
Statistical Inference Under Constrained Selection Bias

Santiago Cortes-Gomez 1 Mateo Dulce 2 Carlos Patino 3 Bryan Wilder 1

Abstract
Large-scale datasets are increasingly being used
to inform decision making. While this effort aims
to ground policy in real-world evidence, chal-
lenges have arisen as selection bias and other
forms of distribution shifts often plague obser-
vational data. Previous attempts to provide robust
inference have given guarantees depending on
a user-specified amount of possible distribution
shift (e.g., the maximum KL divergence between
the observed and target distributions). However,
decision makers will often have additional knowl-
edge about the target distribution which constrains
the kind of possible shifts. To leverage such in-
formation, we propose a framework that enables
statistical inference in the presence of selection
bias which obeys user-specified constraints in the
form of functions whose expectation is known
under the target distribution. The output is high-
probability bounds on the value of an estimand
for the target distribution. Hence, our method
leverages domain knowledge in order to partially
identify a wide class of estimands. We analyze the
computational and statistical properties of meth-
ods to estimate these bounds and show that our
method can produce informative bounds on a vari-
ety of simulated and semisynthetic tasks, as well
as in a real-world use case.

1. Introduction
Decision-makers in the public and private sectors increas-
ingly rely on machine learning or statistical models built on
top of large-scale datasets in order to inform policy, opera-
tional decisions, individualized treatment rules, and more.
However, these administrative datasets are typically purely
observational, meaning that they are not carefully designed
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to sample from a true distribution of interest. Consequently,
such efforts have been hindered by sampling biases and
other distributional shifts between the observed data and
the target distribution. Such selection biases have presented
severe issues for past algorithmic systems (Chouldechova
et al., 2018; Gianfrancesco et al., 2018), policy analysis
(Harron et al., 2017; Knox et al., 2020), epidemiological
studies (Jensen et al., 2015; Haneuse & Daniels, 2016),
among others.

As a motivating example, decision-makers in public health
want to target preventative interventions to mitigate the im-
pact of a COVID-19 outbreak. To achieve this aim, they may
wish to estimate the risk factors contributing to a particular
adverse outcome related to COVID-19, e.g. hospitalizations.
Nevertheless, they typically only will have data from in-
dividuals who engaged with some specific services in the
past, such as patients who visited the healthcare system or
insurance claims. Furthermore, it is a known phenomenon
that individuals with a low income background will seek
care primarily when facing severe diseases, thus increasing
observed hospitalizations for this group. Hence, the selec-
tion bias present in the data will be driven by some latent
factors (for instance, high healthcare costs) and the outcome
itself; thus creating a problem similar to confounding when
estimating the relationship between these two quantities.

We consider the task of accurately estimating some func-
tional of the ground-truth distribution using samples from
an observed, potentially shifted, distribution. For instance,
our goal might be to estimate the expectation of a measured
covariate or the treatment effect from an intervention. In
general, such inference is intractable without assumptions
on the relationship between the observed and target dis-
tributions. The simplest setting is where we can directly
observe some samples from the target distribution. How-
ever, we are interested in scenarios where this is not the case,
for example, the one introduced in the previous paragraph;
given that the data is conditioned among other things on
the outcome, it presents the insidious problem that it will
never be representative of the population as whole. Ab-
sent target-distribution samples, other frameworks such as
those related to distributionally robust optimization (DRO)
(Gupta & Rothenhäusler, 2021; Bertsimas et al., 2022; Yad-
lowsky et al., 2022; Rothenhäusler & Bühlmann, 2022) or
sensitivity analysis (Robins et al., 2000; Tan, 2006; Ding &
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VanderWeele, 2016) allow users to specify the total magni-
tude of distribution shift allowed. Such magnitude is usually
modeled by imposing a limit on the maximum distance (e.g.,
KL or χ2 divergence) between the target distribution and
the observed one. However, since the target distribution
(or samples of it) is unavailable, this assumption cannot
be empirically verified, and often cannot even be set in an
informed manner. Our goal is to provide provable guar-
antees without introducing untestable assumptions on the
magnitude of shift, by using only observable quantities to
set bounds on the possible difference in distributions.

Intuitively, this may be possible because decision makers of-
ten have aggregate knowledge about the target distribution.
For instance, a policymaker may know, via census data, the
distribution of demographic characteristics such as age, race,
or income from the population as a whole. Moreover, in
the public health setting, serosurveys may provide ground-
truth estimates of exposure to infectious diseases in specific
locations or population groups (Havers et al., 2020). This
aggregate information is typically not sufficient by itself for
the original task because it fails to measure the key outcome
or covariates of interest (e.g., knowing the demographic dis-
tribution of a population is by itself unhelpful for estimating
a patient’s risk of hospitalization). However, it imposes con-
straints on the nature of the distribution shift between the
observed distribution and the underlying population: any
valid shift must respect these known quantities.

Concretely, our contributions are as follows:

• We introduce a framework that allows user-specified
constraints on distribution shift via known expectations.
Our framework incorporates such external information
into an optimization program whose value gives valid
bounds on a statistic of interest using samples from
an observed distribution. As a result, we are able to
provide estimates by adding more observables in lieu
of assumptions that are not empirically testable (e.g.,
the KL divergence between the target and sample dis-
tributions).

• We analyze the statistical properties of estimating these
bounds using a sample average approximation for the
optimization problem. We show that our estimators are
asymptotically normal, allowing us to provide valid
confidence intervals.

• We extend our framework to accommodate estimands
without a closed form (e.g., a regression coefficient
or an estimated model parameter), provide statistical
guarantees for this setting, and propose computational
approaches to solve the resulting optimization problem.

• We perform experiments on synthetic and semi-
synthetic data to test our methods. The results

empirically confirm that our framework provides valid
bounds for the target estimand and allows effective
use of domain knowledge: incorporation of more
informative constraints produces tighter bounds. All
the code for our experiments, together with a guide
on how to replicate each one of them, is available at
https://github.com/secg5/inference_
contrained_distribution_shift.

• We showcase a real-world case of study of assessing
disparities in COVID-19 disease burden using a large-
scale insurance claims dataset where our method al-
lows us to produce policy-relevant results under the
presence of selection bias.

