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ABSTRACT

Robotics is undergoing a significant transformation powered by advances in high-
level control techniques based on machine learning, giving rise to the field of robot
learning. Recent progress in robot learning has been accelerated by the increas-
ing availability of affordable teleoperation systems, large-scale openly available
datasets, and scalable learning-based methods. However, development in the field
of robot learning is often slowed by fragmented, closed-source tools designed to
only address specific sub-components within the robotics stack. In this paper, we
present lerobot, an open-source library that integrates across the entire robotics
stack, from low-level middleware communication for motor controls to large-scale
dataset collection, storage and streaming. The library is designed with a strong
focus on real-world robotics, supporting accessible hardware platforms while re-
maining extensible to new embodiments. It also supports efficient implementa-
tions for various state-of-the-art robot learning algorithms from multiple promi-
nent paradigms, as well as a generalized asynchronous inference stack. Unlike tra-
ditional pipelines which heavily rely on hand-crafted techniques, lerobot em-
phasizes scalable learning approaches that improve directly with more data and
compute. Designed for accessibility, scalability, and openness, lerobot lowers
the barrier to entry for researchers and practitioners to robotics while providing a
platform for reproducible, state-of-the-art robot learning.

1 INTRODUCTION

Early successes in robotics relied on the precise description of robot-environment interactions, typi-
cally consisting in analytical descriptions of rigid-body kinematics, contact modeling, and planning
under uncertainty (explicit models). While effective in controlled settings, deriving accurate models
for diverse deployment scenarios is difficult and error-prone, often requiring substantial expert effort
and thus has limited scalability. Recent advances in Machine Learning (ML) have catalyzed a shift
toward tackling robotics problems with implicit models, typically learned rather than formulated.

Figure 1: lerobot is an open-source library for end-to-end robot learning. It integrates across the
entire robotics stack, from middleware motor interfaces to large-scale data collection and dataset
streaming, supporting an optimized inference stack, scalable implementations of SOTA robot learn-
ing algorithms, and providing support for training custom models as well as reusing pre-trained
ones.
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A key advantage of learning-based methods (implicit models) is their scalability: performance em-
pirically improves with larger datasets, and more compute. In turn, the shift from explicit to implicit
models promises to address many of the challenges holding robotics back: rather than hand-tuning
the different components of a typical robotics pipeline, robot learning algorithms learn monolithic
control policies end-to-end, adapting to different input modalities and typically improve with in-
creasing quantities of data, echoing broader trends in vision, language, and multimodal learning.

Despite this momentum, the robot learning ecosystem is fragmented as (1) middleware interfaces
are often tailored to specific robots and difficult to adapt, and (2) datasets lack common formats
and tooling, resulting in robot and task-specific contributions that are difficult to reproduce and use
in practice. lerobot is an open-source library providing a unified, end-to-end stack for robot
learning, and it is vertically integrated across the stack featuring:

• Unified robot integration. A consistent, Python-based middleware API for real-world
motor control across diverse platforms, bridging typical ML frameworks and real-world
robotics across a variety of robots, ranging from low-end manipulators to humanoid arms
and hands.

• Standardized datasets. An efficient, multimodal format for recording, storing, and
streaming high frame-rate sensory and image data via LeRobotDataset, a custom
dataset format built for scale. With seamless integration into the open-source ecosystem,
LeRobotDataset encourages openness and research reproducibility.

• Optimized inference. An optimized inference stack that decouples action planning from
control execution both (1) physically and (2) logically, enabling policies to (1) run on sep-
arate machines with increased computational resources compared to those aboard robots,
and (2) parallely to low-level control loops, for robust deployment and dynamic adaptabil-
ity at runtime.

• Efficient, reusable algorithms. Clean, PyTorch-based implementations of state-of-the-art
(SOTA) robot learning methods, optimized for (1) training custom models from scratch and
(2) using openly-available pre-trained models.

Together, these components address fragmentation issues in the field, reducing the barrier to entry
for robotics by providing vertical integration across the entire robotics stack, with a clear emphasis
on accessibility and scalability, aiming at accelerating progress in robot learning.

2 BACKGROUND

2.1 EXPLICIT AND IMPLICIT MODELS

Figure 2: Some of the explicit
and implicit models for au-
tonomous motion.

Autonomous motion leverages either explicit or implicit mod-
els (Bekris et al., 2024). Classical robotics historically uses explicit
models, implemented as modular pipelines for perception, planning,
and control (Siciliano & Khatib, 2016). This approach suffers from
compounding errors, poor scalability to diverse deployment scenar-
ios, and undermodeling issues due to simplified analytical models
of physical interactions, limiting its effectiveness to unstructured,
dynamic environments (e.g., a house versus a factory line). In con-
trast, robot learning relies on implicit models to develop monolithic,
data-driven policies directly mapping observations to action. Robot
learning also prioritizes interaction data over rigid assumptions, and
replaces hand-engineered components with learned representations,
offering a more robust and adaptable solution for unstructured en-
vironments.

