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Abstract

Representation learning is a fundamental task in
machine learning, aiming at uncovering structures
from data to facilitate subsequent tasks. However,
what is a good representation for planning and
reasoning in a stochastic world remains an open
problem. In this work, we posit that learning a
distance function is essential to allow planning
and reasoning in the representation space. We
show that a geometric abstraction of the proba-
bilistic world dynamics can be embedded into
the representation space through asymmetric con-
trastive learning. Unlike previous approaches that
focus on learning single-step mutual similarity or
compatibility measures, we instead learn an asym-
metric similarity function that allows irreversible
state reachability and multi-way probabilistic in-
ference. Moreover, by conditioning on a com-
mon reference state (e.g. the observer’s current
state), the learned representation space allows us
to discover the geometrically salient states that
only a handful of paths can lead through. These
states can naturally serve as subgoals to break
down long-horizon planning tasks. We evaluate
our method in gridworld environments with vari-
ous layouts and demonstrate its effectiveness in
discovering the subgoals.

1. Introduction
Learning good representations from the data plays a crucial
role in the success of modern machine learning algorithms
(Bengio et al., 2013). It requires an AI system to have the
ability to extract rich structures from the data and build a
model of the world. What structures should be preserved,
summarized, and what should be abstracted out is heavily
dependent on the downstream tasks and learning objectives.
In this paper, we consider the problem of what is a good
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representation for planning and reasoning in a stochastic
world. We will derive the problem formulation by delving
into the definitions of planning and reasoning, along with
the stochastic nature of the world.

On one hand, planning and reasoning typically involve an
optimization process finding the most probable future out-
comes or the most effective path to the goal. This optimiza-
tion ability sets it apart from retrieving and interpolating
good solutions seen in the training data, which imitation
learning algorithms are good at. Instead, it enables problem-
solving in new ways. To allow for such optimization, a
fundamental requirement for the representation space is to
have a distance function that accurately measures the prob-
ability of an event occurring given another or the distance
from the current state to the goal state. On the other hand,
the world inherently operates as a stochastic dynamical
system, transiting from one state to another, often formu-
lated as a Markov chain. By leveraging the transition graph
induced from the Markov chain, we can estimate the proba-
bility of transitioning from state x to state y within C time
steps, which we refer to as C-step reachability from x to y.
Rather than looking at the single-step transition like typical
model-based RL methods, C-step reachability considers all
possible paths within C steps from x to y, thus allowing
us to do multi-way probabilistic inference and answer ques-
tions such as “Given that event x has already occurred, how
probable is it for event y to occur in the future, considering
all possible ways the future could unfold?”, “How likely to
reach y from x considering all possible paths?”

By integrating the above principles, we formulate the repre-
sentation learning problem for planning and reasoning in a
stochastic world as the task of learning an embedding space.
This space’s distance function reflects the state reachability
induced by a Markov chain. To address this challenge, we
encode C-step reachability into an asymmetric similarity
function by binary NCE (Gutmann & Hyvärinen, 2012; Ma
& Collins, 2018). A significant volume of prior studies
on representation learning in NLP (Mikolov et al., 2013),
computer vision (Chen et al., 2020; He et al., 2020; Chen
et al., 2023) and RL (Ghosh et al., 2018; Wu et al., 2018)
have implicitly modeled the co-occurrence statistics on an
undirected graph and embed it by a single mapping function.
In contrast to these prior works, we use a pair of embedding
mappings to model the dual roles of a state in a directed
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graph: as an outgoing vertex and an incoming vertex. This
approach assures an asymmetric similarity function reflect-
ing the asymmetric even irreversible transition probabilities
resulting from the temporal order or causalities (e.g. the
transition of food from raw to cooked), which is crucial for
planning and event modeling.