Additional related work. Our work is broadly related to
the literature on partial identification, which spans statistics,
economics, epidemiology, and computer science (Manski,
2003; Tamer, 2010; Ho & Rosen, 2015; Molinari, 2020).
Interest in partial identification has grown recently in the
machine learning community, particularly in the causal
inference setting. For example, (Hu et al., 2021; Bal-
azadeh Meresht et al., 2022) consider partial identification
of treatment effects for a known causal graph, extending the
classic framework of (Balke & Pearl, 1997) to incorporate
generative models. (Guo et al., 2022) consider the setting
where covariates are subject to a user-specified level of noise.
Perhaps closer to our setting is (Padh et al., 2023). They
consider methods for incorporating domain knowledge into
partial identification problems. However, in their setting,
domain knowledge takes the form of functional form restric-
tions for the treatment effect (e.g., smoothness or number of
inflection points), rather than constraints on shift between
observed and target distributions. Similar ideas in the con-
text of prediction are explored by Bertail et al. (2021); they
provide finite sample guarantees for the empirical risk min-
imization problem under the assumption that the learned
parameter is part of a well behaved parametric class of func-
tions. However, their assumption shares the same problem
as the current methods in the literature: it is not empirically
verifiable. Our work differs from the existing ML litera-
ture both in that we are concerned with inference problems
broadly (not restricted to treatment effects), and in that we
provide a means to impose externally-known constraints on
shifts such as selection bias. Related issues have recently
been considered in the epidemiology and biostatistics litera-
ture, motivated by the growing use of biobank-style datasets
with known selection biases (Tudball et al., 2019; Horowitz
& Lee, 2022). Our work differs in that we explicitly con-
sider the algorithmic properties of computing the resulting
bounds, and in our analysis of estimators which themselves
require fitting a model.
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2. Problem formulation
LetX be a random variable over a space X , with distribution
P in a population of interest. Our goal is to estimate a
real-valued functional f(P). One prominent example is
estimating the expectation f(P) = EX∼P[h(X)] for some
function h, but we will consider a range of examples for
f . If we observe iid samples from P, estimating f(P) is a
standard inference task. For instance, we may use the plug-
in estimate f(P̂N ), (where P̂N is the empirical distribution)
or any number of other strategies. However, we consider a
setting where we instead observe samples drawn iid from
a different distribution Q. For illustration purposes, recall
the example mentioned in the introduction: policymakers
are interested in information relative to the population as
a whole (f(P)) but they only have access to observational
data from the hospitals or insurance claims, i.e., a sample
from Q.

We assume that both P and Q have densities p and q,
respectively, and that q(X) > 0 whenever p(X) > 0.
More formally, we require that P is absolutely continuous
with respect to Q so that the ground truth density ratio
θ0(X) = p(X)

q(X) is well defined. Intuitively, inference on P
is impossible if some portions of the distribution can never
be observed. Accordingly, similar overlap assumptions are
near-universal in causal inference (Imbens, 2004), domain
adaptation (Byrd & Lipton, 2019), selection bias (Rosen-
baum & Rubin, 1983), distributionally robust optimization
(Namkoong & Duchi, 2016), etc. We expect this assumption
to be satisfied in many application domains because selec-
tion bias is not strong enough to make some observations
literally impossible. Our running COVID-19 example illus-
trates this: a patient with any covariates X can in principle
seek care (and some such patients do), even if they have
worse access than patients with a different set of covariates
X ′.

With slight abuse of notation, we let θP denote a distribution
with density θ(X)p(X), so under our definition of θ0(X),
θ0Q = P. In the case of estimating an expectation, we
have that EX∼P[h(X)] = EX∼Q[θ0(X)h(X)]. If θ0 was
known, estimating f(P) using samples from Q would be
easily accomplished using standard methods (importance
sampling). However, our focus is on the setting where θ0
is not known, and we don’t have access to samples from P
from which to estimate it.

Without any information about the relationship between P
and Q this is a hopeless task. However, in many settings
of importance some information is available, in the form
of auxiliary functions whose true expectation under P is
known. In policy settings, this may come from census data,
or well-design population surveys that estimate the ground-
truth prevalence of specific health conditions (c.f. (Murray
& Lopez, 2013; Johnson et al., 2014; Havers et al., 2020)).

Concretely, suppose we are able to observe EP[gj(X)] for
a collection of functions g1, . . . , gm. Given that θ0Q = P,
we have that θ0 must satisfy

EQ[θ0(X)gj(X)] = EP[gj(X)], j = 1, . . . ,m.

Let Θ to be the set of density ratios θ which satisfy the above
constraints, all of which are consistent with our observations.
In general, Θ will not be a singleton and so f(P) will not
be point-identified. However, it is partially identified with
the following bounds:
Proposition 2.1.

f(P) ∈
(
min
θ∈Θ

f(θQ), max
θ∈Θ

f(θQ)

)
,

and these bounds are tight.

In the following, we provide computationally and statisti-
cally efficient methods for estimating these upper and lower
bounds, each of which are defined via an optimization prob-
lem over θ. Θ encapsulates the constraints on potential
distribution shifts that are known in a particular domain,
allowing an analyst to translate additional domain knowl-
edge into tighter identification of the estimand. Intuitively,
such identification will be close to point-wise when the con-
straints are informative enough about the behaviour of the
estimand of interest under the true distribution. On the other
hand, the bounds will be vacuous if there is no constraint
on the joint distribution, when knowledge about one covari-
ate does not inform the others. In general, we expect our
method to be useful when some such joint information is
available, and we provide several experimental examples of
policy-relevant questions using both Census data as well as
a real application to Covid-19 insurance claims data. Ad-
ditionally, we compute explicit non-trivial bounds for an
example in the Appendix.

Our aim is to use the observed sample X1, . . . , XN drawn
iid from Q to estimate the value of the optimization prob-
lems defining our lower and upper bounds. Note that in
order to do so, we have to tackle two different types of
uncertainty. First, the uncertainty derived from partial iden-
tification; even if Q was known exactly, the population level
quantities minθ∈Θ /maxθ∈Θ f(θQ) do not exactly identify
f(P) . Second, finite-sample uncertainty from the estima-
tion of the population level quantity f(θQ) using a sample
X1, . . . , XN from Q: the statistical uncertainty from taking
f(θQ̂N ) as an approximation of f(θQ). We will provide
confidence bounds for f(P) which account for both partial
identification and finite-sample uncertainty in estimation.
Throughout, we will assume for convenience that the op-
timization problems defining each side of the bound have
a unique solution (if this is not satisfied, we could, e.g.,
modify the objective function to select a minimum-norm
solution).
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3. Methods
We now proceed to estimate the aforementioned bounds.
Proposition 2.1 reduces the problem of computing such
bounds to solving an optimization program. Throughout,
we consider the problem of estimating the lower bound (i.e.,
solving the minimization problem), as the upper bound is
symmetric. To start, we impose no restrictions on θ(X) by
representing θ(X) as an arbitrary function. This yields the
following optimization problem:

min
θ
f(θQ)

θ(X) ≥ 0 ∀X,
EX∼Q[θ(X)gj(X)] = EP[gj(X)] j = 1, . . . ,m.

(1)

where the constraint θ(X) ≥ 0 ensures that θ is a valid den-
sity ratio. However, neither f(θQ) nor the population level
restrictions can be observed directly. Nevertheless, having
access to a sample from Q, it is only natural to use plug-
in estimators to estimate the unavailable quantities from
the previous program. This yields the sample optimization
problem:

min
θ
f(θQ̂N )

θ(Xi) ≥ 0 ∀i = 1, . . . , N,

1

N

N∑
i=1

θ(Xi)gj(Xi) = EP[gj(X)] j = 1, . . . ,m

(2)

where Q̂N is the empirical distribution of Q. We refer
to the first problem (1) as the population optimization
problem (minθ f(θQ)) and to the second one (2) as the
plug-in approximation (minθ f(θQ̂N )).

Let ν be the optimal value of the population problem and
ν̂N the optimal value of the plug-in approximation problem.
Suppose

√
n(ν̂N−ν) converges in distribution to a normally

distributed random variable, such that, it has mean zero and
variance that can be estimated from the data. If this is
indeed the case, then the standard procedure to derive valid
confidence intervals for ν can be applied. Furthermore,
as corollary from Proposition 2.1, we can produce a high
probability lower bound for f(P). As the maximization
problem is symmetric, we can use the same argument to
upper bound f(P) with high probability.

We now turn to analyze several scenarios where this recipe
can be applied. We use the theory of sample average approx-
imation in optimization (Shapiro, 1991; Shapiro et al., 2021)
to describe the conditions to guarantee, both convergence
and asymptotic normality, for the statistic

√
n(ν̂N − ν).