The adaptability of these learned, implicit models stems directly
from their scalability with data—a primary advantage over classical approaches. In this context,
real-world robotics data is often collected in the form of expert demonstrations via teleoperation, a
process where “cognitive decisions are made by [a] human user, while the robot is responsible for
their mechanical implementation” (Siciliano & Khatib, 2016, Ch.43, §1). In recent years, teleop-
eration hardware has become increasingly affordable, making it more and more relevant for robot
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Figure 3: Classical robotics uses modular, model-based pipelines with hand-crafted features, while
robot learning employs monolithic, data-driven policies that learn directly from interaction data.

Figure 4: (A) Low-cost, open-source robots like SO-10X and ALOHA cost a fraction of proprietary
industrial arms, using consumer-grade parts and 3D-printable designs. (B) Decentralized efforts to
collect expert demonstrations in the form of trajectories surpassed centralized efforts for the collec-
tion of large amounts of real-world robotics data.

learning. Consumer-grade VR teleoperation headsets for robotics have been used to collect robot
data both on real-world and simulated robots (Bjorck et al., 2025), and low-cost teleoperated robotic
arms (Zhao et al., 2023; Aldaco et al., 2024; Knight et al., 2024) are increasingly empowering
researchers and practitioners to collect real-world robotics data. In turn, this results in a multipli-
cation of centralized (Brohan et al., 2023; Collaboration et al., 2025; Khazatsky et al., 2025) and
de-centralized (Section 3.2) efforts to collect robot data. Figure 4 shows how fully accessible tele-
operated platforms such as the SO-100, SO-101 (jointly referred to as SO-10X, (Knight et al., 2024))
and ALOHA-2 (Aldaco et al., 2024) can cost down to a fraction of closed-source, industrial-grade
robots such as the Franka Emika Panda arm. Consequently, these low end robot platforms can be
used to collect large amounts of data in a decentralized effort powered by the very accessibility—
low-cost, open designs, 3D-printable parts—of these low-end robot platforms.

2.2 ROBOT LEARNING

Reinforcement Learning Reinforcement learning (RL) (Sutton & Barto, 2018) has been ex-
tensively applied to robotics (Kober et al., 2013), for the inherently sequential nature of control
problems and Deep RL’s capability to learn strategies for return maximization maxπ J(π) =

maxπ Eτ∼π

[∑T
t=0 γ

trt
]

directly from highly-dimensional, unstructured observations such as
images (Mnih et al., 2013). Off-policy, entropy-regularized methods such as Soft Actor
Critic (Haarnoja et al., 2018) can be adapted to exploit teleoperation data and safely train in the
real-world, thereby sidestepping concerns related to operative safety and simulation-induced dis-
crepancies. Reinforcement Learning with Prior Data (RLPD) (Ball et al., 2023) mixes offline and
online buffers without pretraining to speed up convergence, and in conjuction with (1) learned re-
ward classifiers overcoming the need to define brittle hand-crafted rewards (Luo et al., 2025) and
(2) targeted human interventions during training, can yield near-perfect success rates in challenging
manipulation tasks within 1-2 hours of real-world training (HIL-SERL, Luo et al. (2024)).
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Imitation Learning Imitation Learning via Behavioral Cloning (BC) offers a pragmatic alterna-
tive to real-world RL by learning control directly from human demonstrations, eliminating the need
for reward design and reducing exploration risk by learning to reproduce the behavior of an expert
demonstrator (Pomerleau, 1988). Collected via teleoperation on increasingly affordable hardware,
large corpora of robotics data also enable training at a scale across tasks and embodiments (Collab-
oration et al., 2025; Khazatsky et al., 2025). BC relies on learning generative models of the the joint
(or conditional) distribution over state-action pairs p : S × A 7→ [0, 1], p(a, s) (or p(a|s)) to learn
from data distributions exhibiting multiple modes, such as teleoperation data (Florence et al., 2022).
Recent works in BC thus employ powerful generative models to learn the conditional distribution
p(a|s), learning from multimodal demonstrations and produce coherent action sequences: Zhao et al.
(2023) leverages (conditional) Variational Auto-Encoders (Kingma & Welling, 2022; Sohn et al.,
2015), Chi et al. (2024) relies on Diffusion Models (Ho et al., 2020) whereas Black et al. (2024);
Shukor et al. (2025) both rely on Flow Matching (Lipman et al., 2023). Inspired by successes in
developing foundation models for vision (Dosovitskiy et al., 2020) and language (OpenAI, 2024),
BC is also increasingly being used in efforts aiming to develop robot foundation models (Jang et al.,
2022; Brohan et al., 2023; Black et al., 2024), scaling up both data and compute used to learn visuo-
motor policies suitable for real-world deployment across tasks and even robot embodiments.

Robot learning algorithms are often implemented as standalone components and their integration
with the rest of the robotics stack remains challenging.

