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Abstract

Large-scale Vision and Language (V&L) pre-001
training has recently become the standard back-002
bone of multimedia systems. While it has003
shown remarkable performance even in zero-004
shot scenarios, it often performs in ways not005
intuitive to humans. Particularly, they do006
not consider the pronunciation of the input,007
which humans would utilize to process lan-008
guage. Thus, this paper inserts phonetic prior009
into Contrastive Language-Image Pretraining010
(CLIP), one of the V&L pretrained models, to011
make it consider the pronunciation similarity012
among its language inputs. To achieve this, we013
first propose a phoneme embedding that uses014
the phoneme relationships on the International015
Phonetic Alphabet (IPA) chart as a phonetic016
prior. Next, by distilling the CLIP text encoder,017
we train a pronunciation encoder employing the018
IPA-based embedding. The proposed model019
named IPA-CLIP comprises this pronunciation020
encoder and the original CLIP encoders (im-021
age and text). Quantitative evaluations show022
that IPA-CLIP accurately processes words in023
a more phonetic manner, which is promising024
for downstream tasks. A qualitative evaluation025
verifies a high correlation to human perception026
regarding pronunciation similarity.027

1 Introduction028

Vision and Language (V&L) pretraining from large-029

scale image-text datasets has gained increasing030

attention as a fundamental model of multimedia031

systems. Contrastive Language-Image Pretraining032

(CLIP) (Radford et al., 2021) is one of such V&L033

pretrained models consisting of an image encoder034

and a text encoder that share their bi-modal embed-035

ding space. It uses far larger training data than pre-036

vious models, which guarantees its effectiveness in037

various applications including image classification038

and retrieval (Radford et al., 2021), object detec-039

tion (Shi et al., 2022), image generation (Crowson040

et al., 2022), and image captioning (Galatolo et al.,041

2021). This also allows it to perform well even in 042

scenarios not seen in the training set. 043

However, in many cases, such models do not 044

behave in a way intuitive to humans. One of the 045

reasons is that they do not consider the phonetic 046

similarity among words, which humans would con- 047

sciously or unconsciously utilize to express the 048

meanings of words intuitively. For example, an En- 049

glish speaker who uses the word “Lump” in a con- 050

versation might have a connotation of something 051

heavy and round, akin to other similar-sounding 052

words “Bump”, “Slump”, or “Plump”. Humans 053

also use phonetic similarity to process spoken lan- 054

guage (Hahn and Bailey, 2005), especially when 055

they hear unknown or nonsense words (in short, 056

nonwords). Such nonwords may force humans to 057

recall their similar-sounding words. For instance, 058

the pronunciation of a nonword “Britch” might 059

remind English speakers of a similar-sounding 060

word “Bridge”, thus the meaning of “Britch” might 061

be recognized as something related to a bridge. 062

Meanwhile, another nonword “Brish” (rhymes with 063

“Fish”) might be less perceived so because of its less 064

phonetic similarity to “Bridge”. Without knowing 065

phonetic relationships, conventional models can 066

not consider such correspondences. 067

The goal of this paper is to insert phonetic priors 068

into V&L pretrained models to make them consider 069

phonetic similarity. This would enable them to as- 070

sociate nonwords with their phonetically similar 071

words, which will make them better correspond to 072

human expectations towards nonwords. A possi- 073

ble approach to insert phonetic knowledge into a 074

pretrained model is to change the tokenizer of their 075

text encoders and retrain the whole model. Yet, 076

existing tokenizing and embedding methods (Sen- 077

nrich et al., 2016; El Boukkouri et al., 2020; Ma 078

et al., 2020) are not sufficient as they do not con- 079

sider phonetic similarity. One obstacle is that their 080

language input is usually written with graphemes, 081

which do not necessarily correspond to phonemes. 082
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Figure 1: Overview of the proposed IPA-CLIP model.