However, before developing this mathematical scaffolding,
it is necessary to make one more assumption: we will as-
sume a differentiable and finite-dimensional parametrization
of θ(X); such parametrization will be denoted by θα(X) for

some α ∈ Rd. Note that this class is still quite expressive,
for instance, a standard basis for smooth functions (e.g., a
set of polynomial basis functions) allows us to represent any
smooth function in this framework. Alternatively, an analyst
could use a highly expressive class such as neural networks
(Hornik et al., 1989).

3.1. Convex estimands

We start with the case where f(θαQ) is a convex function
of α. The most prominent case where this holds is when
f is the expectation of some function h, in which case
f(θαQ̂N ) = 1

N

∑N
i=1 θα(Xi)h(Xi) is linear in α, and will

be convex in α when α 7→ θα is convex. Another example
is when f is a conditional expectation, conditioned on some
event X ∈ C. Then, we have

f(θαQ) = EX∼θαQ[h(X)|X ∈ C],

f(θαQ̂N ) =

∑N
i=1 1[Xi ∈ C] · θα(Xi)h(Xi)∑N

i=1 θα(Xi)1[Xi ∈ C]
.

The plug-in approximation of f is no longer linear in θα
because θα determines both the numerator and the denomi-
nator. However, it can be reformulated as a linear function
using the standard Charnes-Cooper transformation (Zionts,
1968) and thus can be computed by the means of a linear
program. It is worth pointing out that, being linear programs,
the previous two examples can be efficiently computed.

When f is a convex function of α, we can leverage standard
results in sample average approximation programs (Shapiro
et al., 2021) to show asymptotic normality in our setting.
Let λj be the dual variable associated with constraint j, and
λ∗j be the optimal value of λj in the population problem.
Similarly, let α∗ be the population-optimal value of θα.
Then, we have

Proposition 3.1. Let f(θαQ̂N ) be convex in α. Moreover,
assume α ∈ S for S compact and that the Slater’s condition
holds. Then,

√
N(ν − ν̂N )

d→ N (0, σ2) . In particular,
if f(θαQ) = EQ[h(x)θα], then σ2 = Var[θα∗(X)h(X) +∑M

j=1 λ
∗
j (θα∗(X)gj(X)− EP[gj(X)])].

We can then produce confidence intervals by estimating
this variance via the sample estimates θ̂N and λ̂N,j (see e.g.
(Shapiro et al., 2021) Eqs. 5.183 and 5.172). In order to
simplify estimation of this variance, it may be recommended
to use a form of sample splitting (at the expense of a slower
convergence rate), where disjoint sets of samples are used
to estimate the objective function and each constraint in the
sample problem. This eliminates the covariance terms in
the expression for σ above. Alternatively, if computational
power is not a constraint, it may be simpler in practice to
estimate the variance using the bootstrap.
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3.2. General estimands

When the estimand f(θαQ) is a non-convex function of α,
obtaining provably optimal solutions for the plug-in approx-
imation problem is in general not feasible. However, we
can still obtain locally optimal solutions (as is common for
other partial identification settings (Hu et al., 2021; Bal-
azadeh Meresht et al., 2022; Horowitz & Lee, 2022; Padh
et al., 2023)), although the statistical properties of the plug-
in estimator f(θαQ̂N ) may become more complex, as we
illustrate in the two following examples.

Example 1: Average treatment effect estimation. Con-
sider the setting where P is a distribution over tuples
(X,Y,A), where X is a covariate vector, Y is an outcome,
and A is a binary treatment indicator variable. For simplic-
ity, we consider the case where the outcome Y is also binary.
Researchers are often interested in estimating the average
treatment effect. Under standard identifying assumptions
(most prominently that A ⊥ Y A=a|X), this is done by the
means of the estimand:

f(P) =
∫
X

[p(Y |A = 1, X)− p(Y |A = 0, X)] dP(X)

Now, consider the setting where we observe samples from
a distribution different than P, resulting in a density ratio
θ(X,Y,A). Computing the appropriate marginals and con-
ditionals of θ(X,Y,A)p(X,Y,A), and substituting these
for p in the above expression, gives an objective that is non-
convex in terms of θ, but which is nonetheless differentiable,
enabling gradient-based optimization. However, we will still
have to estimate the nuisance functions p(Y = 1|A = a,X)
and the statistical properties of the resulting bounds will
depend on how these are estimated (Coston et al., 2022).

Example 2: Coefficients of parametric models. Suppose
that a researcher is interested in interpreting the estimated
coefficient of a parametric model, e.g., linear or generalized
linear models as commonly used in a variety of applied set-
tings. For example, an applied researcher may estimate the
odds ratio for an outcome given some exposure using a lo-
gistic model and wishes to obtain bounds on this parametric
odds ratio under potential selection bias or other distribution
shifts.

Bounding M -estimators: To provide one way of address-
ing these (and other) examples, we consider the general chal-
lenge of partially identifying quantities produced by an M -
estimator. M -estimators are those which estimate a param-
eter β via minimizing the expected value of a function m,
i.e., f(P) = argminβ EX∼P[m(X,β)], widely used across
many areas of statistics and machine learning (Van der Vaart,
2000). One prominent example is when m is the negative
log likelihood, resulting in a maximum likelihood estimate
of β. We are interested in producing bounds for some real-
valued function h of β. For example, h may be the value of

a single coordinate of β if we are interested in bounding a
specific model coefficient that will be interpreted, or h may
be the treatment effect functional described above. This
results in the optimization problems:

min
α
h(β(θα))

β(θα) = argmin
β

E [θα(X)m(X,β)]

θα(X) ≥ 0

EX∼Q[θαgj(X)] = EP[gj(X)] j = 1, . . . ,m

min
α
h(β̂N (θα))

β̂N (θ) = argmin
β

1

N

N∑
i=1

θα(Xi)m(Xi, β)

θα(Xi) ≥ 0 i = 1, . . . , N

1

N

N∑
i=1

θα(Xi)gj(Xi) = EP[gj(X)] j = 1, . . . ,m.

Since h(β(θα)) is not convex in general, Slater’s condi-
tion is not a strong enough regularity condition to guaran-
tee asymptotic normality of the estimated optimal value.
Therefore, we require to impose a more general constraint
qualification. Specifically, we will assume the standard
Mangasarian-Fromovitz Constraint Qualification (Kypari-
sis, 1985) for the non-convex case. This regularity condition
is sufficient to ensure that each minimizer of the popula-
tion problem has a unique λ∗j associated in the dual. Hence,
under the MFCQ regularity condition and if Σ∗ is the covari-
ance matrix of the M -estimator at the optimal α we prove
the following asymptotic normality result:

Proposition 3.2. Assume that m is twice differen-
tiable and locally convex in β. Assume as well that
||∇αθα(x)||2 ≤ κθ(x), ||∇βm(x, β)||2 ≤ κm(x),
||∇βh(β)||2 ≤ κh . Then, if α lies in a compact set
S, h(α) and gi(x) are differentiable, then

√
N(ν̂N −

ν) → N(0, σ2). Using sample splitting, the variance
can be approximated by ∇h(β∗(α∗))TΣ∗∇h(β∗(α∗)) +
V ar(

∑m
i=j λ

∗
jθα∗(x)gj(x)).