2.3 PRACTICAL CHALLENGES FOR ROBOT LEARNING RESEARCH

Despite scientific advances, the robot learning ecosystem remains fragmented, impeding repro-
ducibility and raising the barrier to entry for research.

• Disaggregated Middleware: While middleware abstractions are available, it is common
to encounter middleware components tailored to specific platforms in practice. This het-
erogeneity often forces teams to develop bespoke adaptations, siloing efforts.

• Datasets and Formats: Large-scale datasets are typically shared in a different formats.
Data is often released in varied formats like TensorFlow Datasets, ROS bags, or bespoke
JSON layouts. The absence of a universal, modality-rich schema prevents the seamless
aggregation of disparate datasets into larger mixtures.

• Learning Frameworks: The deep learning literature has consistently demonstrated that
minor implementation differences in algorithms, data handling, and evaluation pipelines
can lead to significant variance in results (Henderson et al., 2018). In robotics, these issues
are compounded by hardware variability, further hindering reproducibility.

This ecosystem-wide fragmentation imposes significant incidental complexity on researchers, di-
verting resources from core scientific inquiry to systems integration. lerobotaddresses these
limitations by providing an end-to-end, open, and scalable library designed to unify hardware in-
terfacing, collecting and streaming data, and training and deploying advanced policies with minimal
engineering overhead.

3 FEATURES

lerobot is designed for accessibility, scalability, and reproducibility in robot learning. The library
natively integrates (1) entirely open-source hardware platforms costing a fraction of closed-source
devices, (2) a unified middleware shared across low-level robot interfaces (3) data collection, storage
and streaming tools, (4) an optimized inference engine and (5) many ready-to-use implementations
of SOTA methods in robot learning, useful to both train models from scratch and re-use openly
available pre-trained models. lerobot is entirely open-source, and highly accessible due to its
reliance on low-cost teleoperation kits, focus on empowering large-scale datasets via streaming, and
simple interface to adopt models in fully reproducible pipelines.
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Robot Type Cost (C)
SO-100/101 Manipulator (Bimanual) ∼ 225 (550)
Koch-v1.1 Manipulator (Bimanual) ∼ 670 (1346)
ALOHA Bimanual Manipulator ∼ 21k
HopeJR-Arm Humanoid Arm and hand ∼ 500
LeKiwi Mobile Manipulator ∼ 230

(a) Cost for all robot platforms supported by
lerobotand with an openly-available Bill Of Mate-
rials (BOM).

Robot # Downloads # Datasets # Episodes
Panda 1’878’395 588 926’776
xArm 1’107’329 74 450’329

WidowX 832’177 100 214’117
KUKA 662’550 3 419784
SO-101 319’586 3’965 58’299
SO-100 278’697 5’161 78’510

Koch-v1.1 43’561 849 20’959

(b) All Top-4 robots for number of downloads, datasets
and episodes openly shared, listed in decreasing order
by the total number of downloads.

3.1 ACCESSIBLE REAL-WORLD ROBOTS

lerobot currently supports multiple real-world robot platforms for both static and mobile manipu-
lation. The library fully integrates the SO-100 and SO-101 arms (Knight et al., 2024), both in a single
and bimanual setup. The library also supports the Koch-v1.1 (Moss, 2025) and ALOHA-2 (Aldaco
et al., 2024) manipulators, the Hope-JR humanoid arm (TheRobotStudio, 2025), the Stretch-3 (Hello
Robot, 2025) and LeKiwi (SIGRobotics-UIUC, 2025) mobile manipulation platforms, and lastly the
Reachy-2 humanoid (Mick et al., 2019). lerobot is designed to interface multiple open devices
with a shared middleware that can be used to (1) read the configuration on a leader robot and write
it on follower robot for teleoperation and (2) directly control the follower with a learned policy.

Table 1a shows the cost for all the robot platforms currently supported by lerobot with an openly-
available Bill of Materials (BOM), reported for completeness in Appendix A. lerobot can support
multiple robot platforms thanks to a shared middleware embedded in higher-level abstractions for
the different robots supported, and engineered to interface directly with the low-level SDKs of major
low-cost actuator producers (FeeTech and Dynamixel). Crucially, the middleware is designed to be
easily extensible and highly composable. We refer to Appendix B for an example of teleoperation
using lerobot.

3.2 DATASETS

To address the fragmented nature of data in robotics research, we introduce LeRobotDataset,
lerobot’s unified multimodal dataset schema. This standardized format is engineered to pro-
vide convenient and standardized access to robotics data spanning diverse modalities, including
high-frequency sensorimotor readings, multiple camera feeds, and teleoperation status signals. The
schema is designed to be self-contained, accommodating general metadata such as textual descrip-
tions of the demonstrated tasks for filtering and language-conditioned policies, specifics of the robot
embodiment considered, and relevant experimental parameters such as frames-per-second (FPS) of
data capture and the types sensors used. As of September 2025, 16K+ datasets from 2.2K+ indi-
vidual contributors are openly shared via the LeRobotDataset format, featuring robots directly
integrated in the library such as the SO-10X arm and unsupported robots (Franka Emika Panda,
xArm, R1Pro), ported to the LeRobotDataset format by the open-source community. We argue
the support of different robot configuration underscores the flexibility of our dataset format, and
that the coexistance of both large-scale academic benchmarks and small-scale data collection efforts
exemplifies the breadth of use-cases that our dataset format can accomodate.