Furthermore, retraining the original model could083

be another drawback since it requires both a huge084

amount of data and huge computational costs.085

To tackle these problems, we first integrate a pho-086

netic prior into a general character-level embedding.087

The proposed IPA-based phoneme embedding ex-088

ploits the International Phonetic Alphabet (IPA)089

chart (International Phonetic Association, 1999) as090

a phonetic prior. The chart defines phonetic simi-091

larity among phonemes in spoken languages (e.g.,092

the English consonant /k/ is more similar to /g/093

than /m/). Next, we take a distillation approach to094

extend a V&L pretrained model to accept language095

inputs written with phonemes. Specifically, we im-096

plement IPA-CLIP as illustrated in Fig. 1, a model097

which extends CLIP. It consists of three encoders:098

the original CLIP image and text encoders, and a099

newly trained pronunciation encoder. The input of100

the pronunciation encoder is an array of phonemes101

written with IPA phonetic symbols (e.g., /@ "foUtoU102

@v @ kæt./ for “A photo of a cat.”). This allows the103

IPA-based phoneme embedding in the encoder to104

phonetically process each phoneme. The distilla-105

tion approach reduces the cost of extending CLIP to106

a new pronunciation modality. Moreover, since the107

pronunciation encoder maps pronunciations onto108

the CLIP bi-modal embedding space, applications109

using CLIP will be able to accept pronunciation in-110

puts, even if the target languages lack orthography,111

just by replacing encoders.112

The contributions of this paper are four-fold:113

(1) We propose an IPA-based phoneme embedding114

which integrates phonetic similarity on the IPA115

chart into its phoneme embedding space, (2) We116

implement IPA-CLIP by extending CLIP, to pho-117

netically process pronunciation inputs using the118

IPA-based phoneme embedding, (3) We confirm119

the agreement of the IPA-based phoneme embed-120

ding with the phonetic relationships on the IPA121

chart, and (4) We verify the general ability of IPA-122

CLIP in multimodal retrieval tasks when existing or123

nonsense words are input as well as its agreement 124

with human perception. 125

2 Related Work 126

2.1 Phonetics and Computational Approaches 127

IPA transcription is one of the most common al- 128

phabetic systems used to describe pronunciation. 129

It assigns a unique symbol to each phoneme while 130

also providing symbols for other phonetic com- 131

ponents such as stresses and syllable boundaries. 132

The IPA chart denotes the relationships among 133

phonemes that can appear in spoken languages (See 134

Appendix A.1 for the whole IPA chart), assigning 135

each phoneme with multiple phonetic attributes. 136

Consonants have three attributes: voicing, place 137

of articulation, and manner of articulation. Vow- 138

els also have three attributes: height, backness, 139

and roundedness. For example, the voiceless ve- 140

lar plosive /k/, as in “Coat”, possesses “voiceless” 141

(voicing), “velar” (place), and “plosive” (manner) 142

attributes, and the close-mid back rounded vowel 143

/o/, as in “Coat”, possesses “close-mid” (height), 144

“back” (backness), and “rounded” (roundedness) 145

attributes. 146

Several studies integrate such phonetic knowl- 147

edge into the calculation of the phonetic similarity 148

between words. Vitz and Winkler (1973) propose a 149

dissimilarity measure between two word pronunci- 150

ations based on the edit distance. Hahn and Bailey 151

(2005) incorporate phonetic features into the edit 152

distance, regarding two English phonemes sharing 153

certain attributes (e.g., /k/ and /g/) as closer than 154

other pairs of phonemes sharing fewer attributes 155

(e.g., /k/ and /m/). Parrish (2017) proposes a bi- 156

gram model based on phonetic features for poetic 157

applications. Bay et al. (2017) use the structure of 158

the IPA chart to calculate the phonetic similarity for 159

text transformation. They regard all three conso- 160

nant attributes, as described above, as categorical, 161

and height and backness of the vowel attributes 162
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as continuous. When calculating the similarity be-163

tween consonants, they check and count which out164

of three attributes two consonants have in common.165

For vowels, they manually reconstruct the vowel166

chart on a 2D Cartesian plane (they ignore round-167

edness) and measure the Euclidean distance.168

Recent Natural Language Processing (NLP)169

techniques also obtain neural phoneme embeddings170

that reflect phonetic relationships without explicit171

supervision. Kolachina and Magyar (2019) con-172

firm if phoneme-level Word2vec (Mikolov et al.,173

2013a,b) learns the phoneme relationships, con-174

cluding that Word2vec captures them from the175

phonological restrictions in the training data quite176

well. Boldsen et al. (2022) perform a similar analy-177

sis of character embeddings in multiple languages178

using some language models, showing strong corre-179

lations between the learned character relationships180

and actual phonetic relationships.181

For constructing the IPA-based phoneme embed-182

ding, this paper follows the usage of the IPA chart183

by Bay et al. (2017) and treats two vowel attributes184

as continuous while other attributes as categorical.185

We also compare the IPA-based embedding with a186

neural phoneme embedding obtained via training187

without such a prior as a baseline.188

2.2 CLIP Extensions for Other Types of Data189

Many methods extend CLIP to other modalities to190

spread its effectiveness in other multimodal tasks.191

For the audio, some train a new audio encoder in192

addition to the original image and text encoders us-193

ing multimodal datasets. Guzhov et al. (2022) train194

three encoders for each modality simultaneously us-195

ing uni- and multimodal datasets. Wu et al. (2022)196

distill the CLIP image encoder to train only an ad-197

ditional audio encoder with an audio-image dataset.198

Elizalde et al. (2022) use a text-audio dataset to199

train audio and text encoders from scratch. All200

these methods employ contrastive learning for train-201

ing like the original CLIP.202

Within the image and text modalities, Carlsson203

et al. (2022) expand the CLIP text encoder, which204

was trained mainly on the English vocabulary, to205

process multiple languages. They first prepare a206

number of English sentences and then machine-207

translate them into multiple languages to obtain a208

multilingual dataset. Using this, similar to Wu et al.209

(2022), they train a multilingual text encoder with210

multilingual sentence pairs by distilling the CLIP211

text encoder using Mean Squared Error (MSE) loss.212

The proposed IPA-CLIP extends CLIP for pro- 213

nunciation inputs. To this end, we take a similar 214

distillation approach as proposed by Carlsson et al. 215

(2022) to reduce the costs of training a pronuncia- 216

tion encoder compatible with the CLIP encoders. 217

We automatically convert English sentences into 218

IPA phonetic transcriptions using dictionaries and 219

then use the text-pronunciation pairs in place of 220

their multilingual sentence pairs. 221

3 IPA-CLIP: Phonetic Embedding 222

Distillation of CLIP 223

The overview of the proposed IPA-CLIP is illus- 224

trated in Fig. 1. It consists of three encoders: The 225

CLIP image encoder, the CLIP text encoder, and a 226

new pronunciation encoder, all of which share the 227

same multimodal embedding space. 228

3.1 IPA-based Phoneme Embedding 229

This section proposes a phoneme embedding that 230

considers the phoneme relationships on the IPA 231

chart. This phoneme embedding layer works by 232

replacing the word embedding layer of language 233

models including BERT. As it is based on the IPA 234

chart, the pronunciation input to this layer is theo- 235

retically universal and not specific to any language. 236

As mentioned in Section 2.1, the IPA chart as- 237

signs three attributes for each phoneme. Inspired by 238

previous work (Bay et al., 2017), we treat the two 239

vowel attributes, height and backness, as continu- 240

ous and thus consider the extent of the difference 241

between these attributes. For instance, the close 242

front unrounded vowel /i/ is treated as more simi- 243

lar to the close-mid front unrounded vowel /e/ than 244

the open front unrounded vowel /a/. In contrast, 245

the other four attributes are regarded as categorical 246

and thus we only consider whether two phonemes 247

have any attribute in common. 248

As shown in Fig. 2a, the proposed method cal- 249

culates the phoneme embedding p as a linear com- 250

bination
∑

i xiwi, where xi is a magnitude and wi 251

is a feature vector for the i-th attribute. In detail, 252

for each phoneme, we calculate the multiplication 253

of the transpose of the N -dimensional sparse mag- 254

nitude vector x and the N ×D feature matrix W , 255

which is written as p = x⊤W . A magnitude vec- 256

tor x also includes attributes for letters other than 257

phonemes such as stresses, spaces, commas, and ex- 258

clamation marks, which are also projected onto the 259

same phoneme embedding space despite not being 260

phonemes. The aim of this is to ensure the equiv- 261
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Figure 2: Detailed illustration of the construction of the pronunciation encoder of IPA-CLIP.

