.42 6.67 34.92 35.56 31.11 6.67 0.00 14.29
Qwen1.5-32B-Chat 32.36 39.51 64.65 11.24 40.57 36.67 49.21 33.33 31.11 42.22 0.00 17.46
Qwen1.5-72B-Chat 37.11 33.33 63.64 51.69 33.96 41.11 34.92 28.89 31.11 50.00 50.00 0.00
Qwen2-7B-Chat 40.43 43.21 65.66 50.56 30.19 42.22 42.86 35.56 31.11 52.22 50.00 11.91
Qwen2-72B-Chat 38.97 35.80 64.65 46.07 45.28 46.67 39.68 27.78 31.11 48.89 44.00 7.14
Yi-1.5-9B-Chat 41.68 44.44 60.61 46.07 43.40 58.89 30.16 26.67 31.11 40.00 50.00 26.98
Yi-34B-Chat 41.57 34.57 51.52 47.19 37.74 55.56 26.98 25.56 45.56 48.89 49.00 32.54

QO

Yi-1.5-34B-Chat 26.78 25.93 63.64 39.33 43.40 11.11 36.51 26.67 20.00 5.56 7.00 17.46

Table 1: The main results of current LVMLs and LLMs on our MMRA benchmark. The IQ and QO represent the
Image+Question input and Question Only input, respectively.

suggests that the reasoning required by the Usa-512

geSimilarity (US) subtasks relies on commonsense513

knowledge inherent in the language model com-514

ponent of LVLMs. Additionally, we observe that515

all models, regardless of series or parameter size,516

demonstrate very similar performance across each517

task. This consistency indicates that our benchmark518

effectively mitigates textual information leakage519

and those subtasks rely on visual information for520

accurately answering.521

5.2 Impact of Image Input522

As shown in Table 1, when provided with both523

image pairs and questions (i.e., the Image + Ques-524

tion setting), multi-image LVLMs demonstrate sig-525

nificantly better performance compared to LLMs526

under the QO setting (i.e., Question Only). To high-527

light the performance improvement of LVLMs due528

to image input across various tasks, we calculate529

the average performance of all LLMs on each task530

as a standard. By comparing LVLMs’ performance531

with this standard, we can quantify the actual en-532

hancement brought about by incorporating images.533

As shown in Fig 5 in Appendix E, compared to534

the entity level, the relative improvement at the im-535

age level is better, which also indirectly confirms536

that the entity-level multi-image relation associa-537

tion task requires the model to be able to perceive538

more image details (the relative improvement at539

the entity level is around 0.1, while that of the im-540

age level is around 0.3). At the entity level, while541

the overall performance on the MentalitySimilarity542

(MS) is comparable to other subtasks, the improve- 543

ment attributed to the inclusion of images is the 544

most significant. This suggests that current LVLMs 545

have a robust capacity to perceive mental states dur- 546

ing pre-training. As a result, multi-image LVLMs 547

can effectively harness the information in images 548

to analyze the relation between multiple images in 549

the context of individuals’ mental states. 550

5.3 Impact of Image Descriptions 551

We use LLaVA-NeXT-100B to obtain the image 552

caption and input it as extra information, and the re- 553

sults are presented in Tab 2. Under the DQ setting, 554

with the combination of descriptions of image pair, 555

all LLMs’ performance is highly improved, and 556

the overall result of Qwen2-72B-Chat surpasses 557

Gemini-Flash and is second only to GPT-4v, GPT- 558

4o, and Gemini-Pro. This demonstrates that multi- 559

image understanding capability of LVLMs mainly 560

stems from content that they precept from images. 561

The key to improving LVLMs’ multi-image asso- 562

ciation ability lies in enhancing the model’s fine- 563

grained perception capabilities. As for IDQ set- 564

ting, after including image descriptions, the per- 565

formance of LVLMs does not change significantly, 566

proving image descriptions obtained by LLaVA- 567

NeXT-100B overlap with the content perceived by 568

LVLMs themselves. Although the VLMs stil sur- 569

pass LLMs at the Image Level, they underperform 570

LLMs at the Entity Level, indicating that LVMLs’ 571

fine-grained image perception ability is limited. 572

7



Entity Level Image LevelSetting Model Overall RP US MS SM AS NSE Env LO SimE SubE OA