The proof of Proposition 3.2 requires tools from empirical
process theory in order to study the asymptotic properties of
the optimal value of the plug-in approximation problem. To
sketch the main idea, let Yn be the vector of functions for
the plug-in approximation problem and µ be the one for the
population problem (where the first coordinate in each is the
objective function and the rest are the constraints). Let ψ
be the function ψ(µ) = minθα∈Θ f(θαQ). If the empirical
process

√
n(Yn − µ) converges in distribution to an object,

then a functional version of the delta method can be applied
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to obtain our result. This strategy requires two conditions.
First, that a limiting object exists (in distribution) for the ran-
dom vector

√
n(Yn − µ), which we accomplish by showing

that the empirical process belongs to a Donsker class. Sec-
ond, that such a limiting object, with specified variance, still
exists after applying the function ψ. We show this, subject
to an appropriate constraint qualification, by applying a gen-
eralized version of the continuous mapping theorem (as in
(Shapiro, 1991)). The whole proof and explicit expressions
for σ2 can be found in the Appendix.

3.3. Computational approach

As long as f(θα) has well defined subgradients, the plug-in
approximation problem can be solved efficiently by pro-
jected gradient descent. Even for programs that include an
M -estimator, this is easily accomplished in autodifferentia-
tion frameworks where we can use differentiable optimiza-
tion (Amos & Kolter, 2017; Agrawal et al., 2019) or meta-
learning style methods (Finn et al., 2017; Bertinetto et al.,
2019; Lee et al., 2019) to implement the argmin defining
β in a manner which supports automatic backpropagation.
In general, we can only obtain locally (instead of globally)
optimal solutions for non-convex problems. However, we
observe experimentally that the values obtained are nearly
identical across many random restarts of the optimization,
suggesting good empirical performance.

4. Experiments
We conduct experiments to show how our method allows
users to specify domain knowledge in order to obtain in-
formative bounds on the estimand of interest. We simulate
inference for a range of different f(P) across various sce-
narios by testing our method with different choices of con-
straints and datasets. In addition, we present a real-world
use case.

In each experiment, we start with samples from a ground
truth distribution P and then simulate the observed distribu-
tion Q using sampling probabilities which depend on the
covariates (i.e., simulating selection bias). This ensures that
the ground-truth value f(P) is known (to high precision),
allowing us to verify if our bounds contain the true value.
We consider two classes of estimands. First, estimating
the conditional mean EP[Y |A = 1] for an outcome Y and
covariate A. Second, estimating the coefficient of a linear
regression model as an example of the m-estimation setting
from above. To further investigate the stability of our esti-
mand, every experiment was run across 5 different random
restarts of the projected gradient descent algorithm.

We show how the amount of specified domain knowledge
can result in tighter bounds along two axes. First, we vary
the parametric form for θ, ranging from an arbitrary function

of X (i.e., a separate parameter for each discrete covariate
stratum) to one that imposes specific assumptions (e.g., sep-
arability across specific groups of covariates, or that the
covariates which the selection probabilities depend on are
known). Second, we vary the number and informativeness
of the constraints {gj} used to form the set Θ; modeling
the ability of users to impose an increasing degree of con-
straints on possible distribution shifts. The Appendix shows
experiments with additional kinds of constraints, e.g., on
the sign of the covariance between pairs of variables.

The closest baselines to compare our methods against are
sensitivity analyses based on distributionally robust opti-
mization (DRO). However, DRO requires the distance be-
tween distributions under some divergence (the unobserv-
able parameter ρ) as input. Conversely, our method requires
observable aggregate data to provide partial identification,
making a head-to-head comparison difficult. In order to pro-
vide baselines for comparison, we implement DRO on two
artificial settings where the maximum distance ρ is provided.
The first baseline (omniscient) optimistically assumes that
the χ2 divergence (ρ) between Q̂n and P is known. This
gives an “unfair advantage” to DRO because not only is a
valid value of ρ provided but, furthermore, it is the smallest
of such feasible values (which is not actually observable
when P is unknown). Hence, we also propose a second sce-
nario (observable) where the tightest possible value of ρ is
inferred from the same data used by our method. In this sce-
nario ρ is estimated by solving for maxθ∈ΘDχ2(θQ̂n, Q̂n).
Thus, the solution of the program will be the radius of the
smallest ball centered at Q̂n that contains all distributions
that satisfy all the observable constraints. Of course the
previous program is not convex in θ; hence we settle for the
solution obtained from a saddle point obtained via gradient
descent (which errs in favor of DRO by selecting a smaller
value of ρ than the one that may be justified by the data).
We now proceed to summarize how these experiments were
instantiated in each setting, providing detailed information
in the Appendix.

Synthetic data experiments. For the first set of exper-
iments, we simulate a distribution over binary variables
X = (Y, Y2, A,X1, X2) ∼ P used to evaluate previous
causal inference methods (Kennedy et al., 2019). We add
a selection bias scenario to this process by simulating an
indicator variable R ∼ Ber(logit−1(X1 −X2)). The ob-
served distribution Q consists of those samples for which
R = 1. In this domain, we consider the task of estimating
bounds for EP[Y |A = 1] setting restrictions on EQ[θY X2]
(i.e., EP[Y X2] is known). A total of six experiments were
run. In the first three experiments, we vary the functional
form for θ while leaving the constraints defining Θ fixed. In
the first experiment (unrestricted), θ is an arbitrary function
of X . In the second experiment (separable), we specify
θ(X) := θ1(A) + θ2(X1, X2) where θ1 is an arbitrary
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function of A and θ2 is an arbitrary function of X1 and
X2. Finally, in the third experiment (targeted), we fix
θ(X) = θ(X1, X2), i.e., θ is a function only of the variables
which determine R, thus simulating the scenario where the
variables driving selection bias are known (even if the exact
selection probabilities are not).

For experiments four to six, we vary Θ instead by adding
more informative constraints in each successive experiment.
As our intention is to isolate the effect of adding more con-
straints, the parametric form of θ is set as flexible as pos-
sible, i.e., as an arbitrary function of X (the unrestricted
experiment above). In experiment four, we constrain two
of the four parameters of the joint distribution of Y2 and
X2 via constraints on EQ[θY2X2] and EQ[θY2(1 − X2)].
In experiment five, we add constraints on the remaining
components of the joint distribution EQ[θ(1− Y2)X2] and
EQ[θ(1 − Y2)(1 − X2)]. Experiment six, add constraints
on the outcome (EP[Y X2]) as well. Throughout, we will
refer to these experimental setups as (partial) race + in-
come, (full) race + income and race + income + outcome
respectively (the names were chosen to keep consistency
with the semi-synthetic experiments).

Semi-synthetic data experiments. We use the Folktables
dataset (Ding et al., 2021) which provides an interface for
the data from the US Census American Community Survey
from 2014 to 2019. Based on the ACSEmployment task
suggested in (Ding et al., 2021), we consider a binary out-
come variable Y indicating whether or not a person was
employed at the time of the survey. We are interested in
predicting the female unemployment rate (e.g., motivated
by a policymaker who seeks to track or intervene on gen-
der employment gaps (Albanesi & Şahin, 2018; Mate et al.,
2022)). The variables driving the selection bias are citizen-
ship and veteran status, as these variables can contribute to
self-selection in a potential social services database.