Open datasets are available for downloads, and Figure 5a shows the evolution of the number of
downloads over time, with a breakdown of the share of downloads per robot type (Table 1b) and
per robot type over time (Figure 5b, see Appendix C for further details). Despite lerobot only
supporting a limited number of robots (grouped under the Other tag in Figure 5a and Figure 5e),
datasets collected for other platforms such as the Franka Emika Panda and xArm lead in the num-
ber of downloads and size of the datasets collected (Figure 5e). We argue this follows from these
platforms being often featured in research-oriented centralized data collection efforts (?Khazatsky
et al., 2025). Conversely, platforms such as the SO-10X are increasingly featured in small-scale
decentralized community efforts powered by the accessibility of (1) the hardware platforms used
and (2) LeRobotDataset format, with 50%+ of the datasets contributed being collected directly
on the SO-10X platforms (Figure 5d).
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(a) Downloads over time by robot type (b) Share of downloads by robot type

(c) Datasets over time by robot type (d) Share of datasets by robot type

(e) Episodes over time by robot type (f) Share of episodes by robot type

Figure 5: Numbers and trends of downloads, datasets, and episodes by robot type over time. The
number of episodes in each dataset has been explicitly tracked starting in October 2024 only. For
completeness, we report the top-5 robots grouped in Other, for each of the metrics considered, in
Table 4.

A primary design principle of the dataset format is scalability. The dataset architecture is opti-
mized to handle large-scale repositories potentially containing millions of expert trajectories. This
unified interface for multi-modal, sequential data is designed for seamless integration with the Py-
Torch ecosystem, further promoting standardized and repeatable research workflows. This design
is complemented by a native streaming capability designed to enhance accessibility: users can pro-
cess remotely-hosted large-scale datasets without the prerequisite of downloading the entire corpus,
thereby lowering barriers to entry for the broader community and improving on the accessibility of
robot learning research. See Appendix C for more details on streaming.

1 from lerobot.datasets.lerobot_dataset import LeRobotDataset
2 from lerobot.datasets.streaming_dataset import StreamingLeRobotDataset
3

4 repo_id = "lerobot/svla_so101_pickplace"
5 # Downloads the whole dataset and loads it in memory
6 # (allowing for random access)
7 dataset = LeRobotDataset(repo_id)
8

6
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Peak Memory
# Params CPU MPS RTX 4090 A100

ACT 52M 817.4MB 462MB 211.24 MB 211.24 MB
Diffusion Policy 263M 1.22GB 224MB 1.12 GB 1.12 GB

π0 3.5B 4.13GB 97MB 13.32 GB 13.32 GB
SmolVLA 450M 1.69GB 555MB 1.75 GB 1.75 GB

Table 2: Peak memory consumption of policy models currently supported by lerobot. All models
are run in full precision (fp32). Diffusion and Flow Models are run with 10 denoising steps at
inference. All models maintain their original outputs shapes.

9 # Streams frames on the fly without downloading
10 # (access frames sequentially, .next())
11 dataset = StreamingLeRobotDataset(repo_id)

3.3 MODELS

Figure 6: The different robot
learning algorithms currently
supported by lerobot.

lerobot supports reference implementation for multiple SOTA
robot learning algorithms, providing useful baselines for ex-
perimentation and accessible models across RL, such as HIL-
SERL (Luo et al., 2024) and TD-MPC (Hansen et al., 2022) and
BC, both for single-task ACT (Zhao et al., 2023), Diffusion Pol-
icy (Chi et al., 2024) and VQ-BET (Lee et al., 2024), and multi-task
models such as π0 (Black et al., 2024) and SmolVLA (Shukor et al.,
2025) (Figure 6).

lerobot offers support for custom models too, grouped together
under the Other tag in Figure 7. All the control policies imple-
mented in lerobot are written in pure Pytorch (Paszke et al.,
2019), and integrated with the library to allow (1) training models
from scratch on datasets collected via real-world demonstrations,
and (2) inference using openly available pre-trained models. The
library is designed to for high accessibility, providing a composable
set of recipes which can be used to train a model from scratch in
less than 100 lines-of-code (LOC), and serve models in less than 40 LOC (Appendix D).

In its effort to foster accessibility, lerobot supports multiple models with different computational
constraints, ranging from lightweight single-task models to larger, multi-task models. ACT (Zhao
et al., 2023) is a particularly popular model dominating the number of uploads (Figure 7a), con-
sistenly ranking as one of the most popular policies trained (Figure 7b) and used (Figure 7d). We
ascribe the popularity of ACT to (1) its small size and fast inference speed and (2) straightforward ap-
plication to limited amount of real-world demonstrations, allowing users to obtain well-performing
policies with as little as 50 real-world trajectories. As a single-task model, however, ACT necessi-
tates retraining whenever changes in the experimental conditions occur. SmolVLA (Shukor et al.,
2025) is a powerful, small-scale Vision-Language-Action model which allows to control real-world
robots via language conditioning, resulting in an overall wider applicability to practical scenarios.

