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Abstract

Probabilistic State Space Models (SSMs) are essential for Reinforcement Learning
(RL) from high-dimensional, partial information as they provide concise represen-
tations for control. Yet, they lack the computational efficiency of their recent de-
terministic counterparts. We propose KalMamba, an efficient architecture to learn
representations for RL that combines the strengths of probabilistic SSMs with the
scalability of deterministic SSMs. KalMamba leverages Mamba to learn the dy-
namics parameters of a linear Gaussian SSM in a latent space. Inference in this
latent space amounts to standard Kalman filtering and smoothing. We realize these
operations using parallel associative scanning, similar to Mamba, to obtain a prin-
cipled, highly efficient, and scalable probabilistic SSM. Our experiments show that
KalMamba competes with state-of-the-art SSM approaches in RL while significantly
improving computational efficiency, especially on longer interaction sequences.

1 Introduction

Deep probabilistic State Space Models (SSMs) are integral in reinforcement learning with uncertain,
complex observations (Hafner et al., 2023). In contrast, deterministic SSMs efficiently parallelize and
show promise in sequence modeling (Smith et al., 2022; Gu & Dao, 2023). Yet, blending both models’
advantages remains a key challenge. We propose an efficient architecture that equips probabilistic
SSMs with the efficiency of recent deterministic SSMs. Our approach, KalMamba, uses (extended)
Kalman filtering and smoothing to infer belief states over a linear Gaussian SSM in a latent space that
uses a dynamics model based on Mamba (Gu & Dao, 2023). Figure 1 provides a schematic overview.
Mamba is efficient for long sequences as it uses parallel associative scans, which allow parallelizing
associative operators on highly parallel hardware accelerators such as GPUs (Sengupta et al., 2007).
Similarly, we build efficient parallel scans for filtering and smoothing (Séarkki & Garcia-Ferndndez,
2020). With both Mamba and the Kalman Smoother being parallelizable, KalMamba achieves time-
parallel computation of belief states required for model learning and control. Thus, unlike previous
approaches for efficient SSM-based RL (Samsami et al., 2024), which rely on simplified inference
assumptions, KalMamba enables end-to-end model training under high levels of uncertainty using
a smoothing inference and tight variational lower bound (Becker & Neumann, 2022). While using
smoothed beliefs for model learning, our architecture ensures a tight coupling between filtered and
smoothed belief states. This inductive bias ensures the filtered beliefs are meaningful, allowing their
use for policy learning and execution where future observations are unavailable.

We evaluate KalMamba on several tasks from the DeepMind Control (DMC) Suite (Tassa et al.,
2018), training a Soft Actor-Critic (Haarnoja et al., 2018) on beliefs inferred from both images and
states. We compare against Recurrent State Space Models (Hafner et al., 2019) and the Variational
Recurrent Kalman Network (Becker & Neumann, 2022) and provide an overview of these and other
related works in  Appendix A. Our preliminary experiments show that KalMamba is competitive
to these state-of-the-art SSMs while being significantly faster to train and scaling gracefully to long
sequences. These results indicate KalMamba’s potential for foundation models that require forming
accurate belief states over long sequences under uncertainty.
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Figure 1: Overview of KalMamba. The observation-action sequences are first fed through a dynamics
backbone built on Mamba to learn a linear dynamics model for each step. KalMamba then uses time-
parallel Kalman filtering to infer filtered beliefs ¢(z;|0<;, a<;—1) which can be used for control with a
Soft Actor Critic (SAC). For model training, KalMamba employs an additional time-parallel Kalman
smoothing step to obtain smoothed beliefs ¢(z;|o<7,a<r). These beliefs allow training a model that
excels in modeling uncertainties due to a tight variational lower bound.