alent flexibility of the input of the pronunciation262

encoder to the CLIP text encoder. Thus, the pro-263

nunciation encoder can differentiate between ho-264

mophonic texts such as “everyday” vs. “every day”265

and “a cat” vs. “a cat!”. More detailed examples266

of this calculation are available in Appendix A.2.267

3.2 Training by Distilling CLIP Text Encoder268

The training of the pronunciation encoder of IPA-269

CLIP is based on the distillation methods proposed270

by Carlsson et al. (2022) and Wu et al. (2022). Al-271

though the implementation of this paper focuses272

only on English, the distillation itself can be ap-273

plied to other languages if resources are available.274

The distillation procedure is illustrated in Fig. 2b.275

First, to create sentence-pronunciation pairs from276

a number of sentences, we convert each sentence277

to its pronunciation using an existing dictionary.278

Specifically, by looking up the dictionary, all words279

in a sentence are replaced with their pronunciations.280

For example, a sentence “a photo of a cat.” is con-281

verted to its pronunciation /@ "foUtoU @v @ kæt./.282

We ignore cases in the Latin alphabet and do not283

exclude letters other than the Latin alphabet.284

With this dataset, our pronunciation encoder is285

distilled from the CLIP text encoder, where the286

weights of the text encoder are frozen during the287

training. Given a sentence-pronunciation pair, the288

pronunciation encoder is trained to output the iden-289

tical pronunciation embedding to the sentence em-290

bedding calculated by the text encoder. MSE loss291

is employed for the training objective as opposed to292

the contrastive loss used in training CLIP (Radford293

et al., 2021), because it is known to work better for294

the distillation purpose (Carlsson et al., 2022).295

3.3 Implementation296

DistilBERT (Sanh et al., 2019) is adopted as the ar-297

chitecture of the pronunciation encoder. We replace298

its word embedding with the proposed IPA-based 299

phoneme embedding and add an additional linear 300

layer to match the dimensionality of its output to 301

that of the CLIP encoders, but we do not mod- 302

ify any other part. The pronunciation encoder is 303

trained from scratch. 304

As training data, we use a dataset compiled by 305

Carlsson et al. (2022), which is a mixture of sen- 306

tences taken from some image captioning datasets. 307

In addition, to increase the vocabulary, sentences 308

consisting of only one word are also created us- 309

ing Spell Checker Oriented Word Lists (SCOWL)1, 310

an English wordlist that comprises 102,305 words. 311

For text-to-pronunciation conversion, we use the 312

Carnegie-Mellon University (CMU) Pronouncing 313

Dictionary2, which is also used by many previous 314

studies (Parrish, 2017; Bay et al., 2017; Kolachina 315

and Magyar, 2019), resulting in training data of 316

1,168,451 sentences in total. The pretrained CLIP 317

model called ViT-L/143 is used throughout the eval- 318

uation. See Appendix A.3 for more details. 319

4 Quantitative Evaluations 320

This section evaluates both the proposed IPA-based 321

phoneme embedding and IPA-CLIP in a quantita- 322

tive manner. With prior knowledge of phonetics, 323

IPA-CLIP learns both phoneme embeddings and 324

pronunciation embeddings through distillation. 325

A baseline method in these experiments em- 326

ploys a pronunciation encoder that uses an ordinary 327

character-level (phoneme-level) embedding layer 328

instead of the IPA-based one. Thus, its phoneme 329

embedding does not consider phonetic relation- 330

ships but implicitly learns such relationships only 331

1http://wordlist.aspell.net/ (Accessed Jan.
19, 2023)

2https://github.com/menelik3/
cmudict-ipa/ (Accessed Jan. 19, 2023)

3https://github.com/openai/CLIP/blob/
main/model-card.md (Accessed Jan. 19, 2023)
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Figure 3: Core ideas of measuring the correlation of the vowel layout on a phoneme space to phonetic relationships.