Table 2 and Table 3 report the peak memory footprint and the average inference latency, measured
over 100 test samples, for the most widely used policies supported by lerobot. Evaluations were
conducted on four platforms: (1) a MacBook Pro M1 (2021, 16GB, CPU only), (2) the same Mac-
Book Pro with the MPS backend, (3) an NVIDIA RTX 4090, and (4) an NVIDIA A100. All models
were executed in full fp32 precision at runtime, with inference timed-out after 5 seconds. Over-
all, peak memory footprints largely align with theoretical estimates obtained from the combination
of model parameter count and numerical precision. The main exceptions are the CPU and MPS
backends, where unified memory and frequent offloading to swap introduce variability, obscuring
direct performance comparisons and increasing latency. Latency measurements are averaged across
all non—timed-out trials, with both mean and standard deviation reported in Table 3. Smaller, task-
specific models such as ACT exhibit high efficiency on accelerated backends like MPS and achieve
inference rates of ∼100-200Hz on high-end GPUs such as the RTX 4090 and A100. Crucially,
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Avg Inference Latency (ms)
# Params CPU MPS RTX 4090 A100

ACT 52M 182.313
± 40.82

42.667
± 10.085

5.013
± 0.061

13.77
± 0.445

Diffusion Policy 263M (100%) 3453.838
± 39.271

369.788
± 0.193

613.893
± 10.173

π0 3.5B (100%) (100%) 209.381
± 2.762

568.978
± 2.937

SmolVLA 450M 2028.461
± 302.59 (2%)

721.826
± 57.748

99.244
± 1.195

278.833
± 1.886

Table 3: Average and standard deviation inference latency over 100 forward passes for policy models
currently supported by lerobot. Diffusion and Flow Models are run with 10 denoising steps at
inference time. (x%) indicates the percentage of samples that timed-out before the 5000ms hard
stop (0% omitted).

(a) Models uploaded over time by policy type. (b) Share of the models uploaded over time by policy
type.

(c) Models downloaded over time by policy type. (d) Share of models downloaded over time by policy
type.

Figure 7: Numbers and trends of uploads and downloads of robot learning models by policy type
over time. TD-MPC (Hansen et al., 2022), HIL-SERL (Luo et al., 2024) and VQ-BET (Lee et al.,
2024) are absent from all visualizations as they are not typically uploaded by users.

larger models such as π0 require substantially longer per each forward passes on average on all plat-
forms, and even fail to complete inference within the 5s limit on lower-tier devices, underscoring
the challenges in deploying robotics foundation models in practice.

3.4 INFERENCE

lerobot defines a custom inference stack which is designed to decouple action prediction (in-
ference) from action execution (control), at both the physical and logical level (Figure 8). This
optimized stack is designed for modern robot learning policies, increasingly predicting sequences
of actions (action chunks, at:t+H−1, (Zhao et al., 2023)) rather than single controls. All the BC
policies supported by lerobot predict action chunks.

8
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Figure 8: Overview of the generalized inference schema supported by lerobot, whereby a remote
server can be used to host compute-expensive policies for inference, while the robot client receives
a stream of the actions chunks to enact. The schema provides scalability and flexibility through the
possibility to fully customize the function f used to aggregate overlapping chunks.

Physical decoupling allows inference to run on a remote machine connected over the network to
the robot’s low-level controller. This design enables the use of higher-end computational resources
than those typically available aboard a robot for inference, while control is maintained at the de-
sired control frequency stepping through the multiple actions received. Further, logical decoupling
implements inference via an asynchronous producer-consumer scheme: the inference process pre-
dicts action sequences with a look-ahead horizon H in parallel with environment control, which
consumes actions at a fixed control rate. Overlapping predictions are merged via a generalized ag-
gregation function f , which users can easily specify for their own use cases, ensuring a non-empty
action queue and preventing idleness of the robot by overlaying action prediction and action execu-
tion. We refer to Appendix E for more details on the performance of decoupled inference.

4 CONCLUSIONS

In this work we introduced lerobot, a unified, open-source stack for end-to-end robot learning that
bridges low-level control, large-scale data tooling, and scalable learning algorithms. We showed how
accessible teleoperation of multiple real-world robot through a shared middleware can be used to
collect real-world data across a variety of robot platforms. Further, we illustrated how standardized
datasets can be exploited to collect and reuse data at scale, powering advancements in robot learning
thanks to the thousands of datasets collected, resulting in hundreds of thousands of episodic data,
and hundreds of models openly contributed by the robot learning community.