We first consider estimating EP[Y |A = 1] where A indi-
cates the sex of an individual. We conduct six experiments
that exactly parallel the construction of the synthetic ex-
periments, with the variable for income level playing the
role of Y2 and race/ethnicity playing the role of X2 (see
Appendix for details). This simulates a setting where infor-
mation about other outcomes correlated with the variables
of interest is leveraged for partial identification. In the last
experiment race + income + outcome, the additional con-
strain EQ[θY X2] simulates a scenario where information
on the outcome of interest is available with respect to a
different demographic grouping than our desired estimand
(race/ethnicity instead of gender).

We then consider estimating the coefficient of the indica-
tor variable A = 1 in a linear regression model of Y on
7 covariates. This second setting is an example of the M -
estimator framework from above. We run the experiments

(partial) race + income, (full) race + income and race + in-
come + outcome using the settings of theEP[Y |A = 1] case.
Details for each experiment are shown in the Appendix.

Real world case study. As our running example already
exposed, evidence based policy formulation is permeated by
the selection bias inherent from healthcare data. In particu-
lar, addressing this bias when predicting COVID-19 related
outcomes becomes of paramount importance (Joynt Mad-
dox et al., 2022; Jacobson et al., 2021; Saatci et al., 2021) to
produce reliable estimands required on the decision-making
process done by policy officials.

We use real-world data12 to study disparities in hospital-
ization risk for US COVID-19 patients across race/ethnic-
ity groups. However, instead of directly estimating the
racial disparities among outcomes, we applied our method
to provide bounds for the relative excess risk of hospitaliza-
tion for non-white patients after conditioning on clinically
relevant covariates (a set of five comorbidities and age).
Formally, our estimand is f(P) =

∑
x[P (Y = 1|X =

x,Race) − P (Y = 1|X = x,Race = White)]P (X =
x|Race)/P (Y = 1|Race = White,X), where Y is
whether a patient was hospitalized. As mentioned in the
introduction, selection bias is particularly challenging for
these data, because it may depend jointly on both the out-
come and main covariate of interest. We model selection
based on race, income, and hospitalization status to account
for this potential interaction between disease severity and
healthcare access in ascertainment. As constraints g, we use
the total hospitalizations per racial group reported by the
CDC and the total number of estimated infections per group
from CDC serology studies.

Results. Figures 1 and 2 show our main results. Each figure
plots the bounds output by our method for each experiment
described above. In each plot, we also show the true value of
the estimand f(P), the naive estimate using samples from Q
(without any attempt to account for selection bias) and the
bounds produced by the two DRO baselines. In each plot (1
and 2), accounting for the different results across multiple
bootstrap replicates, there is a box plot at the endpoints of
every bound as well as a band to represent f(Q) .

The results of our experiments are consistent across all six
scenarios, showing how the estimated bounds vary depend-
ing on the constraints imposed and on the functional form
assumed for θ. Concordant with the theory, the bounds al-
ways contain the true value of the estimand. Additionally,
as expected, when more external information is available
the bounds become narrower. When additional constraints
are added, it is possible to obtain narrow bounds for the esti-

1We use data from five million de-identified medical claims
from COVID-19 patients.

2Medical claims provide the services that patients received,
their diagnosis, and demographic attributes.
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Figure 1. Partial identification of a conditional mean in simulated and semi-synthetic experiments using our proposed method vs. observed
DRO. The experiments include several parameterizations of θ(X) and different sets of constraints Θ.

Figure 2. Estimated value of β(θ) with our proposed method for
the semi-synthetic dataset. The first two images are results for
different parameterizations of θ(X) and results for different sets
of constraints Θ, respectively. In both cases, incorporating more
external information leads to narrower bounds.

Figure 3. Estimated relative risk for hospitalization compared to
White patients. Our method certifies that there is an increased risk
of hospitalization due to COVID for Asian, Black, and Hispanic
populations when compared to the White population. For the Black
and Hispanic population, our method of partial identification is
close to a point identification.

mand that rule out the naive estimates. Our method Pareto-
improves over the observed-data DRO baseline across all set-
tings. Interestingly, in the majority of settings, our method
also produces tighter intervals than the omniscient DRO
baseline. Thus, it can be highlighted the advantage of more
nuanced descriptions of uncertainty: even in the case the
true value of the divergence is known, moment constraints
may provide a tighter bound than a divergence metric. We
also find that in the targeted experiment where the variables
driving selection bias are known, our method often provides
close to point identification, indicating that this is a particu-
larly powerful form of domain knowledge when available.
These results demonstrate that our framework allows users
to translate common forms of domain knowledge into robust
and informative statistical inferences.

COVID-19 application results. Figure 3 summarizes the
results from the real-world case study. Since the true un-
derlying target distribution is unknown for real data, the
question is whether our method produces informative con-
clusions (i.e., meaningful bounds), as opposed to compari-
son to a known ‘ground truth’. We observe that the bounds
produced by our method are highly informative and support
several policy-relevant conclusions. First, the relative risk
of hospitalization is > 1 for every race/ethnicity group, al-
lowing us to certify that Black, Asian and Hispanic patients
have a higher risk of hospitalization compared to White pa-
tients. That is, our method is able to rule out the concern that
results are overly distorted by selection bias based on health-
care access for mild cases. Second, the bounds are close
to point identification for Black and Asian patients while
highlighting greater sensitivity to potential selection biases
for Hispanic patients. This provides actionable feedback for
policy makers, for example to focus data collection efforts
on high-quality studies in low-income Hispanic populations
if more precise estimates are needed. Meanwhile, policy
makers can be confident in precise estimates of the value
of targeting primary care interventions for Black patients
(e.g., improving access to antivirals to prevent hospitaliza-
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tion). This showcases that our methods produce informative
and theoretically-guaranteed intervals for a policy-relevant
question.

Impact Statement
We anticipate that our methods will have a positive social
impact via increasing the robustness of statistical and ma-
chine learning methods to distribution shifts such as selec-
tion bias. This is particularly consequential for studying
the equity impacts of policies and systems (as marginalized
populations are typically less likely to be represented in
the dataset). However, our methods do come with impor-
tant limitations, in that the bounds will only be as good as
the domain knowledge used to specify the constraints. In
particular, it is up to the user to specify the correct target
distribution, select informative constraint functions, and en-
sure that these functions can be accurately estimated on the
target distribution (which may be difficult if even the nom-
inal target distribution is subject to measurement errors or
other complications). Negative consequences are possible if
incorrect domain knowledge is used as the input, resulting
in an incorrect inference which is improperly certified as
“robust”. In short, the framework we propose provides a
means to translate domain expertise about potential mecha-
nisms for data biases into rigorous inferences. Our hope is
that it will serve to enable collaborations between domain
experts and quantitative researchers towards this goal.
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Rothenhäusler, D. and Bühlmann, P. Distributionally
robust and generalizable inference. arXiv preprint
arXiv:2209.09352, 2022.

Saatci, D., Ranger, T. A., Garriga, C., Clift, A. K., Zaccardi,
F., San Tan, P., Patone, M., Coupland, C., Harnden, A.,
Griffin, S. J., et al. Association between race and covid-19
outcomes among 2.6 million children in england. JAMA
pediatrics, 175(9):928–938, 2021.

Shapiro, A. Asymptotic analysis of stochastic programs.
Annals of Operations Research, 30:169–186, 1991.

Shapiro, A., Dentcheva, D., and Ruszczynski, A. Lectures
on stochastic programming: modeling and theory. SIAM,
2021.

Tamer, E. Partial identification in econometrics. Annu. Rev.
Econ., 2(1):167–195, 2010.