from the phonological restrictions in the training332

data. We also test whether the weights of the fea-333

ture matrix W of IPA-CLIP should be trainable or334

frozen as randomly initialized values. If frozen, the335

mapping of W becomes a random mapping (We336

call this setting Proposed (Frozen)). If trainable, it337

reflects the phonetic relationships learned from the338

English phonological rules, which could be both339

a boon and a bane (We call this Proposed (Train-340

able)). In any case, the weights of the DistilBERT341

and the additional linear layer are always trained.342

Note that the experiments in the following sec-343

tions measure performance only towards English344

phonemes for a fair comparison with the baseline.345

4.1 Experiment on Phoneme Spaces346

First, the proposed IPA-based embedding (pro-347

posed methods) is compared with the conventional348

phoneme-level embedding (baseline method). We349

measure the three characteristics of the learned350

phoneme embedding spaces with different metrics:351

(1) How distinct the distributions of the consonant352

cluster and the vowel cluster are, (2) How the con-353

sonant layout represents the phonetic relationships354

among consonants, and (3) How the vowel layout355

represents the phonetic relationships among vow-356

els. The clear distinction between consonants and357

vowels makes IPA-CLIP easier to distinguish the358

two types. The accordance of the phoneme lay-359

outs with the IPA Chart helps IPA-CLIP to process360

phoneme differences based on phonetic similarity.361

4.1.1 Consonant and Vowel Distributions362

To measure the distinctness of consonants and vow-363

els on the phoneme embedding space, we calcu-364

late the silhouette coefficient (Rousseeuw, 1987),365

a metric for a clustering technique, between the366

consonant and vowel clusters on the embedding367

space. A higher silhouette coefficient for a con-368

sonant (vowel) cluster means that the consonant369

(vowel) cluster is well apart from the vowel (conso-370

nant) cluster. After computing these values for all371

consonants (vowels), the silhouette coefficient for372

the consonant (vowel) cluster, sCc (sCv) ∈ [−1, 1],373

is aggregated by averaging the values among all 374

consonants (vowels). See Appendix A.4 for the 375

mathematical formulation of this metric. 376

4.1.2 Consonant Distribution and Phonetics 377

To measure the consistency of the consonant layout 378

on the phonetic space and the consonant catego- 379

rization on the IPA chart, we calculate the mean 380

Average Precision (mAP), a metric for retrieval 381

tasks, for each consonant attribute. First, for each 382

consonant, all other consonants are retrieved based 383

on the Euclidean distance on the phonetic space. 384

Then, to calculate the Average Precision (AP), we 385

regard consonants that share the focused attribute 386

as relevant. For instance, when the voiced conso- 387

nant /b/ is evaluated in terms of voicing attribute, 388

the set of its relevant consonants, R, then becomes 389

a set of all voiced consonants containing e.g., /d/, 390

/m/, and /g/. If the retrieved ranking for the con- 391

sonant /b/ is [/p/,/d/,/t/,/m/,/g/, . . . ] in order, 392

the AP score for /b/, AP/b/, is 393

AP/b/ =
1

|R|

(
1

2
+

2

4
+

3

5
+ · · ·

)
. (1) 394

The mAP metric for each attribute is calculated by 395

averaging the AP scores among all consonants. 396

4.1.3 Vowel Distribution and Phonetics 397

Figure 3 illustrates the core idea of measuring the 398

correlation between the vowel layout on the pho- 399

netic space and the vowel order on the IPA chart. 400

First, inspired by Bay et al. (2017), we map every 401

vowel onto the 3D Cartesian space that replicates 402

the IPA chart. The three axes of the Cartesian 403

space represent vowel attributes of height, back- 404

ness, and roundedness, respectively. Next, for each 405

attribute/axis, we calculate Spearman’s rank corre- 406

lation between the vowel distribution on this Carte- 407

sian space and that on the phonetic space. We 408

create two ground-truth rankings for each attribute 409

by sorting vowels that share one of the other two at- 410

tributes. For instance, as illustrated in Fig. 3, when 411

evaluating the vowel /A/ on the height attribute, the 412

following two rankings are calculated: (1) the rank- 413

ing of the back vowels: /A/ > /O/ > /o/ > /u/, 414
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Table 1: Quantitative evaluation of phoneme embedding spaces. Silhouette coefficient (Sil), mean Average Precision
(mAP), and Spearman’s rank correlation (RCorr) denote the distinctness between consonants and vowels, consistency
of consonant distributions with phonetics, and correlation of vowel distributions to phonetics, respectively.

Sil ↑ mAP ↑ (Consonant) RCorr ↑ (Vowel)

Method sCc sCv Voicing Place Manner Height Back Round

Baseline −0.014 0.054 0.589 0.421 0.342 0.541 0.592 0.753
Proposed (Trainable) −0.036 0.217 0.705 0.767 0.642 0.891 0.680 0.925
Proposed (Frozen) 0.233 0.568 0.735 0.810 0.837 0.890 0.685 0.925

and (2) the ranking of the unrounded vowels: /A/415

= /a/ > /æ/ > /E/ > /@/ > /e/ > /I/ > /i/. With416

these ground-truth rankings, we calculate two rank417

correlations between each of the two ground-truth418

rankings and the ranking of the vowels retrieved419

based on the Euclidean distance on the phonetic420

space. Lastly, for each vowel attribute, we compute421

the average value among all vowels to be the rank422

correlation metric on the phonetic space.423

4.1.4 Results and Discussions424

The results of this experiment are shown in Table 1.425

Overall, Proposed (Frozen) performs best in almost426

all metrics. Proposed (Trainable) is also compara-427

ble except for the silhouette coefficient.428

The great advantage of Proposed (Frozen) to the429

other methods is the silhouette coefficient. A high430

silhouette coefficient means that the distributions431

of the consonant and the vowel clusters are distinct432

and thus have little overlap on the phoneme embed-433

ding space. As the coefficient drops in the baseline434

and the Proposed (Trainable) methods, this com-435

parison indicates that the embeddings learned from436

the phonological restrictions in sentences do not437

clearly distinguish consonants and vowels. This438

contradicts the fact that such neural embeddings439

are known to represent phonetic relationships quite440

well (Kolachina and Magyar, 2019; Boldsen et al.,441

2022). Yet, since even the baseline performs mod-442

erately in the other metrics, such embeddings seem443

to learn relationships within consonants and within444

vowels well even without explicit priors.445

Moreover, between the baseline and the pro-446

posed methods, the increase of mAP and rank cor-447

relation is observed. This suggests the effectiveness448

of the proposed IPA-based embedding in differenti-449

ating both within consonants and within vowels.450

4.2 Experiments on Pronunciation Spaces451

Second, the performance of IPA-CLIP is discussed452

in the following three multimodal retrieval tasks:453

(1) Retrieval-based image classification from the454

pronunciations of existing words, (2) Image re- 455

trieval from the pronunciations of nonwords, and 456

(3) Text retrieval from the pronunciations of non- 457

words. Note that the nonwords here denote such 458

words that do not exist in the English vocabulary 459

but sound similar to certain existing words. Mea- 460

suring the performance on these tasks evaluates the 461

accordance of the pronunciation encoder (1) with 462

the image encoder for existing words, (2) with the 463

image encoder for nonwords, and (3) with the text 464

encoder for nonwords, respectively. 465

Here, the ImageNet (Deng et al., 2009) valida- 466

tion dataset is used as a source of image-text pairs. 467

The dataset provides 50 images for each of its 1,000 468

classes. We convert each class label into its pro- 469

nunciation in the same way as Section 3.3. By 470

removing the classes where this conversion failed, 471

we obtain 912 classes with 50 images each in to- 472

tal. Note that we use the class labels identical to 473

the ones used by the authors of CLIP (Radford 474

et al., 2021), which differ from the class labels that 475

ImageNet provides. As the previously described re- 476

lated work does not consider multimodal retrieval 477

tasks, this section only evaluates the original CLIP 478

as a comparison method, as it outperforms other 479

methods (Carlsson et al., 2022; Wu et al., 2022). 480

4.2.1 Image Classification from Pronunciation 481

The retrieval-based image classification task is sim- 482

ilar to the one in a previous study (Radford et al., 483

2021). Here, IPA-CLIP classifies an image by mea- 484

suring the cosine similarities between the embed- 485

ding of the image and those of the class labels in the 486

form of, e.g., /@ "foUtoU @v <CLASS>/ (“A photo 487

of <CLASS>”). For example, given an image and 488

two class labels “Dog” and “Cat”, IPA-CLIP first 489

calculates the embedding of the image and those 490

of the two pronunciations /@ "foUtoU @v dOg/ and 491

/@ "foUtoU @v kæt/. It then measures the cosine 492

similarity between the image embedding and each 493

of the pronunciation embeddings. The class label 494

of the image is determined by finding the image- 495
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label pair that gives the maximum similarity. We496

