
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEROBOT: AN OPEN-SOURCE LIBRARY FOR
END-TO-END ROBOT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Robotics is undergoing a significant transformation powered by advances in high-
level control techniques based on machine learning, giving rise to the field of robot
learning. Recent progress in robot learning has been accelerated by the increas-
ing availability of affordable teleoperation systems, large-scale openly available
datasets, and scalable learning-based methods. However, development in the field
of robot learning is often slowed by fragmented, closed-source tools designed to
only address specific sub-components within the robotics stack. In this paper, we
present lerobot, an open-source library that integrates across the entire robotics
stack, from low-level middleware communication for motor controls to large-scale
dataset collection, storage and streaming. The library is designed with a strong
focus on real-world robotics, supporting accessible hardware platforms while re-
maining extensible to new embodiments. It also supports efficient implementa-
tions for various state-of-the-art robot learning algorithms from multiple promi-
nent paradigms, as well as a generalized asynchronous inference stack. Unlike tra-
ditional pipelines which heavily rely on hand-crafted techniques, lerobot em-
phasizes scalable learning approaches that improve directly with more data and
compute. Designed for accessibility, scalability, and openness, lerobot lowers
the barrier to entry for researchers and practitioners to robotics while providing a
platform for reproducible, state-of-the-art robot learning.

1 INTRODUCTION

Early successes in robotics relied on the precise description of robot-environment interactions, typi-
cally consisting in analytical descriptions of rigid-body kinematics, contact modeling, and planning
under uncertainty (explicit models). While effective in controlled settings, deriving accurate models
for diverse deployment scenarios is difficult and error-prone, often requiring substantial expert effort
and thus has limited scalability. Recent advances in Machine Learning (ML) have catalyzed a shift
toward tackling robotics problems with implicit models, typically learned rather than formulated.

Figure 1: lerobot is an open-source library for end-to-end robot learning. It integrates across the
entire robotics stack, from middleware motor interfaces to large-scale data collection and dataset
streaming, supporting an optimized inference stack, scalable implementations of SOTA robot learn-
ing algorithms, and providing support for training custom models as well as reusing pre-trained
ones.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A key advantage of learning-based methods (implicit models) is their scalability: performance em-
pirically improves with larger datasets, and more compute. In turn, the shift from explicit to implicit
models promises to address many of the challenges holding robotics back: rather than hand-tuning
the different components of a typical robotics pipeline, robot learning algorithms learn monolithic
control policies end-to-end, adapting to different input modalities and typically improve with in-
creasing quantities of data, echoing broader trends in vision, language, and multimodal learning.

Despite this momentum, the robot learning ecosystem is fragmented as (1) middleware interfaces
are often tailored to specific robots and difficult to adapt, and (2) datasets lack common formats
and tooling, resulting in robot and task-specific contributions that are difficult to reproduce and use
in practice. lerobot is an open-source library providing a unified, end-to-end stack for robot
learning, and it is vertically integrated across the stack featuring:

• Unified robot integration. A consistent, Python-based middleware API for real-world
motor control across diverse platforms, bridging typical ML frameworks and real-world
robotics across a variety of robots, ranging from low-end manipulators to humanoid arms
and hands.

• Standardized datasets. An efficient, multimodal format for recording, storing, and
streaming high frame-rate sensory and image data via LeRobotDataset, a custom
dataset format built for scale. With seamless integration into the open-source ecosystem,
LeRobotDataset encourages openness and research reproducibility.

• Optimized inference. An optimized inference stack that decouples action planning from
control execution both (1) physically and (2) logically, enabling policies to (1) run on sep-
arate machines with increased computational resources compared to those aboard robots,
and (2) parallely to low-level control loops, for robust deployment and dynamic adaptabil-
ity at runtime.

• Efficient, reusable algorithms. Clean, PyTorch-based implementations of state-of-the-art
(SOTA) robot learning methods, optimized for (1) training custom models from scratch and
(2) using openly-available pre-trained models.

Together, these components address fragmentation issues in the field, reducing the barrier to entry
for robotics by providing vertical integration across the entire robotics stack, with a clear emphasis
on accessibility and scalability, aiming at accelerating progress in robot learning.

2 BACKGROUND

2.1 EXPLICIT AND IMPLICIT MODELS

Figure 2: Some of the explicit
and implicit models for au-
tonomous motion.

Autonomous motion leverages either explicit or implicit mod-
els (Bekris et al., 2024). Classical robotics historically uses explicit
models, implemented as modular pipelines for perception, planning,
and control (Siciliano & Khatib, 2016). This approach suffers from
compounding errors, poor scalability to diverse deployment scenar-
ios, and undermodeling issues due to simplified analytical models
of physical interactions, limiting its effectiveness to unstructured,
dynamic environments (e.g., a house versus a factory line). In con-
trast, robot learning relies on implicit models to develop monolithic,
data-driven policies directly mapping observations to action. Robot
learning also prioritizes interaction data over rigid assumptions, and
replaces hand-engineered components with learned representations,
offering a more robust and adaptable solution for unstructured en-
vironments.

The adaptability of these learned, implicit models stems directly
from their scalability with data—a primary advantage over classical approaches. In this context,
real-world robotics data is often collected in the form of expert demonstrations via teleoperation, a
process where “cognitive decisions are made by [a] human user, while the robot is responsible for
their mechanical implementation” (Siciliano & Khatib, 2016, Ch.43, §1). In recent years, teleop-
eration hardware has become increasingly affordable, making it more and more relevant for robot

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 3: Classical robotics uses modular, model-based pipelines with hand-crafted features, while
robot learning employs monolithic, data-driven policies that learn directly from interaction data.