Furthermore, the learned representation space also provides
a geometric abstraction of the underlying directed graph in
a perspective-dependent way. We find that by conditioning
on a common reference state, a symmetric distance mea-
sure can be recovered to measure the point density in the
representation space. This naturally gives rise to the notion
of subgoals, which denote the geometrically salient states
that only a handful of paths can lead through based on the
agent’s current state. Our definition of subgoals aligns well
with everyday experiences but has not been explored by the
previous works (Goyal et al., 2019; Nachum et al., 2018).
For instance, at a theme park entrance, a ticket is required
for entry, but not for exit. Thus, the entrance serves as a
subgoal upon arrival but not upon leaving. The proposed
subgoals can be identified as low-density regions using any
density-based clustering algorithms. We demonstrate the ef-
fectiveness of our approach to subgoal discovery in a variety
of gridworld environments.

2. Problem formulation
Suppose that a Markov chain M on state space S has an
initial distribution ρ(S0) and an unknown transition prob-
ability distribution P (St+1|St) ≜ P . Unlike the previous
works (Grover & Leskovec, 2016; Ghosh et al., 2018; Wu
et al., 2018), we do not require a uniform initial distribu-
tion on the state space since enumerating an unknown or
uncountable state space at the very beginning of a Markov
chain is often infeasible. Instead, we study the typical cases
where the initial distribution ρ(S0) is highly concentrated.

2.1. Vertex reachability

Let random variables U and W represent any vertex on the
directed transition graph G = (V,E, P ) induced from M.
The reachability from vertex u to vertex w can be defined
as

P (W = w|U = u) = lim
T→∞

1

T

T∑
t=1

Pt(St = w|S0 = u)

(1)
where Pt(St = w|S0 = u) is the probability of traveling
from u to w in exactly t steps. The reachability from u to
w can be therefore understood as the likelihood of reaching
w from u within any number of steps.

Specifically, the sequence of vertices S0 → S1 → · · · → St
is a t-step walk onG starting from u to w, whose probability

can be factorized as the following by thinking of G as a
Bayesian network:

Pt(St = w|S0 = u)

=
∑

S1,...,St−1

P (S1, . . . , St−1, St = w|S0 = u)

=
∑

S1,...,St−1

t−1∏
i=0

P (Si+1|Si)

(2)

2.2. C-step approximation

Computing the vertex reachability is often intractable since
it requires enumerating all possible paths over a near-infinite
horizon. In practice, we approximate (1) by looking aheadC
steps in a Markov chain. Formally, suppose that we have a T -
step Markov chain M = {S0, S1, . . . , ST } with transition
probability distribution P (St+1|St) ≜ P , t = 0, 1, . . . , T−
1. We denote any preceding random variables in the chain
as the random variable Y = {Si | 0 ≤ i ≤ T − 1}, and
any subsequent random variables within C steps from Y as
the random variable X = {Sj | i < j ≤ min(i + C, T )}.
The joint distribution P (X = w, Y = u) represents the
occurrence frequency of the ordered pair (u,w) on all the
possible paths within C steps. The reachability from u to
w can be approximated as

P (W = w|U = u) ≈ P (X = w|Y = u)

≈ 1

C

C∑
t=1

(P t)uw
(3)

where P t denotes the t-step transition probability distribu-
tion which is the product of t one-step transition matrices
P , i.e. P t = PP · · ·P︸ ︷︷ ︸

t

. (P t)uw = P (St = w | S0 = u).

P (X|Y ) is also a stochastic matrix where each row sums
to one and represents the reachability distribution starting
from a specific state.

The first approximation in (3) results from the fact that we
reduce the near-infinite look-ahead steps to C steps. The
second line holds when 0 < C ≪ T (See Appendix A.6 for
the proof) and suggests that when 0 < C ≪ T , one should
use a larger C to achieve better approximation precision.