also filter out classes by measuring the word fre-497

quency (as the Zipf scale, which we call Zipf fre-498

quency) of their labels using an existing Python499

package (Speer et al., 2018). This allows us to see500

how rare class labels, which would never appear or501

appear few in the distillation process of IPA-CLIP,502

affect the classification results. We compare the ac-503

curacy of our methods with CLIP, which classifies504

images from text labels using the text encoder. To505

see the modality gap between the IPA-CLIP pro-506

nunciation encoder and the CLIP text encoder, we507

also merge the two by taking the average of their508

embeddings on the joint embedding space, which509

we call “Proposed (Frozen) + CLIP”.510

4.2.2 Nonword-to-Image Retrieval511

To evaluate the robustness of IPA-CLIP towards512

nonwords having certain similar-sounding existing513

words, a set of nonwords is prepared by slightly514

modifying the class labels of ImageNet. First, we515

focus only on the labels whose Zipf frequency is516

three or more (297 classes). Then, for labels start-517

ing with a sole consonant (216 classes satisfy this),518

the initial consonant is substituted with other conso-519

nants (e.g., from /dEsk/: “Desk” to /zEsk/, /nEsk/,520

etc.) to make nonwords that sound similar to the521

original word. Next, by removing words that hap-522

pen to exist in the English vocabulary, we obtain523

3,530 nonwords stemming from any of the 216524

classes. Meanwhile, text equivalents are also pre-525

pared by automatically converting each phoneme526

into its spelling (“Zesk” for /zEsk/) to evaluate the527

text-based original CLIP. See Appendix A.6 for a528

more detailed procedure of this nonword creation.529

With these nonwords, an image retrieval task530

is performed. Given a nonword, the objective is531

to retrieve the images belonging to the class from532

which the nonword stems. For instance, given the533

nonword /zEsk/, we measure how many of the 50534

images in the class “Desk” are retrieved from the535

pronunciation embedding of /@ "foUtoU @v zEsk/.536

Recall@50 is measured as a metric. We split537

the evaluation based on how phonetically similar538

the nonword is to its original word by counting539

the number of shared attributes between the two540

contrasting consonants. This assesses whether each541

method captures the phonetic similarity among con-542

sonants. Giving always similar scores regardless543

of the number of shared attributes mean that the544

method does not consider phonetic similarity, while545

a high correlation between the scores and the num-546

Table 2: Accuracies of the image classification on 1,000-
class ImageNet (Deng et al., 2009) dataset. We use Zipf
frequency to filter out the classes having less frequent
and rare label names.

Zipf Frequency ≥ 0.0 ≥ 1.5 ≥ 3.0 ≥ 4.5

Number of Classes 912 492 297 29

Baseline 0.600 0.696 0.777 0.877
CLIP (Radford et al., 2021) 0.712 0.751 0.765 0.891

Proposed (Trainable) 0.581 0.686 0.769 0.886
Proposed (Frozen) 0.590 0.683 0.764 0.885
Proposed (Frozen) + CLIP (Radford et al., 2021) 0.705 0.765 0.799 0.897
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Figure 4: Results of (a) image retrieval and (b) text
retrieval from nonwords written with either phonetic
symbols (Baseline and Proposed) or texts (CLIP).

ber of shared attributes indicates that the method 547

associates nonwords with their similar-sounding 548

words according to phonetic similarity. 549

4.2.3 Nonword-to-Text Retrieval 550

The procedure of the nonword-to-text retrieval is 551

similar to the one described in Section 4.2.2, but 552

this experiment targets texts instead of images. We 553

use 3,530 nonwords prepared in Section 4.2.2. In 554

this experiment, models retrieve the text of the 555

class from which the nonword stems. For example, 556

given the nonword /zEsk/, we assess whether each 557

method can retrieve the text embedding of the text 558

“A photo of desk” among the text embeddings of 559

216 classes. Accuracy is measured as a metric. 560

4.2.4 Results and Discussions 561

The results of the image classification are shown in 562

Table 2. It indicates a strong effect of the rareness 563

of the class labels on the performance. As can be 564

seen on the left side, the proposed methods perform 565

much worse than CLIP when the classes contain 566

rare words. This is mainly because these models, 567

as student models, have not been exposed much to 568

these rare words during the distillation. In contrast, 569

as the rare words drop out from the evaluation, their 570

performance comes to be comparable. 571

Most interesting is “Proposed (Frozen) + CLIP”. 572

Despite its simple fusion strategy of the two modali- 573
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ties, it performs best in almost all settings. This sug-574

gests the effectiveness of introducing the pronuncia-575

tion modality into existing V&L pretrained models.576

Looking into the 297-class confusion matrix (See577

supplementary materials) revealed the characteris-578

tics of each encoder. The pronunciation encoder is579

more sensitive to pronunciation differences, while580

the text encoder is stronger against the meaning581

gaps. For example, Proposed (Frozen) misclassi-582

fied “Block plane” as “Buckle” since they sound583

similar. In contrast, CLIP misclassified “Screw”584

as “Metal Nail” since their meanings are similar.585

As “Proposed (Frozen) + CLIP” correctly classi-586

fied both, averaging the embeddings of the two587

encoders could have compensated for their weak-588

nesses.589

Next, Fig. 4 shows the results of the nonword-590

to-image and -text retrieval tasks. The tendency591

is similar throughout the two tasks: The baseline592

method retrieves best when the number of shared593

attributes is 0 or 1, while Proposed (Frozen) per-594

forms best when it is 2. This suggests that Pro-595

posed (Frozen) associates nonwords with the orig-596

inal word only when the words are phonetically597

similar, which confirms that Proposed (Frozen) con-598

siders the phonetic similarity between consonants599

more accurately than the other methods in the pro-600

nunciation embedding space.601

We also observed that the proposed methods al-602

ways outperform CLIP in these nonword-centered603

tasks. This verifies that the proposed pronunciation604

modality makes CLIP robust against nonwords.605

5 Qualitative Evaluation606

This section evaluates how much the proposed607

methods attune the CLIP embedding space to actual608

human perception regarding pronunciation similar-609

ity. We use the pronunciation similarity rankings610

collected by Vitz and Winkler (1973). In each of611

their four trials, native English speakers rated the612

sound similarity between a given target word and613

each of its 25 comparison words. The four trials dif-614

fer only in the target word, which is “Sit”, “Plant”,615

“Wonder”, and “Relation”, respectively, as well as616

its comparison words. More details are explained617

in Appendix A.8. In our evaluation, given a target618

word, we first calculate the cosine similarity be-619

tween the word and each of its comparison words620

on the pronunciation space to create a similarity621

ranking. Then, its rank correlation to the ground622

truth is measured as a metric. A higher value means623

Table 3: Qualitative evaluation of the pronunciation em-
bedding space. Scores denote rank correlations between
the word similarity measured on the embedding space
of each method and the ground truth rated by humans.