Figure 4: (A) Low-cost, open-source robots like SO-10X and ALOHA cost a fraction of proprietary
industrial arms, using consumer-grade parts and 3D-printable designs. (B) Decentralized efforts to
collect expert demonstrations in the form of trajectories surpassed centralized efforts for the collec-
tion of large amounts of real-world robotics data.

learning. Consumer-grade VR teleoperation headsets for robotics have been used to collect robot
data both on real-world and simulated robots (Bjorck et al., 2025), and low-cost teleoperated robotic
arms (Zhao et al., 2023; Aldaco et al., 2024; Knight et al., 2024) are increasingly empowering
researchers and practitioners to collect real-world robotics data. In turn, this results in a multipli-
cation of centralized (Brohan et al., 2023; Collaboration et al., 2025; Khazatsky et al., 2025) and
de-centralized (Section 3.2) efforts to collect robot data. Figure 4 shows how fully accessible tele-
operated platforms such as the SO-100, SO-101 (jointly referred to as SO-10X, (Knight et al., 2024))
and ALOHA-2 (Aldaco et al., 2024) can cost down to a fraction of closed-source, industrial-grade
robots such as the Franka Emika Panda arm. Consequently, these low end robot platforms can be
used to collect large amounts of data in a decentralized effort powered by the very accessibility—
low-cost, open designs, 3D-printable parts—of these low-end robot platforms.

2.2 ROBOT LEARNING

Reinforcement Learning Reinforcement learning (RL) (Sutton & Barto, 2018) has been ex-
tensively applied to robotics (Kober et al., 2013), for the inherently sequential nature of control
problems and Deep RL’s capability to learn strategies for return maximization maxπ J(π) =

maxπ Eτ∼π

[∑T
t=0 γ

trt
]

directly from highly-dimensional, unstructured observations such as
images (Mnih et al., 2013). Off-policy, entropy-regularized methods such as Soft Actor
Critic (Haarnoja et al., 2018) can be adapted to exploit teleoperation data and safely train in the
real-world, thereby sidestepping concerns related to operative safety and simulation-induced dis-
crepancies. Reinforcement Learning with Prior Data (RLPD) (Ball et al., 2023) mixes offline and
online buffers without pretraining to speed up convergence, and in conjuction with (1) learned re-
ward classifiers overcoming the need to define brittle hand-crafted rewards (Luo et al., 2025) and
(2) targeted human interventions during training, can yield near-perfect success rates in challenging
manipulation tasks within 1-2 hours of real-world training (HIL-SERL, Luo et al. (2024)).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Imitation Learning Imitation Learning via Behavioral Cloning (BC) offers a pragmatic alterna-
tive to real-world RL by learning control directly from human demonstrations, eliminating the need
for reward design and reducing exploration risk by learning to reproduce the behavior of an expert
demonstrator (Pomerleau, 1988). Collected via teleoperation on increasingly affordable hardware,
large corpora of robotics data also enable training at a scale across tasks and embodiments (Collab-
oration et al., 2025; Khazatsky et al., 2025). BC relies on learning generative models of the the joint
(or conditional) distribution over state-action pairs p : S × A 7→ [0, 1], p(a, s) (or p(a|s)) to learn
from data distributions exhibiting multiple modes, such as teleoperation data (Florence et al., 2022).
Recent works in BC thus employ powerful generative models to learn the conditional distribution
p(a|s), learning from multimodal demonstrations and produce coherent action sequences: Zhao et al.
(2023) leverages (conditional) Variational Auto-Encoders (Kingma & Welling, 2022; Sohn et al.,
2015), Chi et al. (2024) relies on Diffusion Models (Ho et al., 2020) whereas Black et al. (2024);
Shukor et al. (2025) both rely on Flow Matching (Lipman et al., 2023). Inspired by successes in
developing foundation models for vision (Dosovitskiy et al., 2020) and language (OpenAI, 2024),
BC is also increasingly being used in efforts aiming to develop robot foundation models (Jang et al.,
2022; Brohan et al., 2023; Black et al., 2024), scaling up both data and compute used to learn visuo-
motor policies suitable for real-world deployment across tasks and even robot embodiments.

Robot learning algorithms are often implemented as standalone components and their integration
with the rest of the robotics stack remains challenging.

2.3 PRACTICAL CHALLENGES FOR ROBOT LEARNING RESEARCH

Despite scientific advances, the robot learning ecosystem remains fragmented, impeding repro-
ducibility and raising the barrier to entry for research.

• Disaggregated Middleware: While middleware abstractions are available, it is common
to encounter middleware components tailored to specific platforms in practice. This het-
erogeneity often forces teams to develop bespoke adaptations, siloing efforts.

• Datasets and Formats: Large-scale datasets are typically shared in a different formats.
Data is often released in varied formats like TensorFlow Datasets, ROS bags, or bespoke
JSON layouts. The absence of a universal, modality-rich schema prevents the seamless
aggregation of disparate datasets into larger mixtures.

• Learning Frameworks: The deep learning literature has consistently demonstrated that
minor implementation differences in algorithms, data handling, and evaluation pipelines
can lead to significant variance in results (Henderson et al., 2018). In robotics, these issues
are compounded by hardware variability, further hindering reproducibility.

This ecosystem-wide fragmentation imposes significant incidental complexity on researchers, di-
verting resources from core scientific inquiry to systems integration. lerobotaddresses these
limitations by providing an end-to-end, open, and scalable library designed to unify hardware in-
terfacing, collecting and streaming data, and training and deploying advanced policies with minimal
engineering overhead.

3 FEATURES

lerobot is designed for accessibility, scalability, and reproducibility in robot learning. The library
natively integrates (1) entirely open-source hardware platforms costing a fraction of closed-source
devices, (2) a unified middleware shared across low-level robot interfaces (3) data collection, storage
and streaming tools, (4) an optimized inference engine and (5) many ready-to-use implementations
of SOTA methods in robot learning, useful to both train models from scratch and re-use openly
available pre-trained models. lerobot is entirely open-source, and highly accessible due to its
reliance on low-cost teleoperation kits, focus on empowering large-scale datasets via streaming, and
simple interface to adopt models in fully reproducible pipelines.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Robot Type Cost (C)
SO-100/101 Manipulator (Bimanual) ∼ 225 (550)
Koch-v1.1 Manipulator (Bimanual) ∼ 670 (1346)
ALOHA Bimanual Manipulator ∼ 21k
HopeJR-Arm Humanoid Arm and hand ∼ 500
LeKiwi Mobile Manipulator ∼ 230

(a) Cost for all robot platforms supported by
lerobotand with an openly-available Bill Of Mate-
rials (BOM).

Robot # Downloads # Datasets # Episodes
Panda 1’878’395 588 926’776
xArm 1’107’329 74 450’329

WidowX 832’177 100 214’117
KUKA 662’550 3 419784
SO-101 319’586 3’965 58’299
SO-100 278’697 5’161 78’510

Koch-v1.1 43’561 849 20’959

(b) All Top-4 robots for number of downloads, datasets
and episodes openly shared, listed in decreasing order
by the total number of downloads.