2 KalMamba

SSMs (Murphy, 2012) generally assume observations o< = {0; };=¢..., which are generated by latent
states z<p = {2 }t=0...7, given actions a<p = {a;};=¢...7. through generative models p(o;|z;), and
p(2z¢|2z1—1,a:—1). To learn such models, we need to infer latent belief states given observations
and actions. We differentiate between the filtered belief q(z:|o<;,a<;—1) and the smoothed belief
q(z¢lo<r,a<r). Computing these beliefs is usually intractable, but an autoencoding variational
Bayes approach allows joint training of the generative and an approximate inference model using a
lower bound objective (Kingma & Welling, 2013). Intuitively, KalMamba embeds a linear Gaussian
SSM into a latent space and learns its dynamics model’s parameters using a backbone consisting
of several mamba layers. It employs a time-paralle]l Kalman smoother in this space to infer latent
beliefs for training and acting, which is parallelized with parallel scans. KalMamba employs a tight
variational lower bound that allows appropriate modeling of uncertainties in noisy, partial-observable
systems. Appendix B provides additional details and compares KalMamba to existing SSMs.

The KalMamba Model. To connect the original, high-dimensional observations o; to the latent
space for inference, we introduce an intermediate auxiliary observation wy, which is connected to the
latent state by an observation model q(w¢|z;) = N (w|z., X}") (Becker et al., 2019). Here, we assume
w; to be observable and extract it, together with the diagonal observation covariance X} from the
observation using an encoder network; (wy,3}") = ¢(0;). This approach allows us to model the
complex dependency between z; and o; using the encoder while having a simple observation model
for inference in the latent space. We parameterize the dynamics model as

p(ze1]ze,a) = N (Zt+t\At(0§tv a<)z; +bi(o<r,a<), B9 (0<y, aSt)) (1)

where both A; and Efyn are diagonal matrices. This approach effectively linearizes the dynamics
parameters A;, b; and E?yn around all past observations and actions. Crucially, the resulting dy-
namics are linear in z; enabling the closed-form inference of beliefs using standard Kalman filtering
and smoothing. For parameterization, we use an Mamba-based backbone described in Appendix C
and incorporate Monte-Carlo Dropout (Gal & Ghahramani, 2016) to model epistemic uncertainty
effectively. The generative observation model is given by a decoder network p(o;|z;). The observa-
tions are modeled as Gaussian with learned mean and fixed standard deviation. Finally, we assume
an initial state distribution p(z¢) that is a zero mean Gaussian with a learned variance 3.
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Figure 2: Aggregated expected returns for all considered environemnts. (Left:) On im-
ages, KalMamba is slightly worse but overall competitive with the different baselines. (Middle:) Us-
ing Mamba to learn the dynamics is crucial for good model performance. Monte-Carlo Dropout
and the regularization loss stabilize the training process and lead to higher expected returns.
(Right:) KalMamba outperforms the RSSM and almost matches the VRKN’s performance. Naive
SAC is insufficient due to the noise added to the tasks.

Given the latent observation model g(w¢|z;), and the pre-computable, linear dynamics model, we
can infer belief states using extended Kalman filtering and smoothing. Sarkka & Garcia-Fernandez
(2020) show how to formulate such filtering and smoothing as associative operations amenable
to temporal parallelization using associative scans, yielding a logarithmic time complexity, given
sufficiently many parallel cores. Additionally, all involved matrices, i.e., Ay, E?ym, Efbs, and X,
are diagonal which avoids costly matrix operations during Kalman filtering and smoothing.

Training the Model and Policy. After inserting the state space assumptions of our generative and
inference models, the standard variational lower bound to the data marginal log-likelihood (Kingma
& Welling, 2013) for a single sequence simplifies to (Becker & Neumann, 2022) Lsgm(0<7,a<r) =

T

Z(Eqmo@,aq) [log p(0¢|2)] — Eq(ze_1jocracr) KL [a(2¢|2e—1,a5¢-1,05¢) || p(zt|zt_1,at_1>n).
t=1

Due to the smoothing inference, this lower bound is tight and allows accurate modeling of the
underlying system’s uncertainties. To evaluate the lower bound we need the smoothed dynamics
q(z¢|2z1—1,a>¢—1,0>;) whose parameters we can compute given the equations provided in (Becker &
Neumann, 2022). We add a reward model p(r¢|z;), predicting the current reward from the latent
state using a small neural network and the Mahalanobis regularization term R(o<r,a<r), detailed
in Appendix C. Thus, the full maximization objective for a single sequence is given as

LkalMamba(0<7,8<7) = Lssm(0<1,a<T) + Eq(g1j0-1.a-r) [logp(rt|2:)] — aR(o<r,a<r).