Target Word Sit Plant Wonder Relation

Baseline 0.535 0.397 0.693 0.442
Proposed (Trainable) 0.642 0.549 0.526 0.485
Proposed (Frozen) 0.385 0.420 0.640 0.504

CLIP (Radford et al., 2021) 0.353 0.402 0.585 0.304

that the embedding space better fits human percep- 624

tion regarding pronunciation similarity. 625

Table 3 shows the results. All pronunciation- 626

based methods outperform the text-based CLIP, 627

which verifies that the phonetic prior forces similar- 628

sounding words to become closer to each other. 629

Within the pronunciation-based methods, the per- 630

formance of Proposed (Frozen) is particularly bad 631

when the target word is “Sit”. This is due to the 632

short syllable length of its comparison words, yield- 633

ing much more possible similar-sounding words 634

than the other target words. Thus, its phonetic 635

knowledge could have disturbed the calculation 636

of the embeddings of such short syllable words, 637

which would be a shortcoming of the proposed ap- 638

proach. Nevertheless, since this evaluation covers 639

just these four specific cases, the results do not 640

spotlight which of the pronunciation-based meth- 641

ods works best in general. 642

6 Conclusion 643

We proposed an IPA-based phoneme embedding 644

and IPA-CLIP which integrate the phonetic rela- 645

tionships on the IPA (International Phonetic Alpha- 646

bet) chart into a character/phoneme-level embed- 647

ding and the Vision and Language pretrained model 648

CLIP. The phonetic prior enables it to process in- 649

puts even if they contain nonsense words (non- 650

words). Evaluations showed the effectiveness of 651

the IPA-based phoneme embedding against conven- 652

tional embeddings and the potential of IPA-CLIP 653

to outperform the original CLIP in some multi- 654

modal retrieval tasks. When nonwords are input, 655

IPA-CLIP performs always better than CLIP, which 656

verifies its robustness against nonwords. Further 657

evaluation verified the correlation between its pro- 658

nunciation embedding space and human perception 659

regarding pronunciation similarity. 660

For future work, further analysis is needed to 661

investigate under which conditions the proposed 662

approach has advantages over text-based methods. 663

8



Ethics Statement664

We have evaluated ethics and social concerns in665

this research and believe there are only limited666

concerns.667

We first hope that the proposed IPA-CLIP as well668

as the IPA-based phoneme embedding will be ef-669

fectively used in pronunciation-related downstream670

tasks such as image-pronunciation matching, im-671

age captioning (image-to-pronunciation), and im-672

age generation (pronunciation-to-image). However,673

as they provide a method to relate nonwords with674

their phonetically similar words, this research could675

potentially impair the dignity of proper nouns in-676

cluding peoples’ names, even though it is not our677

intended use. For instance, some might perceive678

unpleasant if their names are associated with such679

existing words that have negative and unpleasant680

meanings. This might also occur when IPA-CLIP681

is applied to multimodal downstream tasks if no682

modification is made to the implementation of this683

paper. One example is image generation, which684

can generate images having unpleasant content for685

the pronunciation of a name.686

Second, since IPA-CLIP is based on OpenAI’s687

pretrained CLIP models which are trained using688

data extensively collected from the Web, IPA-CLIP689

would inherit existing biases that those models al-690

ready have. Also, in the current implementation,691

we do not consider dialects and other regional dif-692

ferences in pronunciations, which could have a693

minor impact on the use of our framework.694

Finally, we declare that all data used in this paper695

are properly cited and used in accordance with their696

respective licenses.697
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A Appendix 842

A.1 International Phonetic Alphabet Chart 843

Figure 5 shows the International Phonetic Alpha- 844

bet (IPA) chart (International Phonetic Association, 845

1999) used in this paper. The chart connects almost 846

all phonemes that can appear in any natural lan- 847

guage and the proximity on it indicates phonetic 848

similarities. On the chart, each phoneme is charac- 849

terized by multiple phonetic attributes. Consonants 850

have three attributes: voicing, place of articula- 851

tion, and manner of articulation. Vowels also have 852

three attributes: height, backness, and roundedness. 853

According to the chart, for example, the voiceless 854

velar plosive /k/, as in “Coat”, possesses “voice- 855

less” (voicing), “velar” (place), and “plosive” (man- 856

ner) consonant attributes, and the close-mid back 857

rounded vowel /o/, as in “Coat”, possesses “close- 858

mid” (height), “back” (backness), and “rounded” 859

(roundedness) vowel attributes. Some consonants 860

such as the voiced labial–velar approximant /w/ 861

have multiple places of articulation. In this case, 862

/w/ is characterized by four consonant attributes 863

(“voiced”, “labial”, “velar”, and “approximant”). 864

A.2 IPA-based Phoneme Embedding 865

This section describes the details of the calculation 866

of the proposed IPA-based phoneme embedding. 867

As shown in Fig. 2a, the proposed method calcu- 868

lates the phoneme embedding p as a linear combi- 869

nation
∑

i xiwi, where xi is a magnitude and wi 870

is a feature vector for the i-th attribute. Specifi- 871

cally, for each phoneme, the proposed IPA-based 872

phoneme embedding calculates the multiplication 873

of the transpose of the N -dimensional sparse mag- 874

nitude vector x and the N ×D feature matrix W , 875
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Bilabial
Labio-
dental

Dental Alveolar
Post-

alveolar
Palatal Velar Glottal

Nasal m ɱ n ɲ ŋ
Plosive p b t d c ɟ k ɡ ʔ
Sibilant affricate ts dz ʧ ʤ tɕ dʑ
Sibilant fricative s z ʃ ʒ ɕ ʑ
Nonsibilant fricative ɸ β f v θ ð ç ʝ x ɣ h ɦ
Approximant ʋ ɹ j ɰ
Lateral approximant l ʎ ʟ
Symbols to the left in each column are voiceless consonants, symbols to the right are voiced consonants

(a) Consonants (Pulmonic)

Front
Near-
front

Central
Near-
back

Back

Close i y ɨ ʉ ɯ u
Near-close ɪ ʏ ʊ
Close-mid e ø ɘ ɵ ɤ o
Mid ə
Open-mid ɛ œ ɜ ɞ ʌ ɔ
Near-open æ ɐ
Open a ɶ ä ɑ ɒ
Symbols to the left in each column are unrounded vowels, 
symbols to the right are rounded vowels

(b) Vowels

Figure 5: IPA Chart (International Phonetic Association, 1999) for pulmonic consonants and vowels used in this
paper. It connects almost all phonemes occurring in natural languages regarding their phonetic relationships. English
phonemes, as used in this paper, are colored in red.

Table 4: Examples of attributes that each of the dimen-
sions of the magnitude vector x represents.

Attribute Category Range
Examples of x

/p/ /v/ /e/ /U/ ‘,’
Consonant

Consonant

xi ∈ {0, 1} 1 1 0 0 0
Voicing xi ∈ {0, 1} 0 1 0 0 0
Manner 1: Nasal xi ∈ {0, 1} 0 0 0 0 0
Manner 2: Plosive xi ∈ {0, 1} 1 0 0 0 0

...
...

...
...

...
...

...

Place 1: Bilabial xi ∈ {0, 1} 1 0 0 0 0
Place 2: Labiodental xi ∈ {0, 1} 0 1 0 0 0

...
...