3. Asymmetric contrastive representation
learning

We now aim to learn representations whose distance func-
tion encodes the asymmetric state reachability distribu-
tion P (X|Y ). In this section, we show how this problem
can be formulated and addressed within the framework of
noise contrastive estimation (NCE) (Gutmann & Hyväri-
nen, 2012). Based on different objective functions, NCE
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methods fall into two categories: binary NCE which dis-
criminates between the positive and negative classes, and
ranking NCE which ranks the true labels above the negative
ones for the positive inputs (Ma & Collins, 2018). Although
ranking NCE is broadly used in the recent resurgence of con-
trastive representation learning (van den Oord et al., 2019;
Chen et al., 2020; Srinivas et al., 2020; He et al., 2020), we
adopt binary NCE in this paper since it establishes a direct
relationship between the scoring function and probability
ratio.

3.1. Conditional binary NCE

Suppose that there is a data set of N trajectories
drawn from a T -step Markov chain M, i.e. T =
{(si0, si1, . . . , siT )}Ni=1 ∼ M. We construct the positive data
set for binary NCE as D+ = {(x+

i ,yi) ∼ P (X,Y )}N+

i=1,
and negative data set as D− = {x−

i ∼ Pn(X)}N−

i=1.
P (X,Y ) denotes the aforementioned joint distribution of
preceding random variable Y and subsequent random vari-
able X . Pn(X) denotes a specified negative distribution on
state space S . We use K to denote the ratio of negative and
positive samples, i.e. N− = KN+.

This yields a binary classification setting where a classifier
is trained to discriminate between positive samples from the
conditional distribution P (X|Y = y) and negative samples
from Pn(X), ∀y. The training objective is to correctly
classify both positive samples D+ and negative samples
D− using logistic regression:

max
θ
JBI_NCE(θ)

=max
θ

Ex+,y∼P (X,Y ) log σ(fθ(x
+,y))

+KEy∼PY (Y )Ex−∼Pn(X) log(1− σ(fθ(x
−,y)))

(4)

where PY (Y ) denotes the marginal distribution of Y . σ(·)
denotes the logistic function.

When the classifier is Bayes-optimal, we have

exp(f(X,Y = y)) =
P (X|Y = y)

KPn(X)
, ∀y (5)

where f(X,Y = y) is the scoring function. (See proof in
Appendix A.7)

3.2. Asymmetric encoders

Our method is built upon the key observation that the scor-
ing function f(X = x, Y = y) in the conditional binary
NCE can be treated as a similarity function between the
embeddings of x and y. Given that the underlying graph of
a Markov chain is directed, the reachability from vertex x
to vertex y often differs from the reachability from vertex
y to vertex x, i.e. P (X = x|Y = y) ̸= P (X = y|Y = x).

Therefore, having an asymmetric similarity function be-
comes essential to mirror the inherent asymmetry in the
reachability probabilities. In other words, the function form
of f should allow f(X = x, Y = y) ̸= f(X = y, Y = x).

One effective approach to accomplish this is by utilizing two
separate encoders. Concretely, we use an encoding function
ϕ : S → Z to map the preceding random variable Y to
the embedding space Z and use another encoding function
ψ : S → Z to map the subsequent random variable X to
the same embedding space, i.e.

f(X = x, Y = y) = s(ψ(x), ϕ(y)) (6)

s(·, ·) could be an arbitrary similarity measure in space
Z, e.g. cosine similarity or negative l2 distance. In
this paper, we opt for cosine similarity as s(·, ·) because
it is well-bounded and facilitates stable convergence, i.e.
s(ψ(x), ϕ(y)) = ψ(x)

∥ψ(x)∥2
· ϕ(y)
∥ϕ(y)∥2

.

Employing separate encoders offers two advantages over
a single encoder. Firstly, it guarantees the asymmetry re-
gardless of the choice of s(·, ·). Secondly, it ensures the
asymmetry in a general sense without imposing constraints
on the relationship between ϕ(·) and ψ(·). On the contrary,
prior works (van den Oord et al., 2019; Srinivas et al., 2020;
Eysenbach et al., 2023) employ a single encoder ψ(·) along-
side a linear transformation A to model time-series data,
which can be viewed as a specific case of our approach
where ϕ(·) = Aψ(·).