3.1 ACCESSIBLE REAL-WORLD ROBOTS

lerobot currently supports multiple real-world robot platforms for both static and mobile manipu-
lation. The library fully integrates the SO-100 and SO-101 arms (Knight et al., 2024), both in a single
and bimanual setup. The library also supports the Koch-v1.1 (Moss, 2025) and ALOHA-2 (Aldaco
et al., 2024) manipulators, the Hope-JR humanoid arm (TheRobotStudio, 2025), the Stretch-3 (Hello
Robot, 2025) and LeKiwi (SIGRobotics-UIUC, 2025) mobile manipulation platforms, and lastly the
Reachy-2 humanoid (Mick et al., 2019). lerobot is designed to interface multiple open devices
with a shared middleware that can be used to (1) read the configuration on a leader robot and write
it on follower robot for teleoperation and (2) directly control the follower with a learned policy.

Table 1a shows the cost for all the robot platforms currently supported by lerobot with an openly-
available Bill of Materials (BOM), reported for completeness in Appendix A. lerobot can support
multiple robot platforms thanks to a shared middleware embedded in higher-level abstractions for
the different robots supported, and engineered to interface directly with the low-level SDKs of major
low-cost actuator producers (FeeTech and Dynamixel). Crucially, the middleware is designed to be
easily extensible and highly composable. We refer to Appendix B for an example of teleoperation
using lerobot.

3.2 DATASETS

To address the fragmented nature of data in robotics research, we introduce LeRobotDataset,
lerobot’s unified multimodal dataset schema. This standardized format is engineered to pro-
vide convenient and standardized access to robotics data spanning diverse modalities, including
high-frequency sensorimotor readings, multiple camera feeds, and teleoperation status signals. The
schema is designed to be self-contained, accommodating general metadata such as textual descrip-
tions of the demonstrated tasks for filtering and language-conditioned policies, specifics of the robot
embodiment considered, and relevant experimental parameters such as frames-per-second (FPS) of
data capture and the types sensors used. As of September 2025, 16K+ datasets from 2.2K+ indi-
vidual contributors are openly shared via the LeRobotDataset format, featuring robots directly
integrated in the library such as the SO-10X arm and unsupported robots (Franka Emika Panda,
xArm, R1Pro), ported to the LeRobotDataset format by the open-source community. We argue
the support of different robot configuration underscores the flexibility of our dataset format, and
that the coexistance of both large-scale academic benchmarks and small-scale data collection efforts
exemplifies the breadth of use-cases that our dataset format can accomodate.

Open datasets are available for downloads, and Figure 5a shows the evolution of the number of
downloads over time, with a breakdown of the share of downloads per robot type (Table 1b) and
per robot type over time (Figure 5b, see Appendix C for further details). Despite lerobot only
supporting a limited number of robots (grouped under the Other tag in Figure 5a and Figure 5e),
datasets collected for other platforms such as the Franka Emika Panda and xArm lead in the num-
ber of downloads and size of the datasets collected (Figure 5e). We argue this follows from these
platforms being often featured in research-oriented centralized data collection efforts (?Khazatsky
et al., 2025). Conversely, platforms such as the SO-10X are increasingly featured in small-scale
decentralized community efforts powered by the accessibility of (1) the hardware platforms used
and (2) LeRobotDataset format, with 50%+ of the datasets contributed being collected directly
on the SO-10X platforms (Figure 5d).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Downloads over time by robot type (b) Share of downloads by robot type

(c) Datasets over time by robot type (d) Share of datasets by robot type

(e) Episodes over time by robot type (f) Share of episodes by robot type

Figure 5: Numbers and trends of downloads, datasets, and episodes by robot type over time. The
number of episodes in each dataset has been explicitly tracked starting in October 2024 only. For
completeness, we report the top-5 robots grouped in Other, for each of the metrics considered, in
Table 4.

A primary design principle of the dataset format is scalability. The dataset architecture is opti-
mized to handle large-scale repositories potentially containing millions of expert trajectories. This
unified interface for multi-modal, sequential data is designed for seamless integration with the Py-
Torch ecosystem, further promoting standardized and repeatable research workflows. This design
is complemented by a native streaming capability designed to enhance accessibility: users can pro-
cess remotely-hosted large-scale datasets without the prerequisite of downloading the entire corpus,
thereby lowering barriers to entry for the broader community and improving on the accessibility of
robot learning research. See Appendix C for more details on streaming.

1 from lerobot.datasets.lerobot_dataset import LeRobotDataset
2 from lerobot.datasets.streaming_dataset import StreamingLeRobotDataset
3

4 repo_id = "lerobot/svla_so101_pickplace"
5 # Downloads the whole dataset and loads it in memory
6 # (allowing for random access)
7 dataset = LeRobotDataset(repo_id)
8

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Peak Memory
Params CPU MPS RTX 4090 A100

ACT 52M 817.4MB 462MB 211.24 MB 211.24 MB
Diffusion Policy 263M 1.22GB 224MB 1.12 GB 1.12 GB

π0 3.5B 4.13GB 97MB 13.32 GB 13.32 GB
SmolVLA 450M 1.69GB 555MB 1.75 GB 1.75 GB

Table 2: Peak memory consumption of policy models currently supported by lerobot. All models
are run in full precision (fp32). Diffusion and Flow Models are run with 10 denoising steps at
inference. All models maintain their original outputs shapes.

9 # Streams frames on the fly without downloading
10 # (access frames sequentially, .next())
11 dataset = StreamingLeRobotDataset(repo_id)

3.3 MODELS

Figure 6: The different robot
learning algorithms currently
supported by lerobot.

lerobot supports reference implementation for multiple SOTA
robot learning algorithms, providing useful baselines for ex-
perimentation and accessible models across RL, such as HIL-
SERL (Luo et al., 2024) and TD-MPC (Hansen et al., 2022) and
BC, both for single-task ACT (Zhao et al., 2023), Diffusion Pol-
icy (Chi et al., 2024) and VQ-BET (Lee et al., 2024), and multi-task
models such as π0 (Black et al., 2024) and SmolVLA (Shukor et al.,
2025) (Figure 6).

lerobot offers support for custom models too, grouped together
under the Other tag in Figure 7. All the control policies imple-
mented in lerobot are written in pure Pytorch (Paszke et al.,
2019), and integrated with the library to allow (1) training models
from scratch on datasets collected via real-world demonstrations,
and (2) inference using openly available pre-trained models. The
library is designed to for high accessibility, providing a composable
set of recipes which can be used to train a model from scratch in
less than 100 lines-of-code (LOC), and serve models in less than 40 LOC (Appendix D).