We learn a Soft Actor Critic (SAC) (Haarnoja et al., 2018) policy on top of the KalMamba state
space representation. Here, we use the mean of the variational filtered belief ¢(z:|o<;,a<;—1) as
input for the actor and, together with the action a; for the critic and stop the actor’s and critic’s
gradients from propagating through the world model.

3 Experiments

We evaluate KalMamba on 4 tasks from the DeepMind Control (DMC) Suite, namely
cartpule_swingup, quardruped_walk, walker_walk, and walker_run. We train each task for
1 million environment steps with sequences of length 32 and report the expected return using the
mean and 95% stratified bootstrapped confidence intervals (Agarwal et al., 2021) for 4 seeds per
environment. We compare against Recurrent State Space Models (RSSMs) and the Variational Re-
current Kalman Network (VRKN) on images and low-dimensional state representations with noise,
as explained in Appendix D.2. To isolate the effect of the SSMs’ representations, we combine both
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Figure 3: Wall-clock time evaluations on the state-based noisy walker-walk for KalMamba, the
RSSM, and the VRKN for different training context lengths for 1 million environment steps or up
to 24 hours. This time limitation only affected the VRKN training for 256 steps, which reached
650 thousand steps after 24 hours. While all methods work well for short sequences of length 32
(Left), the efficient parallelization of KalMamba allows it to scale gracefully to and even improve
performance for longer sequences of up to 256 steps, where the other methods fail (Right).

with SAC (Haarnoja et al., 2018) as the RL algorithm, instead of using latent imagination (Hafner
et al., 2020). We include SAC in our low-dimensional experiments, and add DreamerV3 (Hafner
et al., 2023) results for image-based observations for reference. Appendix D lists all hyperparameters.

Figure 2 shows the aggregated expected returns across setups, while Appendix E provides per-task
results for all experiments. On images, KalMamba is slightly worse, but overall competitive to the
two baseline SSMs and Dreamer V3, while being parallelizable and thus much more efficient to train.
Naively using SAC fails when trained on the noisy low-dimensional states. While the RSSM manages
to improve performance it is still significantly outperformed by VRKN and KalMamba, which both
use the robust smoothing inference scheme. KalMamba needs slightly longer to converge, but almost
matches the VRKN’s performance while being significantly faster to run. Our ablations show that
omitting the Mamba backbone and instead linearizing the dynamics around the current actions
and observations is insufficient. Further, we find that both the Mahalanobis regularization and
Monte-Carlo Dropout greatly boost performance.

We compare the runtime of the different SSMs on the state-based noisy version of walker-walk
across varying sequence lengths in Figure 3. The models share a PyTorch implementation and
differ only in the SSM. We run each experiment on a single Nvidia Tesla H100 GPU, for up to 1
million steps or 24 hours. All models work well for sequences of length 32 used for the experiments
in Figure 2. Yet, only KalMamba scales to longer sequences, uniquely improving performance with
sequence length while also maintaining a low training cost. These results showcase KalMamba’s
efficient use of long-term context information through its Mamba backbone. We further show in
Appendix E.1 that KalMamba scales gracefully to very long context sizes on individual SSM forward
passes and training batches, whereas the baseline SSMs quickly become prohibitively expensive.

4 Conclusion

We proposed KalMamba, an efficient State Space Model (SSM) for Reinforcement Learning (RL)
under uncertainty. It combines the uncertainty awareness of probabilistic SSMs with recent de-
terministic SSMs’ scalability by embedding a linear Gaussian SSM into a latent space. We use
Mamba (Gu & Dao, 2023) to learn the linearized dynamics in this latent space efficiently. Inference
in this SSM amounts to standard Kalman filtering and smoothing and is amenable to full paral-
lelization using associative scans (Sarkkd & Garcia-Ferndandez, 2020). Our experiments indicate
that KalMamba can match the performance of state-of-the-art stochastic SSMs for RL under uncer-
tainty. KalMamba scales gracefully to longer training sequences in terms of runtime, and improves
performance with sequence length while the baseline SSMs degrade. In future work, we aim to
explore KalMamba as a foundation model on diverse, more realistic scenarios, comparing to existing
time-efficient SSMs with simplified, non-smoothing inference schemes (Samsami et al., 2024).
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A Related Work