4. Reference state conditioned distance
measure

Building upon the learned asymmetric similarity function
s(·, ·), we can recover symmetric distance measures by con-
ditioning on a reference state. We term it as a reference state
conditioned distance measure. Formally, given a reference
state r, we define the pairwise latent distance between u
and v with respect to r as dr(u,v):

• If s(ϕ(r), ψ(u)) ≥ s(ϕ(r), ψ(v)),

dr(u,v) = 1− s(ϕ(u), ψ(v)) (7)

• Otherwise,

dr(u,v) = 1− s(ϕ(v), ψ(u)) (8)

In other words, for a pair of states u and v, we always
choose the one closer to r as the starting state and choose the
other one as the ending state to evaluate their distance. This
criterion allows us to measure pairwise distance without any
ambiguity. Unlike its undirected graph counterpart, there is
no single and universal distance measure in a directed graph;
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instead, the measure varies depending on the observer’s per-
spective r. This definition of a reference-dependent measure
dr(·, ·) allows us to find the salient geometric structure of
the representation space from changing perspectives, which
is meaningful in many real-world applications.

5. Subgoal discovery
Subgoal is a notion in RL referring to the intermediate
objectives or states that an agent aims to achieve on the way
to reaching the ultimate goal, and are often used to break
down complex or long-horizon tasks into shorter, simpler,
more manageable parts.

In this work, we propose to use the concept of subgoals to
denote the key states that only a handful of actions can lead
through, which may change as the observer’s perspective
varies. Formally, we identify subgoals as the states that
cause a sharp decrease in pairwise reachability, as perceived
from the agent’s current state. According to (5), we can
convert the reachability defined in the original state space
into the point density in the representation space. We then
perform DBSCAN (Deng, 2020) in the representation space
to identify the points in the low-density regions as subgoals.

6. Experiments
We evaluate our representation learning method in five grid-
world environments with various layouts: Four Rooms,
Dumbbell, Wide door, Flask, and Nail as shown in Fig-
ure 1, which are designed to encompass basic geometric
configurations. The states are 2D locations of the agent,
s ∈ R2. The action space includes five actions: left, right,
up, down, and stop. In each environment, a data set of
N trajectories T = {(si0, si1, . . . , siT )}Ni=1 is collected by a
uniform policy starting from a fixed initial state s0.

We train two encoders ϕ and ψ on T according to the learn-
ing objective (4). Both ϕ and ψ are parameterized as a
2-layer MLP with latent space z ∈ R64. We set the ratio
of negative and positive samples as K = 1 throughout all
the experiments. We use the marginal distribution of X as
the negative distribution for training, i.e. Pn(X) = PX(X),
which we found performs the best.

6.1. Subgoal discovery results in Four Rooms

We now demonstrate that our learned distance measure
dr(·, ·) enables easy identification of the subgoal states. We
perform the DBSCAN clustering in the representation space
according to dr(·, ·). Figure 2 shows the subgoals and clus-
ters found by our algorithm in Four Rooms. The results
in other environments and conditioning on more reference
states can be found in Appendix A.3. It can be observed that
the low-reachability regions such as doorways and passages

(a) Four Rooms (b) Dumbbell

(c) Wide door (d) Flask (e) Nail

Figure 1: Gridworld environments: The grey areas indicate
the walls. The yellow star indicates the initial state s0.

have been successfully identified as subgoals and the rooms
are decomposed into clusters.

Figure 2: Subgoal discovery results in Four Rooms: The left
shows the original states in 2D Euclidean space. The right
shows the t-SNE projection of the learned representations.
The states are colored according to the cluster labels in both
two spaces. The red star indicates the reference state. The
gray states are the subgoals found by our method. We set
approximation step size C = 16, and train the encoders on
a single episode of length T = 153600.