LLaMA-3-8B-Instruct 53.43 46.91 60.61 57.30 29.25 57.78 57.14 77.78 46.67 62.22 51.00 47.62
LLaMA-3-70B-Instruct 60.31 40.74 67.68 62.92 37.74 61.11 41.27 88.89 58.89 70.00 73.00 57.14
Qwen1.5-32B-Chat 58.46 40.74 67.68 59.62 37.74 67.42 53.97 86.67 66.67 73.33 52.00 43.65
Qwen1.5-72B-Chat 60.06 45.68 69.70 75.28 41.51 48.89 60.32 84.44 51.11 74.44 56.00 56.35
Qwen2-7B-Chat 51.98 39.51 64.65 57.99 32.08 61.80 60.32 85.56 32.22 48.89 68.89 30.16

DQ

Qwen2-72B-Chat 61.53 49.38 66.67 69.66 47.17 50.00 63.49 92.22 64.44 72.22 51.00 55.56

Idefics2 56.35 39.51 63.64 75.28 24.53 46.67 57.14 88.89 33.33 68.89 82.00 45.24
Qwen-vl-chat 43.76 27.16 51.52 57.30 34.91 44.44 49.21 62.22 30.00 67.78 50.00 17.46
Phi3v 53.72 43.21 62.63 73.03 41.51 55.56 55.56 87.78 40.00 62.22 54.00 26.98IDQ

Mantis-Idefics2 55.93 35.80 62.63 71.91 29.25 48.89 42.86 85.56 21.11 75.56 82.00 55.56

Table 2: The results of DQ and IDQ setting on our MMRA benchmark.

The reasoning capability of VLMs’ text mod-573

els is limited, which affects their multi-graph574

perception ability. After inputting the identical575

image description, there are still significant per-576

formance differences among different VLMs, and577

the performance of VLMs shows a considerable578

gap compared to many LLMs in DQ settings. This579

indicates that the reasoning capabilities of VLMs’580

language models still have substantial room for581

improvement, which also limits the multi-image582

perception ability of VLMs.583

Different tasks have varying requirements for584

the visual module of the LVLMs. As for the im-585

age level task, the LVLMs’ performance is not ob-586

viously improved at IDQ setting, while the LLMs’587

results are close to that of VLMs with the input588

of images’ descriptions. It demonstrates that the589

multi-image perception at the image level relies590

on the visual module of LVLMs. With regard to591

the tasks at the entity level, in the IDQ setting,592

the performance of LVLMs varied the most on593

the MentalitySimilarity (MS) task, even surpassing594

GPT-4v and GPT-4o. This indicates that entity-595

level fine-grained tasks require LVLMs to perceive596

more detailed textual descriptions.597

5.4 Image Sequence Perception Ability598

Understanding the sequential order of images is599

crucial for interpreting the relations between multi-600

ple images. The ability of a model to comprehend601

image sequences is essential for tackling complex602

multi-image tasks, such as sorting images. In cer-603

tain subtasks of the MMRA benchmark, the se-604

quence of input images can influence the answer to605

the associated questions. For instance, in the Sim-606

ilarMaterial (SM), some options describe entities607

present in both images. Altering the sequence of608

these input images could make the correct answer609

no longer available.610

Model Overall RP SM NSE OA

Idefics2 59.94 65.43 78.30 82.54 13.49
Mantis 0.00 0.00 0.00 0.00 0.00
Phi3v 33.20 41.98 47.17 31.75 11.90
Qwen-VL 0.63 0.00 0.94 1.59 0.00

Table 3: The results of the Sequence Perception task.