Deterministic State Space Models in Deep Learning. Structured deterministic State Space
approaches (Gu et al., 2021; Smith et al., 2022; Gu & Dao, 2023) recently emerged as an alternative to
the predominant Transformer (Vaswani et al., 2017) architecture for general sequence modeling (Gu
& Dao, 2023). Their main benefit is combining compute and memory requirements that scale linearly
in sequence length with efficient and parallelizable implementations. While earlier approaches, such
as the Structured State Space Sequence Model S/ (Gu et al., 2021) and others (Gupta et al., 2022;
Hasani et al., 2022) used a convolutional formulation for efficiency, more recent approaches (Smith
et al., 2022; Gu & Dao, 2023) use associative scans. Such associative scans allow for parallel compu-
tations over sequences if all involved operators are associative, which yields a logarithmic runtime,
given enough parallel cores. However, all these models are deterministic, i.e., they do not model
uncertainties or allow sampling without further modifications. As a remedy, Latent S4 (LS4) (Zhou
et al., 2023) extends S/ for probabilistic generative sequence modeling and forecasting. However, in
LS4, the latent states are not Markovian and are thus hard to use for control. KalMamba exploits
the fact that filtering and smoothing in linear Gaussian state space models can also be formulated
as a set of associative operations, which makes it amenable to parallel scans (Sirkka & Garcia-
Fernandez, 2020). To our knowledge, it is the first deep-learning model to do so. Further, it relies
on Mamba (Gu & Dao, 2023), a state-of-the-art deterministic state space model, to precompute the
dynamics models required for filtering and smoothing.

Probabilistic State Space Models for Reinforcement Learning. Probabilistic state space
models are commonly and successfully used for reinforcement learning from high dimensional or mul-
timodal observations (Nguyen et al., 2021; Wu et al., 2022; Hafner et al., 2023; Becker et al., 2023),
under partial observability (Becker & Neumann, 2022), and for memory tasks (Samsami et al., 2024).
Arguably, the most prominent approach is the Recurrent State Space Model (RSSM) (Hafner et al.,
2019). After their original introduction as the basis of a standard planner, they have been improved
with more involved parametric policy learning approaches (Hafner et al., 2020) and categorical latent
variables for categorical domains (Hafner et al., 2021). During inference, the RSSMs conditions the
latent state on past observations and actions, resulting in a filtering inference scheme. Here, the key
architectural feature of RSSMs is splitting the latent state into stochastic and deterministic parts.
The deterministic part is then propagated through time using a standard recurrent architecture. In
its original formulation, the RSSM uses a Gated Recurrent Unit (GRU) (Cho et al., 2014). One line
of research focuses on replacing this deterministic path with more efficient architectures with the
TransDreamer (Chen et al., 2022) approach using a transformer (Vaswani et al., 2017) and Recall
to Image (Samsami et al., 2024) using S4 (Gu et al., 2021). However, to fully exploit the efficiency
of these backbone architectures, both need to simplify the inference assumptions and can only con-
sider the current observation, which makes them highly susceptible to noise or missing observations.
Opposed to that, the Variational Recurrent Kalman Network (VRKN) (Becker & Neumann, 2022)
proposes using a smoothing inference scheme that conditions both past and future actions. This
scheme allows the VRKN to work with a fully stochastic latent state and lets it excel in tasks where
modeling uncertainty is crucial. The VRKN uses a locally linear Gaussian State Space Model in
a latent space, performing closed-form Kalman Filtering and smoothing. KalMamba holistically
combines smoothing inference in a fully probabilistic SSM with an efficient temporally parallaelized
implementation, resulting in an approach that is robust to noise and efficient.