7. Conclusion
In this work, we study the problem of what is a good repre-
sentation for planning and reasoning in a stochastic world
and how to learn it. We discussed the importance of learn-
ing a distance measure in allowing planning and reasoning
in the representation space. We modeled the world as a
Markov chain and introduced the notion of C-step reacha-
bility on top of it to capture the geometric abstraction of the
transition graph and allow multi-way probabilistic inference.
We then showed how to embed the C-step abstraction of a
Markov transition graph and encode the reachability into
an asymmetric similarity function through conditional bi-
nary NCE. Based on this asymmetric similarity function, we
developed a reference state conditioned distance measure,
which enables the identification of geometrically salient
states as subgoals. We demonstrated the effectiveness of the
learned representations in subgoal discovery in the domain
of gridworld.
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A. Appendix
A.1. Preliminaries

A.1.1. MARKOV CHAIN AND THE DIRECTED TRANSITION GRAPH

A Markov chain on state space S can be thought of as a stochastic process traversing a directed graph where we start
from vertex s0 ∼ ρ(S0) and repeatedly follow an outgoing edge st → st+1 with some probabilities. We denote the
transition probability distribution of the Markov chain as P (St+1|St) (t = 0, 1, . . . ). Thus, a Markov chain induces
a weighted directed graph G = (V,E, P ) which is called the transition graph. V = {s ∈ S} is the vertex set, and
E = {s → s′ | s, s′ ∈ S} is a set of directed edges where each edge s → s′ has probability P (St+1 = s′|St = s) as its
weight. In this work, we consider the induced transition graph in the most general setting where loops are allowed, and a
directed edge does not have to be paired with an inverse edge.

A.1.2. MDP AND THE ENVIRONMENT GRAPH

A Markov decision process (MDP) M = (S,A, P, r, γ, ρ) is an extension of a Markov chain with the addition of actions
and rewards. The induced transition graph G still has the states s ∈ S as its vertex set, but the transition probability
P (St+1 = s′|St = s) from vertex s to its neighbor s′ now involves a two-stage transition process: we move from s to s′

through some actions a according to both the environment dynamics P (St+1|St, At) and the agent’s policy π(At|St):

Pπ(St+1 = s′|St = s)

=

∫
P (St+1 = s′|St = s, At = a)

π(At = a|St = s)da

(9)

where the policy probability π(At = a|St = s) acts as a weight of the environment transition probability P (St+1 = s′|St =
s, At = a).

In particular, when the policy is a uniform distribution for any state s, (9) is irrelevant to the policy π, i.e.

P (St+1 = s′|St = s)

=
1

|A|

∫
P (St+1 = s′|St = s, At = a)da

(10)

We term this policy-agnostic transition graph as the environment graph since its edge weights encode the environment
dynamics unbiasedly and the graph can be fully induced from an MDP. In addition, we ignore the rewards as they are
task-specific and do not necessarily reflect the structure of the environment.

A.2. Related Work

Subgoal discovery Subgoal is a fundamental concept introduced to tackle planning or decision-making problems using
the divide-and-conquer strategy. While lacking a unified mathematical formulation, previous works have proposed various
definitions of subgoals, each emphasizing its different roles in dividing the overall task, which include: midway states
between the starting and goal state that are reachable by the current policy (Zhang et al., 2021; Eysenbach et al., 2019);
common states shared by successful trajectories (McGovern & Barto, 2001; Ma et al., 2022); functionally salient states
where policy distributions significantly change (Ghosh et al., 2018); and decision states where the goal state is informative
to the decisions (Goyal et al., 2019). Different from the prior works, we define the subgoal as perspective-dependent
geometrically salient states.

A.3. Subgoal discovery results for more environments

We show the subgoal discovery results in environments Four rooms, Dumbbell, Wide-door, Flask, and Nail in Figure 3.