Tan, Z. A distributional approach for causal inference using
propensity scores. Journal of the American Statistical
Association, 101(476):1619–1637, 2006.

Tudball, M., Hughes, R., Tilling, K., Bowden, J., and Zhao,
Q. Sample-constrained partial identification with applica-
tion to selection bias. arXiv preprint arXiv:1906.10159,
2019.

Van der Vaart, A. W. Asymptotic statistics, volume 3. Cam-
bridge university press, 2000.

Yadlowsky, S., Namkoong, H., Basu, S., Duchi, J., and
Tian, L. Bounds on the conditional and average treatment
effect with unobserved confounding factors. The Annals
of Statistics, 50(5):2587–2615, 2022.

Zionts, S. Programming with linear fractional function-
als. Naval Research Logistics Quarterly, 15(3):449–451,
1968.

11



Statistical Inference Under Constrained Selection Bias

A. Proofs
A.1. Proof proposition 2.1

This holds by construction since P = θQ for some θ ∈ Θ. To see that these bounds are tight, suppose wlog that we have
a conjectured lower bound ℓ > minθ∈Θ f(θQ). Then, there would be some θ consistent with all the constraints in Θ for
which f(θQ) < ℓ, implying that there is a target distribution P consistent with all constraints for which ℓ is not a valid lower
bound.

A.2. Proof proposition 3.1

This follows directly from Theorem 5.11 of (Shapiro et al., 2021), since the objective and constraints are convex and we
have assumed that the population problem has a unique solution.

A.3. Proof proposition 3.2

We want to show that the empirical process
√
N(ν̂N − ν) converges to a Gaussian process when N → ∞, where ν̂N is

the value of the plug-in approximation program estimated from a sample of size N . To prove this, we will use the delta
method in Theorem 2.1 of (Shapiro, 1991) following the Hadamard differentiability of the outer problem minα f(α, ξ).
The later condition is shown to hold by invoking Theorem 3.6 in (Shapiro, 1991). However, to apply such theorem, the
Mangasarian-Fromovitz Constraint Qualification has to hold, and the approximation vector has to have a limiting process
in C(S); the first requirement is satisfied by assumption, and the second is shown in the following.

Assumption 1. θ(x) = θα(x) has some finite dimensional parameterization α ∈ S ⊂ Rd.

Consider the function f(α, ξ) = h(β∗(θα, ξ)) where

β∗(θα, ξ) = argmin
β

Eξ[θα(xi)m(β, xi)].

and ξ is the distribution that the expectation is taken with respect to, e.g., the realized empirical distribution on a set of
samples x1, . . . , xN or the limiting distribution Q.

Assumption 2. The functions f and gi are differentiable on S.

Assumption 3. β∗ is always a strict local minimizer for any θ and realization ξ so that the Hessian matrix H(β) =
∇2

β [Eξ[θα(xi)m(β, xi)]] is positive definite. In particular, we assume that the smallest eigenvalue satisfies λmin(H(β)) > γξ
for some γξ > 0 which may depend on the realization of the randomness ξ, but not on θ.

Step 1. Our goal will be to show that f is Lipschitz as a function of α for any fixed ξ, which we will accomplish by showing
that ||∇αf || is bounded. We use || · ||2 for matrices to denote the spectral norm, or operator 2-norm, and for vectors to
denote the Euclidean norm. We assume that ||∇αθα(x)||2, ||∇βm(x, β)||2, and ||∇βh(β

∗)||2 all satisfy bounds which in
the case of the first two are allowed to depend on x:

||∇αθα(x)||2 ≤ κθ(x), ||∇βm(x, β)||2 ≤ κm(x), ||∇βh(β)||2 ≤ κh.

That is, they are each Lipschitz in their respective parameter for a fixed realization x, but with Lipschitz constant which is
allowed to depend on x. While we present these assumptions in terms of the Euclidean norm for convenience, since we only
aim to prove that the Lipschitz constant of f is bounded (our results do not depend on its particular value), bounds on the
gradients above in any norm suffice (using the equivalence of all norms in finite dimension).

In what follows we fix ξ and drop it from the notation. We first apply the chain rule to obtain that ∇αf =
[Dαβ

∗(α)]∇βh(β
∗(α)) where Dαβ

∗(α) is the Jacobian of β∗ with respect to α. To calculate this term, we apply the
implicit function theorem to the first-order optimality condition

∇βE[θα(x)m(β, x)] = 0

and obtain

Dαβ
∗(α) = H(β∗)−1∇α∇βE[θα(x)m(β∗, x)]
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where we remark that H is guaranteed to be invertible by our assumption that it is positive definite in a neighborhood of β∗

and hence the implicit function theorem applies.

Next, note that

∇α∇βE[θα(x)m(β∗, x)] = E[∇αθα(x)[∇βm(x, β)]T ]

and

||E[∇αθα(x)[∇βm(x, β)]T ]||2 ≤ E[||∇αθα(x)[∇βm(x, β)]T ||2]

by Jensen’s inequality. Using the Lipschitz assumptions on θ and m combined with the definition of the spectral norm we
have that the outer product satisfies

||∇αθα(x)[∇βm(x, β)]T ||2 ≤ κθ(x)κm(x)

and hence

||E[∇αθα(x)[∇βm(x, β)]T ]||2 ≤ E[κθ(x)κm(x)].

Since H has bounded minimum eigenvalue, H−1 has bounded spectral norm as well: ||H−1||2 ≤ 1
γ . Finally, using the

Lipschitz assumption on h and again applying the sub-multiplicative property of the spectral norm, we have

||∇αf ||2 ≤ 1

γ
E[κθ(x)κm(x)]κh.

Stepping back to re-introduce the random function ξ, we have that the Lipschitz constant of f with respect to α is
1
γξ
Eξ[κθ(x)κm(x)]κh.

Step 2. Now we are going to proceed to prove that the restrictions are also Lipchitz. In order to do that, we are going to
proceed using the same strategy as before and show that the restrictions also have bounded gradients. Let us denote the
restrictions as ri(α). Note that

∇αri =
1

n
gi(X)∇αθ(X)

Thus it must be true that:

||∇αri|| =
1

n
|gi(X)|||∇αθ(X)||

As g is continuous in a compact set it must be bounded by a finite number M . Then by hypothesis:

||∇αri|| ≤ kθ(x)M

And again by Jensen’s inequality:

||∇αri|| ≤ E[kθ(x)]M

Step 3. Since f and all ri are Lipschitz on a finite-dimensional parameter, this implies that they belong to a Donsker class
(Van der Vaart, 2000) and so we are guaranteed to a limiting stochastic process for each ri and for f marginally. Furthermore,
as C(S) is separable, by theorem 3.2 of (Billingsley, 2013), the vector (f, r1, .., rn) has a limiting process under the product
measure.

Step 4. Thus, as α ∈ S and because of the constraint qualification assumed for the problem, we may apply Theorem 3.6 of
(Shapiro, 1991) to guarantee Hadamard differentiability of the outer problem minα f(α, ξ). Hence, the delta method in
Theorem 2.1 of (Shapiro, 1991) can be applied to guarantee asymptotic normality and thus the result follows.

Step 5 In order to explicitly compute the variance of
√
N(ν̂N − ν), let

Yn =


h(β̂N (α))

1
n

∑
i θα(Xi)g1(Xi)

...
1
n

∑
i θα(Xi)gn(Xi)


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and

µ =


h(β∗(α))

E[θα(X)g1(X)]
...