...
...

...
...

...

Vowel

Vowel

xi ∈ {0, 1} 0 0 1 1 0
Height 0 ≤ xi ≤ 1 0 0 2

6
1
6 0

Backness 0 ≤ xi ≤ 1 0 0 0 3
4 0

Roundedness xi ∈ {0, 1} 0 0 0 1 0
Primary stress /"/

Others

xi ∈ {0, 1} 0 0 0 0 0
Secondary stress // xi ∈ {0, 1} 0 0 0 0 0
Char ‘ ’: Space xi ∈ {0, 1} 0 0 0 0 0
Char ‘,’: Comma xi ∈ {0, 1} 0 0 0 0 1
Char ‘!’: Exclamation xi ∈ {0, 1} 0 0 0 0 0

...
...

...
...

...
...

...

written as876

p = x⊤W =

N∑
i=1

xiwi.

=x1w1 + x2w2 + · · ·+ xNwN .

(2)877

Since x is sparse, only the feature vectors where xi878

is non-zero are summed.879

Table 4 shows examples of the N attributes and880

magnitudes in the vector x for some phonemes.881

As shown in the table, x also includes attributes882

for letters other than phonemes such as stresses,883

spaces, commas, and exclamation marks. In the884

proposed method, we also project these letters onto885

the same phoneme embedding space despite not886

being phonemes. The aim of this is to ensure the887

equivalent flexibility of the input of the pronunci-888

ation encoder to the CLIP text encoder (Radford889

et al., 2021). Thus, the pronunciation encoder can890

differentiate between homophonic texts such as891

“everyday” vs. “every day” and “a cat” vs. “a cat!”.892

DistilBERT

[CLS] /ə/ /ˈ/ /f/ /o/ /ʊ/ /ˌ/ /t/ /o/ /ʊ/ …‘␣’
Tokenized 

Input

Phoneme
Embedding

Positional
Embedding

‘␣’ /ə/ /v/

Average Pooling

Linear

Pronunciation
Embedding

Figure 6: Illustration of the pronunciation encoder used
in IPA-CLIP. IPA-CLIP employs the proposed IPA-
based phoneme embedding in its phoneme embedding
layer.

A.3 Details of Implementation and Data 893

Preparation 894

As the architecture of the pronunciation encoder, 895

we adopt DistilBERT (Sanh et al., 2019), a light 896

and efficient version of BERT. Figure 6 illustrates 897

the implementation. We replace its word embed- 898

ding with the proposed IPA-based phoneme embed- 899

ding and add an additional linear layer to match the 900

dimensionality of its output to that of the CLIP en- 901

coders (Radford et al., 2021), but we do not modify 902

any other part of DistilBERT. The pronunciation 903

encoder is trained from scratch. 904

For the training data to distill the original CLIP 905

models, we use a list of English sentences com- 906

piled by Carlsson et al. (Carlsson et al., 2022). It 907

is a mixture of sentences taken from several image 908

caption datasets, which could be strongly linked 909

with the visual domain. In addition, to increase 910

the vocabulary, we prepare sentences consisting of 911

only one word using Spell Checker Oriented Word 912

Lists (SCOWL)1, an English wordlist that com- 913

prises 102,305 words. We convert these sentences 914

11



into pronunciation written with IPA symbols using915

the Python package eng-to-ipa4. The package uses916

the Carnegie-Mellon University (CMU) Pronounc-917

ing Dictionary2, which is also used by many pieces918

of previous work (Parrish, 2017; Bay et al., 2017;919

Kolachina and Magyar, 2019). We remove sen-920

tences containing words whose pronunciations are921

not provided in the package. This results in train-922

ing data of 1,168,451 sentences in total. Following923

the implementation of the previous work (Carlsson924

et al., 2022), we fix the size of the validation split925

as 1,000, resulting in a split of 1,167,451 sentences926

for training and 1,000 sentences for validation.927

Although the main part of this paper discusses928

IPA-CLIP distilled from the pretrained CLIP model929

called ViT-L/14, we also test on another base model930

called ViT-B/32 (The results will be described in931

Appendix A.5). ViT-B/32 is the simplest and light-932

est model, while ViT-L/14 is a more recently re-933

leased and larger model on the OpenAI’s model934

card3. These models employ Transformers for both935

image and text encoders. We train our pronuncia-936

tion encoder with a learning rate 5× 10−5, a batch937

size 32, and the Adam optimizer (Kingma and Ba,938

2015), up to 50 epochs. Training a model took four939

days using a single NVIDIA RTX A6000 GPU.940

This paper reports results calculated using models941

trained only once for each setting.942

A.4 Silhouette Coefficient among Consonant943

and Vowel Clusters944

This section first describes the mathematical for-945

mulation of the calculation of the silhouette co-946

efficient metric in Section 4.1.1. The silhouette947

coefficient (Rousseeuw, 1987) measures the dis-948

tinctness of the consonant and vowel clusters on949

the embedding space. Given that Cc (respectively950

Cv) is a set of consonants (vowels), c is an element951

of Cc, and xc is the embedding vector of c, the952

coefficient sc for the consonant c is calculated as953

sc =
bc − ac

max(ac, bc)
, (3)954

where955

ac =
1

|Cc| − 1

∑
ĉ∈Cc,c ̸=ĉ

d(xc, xĉ),

bc =
1

|Cv|
∑
v∈Cv

d(xc, xv),

(4)956

4https://pypi.org/project/eng-to-ipa/
(Accessed Jan. 19, 2023)
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(b) Proposed (Frozen)

Figure 7: Visualization of the phoneme embedding
spaces. Consonants and vowels are shown in orange
and purple, respectively, to compare their distributions.