A.4. t-SNE visualization of the learned representations

To examine the learned representations, we show the visualization of the original states and the learned representations
in Figure 4. We use t-SNE to project the 64-dimensional learned representations onto 2D plots based on the distance
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(a) Four rooms

(b) Dumbbell

(c) Wide door

(d) Flask

(e) Nail

Figure 3: Subgoal discovery results. The states are colored according to the cluster labels in both the original space and
the learned representation space. The gray states are subgoals. In each environment, the clustering is performed based on
two reference states, which are indicated by the red stars. In each case, the left subplot shows the original states in 2D
Euclidean space, and the right subplot shows the t-SNE projection of the learned representations. In all the experiments, we
set approximation step size C = 16, and train the encoders on a single episode of length T = 153600.

7



Submission and Formatting Instructions for GRaM Workshop at ICML 2024

measure dr(·, ·) defined in (7) and (8). Across all the environments, the state space can be categorized into high-reachability
regions such as rooms, and low-reachability regions such as long passages and various doorways (bottlenecks). Our learned
representations can distinctly separate these regions according to their reachability with respect to the given reference state.

A.5. Ablation studies

A.5.1. THE EFFECT OF APPROXIMATION STEP SIZE C

To better understand the effect of step size C in approximating the true reachability defined in (1), we compare the
representations learned with C = 1, 16, 64 in the Four Rooms environment. When C = 1, the reachability is equivalent to
the one-step transition probabilities. As the value of C increases, the C-step reachability considers more and more possible
paths between two states and thus progressively approaches the true reachability. As a result, the abstraction level of the
representations becomes higher. This trend has been successfully captured in the learned distance measure dr(·, ·). As
shown in Figure 5, the rooms and doorways become further apart in the representation space as C goes up. This is because
the reachability contrast becomes sharper as longer paths are considered. These empirical observations align well with our
theoretical derivations on the influence of step size C in Section 2.2.

A.5.2. THE CHOICE OF THE NEGATIVE DISTRIBUTION AND THE CONNECTION TO PMI

Although the NCE framework holds for an arbitrary negative distribution Pn(X), different choices of Pn(X) affect the
similarity function f(X,Y ) in a meaningful way. We experimented with several choices of the negative distribution Pn(X):
PX(·) - the marginal distribution of X , PY (·) the marginal distribution of Y , and U(X) - the uniform distribution of X in
the Four Rooms environment in Figure 6 and 7. Among these options, PX(·) is the only choice that consistently performs
well across various values of chain length T and step size C. In contrast, U(X) performs the worst in most cases. One
hypothesis of why this phenomenon arises is that using a negative distribution resembling the positive distribution helps
train the classifier to reach Bayes optimum. PX(X) is more similar to P (X|Y = y) than U(X).

It is worth noting that when Pn(X) = PX(X), the similarity function f(X,Y ) encodes the pointwise mutual information
(PMI) of an ordered pair (y,x) up to a constant offset.

f(X = x, Y = y) = log
P (X = x|Y = y)

KPX(X = x)

= log
P (X = x|Y = y)

PX(X = x)
+ log

1

K

(11)

where 1
PX(X=x) can be viewed as a weight of the reachability P (X = x|Y = y), representing the inverse of the overall

frequency of visits to the state x. In other words, distribution P (X = x|Y = y) is adjusted according to the rarity of the
arrival state x. Especially, when K = 1 which is the default setting in this paper, the offset is removed from (11) which
yields a direct relationship between the similarity function and PMI:

f(X = x, Y = y) = log
P (X = x|Y = y)

PX(X = x)
(12)

A.6. Proof of C-step approximation

Given a data set of N trajectories drawn from a T -step Markov chain M , i.e. T = {(si0, si1, . . . , siT )}Ni=1 ∼ M. Let
Y represent a preceding random variable in the chain Y = {Si | 0 ≤ i ≤ T − 1} and X represent a random variable
subsequent to Y within C time steps. X = {Sj | i < j ≤ min(i+ C, T )}. P denotes the one-step transition matrix. We
now derive P (X|Y ) in terms of P as follows:

Based on the occurrences of the ordered pair (y,x), we can derive the joint distribution of X and Y as

P (X = x, Y = y) =

∑T−C
t=0

∑t+c
i=t+1 n(Si = x, St = y) +

∑T−1
t=T−C+1

∑T
i=t+1 n(Si = x, St = y)

N(T − C + 1)C +N
∑C−1
t=1 t

(13)

where n(Si = x, St = y) denotes the number of times Si = x and St = y occur in data set T .