In its effort to foster accessibility, lerobot supports multiple models with different computational
constraints, ranging from lightweight single-task models to larger, multi-task models. ACT (Zhao
et al., 2023) is a particularly popular model dominating the number of uploads (Figure 7a), con-
sistenly ranking as one of the most popular policies trained (Figure 7b) and used (Figure 7d). We
ascribe the popularity of ACT to (1) its small size and fast inference speed and (2) straightforward ap-
plication to limited amount of real-world demonstrations, allowing users to obtain well-performing
policies with as little as 50 real-world trajectories. As a single-task model, however, ACT necessi-
tates retraining whenever changes in the experimental conditions occur. SmolVLA (Shukor et al.,
2025) is a powerful, small-scale Vision-Language-Action model which allows to control real-world
robots via language conditioning, resulting in an overall wider applicability to practical scenarios.

Table 2 and Table 3 report the peak memory footprint and the average inference latency, measured
over 100 test samples, for the most widely used policies supported by lerobot. Evaluations were
conducted on four platforms: (1) a MacBook Pro M1 (2021, 16GB, CPU only), (2) the same Mac-
Book Pro with the MPS backend, (3) an NVIDIA RTX 4090, and (4) an NVIDIA A100. All models
were executed in full fp32 precision at runtime, with inference timed-out after 5 seconds. Over-
all, peak memory footprints largely align with theoretical estimates obtained from the combination
of model parameter count and numerical precision. The main exceptions are the CPU and MPS
backends, where unified memory and frequent offloading to swap introduce variability, obscuring
direct performance comparisons and increasing latency. Latency measurements are averaged across
all non—timed-out trials, with both mean and standard deviation reported in Table 3. Smaller, task-
specific models such as ACT exhibit high efficiency on accelerated backends like MPS and achieve
inference rates of ∼100-200Hz on high-end GPUs such as the RTX 4090 and A100. Crucially,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Avg Inference Latency (ms)
Params CPU MPS RTX 4090 A100

ACT 52M 182.313
± 40.82

42.667
± 10.085

5.013
± 0.061

13.77
± 0.445

Diffusion Policy 263M (100%) 3453.838
± 39.271

369.788
± 0.193

613.893
± 10.173

π0 3.5B (100%) (100%) 209.381
± 2.762

568.978
± 2.937

SmolVLA 450M 2028.461
± 302.59 (2%)

721.826
± 57.748

99.244
± 1.195

278.833
± 1.886

Table 3: Average and standard deviation inference latency over 100 forward passes for policy models
currently supported by lerobot. Diffusion and Flow Models are run with 10 denoising steps at
inference time. (x%) indicates the percentage of samples that timed-out before the 5000ms hard
stop (0% omitted).

(a) Models uploaded over time by policy type. (b) Share of the models uploaded over time by policy
type.

(c) Models downloaded over time by policy type. (d) Share of models downloaded over time by policy
type.

Figure 7: Numbers and trends of uploads and downloads of robot learning models by policy type
over time. TD-MPC (Hansen et al., 2022), HIL-SERL (Luo et al., 2024) and VQ-BET (Lee et al.,
2024) are absent from all visualizations as they are not typically uploaded by users.

larger models such as π0 require substantially longer per each forward passes on average on all plat-
forms, and even fail to complete inference within the 5s limit on lower-tier devices, underscoring
the challenges in deploying robotics foundation models in practice.

3.4 INFERENCE

lerobot defines a custom inference stack which is designed to decouple action prediction (in-
ference) from action execution (control), at both the physical and logical level (Figure 8). This
optimized stack is designed for modern robot learning policies, increasingly predicting sequences
of actions (action chunks, at:t+H−1, (Zhao et al., 2023)) rather than single controls. All the BC
policies supported by lerobot predict action chunks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 8: Overview of the generalized inference schema supported by lerobot, whereby a remote
server can be used to host compute-expensive policies for inference, while the robot client receives
a stream of the actions chunks to enact. The schema provides scalability and flexibility through the
possibility to fully customize the function f used to aggregate overlapping chunks.

Physical decoupling allows inference to run on a remote machine connected over the network to
the robot’s low-level controller. This design enables the use of higher-end computational resources
than those typically available aboard a robot for inference, while control is maintained at the de-
sired control frequency stepping through the multiple actions received. Further, logical decoupling
implements inference via an asynchronous producer-consumer scheme: the inference process pre-
dicts action sequences with a look-ahead horizon H in parallel with environment control, which
consumes actions at a fixed control rate. Overlapping predictions are merged via a generalized ag-
gregation function f , which users can easily specify for their own use cases, ensuring a non-empty
action queue and preventing idleness of the robot by overlaying action prediction and action execu-
tion. We refer to Appendix E for more details on the performance of decoupled inference.

4 CONCLUSIONS

In this work we introduced lerobot, a unified, open-source stack for end-to-end robot learning that
bridges low-level control, large-scale data tooling, and scalable learning algorithms. We showed how
accessible teleoperation of multiple real-world robot through a shared middleware can be used to
collect real-world data across a variety of robot platforms. Further, we illustrated how standardized
datasets can be exploited to collect and reuse data at scale, powering advancements in robot learning
thanks to the thousands of datasets collected, resulting in hundreds of thousands of episodic data,
and hundreds of models openly contributed by the robot learning community.