To examine the LVLMs’ ability of perceiving im- 611

age sequences, we adjust the input image sequence 612

for four specific subtasks: RelativePosition (RP), 613

SimilarMaterial (SM), NearSimilarEntity (NSE), 614

and ObservationAngle (OA), and each subtask has 615

options that are directly related to the image se- 616

quence. Additionally, we introduce a new option, 617

“All of the above options are incorrect” as the cor- 618

rect choice. We then evaluate the performance of 619

LVLMs on these subtasks. 620

As illustrated in Table 3, we present the accuracy 621

of various LVLMs. Idefics2 demonstrates com- 622

mendable image sequence perception, achieving 623

an overall score close to 60%. In contrast, most 624

current LVLMs exhibit inadequate image sequence 625

perception abilities, with overall scores below 35%. 626

This discrepancy suggests that current open-source 627

LVLMs have not adequately addressed image se- 628

quence tasks during their pre-training processes. 629

6 Conclusion 630

The multi-image perception capabilities of LVLMs 631

are often overlooked. To systematically assess 632

these capabilities, we establish a relational sys- 633

tem among images and manually annotate a so- 634

phisticated multi-granularity, multi-image relation 635

association benchmark (MMRA). Our evaluation 636

of multi-image LVLMs reveals that they perform 637

poorly on fine-grained (entity-level) and spatial per- 638

ception subtasks. Compared results of IDQ setting 639

with that of IQ setting, we find that these models 640

lack robust image detail perception abilities. 641
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Limitations642

In this work, although we explored the shortcom-643

ings of LVLMs in multi-image perception tasks,644

we did not design experiments to investigate how645

to address some of these shortcomings (e.g., their646

limited ability to perceive the sequence of multiple647

images).648

Ethics Statement649

The dataset used in our research is constructed us-650

ing publicly available data sources, ensuring that651

there are no privacy concerns or violations. We do652

not collect any personally identifiable information,653

and all data used in our research is obtained fol-654

lowing legal and ethical standards. In the stage of655

data annotation, we employed three graduate stu-656

dents experienced in Multimodal Reasoning filed.657

We paid the graduate students approximately $13658

per hour, well above the local average wage, and659

engaged in constructive discussions if they had con-660

cerns about the process.661
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Figure 5: The relative improvement of LVLMs on MMRA benchmark.

Question Type Prompt Template

T/F Question You will be giving one question and two
images. Please only answer the question
with Yes or No. Questions: {question}.
Please give me your answer.

Choice Question You will be giving one question, two
images, and four options, one of them
is correct. Please choose one of the four
options. The question is: {Question}.
The options are: [A: {A}, B: {B}, C:
{C}, D: {D}] Please tell me the answer
in the format if [A], [B], [C] or [D].

Table 4: The designed prompt template for the task in
our MMRA benchmark.