Probabilistic State Space Models in Deep Learning. Probabilistic state space models are
versatile and commonly used tools in machine learning. Besides classical approaches using linear
models (Shumway & Stoffer, 1982) and works using Gaussian Processes (Eleftheriadis et al., 2017;
Doerr et al., 2018), most recent methods build on Neural Networks (NNs) to parameterize generative
and inference models using the SSM assumptions (Archer et al., 2015; Watter et al., 2015; Gu et al.,
2015; Karl et al., 2016; Fraccaro et al., 2017; Krishnan et al., 2017; Banijamali et al., 2018; Yingzhen
& Mandt, 2018; Schmidt & Hofmann, 2018; Naesseth et al., 2018; Becker et al., 2019; Becker-
Ehmck et al., 2019; Moretti et al., 2019; Shaj et al., 2020; Klushyn et al., 2021; Shaj et al., 2022).
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Table 1: Comparing the inference models and capabilities for smoothing (Smooth) and time-parallel
(Parallel) execution of recent SSMs for RL.

Method Inference Model Smooth Parallel
RSSM (Hafner et al., 2019) q(z¢|hy, o) X X
R2I (Samsami et al., 2024) q(z¢|oy) X

VRKN (Becker & Neumann, 2022)  ¢(z;lo<r,a<r) X
KalMamba q(zt|0§T, aST)

Out of these approaches, those that embed linear-Gaussian SSMs into latent spaces (Watter et al.,
2015; Haarnoja et al., 2016; Fraccaro et al., 2017; Banijamali et al., 2018; Becker-Ehmck et al.,
2019; Becker et al., 2019; Shaj et al., 2020; Klushyn et al., 2021; Shaj et al., 2022) are of particular
relevance to KalMamba. Doing so allows for closed-form inference using (extended) Kalman Filtering
and Smoothing. However, with the notable exception of the VRKN, these models usually cannot
be used to control or even model systems of similar complexity to those controlled with RSSM-
based approaches. Furthermore, some of them (Karl et al., 2016; Becker-Ehmck et al., 2019) do not
allow smoothing, while others (Fraccaro et al., 2017; Klushyn et al., 2021) model observations in the
latent space as additional random variables which complicates inference and training and prevents
principled usage of the observation uncertainty for filtering. Another class of approaches (Haarnoja
et al., 2016; Becker et al., 2019; Shaj et al., 2020; 2022) trains using regression and are thus not
generative. Notably, none of these approaches uses a temporally parallelized formulation of the
filtering and smoothing operations. KalMamba takes inspiration from many of these approaches and
partly follows the VRKN’s design to enable reinforcement learning for complex systems. However,
it combines those ideas with the efficiency of recent deterministic SSMs using an architecture that
enables time-parallel computations.

B State Space Models for Reinforcement Learning

In Reinforcement Learning (RL) under uncertainty and partial observability, State Space Models
(SSMs) generally assume sequences of observations o<y = {0 }¢—¢... which are generated by a se-
quence of latent state variables z<p = {2z; }1=¢...7, given a sequence of actions a<r = {a;};—¢...r. The
corresponding generative model factorizes according to the hidden Markov assumptions (Murphy,
2012), i.e., each observation o; only depends on the current latent state z; through an observation
model p(o;|z;), and each latent state z; only depends on the previous state z;—; and the action a;_1
through a dynamics model p(z;|z;—1,a;—1).

In order to learn the state space model from data and use it for downstream RL, we need to
infer latent belief states given observations and actions. Depending on the information provided
for inference, we differentiate between the filtered belief q(z;|o<;,a<¢—1) and the smoothed belief
q(z¢|o<r,a<r). The filtered belief conditions only on past information, while the smoothed belief
also depends on future information. Computing these beliefs is intractable for models of reasonable
complexity. Thus, we resort to an autoencoding variational Bayes approach that allows joint training
of the generative and an approximate inference model using a lower bound objective (Kingma &
Welling, 2013).