Limitations We identify several limitations remaining in our contribution. First, robots coverage
is currently far from exhaustive, as we support a practical but incomplete set of arms, grippers, sen-
sors, and controllers. Over the course of 2025, lerobot went from supporting 3 manipulation
setups (Koch-v1.1, SO-100, ALOHA) to the 8 regular, humanoid and mobile manipulators cur-
rently supported, and we highlight that keeping a similar rate of progress is paramount to properly
serve the robot learning community. Second, the coverage in terms of robot learning algorithms is
also non-exhaustive. We provide strong, reproducible implementations across key paradigms, while
extending the library with additional algorithms remains future work. Third, achieving strong prac-
tical inference performance still requires low-level optimization (quantization, graph compilation,
etc) that are currently disregarded by the library. We view these limitations as concrete, tractable
avenues for community contributions and future development, and in the very spirit of open-source,
invite the broader robot learning community to address them. However, despite these limitations,
our work takes a significant step toward an end-to-end stack for robot learning, providing a useful
tool for researchers and practioners in the field.
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A OPENLY-AVAILABLE ROBOTS

• SO-10X Guide from Knight et al. (2024): https://github.com/
TheRobotStudio/SO-ARM100.

• Koch-v1.1 Guide from Moss (2025): https://github.com/jess-moss/
koch-v1-1

• ALOHA Guide from Zhao et al. (2023) here.
• HopeJR-Arm Guide from TheRobotStudio (2025): https://github.com/
TheRobotStudio/HOPEJr/blob/main/Arm/BOM.md

• LeKiwi Guide from SIGRobotics-UIUC (2025): https://github.com/
SIGRobotics-UIUC/LeKiwi/blob/main/BOM.md

B REAL-WORLD ROBOTS API

1 from lerobot.teleoperators.so100_leader.so100_leader import \
2 SO100Leader
3 from lerobot.teleoperators.so100_follower.so100_follower import \
4 SO100Follower
5

6 teleop = SO100Leader()
7 # (provided teleop matches) can also be Reachy-2, LeKiwi, etc.
8 robot = SO100Follower()
9

10 teleop.connect()
11 robot.connect()
12

13 action = teleop.get_action()
14 print(action)
15 # {’shoulder_pan.pos’: 84.74,
16 # ’shoulder_lift.pos’: 4.95,
17 # ’elbow_flex.pos’: 70.6,
18 # ’wrist_flex.pos’: -88.41,
19 # ’wrist_roll.pos’: 57.89,
20 # ’gripper.pos’: 4.13}
21

22 robot.send_action(action) # moves robot according to ‘action‘
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Robot # Datasets
unknown 2370

lekiwi 535
arx5 371
aloha 334

aiworker 202

(a) Top-5 robot platforms in the
"Other" category for number of
datasets.

Robot # Downloads
unknown 711729

google_robot 438560
so101 319586
so100 278697
aloha 45219

(b) Top-5 robot platforms in the
"Other" category for number of
downloads.

Robot # Episodes
google_robot 213852

unknown 170706
so100 78510
so101 58299
easo 45652

(c) Top-5 robot platforms in the
"Other" category for number of
episodes.

Table 4: Breakdown of the Other category by top-5 robot platforms across datasets, downloads, and
episodes.

Figure 9: Openly-available datasets with the largest number of downloads using the
LeRobotDataset format. The most downloaded datasets are academic benchmarks released
by the research community (Collaboration et al., 2025; Khazatsky et al., 2025).

C DATASETS

Table 4 further breaks down the Other category for the number of downloads, datasets and episodes,
and it shows how faulty dataset that do not explicitly record the robot platform used (tagged as
unknown) dominate in the Other category.

Figure 9 shows the most downloaded datasets by robot type. Crucially, the largest number of down-
loads is not achieved for a platform natively integrated in lerobot, further undescoring the adop-
tion of the LeRobotDataset format in the robotics community.

C.1 STREAMING DATASETS

The development of StreamingLeRobotDataset addresses several fundamental chal-
lenges associated with the efficient utilization of large-scale robotic datasets in robot learning
pipelines. Traditional approaches to dataset handling rely on pre-loading data into local mem-
ory, which becomes increasingly impractical as datasets grow to the million-episodes scale.
StreamingLeRobotDataset supports a streaming paradigm, whereby frames—defined as in-
dividual items in a dataset—are fetched on-demand from remote storage rather than preloaded in
their entirety. This architectural shift required addressing three core challenges: (1) efficient data
access under strict memory constraints, (2) ensuring sufficient randomness during iteration to sup-
port robust learning, and (3) enabling multi-frame retrieval in a setting that is inherently sequential
and non-indexable.

Efficient Streaming of Large-Scale Data. The LeRobotDatasetformat partitions robotic data
into tabular records (.parquet files) and compressed videos (.mp4 files), alongside lightweight
metadata. Metadata files are downloaded fully due to their negligible size relative to the dataset, but
all high-volume video and control streams are processed on demand. This is achieved through two
principal design choices: (1) adoption of an IterableDataset interface, and (2) integration with
torchcodec for on-the-fly video decoding. These components together enable data consumption
through simple iterative calls, while maintaining memory usage bounded irrespective of dataset size.
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(a) Timing performance of stepping through single
frames of a StreamingLeRobotDataset com-
pared to a pre-loaded LeRobotDataset.