A Designed Template874

In this part, we present our designed prompt tem-875

plate for both Choice Question and T/F Question876

in the Tab 4.877

B The information of our baselines.878

We present the pre-training information and sup-879

porting of our used baselines in Tab 5.880

C Result Exact Matching Rule881

Due to significant differences in the response styles882

of various LLMs and chat templates, the content883

format of model answers can vary greatly. To884

gap this discrepancy and accurately reflect the re-885

sponses of different models, we have developed a886

specialized Exact Matching Rule.887

For Multiple-Choice questions: First, we use reg-888

ular expressions to attempt to directly extract the889

matching content within parentheses, i.e., extract- 890

ing Answer: “A” from “(A)”. If this is unsuccessful, 891

we then attempt to match option labels (A-D) from 892

the entire response content and return the option 893

with the highest match count. If the response does 894

not contain any option label information, we try 895

to match the option content directly within the re- 896

sponse and return the corresponding option label. 897

For True/False questions: We use regular expres- 898

sions to match “yes” or “no” within the response 899

content. If there are multiple matches, we return 900

the result that appears the most frequently. 901

D Sampled examples from MMRA 902

benchmark 903

In order to comprehensively show our benchmark, 904

we select a sample for each task and present then 905

in the Figure 6. We design two kinds of tasks 906

(i.e., Choice Question and T/F Question). For each 907

example, we show the image pair, question and 908

options. 909

E Relative Improvement of LVLMs 910

We present the relative improvement of LVLMs 911

between the IQ and QO settings. 912

F Error analysis 913

To better analyze the shortcomings of LVLMs, we 914

examined instances where GPT-4o made errors on 915

relatively challenging subtasks such as RelativePo- 916

sition, MadeOf, NearSameEntity, and Layout. 917

As presented in Fig 7, LVLMs often select en- 918

tities that do not appear in the image when an- 919
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Model Pre-training Data Supporting Input Parameters

GPT4o&GPT4v / Text, Multi Images, Audio /

Gemini-Flash / Text, Multi Images, Audio, Video /

Idefics2 Internet Crawled Data (Wikipedia
and OBELICS), Public Multimodal
Dataset, LAION-COCO, PDFA (en),
IDL, Rendered-text, WebSight

Text, Multi Images 8B

Qwen-VL-Chat LAION-en, LAION-zh, In-house Data,
LAION-COCO, DataComp, Coyo,
CC12M, CC3M, SBU, COCO Caption

Text, Multi Images 8B

Phi3v / Text, Multi Images 26B

InternVL2 / Text, Multi Images, Video 8B

Mantis-Idefics2 Mantis-Instruction dataset Text, Multi Images 8B

LLaMA-3 / Text Only 8B, 70B

Qwen1.5&Qwen2 Internet Crawled Data Text Only 7B, 32B, 72B

Yi-Chat&Yi-1.5-Chat Web Documents from Common Crawl Text Only 9B, 43B

Table 5: The pre-training information and supporting input of the baselines. "_" refers to non-public or not fully
public data.

swering fine-grained questions. For example, for920

subtasks like ’RelativePosition’ and ’NearSameEn-921

tity’, LVLMs sometimes choose options featuring922

entities that are not present in the image (e.g., beer923

and tray).924

We believe this issue arises because VLMs pri-925

marily depend on the reasoning capabilities of the926

language model. The textual relations in the op-927

tions can significantly interfere with the LVLMs’928

judgments, leading them to overlook the visual in-929

put, particularly for fine-detailed questions.930

In scenarios where neither image contains the931

correct answer for the subtask, we introduced an932

alternative option to express there is no association933

between two images, such as ’there are no enti-934

ties of the same material in fig1 and fig2’. When935

LVLMs cannot identify the correct answer, they936

tend to select this option, suggesting no connection937

between the two images.938

Regarding the ’Layout’ subtask, it appears that939

current LVLMs have a limited ability to grasp the940

key elements within images. They sometimes fail941

to determine whether both images prominently fea-942

ture a main entity.943
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Question: Do both images express similar emotions?
Options:
Ture/False
Explanation: The two men in the picture are both 
laughing, both expressing a happy emotion

MentalitySImilarity

Question Type: Choice Question
Granularity: Entity

Question: Which two entities, respectively in Fig1 
and Fig2, all near a same entity?
Options:
A. The toy mouse in Fig1 and the person in Fig2
B. The toy mouse in Fig1 and the towel in Fig2
C. There are no answer of this question
D. The toy mouse in Fig1 and the toy bear in Fig2

Question Type: Choice Question
Granularity: Entity

Question: Are there any entities in Fig1 and Fig2 that 
have the same shape?
Options:
Ture/False
Explanation: The traffic signs in both pictures are 
rectangular

Question Type: Choice Question
Granularity: Entity

NearSameEntity AppearanceSimilarity

Question: Based on the Fig1 and Fig2, which entities 
have the same usage?
Options:
A. There is no entity have same usage
B. Skateboarding and snowboarding bring riders 
together, fostering a sense of community
C. Skateboarding and snowboarding are both 
recreational activities