8
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(a) Four Rooms

(b) Dumbbell

(c) Wide door

(d) Flask

(e) Nail

Figure 4: Visualization of the original states and the learned representations. The states are colored to visualize their
position correspondences between two spaces. In each environment, we visualize the representation space from two different
perspectives. The reference states r are indicated by the red stars. In each group, the left subplot shows the original states in
2D Euclidean space and the right subplot shows the t-SNE projection of the learned representations. In all the experiments,
we set approximation step size C = 16, and train the encoders on a single episode of length T = 153600.
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(a) The original states (b) C = 1 (c) C = 16 (d) C = 64

Figure 5: Visualization of the original states and the learned representations with different approximation step sizes C in
Four Rooms environment. The embeddings are projected to 2D plots by t-SNE. In all the experiments, we train the encoders
on a single episode of length T = 153600.

Similarly, by counting the occurrences of each specific state y, the marginal distribution of Y can be derived as

PY (Y = y) =
C
∑T−C
t=0 n(St = y) +

∑T−1
t=T−C+1(T − t)n(St = y)

N(T − C + 1)C +N
∑C−1
t=1 t

(14)

where n(St = y) denotes the number of times St = y occurs in data set T .

By the definition of the Markov chain, we have

n(Si = x, St = y) = n(St = y)(P i−t)yx (i = t+ 1, t+ 2, . . .) (15)

Plugging (15) into (13), we have

P (X = x, Y = y) =

∑T−C
t=0 n(St = y)

∑C
i=1(P

i)yx +
∑T−1
t=T−C+1

∑T
i=t+1 n(St = y)(P i−t)yx

N(T − C + 1)C +N
∑C−1
t=1 t

(16)

Given (16) and (14), we can derive the conditional distribution as

P (X = x | Y = y) =
P (X = x, Y = y)

P (Y = y)

=

∑T−C
t=0 n(St = y)

∑C
i=1(P

i)yx +
∑T−1
t=T−C+1

∑T
i=t+1 n(St = y)(P i−t)yx

C
∑T−C
t=0 n(St = y) +

∑T−1
t=T−C+1(T − t)n(St = y)

(17)

When 0 < C ≪ T , we can further drop the second term of the nominator and denominator, which is equivalent to changing
the range of Y to Y = {Si | 0 ≤ i ≤ T − C}. That is,

P (X = x | Y = y) ≈
∑T−C
t=0 n(St = y)

∑C
i=1(P

i)yx

C
∑T−C
t=0 n(St = y)

=
1

C

C∑
t=1

(P t)yx

(18)

A.7. Proof of Bayes optimal scoring function

Suppose that we are training a binary classifier P (C|X,Y = y; θ) to discriminate between positive data distribution
P (X|Y = y) and negative data distribution Pn(X), ∀y. The ratio of negative and positive samples is K. The Bayes
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(a) T = 153600

(b) T = 1024

(c) T = 300

(d) T = 150

Figure 6: Learned representations with different negative distributions in Four Rooms environment when C = 16. Left
column: Pn(X) = PX(X), Middle column: Pn(X) = PY (X), Right column: Pn(X) = U(X). Each row corresponds to
the results with a different episode length T . All experiments have the same number of training environment steps 153600.