(b) Timing performance of stepping through
a dataset retrieving multiple frames of a
StreamingLeRobotDataset compared to a
pre-loaded LeRobotDataset.

Figure 10: Timing performance of StreamingLeRobotDataset versus a regular
LeRobotDataset.

Provided a good network connectivity, Figure 10 shows timing performance is comparable between
the two formats in the steady-state regime (after initialization).

C.2 EXAMPLE: USE A DATASET

1 import torch
2 from lerobot.datasets.lerobot_dataset import LeRobotDataset
3

4 delta_timestamps = {
5 # 0.2, and 0.1 seconds *before* each frame
6 "observation.images.wrist_camera": [-0.2, -0.1, 0.0]
7 }
8

9 # Optionally, use StreamingLeRobotDataset to avoid downloading the dataset
10 dataset = LeRobotDataset(
11 "lerobot/svla_so101_pickplace",
12 delta_timestamps=delta_timestamps
13 )
14

15 # Get frame in the dataset by their index
16 sample = dataset[0]
17 print(sample)
18 # {
19 # ’observation.state’: tensor([...]),
20 # ’action’: tensor([...]),
21 # # extra dimension due to delta timesteps
22 # ’observation.images.wrist_camera’: tensor([3, C, H, W])
23 # ...
24 # }
25

26 batch_size=16
27 # wrap the dataset in a DataLoader for training/inference purposes
28 data_loader = torch.utils.data.DataLoader(
29 dataset,
30 batch_size=batch_size
31 )
32

33 # Iterate over the DataLoader in a training loop
34 num_epochs = 1
35 device = "cuda" if torch.cuda.is_available() else "cpu"
36

37 for epoch in range(num_epochs):
38 for batch in data_loader:
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(a) Models uploaded by policy type. Policies not
present have not been publicly uploaded.

(b) Models downloaded by policy type. Policies not
present have not been publicly downloaded.

39 # Move data to the appropriate device (e.g., GPU)
40 observations = batch["observation.state"].to(device)
41 actions = batch["action"].to(device)
42 images = batch["observation.images.wrist_camera"].to(device)
43

44 # Next, process the data for training or inference
45 ...

C.3 EXAMPLE: USE A STREAMING DATASET

1 from lerobot.datasets.streaming_dataset import StreamingLeRobotDataset
2

3 # Streams frames on the fly without downloading the dataset
4 dataset = StreamingLeRobotDataset(
5 "lerobot/svla_so101_pickplace",
6 delta_timestamps=delta_timestamps
7 )

D MODELS

D.1 EXAMPLE: TRAIN A MODEL

1 import torch
2

3 from lerobot.configs.types import FeatureType
4 from lerobot.datasets.lerobot_dataset import (
5 LeRobotDataset, LeRobotDatasetMetadata
6 )
7 from lerobot.datasets.utils import dataset_to_policy_features
8 from lerobot.policies.factory import make_pre_post_processors
9

10 # Users can use many plug-in policies from the library
11 from lerobot.policies.diffusion.configuration_diffusion import \
12 DiffusionConfig
13 from lerobot.policies.diffusion.modeling_diffusion import DiffusionPolicy
14

15 output_directory = "outputs/train/example_pusht_diffusion"
16 device = torch.device("cuda")
17 training_steps = 5000
18 log_freq = 1
19

20 repo_id = "lerobot/pusht" # Replace with your dataset
21 dataset_metadata = LeRobotDatasetMetadata(repo_id)
22

23 features = dataset_to_policy_features(dataset_metadata.features)
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24 output_features = {
25 key: ft for key, ft in features.items()
26 if ft.type is FeatureType.ACTION
27 }
28 input_features = {
29 key: ft for key, ft in features.items()
30 if key not in output_features
31 }
32

33 cfg = DiffusionConfig(
34 input_features=input_features,
35 output_features=output_features
36 )
37

38 policy = DiffusionPolicy(cfg)
39 policy.train()
40 policy.to(device)
41 preprocessor, postprocessor = make_pre_post_processors(
42 cfg, dataset_stats=dataset_metadata.stats
43 )
44

45

46 delta_timestamps = {
47 "observation.image": [-0.1, 0.0],
48 "observation.state": [-0.1, 0.0],
49 "action": [
50 -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
51 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4
52 ],
53 }
54

55 dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)
56

57 optimizer = torch.optim.Adam(policy.parameters(), lr=1e-4)
58 dataloader = torch.utils.data.DataLoader(
59 dataset,
60 num_workers=4,
61 batch_size=64,
62 shuffle=True,
63 pin_memory=device.type != "cpu",
64 drop_last=True,
65 )
66