Limitations We identify several limitations remaining in our contribution. First, robots coverage
is currently far from exhaustive, as we support a practical but incomplete set of arms, grippers, sen-
sors, and controllers. Over the course of 2025, lerobot went from supporting 3 manipulation
setups (Koch-v1.1, SO-100, ALOHA) to the 8 regular, humanoid and mobile manipulators cur-
rently supported, and we highlight that keeping a similar rate of progress is paramount to properly
serve the robot learning community. Second, the coverage in terms of robot learning algorithms is
also non-exhaustive. We provide strong, reproducible implementations across key paradigms, while
extending the library with additional algorithms remains future work. Third, achieving strong prac-
tical inference performance still requires low-level optimization (quantization, graph compilation,
etc) that are currently disregarded by the library. We view these limitations as concrete, tractable
avenues for community contributions and future development, and in the very spirit of open-source,
invite the broader robot learning community to address them. However, despite these limitations,
our work takes a significant step toward an end-to-end stack for robot learning, providing a useful
tool for researchers and practioners in the field.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jorge Aldaco, Travis Armstrong, Robert Baruch, Jeff Bingham, Sanky Chan, Kenneth Draper, De-
bidatta Dwibedi, Chelsea Finn, Pete Florence, Spencer Goodrich, et al. Aloha 2: An enhanced
low-cost hardware for bimanual teleoperation. arXiv preprint arXiv:2405.02292, 2024.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient Online Reinforcement
Learning with Offline Data, May 2023.

Kostas E. Bekris, Joe Doerr, Patrick Meng, and Sumanth Tangirala. The State of Robot Motion
Generation, October 2024.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi "Jim"
Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, Joel Jang, Zhenyu Jiang, Jan Kautz,
Kaushil Kundalia, Lawrence Lao, Zhiqi Li, Zongyu Lin, Kevin Lin, Guilin Liu, Edith Llontop,
Loic Magne, Ajay Mandlekar, Avnish Narayan, Soroush Nasiriany, Scott Reed, You Liang Tan,
Guanzhi Wang, Zu Wang, Jing Wang, Qi Wang, Jiannan Xiang, Yuqi Xie, Yinzhen Xu, Zhenjia
Xu, Seonghyeon Ye, Zhiding Yu, Ao Zhang, Hao Zhang, Yizhou Zhao, Ruijie Zheng, and Yuke
Zhu. GR00T N1: An Open Foundation Model for Generalist Humanoid Robots, March 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming
Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang
Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. $π_0$: A
Vision-Language-Action Flow Model for General Robot Control, October 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent
Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. RT-1: Robotics Transformer for Real-World Control at Scale, August 2023.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion, March
2024.

Open X.-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram
Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta,
Ajay Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh
Garg, Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh
Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon Kim,
Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea
Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher
Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne
Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov,
Dorsa Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao,
Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan,
Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang,
Hao Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I. Christensen,
Hiroki Furuta, Homanga Bharadhwaj, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch,
Ilija Radosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung Kim, Jaimyn Drake,
Jan Peters, Jan Schneider, Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey Bingham, Jeffrey
Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu,
Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik, João Silvério, Joey
Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim, Jun-
hyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin
Black, Kevin Lin, Kevin Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krish-
nan Srinivasan, Kuan Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent
Itti, Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi "Jim" Fan, Lionel Ott,
Lisa Lee, Luca Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka,
Masha Itkina, Mateo Guaman Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip,
Mingtong Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin
Kim, Muhammad Zubair Irshad, Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J.
Joshi, Niko Suenderhauf, Ning Liu, Norman Di Palo, Nur Muhammad Mahi Shafiullah, Oier
Mees, Oliver Kroemer, Osbert Bastani, Pannag R. Sanketi, Patrick "Tree" Miller, Patrick Yin,
Paul Wohlhart, Peng Xu, Peter David Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya
Sundaresan, Qiuyu Chen, Quan Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto Martín-
Martín, Rohan Baijal, Rosario Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang,
Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kirmani,
Sergey Levine, Shan Lin, Sherry Moore, Shikhar Bahl, Shivin Dass, Shubham Sonawani, Shub-
ham Tulsiani, Shuran Song, Sichun Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon Ade-
bola, Simon Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker, Stephen Tian, Subramanian
Ramamoorthy, Sudeep Dasari, Suneel Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani,
Takayuki Osa, Tanmay Gupta, Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Thomas Kollar,
Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Trin-
ity Chung, Vidhi Jain, Vikash Kumar, Vincent Vanhoucke, Vitor Guizilini, Wei Zhan, Wenxuan
Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong Wang, Xinghao Zhu, Xinyang Geng,
Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao Lu, Yecheng Jason Ma, Yejin Kim,
Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying Xu, Yixuan Wang, Yonatan Bisk,
Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen Cui, Yue Cao, Yueh-Hua Wu, Yujin
Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang Li, Yunzhu Li, Yusuke Iwasawa, Yu-
taka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen Zhang, Zipeng Fu, and Zipeng Lin.
Open X-Embodiment: Robotic Learning Datasets and RT-X Models, May 2025.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A. Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit Behavioral Cloning. In
Proceedings of the 5th Conference on Robot Learning, pp. 158–168. PMLR, January 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, August 2018.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal Difference Learning for Model Predictive
Control, July 2022.

Hello Robot. Stretch 3®: A fully integrated mobile manipulator. https://
hello-robot.com/stretch-3-product, 2025. URL https://hello-robot.
com/stretch-3-product. Last accessed: 22 September 2025.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models, December
2020.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning, Febru-
ary 2022.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree

11

https://hello-robot.com/stretch-3-product
https://hello-robot.com/stretch-3-product
https://hello-robot.com/stretch-3-product
https://hello-robot.com/stretch-3-product

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Young-
woon Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin
Black, Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pan-
nag R. Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe,
Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Rohan Baijal,
Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake, Ethan Paul
Foster, Jensen Gao, Vitor Guizilini, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng
Hu, Muhammad Zubair Irshad, Donovon Jackson, Charlotte Le, Yunshuang Li, Kevin Lin, Roy
Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani, Daniel Morton, Tony Nguyen, Abigail
O’Neill, Rosario Scalise, Derick Seale, Victor Son, Stephen Tian, Emi Tran, Andrew E. Wang,
Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin, Yunchu Zhang, Osbert Bastani, Glen Berseth,
Jeannette Bohg, Ken Goldberg, Abhinav Gupta, Abhishek Gupta, Dinesh Jayaraman, Joseph J.
Lim, Jitendra Malik, Roberto Martín-Martín, Subramanian Ramamoorthy, Dorsa Sadigh, Shuran
Song, Jiajun Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey Levine, and Chelsea Finn.
DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset, April 2025.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, December 2022.