The Recurrent State Space Model (RSSM) (Hafner et al., 2019) assumes a nonlinear dynamics model,
splitting the state z; into a stochastic s; and a deterministic part h; which evolve according to
h; = f(hi—1,a;1,8;—1) and s; ~ p(s¢|h;). Here f is implemented using a Gated Recurrent Unit
(GRU) (Cho et al., 2014). This results in a nonlinear, autoregressive process that cannot be par-
allelized over time. Further, RSSMs assume a filtering inference model ¢(s¢|h;,0;), where h; ac-
cumulates all information from the past. The RSSM’s inference scheme struggles with correctly
estimating uncertainties as the resulting lower bound is not tight (Becker & Neumann, 2022). In
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Figure 4: Schematic of the Mamba Gu & Dao (2023) based backbone to learn the system dynamics.
It shares the inference model’s encoder ¢(o;) and intermediate representation w;. Each w; is then
concatenated to the previous action a;_1, fed through a small Neural Network (NN) and given to
Mamba model which accumulates information over time and emits a representation my (o<, a<¢—1)
containing the same information as the filtered belief ¢(z:|0;<,a<¢—1). We then concatenate each
m; with the current action a; and use another small NN to compute the dynamics parameters A;, b,
and X;. This scheme allows us to use the intermediate representation m; for regularization and we
regularize it towards the filtered belief’s mean using a Mahalanobis regularizer (c.f. Equation 2).
Finally, the small NNs include Monte-Carlo Dropout Gal & Ghahramani (2016) to model epistemic
uncertainty.

tasks where such uncertainties are relevant, this lack of principled uncertainty estimation causes
poor performance for downstream applications.

As a remedy, the Variational Recurrent Kalman Network (VRKN) (Becker & Neumann, 2022)
builds on a linear Gaussian SSM in a latent space which allows inferring smoothed belief states
q(z¢|o<7,a<r) required for a tight bound. The VRKN removes the need for a deterministic path
and improves performance under uncertainty. However, it linearizes the dynamics model around the
mean of the filtered belief, resulting in a nonlinear autoregressive process that cannot be parallelized.

In contrast, Recall to Image (R2I) (Samsami et al., 2024) builds on the RSSM and improves com-
putational efficiency at the cost of a more simplistic inference scheme. It uses S4 (Gu et al., 2021)
instead of a GRU to parameterize the deterministic path f but additionally has to remove the in-
ference’s dependency on h; to allow efficient parallel computation. The resulting inference model,
q(zt|o4) is non-recurrent and neglects all information from other time steps. Thus, while R2I excels
on memory tasks, it is highly susceptible to noise and partial-observability as the inference cannot
account for inconsistent or missing information in o;.

Our approach, KalMamba, combines the tight variational lower bound of the VRKN with a paral-
lelizable Mamba (Gu & Dao, 2023) backbone to learn the parameters of the dynamics. It thus omits
the nonlinear autoregressive linearization process. Combined with our custom PyTorch routines
for time-parallel filtering and smoothing (Sarkkd & Garcia-Ferndndez, 2020), this approach allows
efficient training with the VRKNs principled, uncertainty-capturing objective.

C Mamba Backbone and Regularization

Parameterizing the dynamics model of Equation 1 naively can lead to poor representations, as
information can bypass the actual SSM through the linearization backbone. To counter this, we
design the backbone architecture as depicted in Figure 4. For each timestep, we concatenate w; and
a;_1, transform each resulting vector using a small neural network, feed it through a Mamba (Gu
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& Dao, 2023) model and linearly project the output to a vector m; of the same dimension as the
latent state z;. Each m; now accumulates the same observations and actions used to form the
corresponding filtered belief ¢(z|o<¢, a<¢—1). We then take m, and the action a; to compute the
dynamics parameters using another small neural network. This bottleneck introduced by m; allows
us to regularize the Mamba-based backbone. We incentivize m; to correspond to the filtered mean
using a Mahalonobis distance

T
R(0§T73§T) = Z (mt(Ogt,agt—l - u?)T (22—)_1 (mt(Ogt,agtfl) - N?) ) (2)
t=1

p; and ;" denote the mean and variance of the filtered belief ¢(z¢|o<;,a<;_1). This regularization
discourages the model from bypassing information over the Mamba backbone. This mirrors many
established models such as the classical extend Kalman Filter (Jazwinski, 1970), which linearize
directly around this mean, but still allows associative parallel scanning.

D Hyperparameters and Implementation Details

Table 2 lists all hyperparameters of the KalMamba model and Table 3 lists the hyperparameters
of Soft Actor Critic (SAC) Haarnoja et al. (2018) used for control. For all experiments, we run 20
evaluation runs every 20,000 steps.