67 step = 0
68 done = False
69 while not done:
70 for batch in dataloader:
71 batch = preprocessor(batch)
72 loss, _ = policy.forward(batch)
73 loss.backward()
74 optimizer.step()
75 optimizer.zero_grad()
76

77 if step % log_freq == 0:
78 print(f"step: {step} loss: {loss.item():.3f}")
79 step += 1
80 if step >= training_steps:
81 done = True
82 break
83

84 # Save a policy checkpoint.
85 policy.save_pretrained(output_directory)
86 preprocessor.save_pretrained(output_directory)
87 postprocessor.save_pretrained(output_directory)
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Inference Success Rate (%)

Pick-Place Stacking Sorting Avg

Sync 75 90 70 78.3
Async 80 90 50 73.3

(a) Performance (success rates).

Inference Time (s)

Total Avg Std

Sync 137.5 13.75 2.42
Async 97.0 9.70 2.95

(b) Task completion time.

Inference # of Cubes

Total Avg Std

Sync 9 1.8 0.45
Async 19 3.8 1.3

(c) Performance in fixed time
(60s per each episode).

Table 5: Comparison between regular (Sync) and optimized (Async) inference. We evaluate the
SmolVLA implementation provided in lerobot on three real-world performed using the SO-100
arm, consisting of (1) pick and place cubes (2) stacking cubes on top of each other and (3) sorting
cubes. lerobot’s decoupled inference schema achieves similar success rates (left) but results
in significantly reduced cycle times (middle) and thus higher throughput (right), over the 10 test
episodes (60s each) for the task considered.

D.2 EXAMPLE: USE A PRE-TRAINED MODEL

1 from typing import Any
2 from lerobot.policies.smolvla.configuration_smolvla import \
3 SmolVLAConfig
4 from lerobot.policies.smolvla.modeling_smolvla import SmolVLAPolicy
5 from lerobot.datasets.lerobot_dataset import \
6 LeRobotDatasetMetadata
7

8 from lerobot.policies.factory import make_pre_post_processors
9 from lerobot.teleoperators.so100_follower.so100_follower import \

10 SO100Follower
11

12 # Take a dataset on which SmolVLA was trained, for normalization
13 repo_id = "lerobot/svla_so101_pickplace"
14 dataset_metadata = LeRobotDatasetMetadata(repo_id)
15

16 cfg = SmolVLAConfig()
17 policy = SmolVLAPolicy(cfg)
18 preprocessor, postprocessor = make_pre_post_processors(
19 cfg, dataset_stats=dataset_metadata.stats
20 )
21

22 robot = SO100Follower(...)
23 raw_obs: dict[str, Any] = robot.get_observation()
24

25 # Preprocess the observation for inference
26 policy_input = preprocessor(raw_obs)
27 # Select the action from the policy
28 policy_output = policy.select_action(policy_input)
29 # Postprocess the action for the robot
30 policy_action = postprocessor(policy_output)
31

32 robot.send_action(policy_action)

E INFERENCE

Optimized inference accelerate cycle times across multiple tasks with comparable performance (Ta-
ble 5), and provide a scalable path to higher model capacity without compromising on real-time
control, provided access to a network. In particular, the speedup presented in Table 5 derives from
logical decoupling—asynchronously computing the next chunk while the current one has not been
exhausted yet—rather than physical decoupling, as both the server and client run on the same ma-
chine, though in principle the inference stack allows for communication between different machines.

E.1 EXAMPLE: HOST A REMOTE SERVER
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1 # Run this script to start the policy server on any machine
2 from lerobot.scripts.server.configs import PolicyServerConfig
3 from lerobot.scripts.server.policy_server import serve
4

5 config = PolicyServerConfig(
6 host="localhost",
7 port=8080,
8 )
9 serve(config)

E.2 EXAMPLE: STREAM ACTIONS TO A ROBOT

1 # Run this script to start the robot client on the robot’s computer
2 import threading
3 from lerobot.scripts.server.configs import RobotClientConfig
4 from lerobot.scripts.server.robot_client import RobotClient
5

6

7 camera_cfg = ... # cameras used by the visuomotor policy
8 robot_cfg = ... # a given robot supported by the library
9

10 # 3. Create client configuration
11 client_cfg = RobotClientConfig(
12 robot=robot_cfg,
13 # attach to the server running the policy
14 server_address="localhost:8080",
15 # use a higher-end device for inference
16 policy_device="cuda:0",
17 policy_type="pi0",
18 pretrained_name_or_path="lerobot/pi0"
19 )
20

21 # 4. Create and start client
22 client = RobotClient(client_cfg)
23

24 task = ... # Specify the task using natural language
25

26 if client.start():
27 # Start action receiver thread
28 action_receiver_thread = threading.Thread(
29 target=client.receive_actions, daemon=True
30 )
31 action_receiver_thread.start()
32

33 try:
34 # Run the control loop
35 client.control_loop(task)
36 except KeyboardInterrupt:
37 client.stop()
38 action_receiver_thread.join()
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