Rob Knight, Pepijn Kooijmans, Thomas Wolf, Simon Alibert, Michel Aractingi, Dana Aubakirova,
Adil Zouitine, Russi Martino, Steven Palma, Caroline Pascal, and Remi Cadene. Standard Open
SO-100 & SO-101 Arms, 2024.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H. Jin Kim, Nur Muhammad Mahi Shafiullah, and
Lerrel Pinto. Behavior Generation with Latent Actions, June 2024.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching
for Generative Modeling, February 2023.

Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine. Precise and Dexterous Robotic Manipula-
tion via Human-in-the-Loop Reinforcement Learning, October 2024.

Jianlan Luo, Zheyuan Hu, Charles Xu, You Liang Tan, Jacob Berg, Archit Sharma, Stefan Schaal,
Chelsea Finn, Abhishek Gupta, and Sergey Levine. SERL: A Software Suite for Sample-Efficient
Robotic Reinforcement Learning, March 2025.

Sébastien Mick, Mattieu Lapeyre, Pierre Rouanet, Christophe Halgand, Jenny Benois-Pineau, Flo-
rent Paclet, Daniel Cattaert, Pierre-Yves Oudeyer, and Aymar de Rugy. Reachy, a 3d-printed
human-like robotic arm as a testbed for human-robot control strategies. Frontiers in neuro-
robotics, 13:65, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, December 2013.

Jess Moss. koch-v1.1: A version 1.1 of the alexander koch low cost robot arm with some small
changes, September 22 2025. URL https://github.com/jess-moss/koch-v1-1.
GitHub repository, Apache-2.0 license.

OpenAI. GPT-4 Technical Report, March 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Dean A. Pomerleau. ALVINN: An Autonomous Land Vehicle in a Neural Network. In Advances in
Neural Information Processing Systems, volume 1. Morgan-Kaufmann, 1988.

Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma, Adil
Zouitine, Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, Simon Alibert,
Matthieu Cord, Thomas Wolf, and Remi Cadene. SmolVLA: A Vision-Language-Action Model
for Affordable and Efficient Robotics, June 2025.

12

https://github.com/jess-moss/koch-v1-1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Bruno Siciliano and Oussama Khatib (eds.). Springer Handbook of Robotics. Springer Handbooks.
Springer International Publishing, Cham, 2016. ISBN 978-3-319-32550-7 978-3-319-32552-1.
doi: 10.1007/978-3-319-32552-1.

SIGRobotics-UIUC. LeKiwi: Low-Cost Mobile Manipulator. https://github.com/
SIGRobotics-UIUC/LeKiwi, September 22 2025. URL https://github.com/
SIGRobotics-UIUC/LeKiwi. GitHub repository, Apache-2.0 license.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning Structured Output Representation using
Deep Conditional Generative Models. In Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Adaptive
Computation and Machine Learning Series. The MIT Press, Cambridge, Massachusetts, second
edition edition, 2018. ISBN 978-0-262-03924-6.

TheRobotStudio. HOPEJr/Arm: Robotic Arm Module of HOPEJr. https://github.
com/TheRobotStudio/HOPEJr/tree/main/Arm, September 22 2025. URL https:
//github.com/TheRobotStudio/HOPEJr/tree/main/Arm. GitHub repository, ac-
cessed: 22 September 2025.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning Fine-Grained Bimanual
Manipulation with Low-Cost Hardware, April 2023.

A OPENLY-AVAILABLE ROBOTS

• SO-10X Guide from Knight et al. (2024): https://github.com/
TheRobotStudio/SO-ARM100.

• Koch-v1.1 Guide from Moss (2025): https://github.com/jess-moss/
koch-v1-1

• ALOHA Guide from Zhao et al. (2023) here.
• HopeJR-Arm Guide from TheRobotStudio (2025): https://github.com/
TheRobotStudio/HOPEJr/blob/main/Arm/BOM.md

• LeKiwi Guide from SIGRobotics-UIUC (2025): https://github.com/
SIGRobotics-UIUC/LeKiwi/blob/main/BOM.md

B REAL-WORLD ROBOTS API

1 from lerobot.teleoperators.so100_leader.so100_leader import \
2 SO100Leader
3 from lerobot.teleoperators.so100_follower.so100_follower import \
4 SO100Follower
5

6 teleop = SO100Leader()
7 # (provided teleop matches) can also be Reachy-2, LeKiwi, etc.
8 robot = SO100Follower()
9

10 teleop.connect()
11 robot.connect()
12

13 action = teleop.get_action()
14 print(action)
15 # {’shoulder_pan.pos’: 84.74,
16 # ’shoulder_lift.pos’: 4.95,
17 # ’elbow_flex.pos’: 70.6,
18 # ’wrist_flex.pos’: -88.41,
19 # ’wrist_roll.pos’: 57.89,
20 # ’gripper.pos’: 4.13}
21

22 robot.send_action(action) # moves robot according to ‘action‘

13

https://github.com/SIGRobotics-UIUC/LeKiwi
https://github.com/SIGRobotics-UIUC/LeKiwi
https://github.com/SIGRobotics-UIUC/LeKiwi
https://github.com/SIGRobotics-UIUC/LeKiwi
https://github.com/TheRobotStudio/HOPEJr/tree/main/Arm
https://github.com/TheRobotStudio/HOPEJr/tree/main/Arm
https://github.com/TheRobotStudio/HOPEJr/tree/main/Arm
https://github.com/TheRobotStudio/HOPEJr/tree/main/Arm
https://github.com/TheRobotStudio/SO-ARM100
https://github.com/TheRobotStudio/SO-ARM100
https://github.com/jess-moss/koch-v1-1
https://github.com/jess-moss/koch-v1-1
https://docs.google.com/document/d/1sgRZmpS7HMcZTPfGy3kAxDrqFMtNNzmK-yVtX5cKYME/edit?tab=t.0
https://github.com/TheRobotStudio/HOPEJr/blob/main/Arm/BOM.md
https://github.com/TheRobotStudio/HOPEJr/blob/main/Arm/BOM.md
https://github.com/SIGRobotics-UIUC/LeKiwi/blob/main/BOM.md
https://github.com/SIGRobotics-UIUC/LeKiwi/blob/main/BOM.md

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Robot # Datasets
unknown 2370

lekiwi 535
arx5 371
aloha 334

aiworker 202

(a) Top-5 robot platforms in the
"Other" category for number of
datasets.