E[θα(X)gm(X)].


Then, if g(f) = minα∈Θ f(α), again by theorem 2.1 (Shapiro, 1991)

√
n(g(Yn)− g(µ)) →D g′µ(Z)

Where Z is the limiting object that we proved the empirical process has. As a consequence of theorem 3.6
of (Shapiro, 1991), if the set of minimizers is a singleton, g′µ(

√
n(Yn − µ)) =

√
n[h(β̂n(α0)) − h(β∗(α0))] +√

n
∑m

j=1 λj [
1
n

∑
i θα0

(Xi)gj(Xi) − EQ[θα0
(X)gj(x)]]. The term [h(β∗(α0)) − h(β̂n(α0))] is normal as it is a M-

estimator itself. Hence g′µ(
√
n(Yn − µ)) is the sum of Normally distributed random variables and therefore,

√
n(νn − ν) → N

0, V ar

√
n

h(β∗(α0))− h(β̂n(α0))−
m∑
j=1

λj
1

n

[
n∑

i=1

θα0
(Xi)gj(Xi)

] .

Using sample splitting and the delta method on h(β∗), the variance can be approximated by ∇h(β∗(α0))
TΣ0∇h(β∗(α0))+

V ar(
∑m

i=j λ
∗
jθα0

(x)gj(x)), completing the proof.

B. Experiments
B.1. Constraint derivation

In some cases, we may be able to replace the constrain θ(X) ≥ 0 with a tighter constraint. For example, consider the case
of selection bias, where individual samples from P select into Q based on X . Formally, we model this via an indicator
variable R, which is 1 if a unit is observed in the sample and 0 otherwise. Then, q(x) = p(x|R = 1), and via Bayes theorem
we have θ0(X) = Pr(R=1)

Pr(R=1|X) . Since Pr(R = 1|X) ≤ 1, we are guaranteed that θ0(X) ≥ Pr(R = 1). In many cases, the
marginal Pr(R = 1) is easily observable because we know the total size of the population that appears in our sample relative
to the true population (e.g., a government may know the fraction of people in a city who are enrolled in a program). This
allows us to replace the constraint θ(X) ≥ 0 with the tighter constraint θ(X) ≥ Pr(R = 1). This was indeed the case in all
the experiments presented in the article.

B.2. Synthetic data experiments details

Inspired by data models used in the causal inference literature (Kennedy et al., 2019), the distribution X =
(Y, Y2, A,X1, X2) ∼ P is given by the following model:

X1 ∼Multinomial(3, 0.5, 0.3)

X2 ∼ Ber(0.4)

A ∼ Ber(logit−1(X2 −X1))

Y ∼ Ber(logit−1(2A−X1 +X2))

Y2 ∼ Ber(logit−1((X1 +X2)/2−A)

The observed distribution Q is given by simulating selection bias via an indicator variable:

R ∼ Ber(logit−1(X1 −X2))

Naturally, the sample from Q are all those samples for which R = 1. The set Θ used in the experiments was:

• Unrestricted, separable and Targeted : S := {EX∼P[Y2X2] = c1,EX∼P[X2(1− Y2)] = c2,EX∼P[(1−X2)Y2] =
c3,EX∼P[(1−X2)(1− Y2)] = c4}.
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• (partial) race + income :, Θ was S \ {EX∼P[Y2X2] = c1,EX∼P[(X2 − 1)Y2] = c2}.

• (full) race + income : Θ was S.

• race + income + Outcome : Θ was S ∪ {EX∼P[Y X2] = c5,EX∼P[Y (1−X2)] = c6}.

Each experiment was run 5 times over different bootstrap replicates of the sample of distribution P. The experimental results
are summarized in table 1.

Table 1. Synthetic data experimental results. True conditional mean: 0.733.

Lower bound Upper bound

mean std mean std

Separable DRO 0.475 0.004 0.814 0.003
Ours 0.671 0.016 0.786 0.033

Targeted DRO 0.501 0.004 0.800 0.004
Ours 0.697 0.003 0.816 0.002

Unrestricted DRO 0.403 0.004 0.844 0.002
Ours 0.420 0.008 0.855 0.002

(Full) Race + Income DRO 0.406 0.002 0.842 0.002
Ours 0.665 0.009 0.743 0.016

(Partial) Race + Income DRO 0.405 0.002 0.843 0.002
Ours 0.449 0.052 0.761 0.011

Race + Income + Outcome DRO 0.406 0.002 0.842 0.002
Ours 0.665 0.008 0.744 0.014

DRO Omniscient 0.484 0.004 0.788 0.002

B.3. Semi-synthetic data

For the semi-synthetic experiments we used the Folkstables package (Ding et al., 2021) which provides an interface for
curated US Census data. We use the ACSEmployment task, where Y is whether or not a person is employed, and the
variable of interest A is the sex of an individual. The rest of the covariates come from a one-hot encode of the features
listed below. The last level of each variable is dropped to avoid an unidentifiable model, thus obtaining a 15-dimensional
representation for every entry in the dataset.

1. Citizenship status: 0: Born in the U.S, 1: Born in Puerto Rico, Guam, the U.S. Virgin Islands, or the Northern
Marianas, 2: Born abroad of American parent(s), 3: U.S. citizen by naturalization, 4: Not a citizen of the U.S.

2. Military service: 0: Is or was in active duty, 1: Never served in the military.

3. Nativity: 0: Native, 1: Foreign-born.

4. disability: 0: Not having any disability, 1: Having a Hearing, vision, or cognitive disability.

5. Income: 0: Personal income over 50000 USD a year , 1: Personal income below 50000 USD a year.

6. Race: 0:self-identifying as not white , 1:self-identifying as white

The observed distribution Q is given by simulating selection bias via an indicator variable:

R ∼ Ber(logit−1(X1 −X2))

Again, the sample from Q are all those samples for which R = 1.

Let Y be unemployment status, A sex, Y2 income and X2 be race. The set Θ used in the first setting of experiments
(estimating EP[Y |A = 1]) is:
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• Unrestricted, separable and Targeted : S := {EX∼P[Y2X2] = c1,EX∼P[X2(1− Y2)] = c2,EX∼P[(1−X2)Y2] =
c3,EX∼P[(1−X2)(1− Y2)] = c4}.

• (partial) race + income : Θ was S \ {EX∼P[Y2X2] = c1,EX∼P[(X2 − 1)Y2] = c2}.

• (full) race + income : Θ was S.

• race + income + Outcome : Θ was S ∪ {EX∼P[Y X2] = c5,EX∼P[Y (1−X2)] = c6}.

Each experiment was run 5 times over different bootstrap replicates of the sample of distribution P. The experimental results
are summarized in table 2.

Table 2. Semi-synthetic data experimental results. True conditional mean: 0.376.

Lower bound Upper bound

mean std mean std

Unrestricted DRO 0.132 0.055 0.602 0.107
Ours 0.161 0.003 0.509 0.004

Separable DRO 0.129 0.004 0.433 0.008
Ours 0.371 0.007 0.383 0.009

Targeted DRO 0.129 0.004 0.433 0.008
Ours 0.366 0.015 0.385 0.010

(Partial) Race + Income ours 0.067 0.004 0.666 0.012
DRO 0.064 0.004 0.753 0.015

(Full) Race + Income ours 0.160 0.004 0.513 0.006
DRO 0.093 0.003 0.678 0.014

Race + Income + Outcome ours 0.184 0.008 0.389 0.007
DRO 0.093 0.003 0.677 0.013

DRO Omniscient 0.208 0.012 0.451 0.01

The set Θ used in the second setting of experiments (estimating the coefficient β of the indicator variable A in a linear
regression model) is:

• Unrestricted and targeted: S := {EX∼P[Y2X2] = c1,EX∼P[X2(1−Y2)] = c2,EX∼P[(1−X2)Y2] = c3,EX∼P[(1−
X2)(1− Y2)] = c4}.