Table 2: World Model Hyperparameters

Hyperparameter Low Dimensional DMC Image Based DMC
World Model
Encoder 2 x 256 Unit NN with ELU  ConvNet from Hafner et al. (2020) with ReLU
Decoder 2 x 256 Unit NN with ELU  ConvNet from Hafner et al. (2020) with ReLU
Reward Decoder 2 x 256 Unit NN with ELU
Latent Space Size 230 (30 Stoch. + 200 Det. for RSSM
Mamba Backbone
num blocks 2
d_model 256
d_state 64
d__conv 2
dropout probability 0.1
activation SiL.U
pre mamba layers 2 x 256 Unit NN with SiLU
post mamba layers VRKN Dynamics Model from Becker & Neumann (2022) with SiLU
Loss
KL Balancing 0.8 for RSSM, 0.5 for VRKN, KalMamba
Free Nats 3
a (regularization scale) 1, KalMamba only
Optimizer (Adam Kingma & Ba (2015))
Learning Rate 3-1074

D.1 Baselines.

Both RSSM+SAC and VRKN+SAC use the same hyperparameters as KalMamba where applicable.
For all other hyperparameters, we use the defaults from Hafner et al. (2020) and Becker & Neumann
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Table 3: SAC Hyperparameters

Hyperparameter Low Dimensional DMC Image Based DMC
Actor-Network 2 x 256 Unit NN with ReLU 3 x 1024 Unit NN with ELU
Critic-Network 2 x 256 Unit NN with ReLU 3 x 1024 Unit NN with ELU
Actor Optimizer Adam with learning rate 3 x 1074

Critic Optimizer Adam with learning rate 3 x 1074

Target Critic Update Fraction 0.005

Target Critic Update Interval 1

Target Entropy —daction

Entropy Optimizer Adam with learning rate 3 x 10~*

Initial Learning Rate 0.1

discount ~y 0.99

(2022) respectively. The SAC baseline uses the hyperparameters listed in Table 3 and the results
for DreamerV3 Hafner et al. (2023) are provided by the authors!.

D.2 Low Dimensional Tasks with Observation and Dynamics Noise.

To test the models’ capabilities under uncertainties, we use the state-based versions of the tasks
and add both observation and dynamics noise. The observation noise is sampled from N(0,0.3)
and added to the observation. The dynamics noise is also sampled from N(0,0.3) and added to
the action before execution. However, unlike exploration noise, this addition happens inside the
environment and is invisible to the world model and the policy.

E Additional Results

We provide results for the individual tasks of the Deepmind Control Suite for image-based observa-
tions in Figure 5 and the different KalMamba ablations in Figure 6. Figure 7, shows the per-task
results for the noisy state-based environments.

E.1 Runtime Analysis

To further investigate the runtime, we visualize the wall-clock time of a single SSM forward pass and
a single training batch for different sequence lengths in Figure 8. While both the RSSM and VRKN
scale linearly with the sequence length, KalMamba shows near-logarithmic scaling even for longer
sequences thanks to its efficient parallelism. We expect further significant speedups for KalMamba
with a potential custom CUDA implementation, similar to Mamba.

Thttps://github.com/danijar/dreamerv3
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Figure 5: Task-wise evaluations of the DeepMind Control Suite on image-based observations.

Dreamer-v3 shows a performance similar to RSSM+SAC.
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Figure 6: Task-wise evaluations of the DeepMind Control Suite for different KalMamba ablations.
Monte-Carlo Dropout and the Mahalanobis regularization make the largest difference for the hardest
task in the suite, i.e., quadruped_walk.
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Figure 7: Task-wise evaluations of the DeepMind Control Suite on low-dimensional state repre-
sentations. KalMamba performs on par with or better than the RSSM on all tasks, and is only
outperformed by the computationally more expensive VRKN on cartpole_ swingup.
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Figure 8: Runtime comparison of KalMamba, the RSSM and the VRKN for (Left) a SSM forward
pass and (Right) a single training batch. While the computational cost of both baseline models
scales linearly in the sequence length, KalMamba utilizes associative scans for efficient parallelism
and thus near-logarithmic runtime on modern accelerator hardware.