Robot # Downloads
unknown 711729

google_robot 438560
so101 319586
so100 278697
aloha 45219

(b) Top-5 robot platforms in the
"Other" category for number of
downloads.

Robot # Episodes
google_robot 213852

unknown 170706
so100 78510
so101 58299
easo 45652

(c) Top-5 robot platforms in the
"Other" category for number of
episodes.

Table 4: Breakdown of the Other category by top-5 robot platforms across datasets, downloads, and
episodes.

Figure 9: Openly-available datasets with the largest number of downloads using the
LeRobotDataset format. The most downloaded datasets are academic benchmarks released
by the research community (Collaboration et al., 2025; Khazatsky et al., 2025).

C DATASETS

Table 4 further breaks down the Other category for the number of downloads, datasets and episodes,
and it shows how faulty dataset that do not explicitly record the robot platform used (tagged as
unknown) dominate in the Other category.

Figure 9 shows the most downloaded datasets by robot type. Crucially, the largest number of down-
loads is not achieved for a platform natively integrated in lerobot, further undescoring the adop-
tion of the LeRobotDataset format in the robotics community.

C.1 STREAMING DATASETS

The development of StreamingLeRobotDataset addresses several fundamental chal-
lenges associated with the efficient utilization of large-scale robotic datasets in robot learning
pipelines. Traditional approaches to dataset handling rely on pre-loading data into local mem-
ory, which becomes increasingly impractical as datasets grow to the million-episodes scale.
StreamingLeRobotDataset supports a streaming paradigm, whereby frames—defined as in-
dividual items in a dataset—are fetched on-demand from remote storage rather than preloaded in
their entirety. This architectural shift required addressing three core challenges: (1) efficient data
access under strict memory constraints, (2) ensuring sufficient randomness during iteration to sup-
port robust learning, and (3) enabling multi-frame retrieval in a setting that is inherently sequential
and non-indexable.

Efficient Streaming of Large-Scale Data. The LeRobotDatasetformat partitions robotic data
into tabular records (.parquet files) and compressed videos (.mp4 files), alongside lightweight
metadata. Metadata files are downloaded fully due to their negligible size relative to the dataset, but
all high-volume video and control streams are processed on demand. This is achieved through two
principal design choices: (1) adoption of an IterableDataset interface, and (2) integration with
torchcodec for on-the-fly video decoding. These components together enable data consumption
through simple iterative calls, while maintaining memory usage bounded irrespective of dataset size.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) Timing performance of stepping through single
frames of a StreamingLeRobotDataset com-
pared to a pre-loaded LeRobotDataset.

(b) Timing performance of stepping through
a dataset retrieving multiple frames of a
StreamingLeRobotDataset compared to a
pre-loaded LeRobotDataset.

Figure 10: Timing performance of StreamingLeRobotDataset versus a regular
LeRobotDataset.

Provided a good network connectivity, Figure 10 shows timing performance is comparable between
the two formats in the steady-state regime (after initialization).

C.2 EXAMPLE: USE A DATASET

1 import torch
2 from lerobot.datasets.lerobot_dataset import LeRobotDataset
3

4 delta_timestamps = {
5 # 0.2, and 0.1 seconds *before* each frame
6 "observation.images.wrist_camera": [-0.2, -0.1, 0.0]
7 }
8

9 # Optionally, use StreamingLeRobotDataset to avoid downloading the dataset
10 dataset = LeRobotDataset(
11 "lerobot/svla_so101_pickplace",
12 delta_timestamps=delta_timestamps
13)
14

15 # Get frame in the dataset by their index
16 sample = dataset[0]
17 print(sample)
18 # {
19 # ’observation.state’: tensor([...]),
20 # ’action’: tensor([...]),
21 # # extra dimension due to delta timesteps
22 # ’observation.images.wrist_camera’: tensor([3, C, H, W])
23 # ...
24 # }
25

26 batch_size=16
27 # wrap the dataset in a DataLoader for training/inference purposes
28 data_loader = torch.utils.data.DataLoader(
29 dataset,
30 batch_size=batch_size
31)
32

33 # Iterate over the DataLoader in a training loop
34 num_epochs = 1
35 device = "cuda" if torch.cuda.is_available() else "cpu"
36

37 for epoch in range(num_epochs):
38 for batch in data_loader:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Models uploaded by policy type. Policies not
present have not been publicly uploaded.

(b) Models downloaded by policy type. Policies not
present have not been publicly downloaded.

39 # Move data to the appropriate device (e.g., GPU)
40 observations = batch["observation.state"].to(device)
41 actions = batch["action"].to(device)
42 images = batch["observation.images.wrist_camera"].to(device)
43

44 # Next, process the data for training or inference
45 ...

C.3 EXAMPLE: USE A STREAMING DATASET

1 from lerobot.datasets.streaming_dataset import StreamingLeRobotDataset
2

3 # Streams frames on the fly without downloading the dataset
4 dataset = StreamingLeRobotDataset(
5 "lerobot/svla_so101_pickplace",
6 delta_timestamps=delta_timestamps
7)

D MODELS

D.1 EXAMPLE: TRAIN A MODEL

1 import torch
2

3 from lerobot.configs.types import FeatureType
4 from lerobot.datasets.lerobot_dataset import (
5 LeRobotDataset, LeRobotDatasetMetadata
6)
7 from lerobot.datasets.utils import dataset_to_policy_features
8 from lerobot.policies.factory import make_pre_post_processors
9

10 # Users can use many plug-in policies from the library
11 from lerobot.policies.diffusion.configuration_diffusion import \
12 DiffusionConfig
13 from lerobot.policies.diffusion.modeling_diffusion import DiffusionPolicy
14

15 output_directory = "outputs/train/example_pusht_diffusion"
16 device = torch.device("cuda")
17 training_steps = 5000
18 log_freq = 1
19

20 repo_id = "lerobot/pusht" # Replace with your dataset
21 dataset_metadata = LeRobotDatasetMetadata(repo_id)
22

23 features = dataset_to_policy_features(dataset_metadata.features)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

24 output_features = {
25 key: ft for key, ft in features.items()
26 if ft.type is FeatureType.ACTION
27 }
28 input_features = {
29 key: ft for key, ft in features.items()
30 if key not in output_features
31 }
32

33 cfg = DiffusionConfig(
34 input_features=input_features,
35 output_features=output_features
36)
37