• (Full) Race + income :, Θ was S \ {EX∼P[Y2X2] = c1,EX∼P[Y2(X2 − 1)] = c2}.

• Race + income + Outcome : Θ was S.

Each experiment was run 5 times over different bootstrap replicates of the sample of distribution P. The experimental results
are summarized in table 3.

B.4. Logistic regression model

We run one additional experiment to estimate the coefficient β of the indicator variable A. However, instead of being the
coefficient of a linear model, it is now the coefficient of a logistic regression. Only the unrestricted experiment was run.
The experiment was run 5 times. The data reported is the average value and standard deviation for the 5 outputs obtained
from the experiment. The results are summarized in figure 4 and table 4.

B.5. Covariance-like restrictions

We run one additional experiment to estimate the coefficient β of the indicator variable A. However, instead of being the
coefficient of a linear model, it is now the coefficient of a logistic regression. The experiment was run 5 times. The data
reported is the average value and standard deviation for the 5 outputs obtained from the experiment. The results are in figure
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Table 3. Semi-synthetic data experimental results. True conditional mean: -0.305.

Lower bound Upper bound

mean std mean std

Unrestricted DRO -0.513 0.026 0.112 0.011
Ours -0.492 0.022 0.062 0.036

Separable DRO -0.345 0.013 -0.055 0.033
Ours -0.305 0.010 -0.303 0.009

(Full) Race + Income DRO -0.492 0.022 0.062 0.036
Ours -0.515 0.028 0.123 0.025

Race + Income + Outcome DRO -0.509 0.029 0.110 0.017
Ours -0.304 0.057 -0.079 0.011

Figure 4. Bounds outputted by our method for the coefficient β of the indicator variable A .

Table 4. Semi-Synthetic data experimental results. True conditional mean: -1.769.

Lower bound Upper bound

mean std mean std

Unrestricted -1.998 0.069 0.382 0.019

5. For the results in figure 5, we constrained the covariance for a set of variables to be positive. Specifically, we took the pair
of variables with the largest positive covariance—being a US citizen and being a native—and restricted that covariance to
positive during the optimization.

Overall, we experimented with two types of restrictions on the covariance: restricting the sign of the covariance or the exact
covariance value. The two types of constraints had similar results. We also tested restricting on multiple feature pairs but
didn’t see any significant differences in the bounds.

B.6. Guide to run the experiments

In the experiments metadata folder are JSON files with the exact hyperparameters used in all the experiments presented in
the paper. To execute a particular set of experiments related to the conditional mean, use the inference.py script. For
example, the following command generates the bounds with different parametric forms for the simulated dataset:

1 python inference.py experiments_metadata/sim_theta_ours.json

To recreate the results of the experiments that involve regression models, use the inference non closed form.py
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Figure 5. Bounds outputted by our method for the coefficient β of the indicator variable A .

script:

1 python inference_non_closed_form.py experiments_metadata/logistic.json

We will provide a detailed table with the JSON files that generate the data of the plots we included.

Each successful run of the two commands will produce a folder containing a data frame with the results and several plots.
The folder’s name is a timestamp denoting the experiment’s end time. To reproduce the plots from the paper, use the
notebook in the folder named plotting.

The directory hierarchy is the following
/ (root)

README.md
experiment artifacts
optimization

experiments metadata
inference.py
inference non closed form.py

plotting
paper plots.ipynb
utils.py

B.7. Explicit bound Computation

It can be analytically verified that the bounds are non-vacuous for the synthetic experiment called targeted. Here, f(θQ) =
EQ[θ(x1, x2)Y |A = 1] and {EQ[θ(x1, x2)Y X2] = EP[Y X2], EQ[θ(x1, x2)Y (1 − X2)] = EP[Y (1 − X2)]} ⊂ Θ. For
simplicity, hereinafter we will denote the observed values EP[Y X2] and EP[Y (1−X2)] as c1 and c2, respectively. As all the
variables are binary, the trivial bounds on f(θQ) are 0 and 1. However this is not the case here. Lets begin by noting that,

f(θQ) = EQ[θY |A = 1]

=
1

Q(A = 1)

∑
(x1,x2,A=1,y)

θ(x1, x2)yQ(y, x1, x2, A = 1)

=
1

Q(A = 1)

∑
(x1,x2,A=1,Y=1)

θ(x1, x2)Q(y, x1, x2, a)
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Similarly,

EQ[θ(x1, x2)Y X2] = c1

=
∑

(x1,x2,a,y)

θ(x1, x2)yx2Q(y, x1, x2, a)

=
∑

(x1,X2=1,a,Y=1)

θ(x1, x2)Q(y, x1, x2, a)

and

EQ[θ(x1, x2)Y (1−X2)] = c2

=
∑

(x1,x2,a,y)

θ(x1, x2)y(1− x2)Q(y, x1, x2, a)

=
∑

(x1,X2=0,a,Y=1)

θ(x1, x2)Q(y, x1, x2, a)

Remember that all variables are binary and all the terms on the sum are non-negative. Additionally we can ensure
θ(X) ≥ P (R = 1) (see section B of the Appendix), therefore:

f(θQ) =
1

Q(A = 1)

∑
(x1,x2,A=1,Y=1)

θ(x1, x2)Q(y, x1, x2, a)

=
1

Q(A = 1)

 ∑
(x1,X2=0,A=1,Y=1)

θ(x1, x2)Q(y, x1, x2, a) +
∑

(x1,X2=1,A=1,Y=1)

θ(x1, x2)Q(y, x1, x2, a)


≤ 1

Q(A = 1)
(c1 + c2)

On the other hand,

f(θQ) =
1

Q(A = 1)

∑
(x1,x2,A=1,Y=1)

θ(x1, x2)Q(y, x1, x2, a)

f(θQ) ≥ 1

Q(A = 1)

∑
(x1,x2,A=1,Y=1)

P (R = 1)Q(y, x1, x2, a)

f(θQ) ≥ P(R = 1)

Q(A = 1)

∑
(x1,x2,A=1,Y=1)

Q(y, x1, x2, a)

P(R=1)
Q(A=1)

∑
(x1,x2,A=1,Y=1) Q(y, x1, x2, a) is non-zero, because P(R = 1) > 0 is non zero by definition (There exist a

sample) and
∑

(x1,x2,A=1,Y=1)Q(y, x1, x2, a) is also non zero under the mild assumption of the sample having datum of
both outcomes conditioned on the ascertainment.

Hence in summary, the min/max over the constraints satisfy:

f(θQ) ≤ 1

Q(A = 1)
(c1 + c2) < 1, f(θQ) ≥ P(R = 1)

Q(A = 1)

∑
(x1,x2,A=1,Y=1)

Q(y, x1, x2, a), > 0,

Where all terms are observable and f(θQ) will, for many settings of their values, be bounded away from 0 and 1. To
conclude, note as well that the bounds were computed using a proper subset of all the constrains (Θ), thus it follows that
even tighter bounds can be derived.
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