UsageSimilarity

Question Type: Choice Question
Granularity: Entity

Question: Which two entities in Fig1 and Fig2 are in 
the same relative position in the images?
Options:
A. Curtain in Fig1 and towels in Fig2
B. Pillow in Fig1 and mirror in Fig2
C. Pillow in Fig1 and stairs in Fig2
curtain rod in Fig1 and sink in Fig2
D. curtain rod in Fig1 and sink in Fig2

Question Type: Choice Question
Granularity: Entity

Question: Which two entities, respectively in Figure 1 
and Figure 2, are made of the same material?
Options:
A. there are no entities of the same material in figure 
one and figure two
B. fence in figure 1 and grass in figure 2
C. bench in figure 1 and tree in figure 2
D. ocean in figure 1 and grass in figure 2

Question Type: Choice Question
Granularity: Entity

RelativePosiition SimilarMaterial

Entity Level

Question: Are those pictures similar in environment?
Options:
A. Both pictures depict the environment around a 
rural railway
B. Both pictures are close-ups of a room
C. Both pictures depict outdoor snow in winter
D. Both pictures depict a sunny winter day in a 
certain European country

Environment

Question Type: Choice Question
Granularity: Global

Question: What are the similarities between these 
two pictures in terms of structure and layout?
Options:
A. The distribution of entities in the pictures follows 
a similar pattern or arrangement
B. There is no obvious relationship between the two 
pictures in terms of layout
C. Each picture has a prominent entity

Question Type: Choice Question
Granularity: Global

Question: Please judge the spatial relation between 
Fig1 and Fig2.
Options:
A. Fig1 is a close-up of the surface of Fig2
B. Fig1 is a close-up of the interior of Fig2
C. Fig1 and Fig2 are shots of the same object from 
different parallel perspectives
D. Fig1 and Fig2 have no relation in spatial view

Question Type: Choice Question
Granularity: Global

Layout ObservationAngle

Question: In this two pictures depict a similar events 
Options:
A. Airplane taking off
B. Train stop
C. Climbing mountain
D. Riding Bike

SimilarEvent

Question Type: Choice Question
Granularity: Global

Question: Is there a chronological relation 
between Fig1 and Fig2?
Options:
Ture/False
Explanation: These two pictures depict the 
moments before and after two people fencing in 
the same scene

Question Type: T/F Question
Granularity: Global

SubEvent

Global Level

Figure 6: Sampled MMRA examples for each task. The bold and underlined options indicate they are the golden
answers.
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Options: 
A. shutter in figure one and window in figure two
B. hinge in figure one and baby bird in figure two
C. doorframe in figure one and the marks left by a impact in 

figure two
D. doorframe in figure one and string in figure two

doorframe bird’s mark

RelativePosition

Options: 
A. doorknob in fig1 and microwave door frame in fig2
B. the surf in fig1 and the bus in fig2
C. there are no entities of the same material in fig1 and fig2
D. the surf in fig1 and the road surface in fig2

bird’s mark

SimilarMaterial

Options: 
A. spoon in figure one and folk in figure two
B. wine in figure one and cup in figure two
C. beer cap in figure one and tray in figure two
D. beer in figure one and tray in figure two

NearSameEntity

Options: 
A. the distribution of entities in the pictures follows a similar 

pattern or arrangement
B. there is no obvious relation between the pictures in terms 

of layout.
C. each picture has a prominent entity

Layout

person person

tray
beer cap

Question: Which two entities in Fig1 and Fig2 are in the same 
relative position within the images?
QA_type: Choice QA

Golden answer: C            GPT4O’s answer: D

Question: Which two entities, respectively in Fig1 and Fig2, 
are made of the same material?
QA_type: Choice QA

Golden answer: C             GPT4O’s answer: D

Question: Which two entities, respectively in Fig1 and Fig2, 
near or adjacent to a same object?
QA_type: Choice QA

Golden answer: C  GPT4O’s answer: D

Question: What are the similarities between these two 
pictures in terms of structure and layout?
QA_type: Choice QA

Golden answer: C  GPT4O’s answer: A

Figure 7: The error analysis of GPT4o on our MMRA benchmark.
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