38 policy = DiffusionPolicy(cfg)
39 policy.train()
40 policy.to(device)
41 preprocessor, postprocessor = make_pre_post_processors(
42 cfg, dataset_stats=dataset_metadata.stats
43)
44

45

46 delta_timestamps = {
47 "observation.image": [-0.1, 0.0],
48 "observation.state": [-0.1, 0.0],
49 "action": [
50 -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
51 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4
52],
53 }
54

55 dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)
56

57 optimizer = torch.optim.Adam(policy.parameters(), lr=1e-4)
58 dataloader = torch.utils.data.DataLoader(
59 dataset,
60 num_workers=4,
61 batch_size=64,
62 shuffle=True,
63 pin_memory=device.type != "cpu",
64 drop_last=True,
65)
66

67 step = 0
68 done = False
69 while not done:
70 for batch in dataloader:
71 batch = preprocessor(batch)
72 loss, _ = policy.forward(batch)
73 loss.backward()
74 optimizer.step()
75 optimizer.zero_grad()
76

77 if step % log_freq == 0:
78 print(f"step: {step} loss: {loss.item():.3f}")
79 step += 1
80 if step >= training_steps:
81 done = True
82 break
83

84 # Save a policy checkpoint.
85 policy.save_pretrained(output_directory)
86 preprocessor.save_pretrained(output_directory)
87 postprocessor.save_pretrained(output_directory)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Inference Success Rate (%)

Pick-Place Stacking Sorting Avg

Sync 75 90 70 78.3
Async 80 90 50 73.3

(a) Performance (success rates).

Inference Time (s)

Total Avg Std

Sync 137.5 13.75 2.42
Async 97.0 9.70 2.95

(b) Task completion time.

Inference # of Cubes

Total Avg Std

Sync 9 1.8 0.45
Async 19 3.8 1.3

(c) Performance in fixed time
(60s per each episode).

Table 5: Comparison between regular (Sync) and optimized (Async) inference. We evaluate the
SmolVLA implementation provided in lerobot on three real-world performed using the SO-100
arm, consisting of (1) pick and place cubes (2) stacking cubes on top of each other and (3) sorting
cubes. lerobot’s decoupled inference schema achieves similar success rates (left) but results
in significantly reduced cycle times (middle) and thus higher throughput (right), over the 10 test
episodes (60s each) for the task considered.

D.2 EXAMPLE: USE A PRE-TRAINED MODEL

1 from typing import Any
2 from lerobot.policies.smolvla.configuration_smolvla import \
3 SmolVLAConfig
4 from lerobot.policies.smolvla.modeling_smolvla import SmolVLAPolicy
5 from lerobot.datasets.lerobot_dataset import \
6 LeRobotDatasetMetadata
7

8 from lerobot.policies.factory import make_pre_post_processors
9 from lerobot.teleoperators.so100_follower.so100_follower import \

10 SO100Follower
11

12 # Take a dataset on which SmolVLA was trained, for normalization
13 repo_id = "lerobot/svla_so101_pickplace"
14 dataset_metadata = LeRobotDatasetMetadata(repo_id)
15

16 cfg = SmolVLAConfig()
17 policy = SmolVLAPolicy(cfg)
18 preprocessor, postprocessor = make_pre_post_processors(
19 cfg, dataset_stats=dataset_metadata.stats
20)
21

22 robot = SO100Follower(...)
23 raw_obs: dict[str, Any] = robot.get_observation()
24

25 # Preprocess the observation for inference
26 policy_input = preprocessor(raw_obs)
27 # Select the action from the policy
28 policy_output = policy.select_action(policy_input)
29 # Postprocess the action for the robot
30 policy_action = postprocessor(policy_output)
31

32 robot.send_action(policy_action)

E INFERENCE

Optimized inference accelerate cycle times across multiple tasks with comparable performance (Ta-
ble 5), and provide a scalable path to higher model capacity without compromising on real-time
control, provided access to a network. In particular, the speedup presented in Table 5 derives from
logical decoupling—asynchronously computing the next chunk while the current one has not been
exhausted yet—rather than physical decoupling, as both the server and client run on the same ma-
chine, though in principle the inference stack allows for communication between different machines.

E.1 EXAMPLE: HOST A REMOTE SERVER

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 # Run this script to start the policy server on any machine
2 from lerobot.scripts.server.configs import PolicyServerConfig
3 from lerobot.scripts.server.policy_server import serve
4

5 config = PolicyServerConfig(
6 host="localhost",
7 port=8080,
8)
9 serve(config)

E.2 EXAMPLE: STREAM ACTIONS TO A ROBOT

1 # Run this script to start the robot client on the robot’s computer
2 import threading
3 from lerobot.scripts.server.configs import RobotClientConfig
4 from lerobot.scripts.server.robot_client import RobotClient
5

6

7 camera_cfg = ... # cameras used by the visuomotor policy
8 robot_cfg = ... # a given robot supported by the library
9

10 # 3. Create client configuration
11 client_cfg = RobotClientConfig(
12 robot=robot_cfg,
13 # attach to the server running the policy
14 server_address="localhost:8080",
15 # use a higher-end device for inference
16 policy_device="cuda:0",
17 policy_type="pi0",
18 pretrained_name_or_path="lerobot/pi0"
19)
20

21 # 4. Create and start client
22 client = RobotClient(client_cfg)
23

24 task = ... # Specify the task using natural language
25

26 if client.start():
27 # Start action receiver thread
28 action_receiver_thread = threading.Thread(
29 target=client.receive_actions, daemon=True
30)
31 action_receiver_thread.start()
32

33 try:
34 # Run the control loop
35 client.control_loop(task)
36 except KeyboardInterrupt:
37 client.stop()
38 action_receiver_thread.join()

19

	Introduction
	Background
	Explicit and Implicit Models
	Robot Learning
	Practical Challenges for Robot Learning Research

	Features
	Accessible Real-world Robots
	Datasets
	Models
	Inference

	Conclusions
	Openly-available robots
	Real-world Robots API
	Datasets
	Streaming Datasets
	Example: Use a Dataset
	Example: Use a Streaming Dataset

	Models
	Example: Train a Model
	Example: Use a Pre-trained Model

	Inference
	Example: Host a Remote Server
	Example: Stream Actions to a Robot