and d( · , · ) is the Euclidean distance. The silhou- 957

ette coefficient for the consonant cluster, sCc , is 958

then calculated by averaging the coefficients among 959

all consonants. The coefficient for the vowel clus- 960

ter, sCv , is also achieved in the same way, by swap- 961

ping c and v in the equations. sCc (respectively 962

sCv ) ranges between [−1, 1], where a high value 963

indicates that the consonant (vowel) cluster is well 964

distinct from the vowel (consonant) cluster. 965

Figure 7 shows the actual distribution of the two 966

clusters on the phoneme spaces calculated by the 967

baseline and the Proposed (Frozen) methods. The 968

scatter plot shows the distribution of all consonants 969

and vowels on the three-dimensional spaces sup- 970

pressed by Principal Component Analysis (PCA). 971

Both sCc and sCv of Proposed (Frozen) will be 972

higher than those of the baseline method (See Ta- 973

ble 1 and Table 5) because the consonant and vowel 974

clusters are more distinct in the phoneme space of 975

Figure 7b than that of Figure 7a. 976

A.5 Results for Different CLIP Models 977

Table 5 shows the results of our quantitative evalua- 978

tion of the phoneme embedding spaces with differ- 979

ent pretrained CLIP models (Radford et al., 2021), 980

along with the validation loss at the point of 50 981

epochs. This table covers all the results shown in 982

Table 1. For all metrics, we confirmed no signifi- 983

cant difference in performance among the choice 984

of the base models. 985

A.6 Nonword Creation 986

This section explains the more detailed procedure 987

of the nonword creation in Section 4.2.2 and Sec- 988

tion 4.2.3. In both sections, we use the same set of 989

nonwords created by slightly modifying the 1,000 990

class labels of ImageNet (Deng et al., 2009). 991

To create nonwords that sound similar to certain 992

common existing words, we first focus only on the 993

12
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Table 5: Quantitative evaluation of the phoneme embedding spaces with different pretrained CLIP models (Radford
et al., 2021). The silhouette coefficient (Silhouette), the mean Average Precision (mAP), and Spearman’s rank corre-
lation (Rank Corr.) denote the distinctness between consonants and vowels, consistency of consonant distributions
with phonetics, and correlation of vowel distributions to phonetics, respectively.

Silhouette ↑ mAP ↑ (Consonant) Rank Corr. ↑ (Vowel) Loss ↓

Base Method sCc sCv Voicing Place Manner Height Back Round MSE
V

iT
-B

/3
2 Baseline −0.006 0.049 0.585 0.433 0.394 0.524 0.574 0.796 0.0084

Proposed (Trainable) 0.036 0.193 0.753 0.763 0.717 0.913 0.666 0.882 0.0096
Proposed (Frozen) 0.252 0.558 0.735 0.812 0.845 0.889 0.688 0.925 0.0092

V
iT

-L
/1

4 Baseline −0.014 0.054 0.589 0.421 0.342 0.541 0.592 0.753 0.027
Proposed (Trainable) −0.036 0.217 0.705 0.767 0.642 0.891 0.680 0.925 0.028
Proposed (Frozen) 0.233 0.568 0.735 0.810 0.837 0.890 0.685 0.925 0.028

Upper Bound 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 —

Table 6: Candidate consonants and corresponding
spellings used to generate nonwords from the class la-
bels of ImageNet (Deng et al., 2009).

Consonant /s/ /n/ /f/ /l/ /z/ /b/ /ô/ /p/ /g/ /k/
Spelling ‘s’ ‘n’ ‘f’ ‘l’ ‘z’ ‘b’ ‘r’ ‘p’ ‘g’ ‘k’ or ‘c’

Consonant /d/ /m//T/ /t/ /Ã/ /j/ /h/ /v/ /S/ /Ù/ /w/
Spelling ‘d’ ‘m’ ‘th’ ‘t’ ‘j’ ‘y’ ‘h’ ‘v’ ‘sh’‘ch’ ‘w’

labels whose Zipf frequency is three or more (297994

classes) calculated using an existing Python pack-995

age (Speer et al., 2018). Then, for labels starting996

with a sole consonant (216 classes satisfy this), we997

substitute the initial consonant with other possible998

consonants (e.g., from /dEsk/: “Desk” to /zEsk/,999

/nEsk/, etc.) to make a set of nonwords which1000

sound similar to the original word. Next, we re-1001

move the generated words that happen to exist in1002

the English vocabulary. To check this, we use the1003

SCOWL wordlist1 and the CMU dictionary2. This1004

process yields 3,530 nonwords stemming from ei-1005

ther of the 216 classes.1006

During this preparation, we also prepare the1007

text equivalents by automatically converting each1008

phoneme into its spelling (“Zesk” for /zEsk/) so1009

that we can also evaluate the text-based original1010

CLIP. Table 6 lists all consonants used for the sub-1011

stitution along with their spelling correspondents.1012

As shown in the table, the candidate consonants1013

are selected from all consonants appearing at the1014

beginning of English words, except for /D/, which1015

becomes identical to /T/ when spelled.1016

A.7 Visualization of Text and Pronunciation1017

Embedding Spaces1018

As an additional analysis of the difference between1019

CLIP (Radford et al., 2021) and IPA-CLIP, we vi-1020
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Figure 8: t-SNE (van der Maaten and Hinton, 2008)
visualization of the text and pronunciation embeddings
of nonwords. Text embeddings of existing words (red)
and nonwords (purple) are calculated by CLIP (Rad-
ford et al., 2021), while pronunciation embeddings of
nonwords (green) are calculated by IPA-CLIP.

sualize how words and nonwords are distributed 1021

on their shared embedding space. The scatter plot, 1022

shown in Fig. 8, illustrates the embeddings of ex- 1023

isting words and nonwords sounding similar to 1024

“Bridge”, calculated by either CLIP or IPA-CLIP. 1025

It reveals that IPA-CLIP places nonwords such as 1026

“Pridge” (/pôIÃ/) and “Britch” (/bôIÙ/) in posi- 1027

tions close to their similar-sounding existing word 1028

“Bridge” (/bôIÃ/). In contrast, CLIP does not place 1029

any nonwords, even “Pridge”, near “Bridge”. This 1030

supports the results that IPA-CLIP considers the 1031

phonetic similarity of words. 1032

A.8 Details of Qualitative Evaluation 1033

This section explains the details of the pronunci- 1034

ation similarity rankings collected through four 1035

trials of psychological experiments conducted by 1036

Vitz and Winkler (Vitz and Winkler, 1973). In 1037

each of their four trials, native American English 1038

speakers rated the pure sound similarity between 1039

13



a given target word and each of its 25 compari-1040

son words. Their four experiments differ only in1041

the target word, which is “Sit”, “Plant”, “Won-1042

der”, and “Relation”, respectively, as well as its1043

comparison words. In the first three experiments,1044

comparison words are a mixture of valid and non-1045

sense English words that have a similar syllable1046

structure as the target word. In the last experiment,1047

this constraint for the syllable structure is removed.1048

For example, the comparison words for the target1049

word “Sit” include “Pit”, “Sat”, and “Tass”, all1050

of which have the same syllable structure (Con-1051

sonant+Vowel+Consonant) as “Sit”. Meanwhile,1052

those for the target word “Relation” include “Be-1053

lation”, “Fascinating”, and “Get”, which do not1054

necessarily have the same syllable structure as “Re-1055

lation”.1056
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