11



Submission and Formatting Instructions for GRaM Workshop at ICML 2024

(a) T = 153600

(b) T = 1024

(c) T = 300

(d) T = 150

Figure 7: Learned representations with different negative distributions in Four Rooms environment when C = 1. Left
column: Pn(X) = PX(X), Middle column: Pn(X) = PY (X), Right column: Pn(X) = U(X). Each row corresponds to
the results with a different episode length T . All experiments have the same number of training environment steps 153600.
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optimal classifier P (C|X,Y = y; θ) is a maximum a posteriori (MAP) hypothesis satisfying

P (X|Y = y)

Pn(X)
=
P (X|Y = y, C = 1)

P (X|C = 0)

=
P (C = 1|X,Y = y; θ)

P (C = 0|X,Y = y; θ)

P (C = 0)

P (C = 1)

=
P (C = 1|X,Y = y; θ)

P (C = 0|X,Y = y; θ)
K

=
P (C = 1|X,Y = y; θ)

1− P (C = 1|X,Y = y; θ)
K, ∀y

(19)

P (C = 1|X,Y = y; θ) =
P (X|Y = y)

P (X|Y = y) +KPn(X)
, ∀y (20)

When the classifier is a logistic function, we have

P (C = 1|X,Y = y; θ) =
1

1 + exp(−fθ(X,Y = y))
, ∀y (21)

Plugging (21) into (20), we have

exp(fθ(X,Y = y)) =
P (X|Y = y)

KPn(X)
, ∀y (22)

A.8. A graph perspective of the single encoder embedding

With slight adjustments, our method can also treat the directed graph as an undirected graph. In such cases, we modify the
range of random variable Y and X to Y = {Si | 0 ≤ i ≤ T} and X = {Sj | max(i− C, 0) ≤ j ≤ min(i+ C, T ), j ̸= i}.
Additionally, we use a single encoder ϕ(·) to encode both X and Y . s(·, ·) could be any symmetric similarity measure, e.g.
cosine similarity. As a result, we have

f(X = x, Y = y)

=f(X = y, Y = x)

=s(ϕ(x), ϕ(y))

= log
P (X = x|Y = y) + P (X = y|Y = x)

2KPn(X = x)

(23)

We transform the directed graph into an undirected one by enforcing the similarity function f(·, ·) to encode the average of
P (X = x|Y = y) and P (X = y|Y = x). Note that the reachability from x to y and the reachability from y to x may not
be identical, meaning P (X = x|Y = y) may not be equal to P (X = y|Y = x).

In fact, word embedding methods such as word2vec (Mikolov et al., 2013) and graph embedding methods such as node2vec
(Grover & Leskovec, 2016) have implicitly performed the operations in (23) through the Skip-gram model. Learning
undirected representations is sufficient when the downstream tasks are clustering, classification, etc. These applications rely
on mutual similarity or compatibility measures insensible to the directionality. However, incorporating transition direction
into representation learning is crucial for planning, reasoning, and event modeling. This becomes especially important
when the transition is irreversible due to temporal order or causalities. For example, consider two states: y=young and
x=old, transiting from young to old is certain while the reverse is impossible. In probabilistic language, we can express
it as P (X = x|Y = y) = 1 and P (X = y|Y = x) = 0. The expected embeddings of these two states should correctly
reflect this difference in reachability. Ideally, the state ‘young’ should be very close to the state ‘old’ in one scenario and be
infinitely far away in the other. Averaging these two probabilities into 0.5 would erroneously pull them together to the same
distance in both cases.

A.9. Inference and planning using the learned asymmetric similarity function

After training ϕ(·), ψ(·), we can use them to perform inference tasks on a given set of states χ. For instance, suppose that we
are currently at state s and want to know which state is most likely to occur in the future. We can then identify it by finding
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the state closest to s in the latent space, i.e. solving argmaxx∈χ s(ϕ(s), ψ(x)). Furthermore, with a defined action space,
we can construct a directed graph on χ by evaluating s(ϕ(·), ψ(·)). Feeding G to any search algorithm, such as Dijkstra’s
algorithm, enables us to plan a shortest path from an initial state s0 to a goal state sg in the latent space.

A.10. Future work

We leave the following topics for future work: (1) Use the discovered subgoals in HRL setting to solve long-horizon tasks
and improve sample efficiency. (2) Use the learned similarity function as an intrinsic reward function to avoid tedious reward
engineering.
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