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Abstract

Large-scale Vision and Language (V&L) pre-
training has recently become the standard back-
bone of multimedia systems. While it has
shown remarkable performance even in zero-
shot scenarios, it often performs in ways not
intuitive to humans. Particularly, they do
not consider the pronunciation of the input,
which humans would utilize to process lan-
guage. Thus, this paper inserts phonetic prior
into Contrastive Language-Image Pretraining
(CLIP), one of the V&L pretrained models, to
make it consider the pronunciation similarity
among its language inputs. To achieve this, we
first propose a phoneme embedding that uses
the phoneme relationships on the International
Phonetic Alphabet (IPA) chart as a phonetic
prior. Next, by distilling the CLIP text encoder,
we train a pronunciation encoder employing the
IPA-based embedding. The proposed model
named IPA-CLIP comprises this pronunciation
encoder and the original CLIP encoders (im-
age and text). Quantitative evaluations show
that IPA-CLIP accurately processes words in
a more phonetic manner, which is promising
for downstream tasks. A qualitative evaluation
verifies a high correlation to human perception
regarding pronunciation similarity.

1 Introduction

Vision and Language (V&L) pretraining from large-
scale image-text datasets has gained increasing
attention as a fundamental model of multimedia
systems. Contrastive Language-Image Pretraining
(CLIP) (Radford et al., 2021) is one of such V&L
pretrained models consisting of an image encoder
and a text encoder that share their bi-modal embed-
ding space. It uses far larger training data than pre-
vious models, which guarantees its effectiveness in
various applications including image classification
and retrieval (Radford et al., 2021), object detec-
tion (Shi et al., 2022), image generation (Crowson
et al., 2022), and image captioning (Galatolo et al.,

2021). This also allows it to perform well even in
scenarios not seen in the training set.

However, in many cases, such models do not
behave in a way intuitive to humans. One of the
reasons is that they do not consider the phonetic
similarity among words, which humans would con-
sciously or unconsciously utilize to express the
meanings of words intuitively. For example, an En-
glish speaker who uses the word “Lump” in a con-
versation might have a connotation of something
heavy and round, akin to other similar-sounding
words “Bump”, “Slump”, or “Plump”. Humans
also use phonetic similarity to process spoken lan-
guage (Hahn and Bailey, 2005), especially when
they hear unknown or nonsense words (in short,
nonwords). Such nonwords may force humans to
recall their similar-sounding words. For instance,
the pronunciation of a nonword “Britch” might
remind English speakers of a similar-sounding
word “Bridge”, thus the meaning of “Britch” might
be recognized as something related to a bridge.
Meanwhile, another nonword “Brish” (rhymes with
“Fish”) might be less perceived so because of its less
phonetic similarity to “Bridge”. Without knowing
phonetic relationships, conventional models can
not consider such correspondences.

The goal of this paper is to insert phonetic priors
into V&L pretrained models to make them consider
phonetic similarity. This would enable them to as-
sociate nonwords with their phonetically similar
words, which will make them better correspond to
human expectations towards nonwords. A possi-
ble approach to insert phonetic knowledge into a
pretrained model is to change the tokenizer of their
text encoders and retrain the whole model. Yet,
existing tokenizing and embedding methods (Sen-
nrich et al., 2016; El Boukkouri et al., 2020; Ma
et al., 2020) are not sufficient as they do not con-
sider phonetic similarity. One obstacle is that their
language input is usually written with graphemes,
which do not necessarily correspond to phonemes.
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Figure 1: Overview of the proposed IPA-CLIP model.

Furthermore, retraining the original model could
be another drawback since it requires both a huge
amount of data and huge computational costs.

To tackle these problems, we first integrate a pho-
netic prior into a general character-level embedding.
The proposed IPA-based phoneme embedding ex-
ploits the International Phonetic Alphabet (IPA)
chart (International Phonetic Association, 1999) as
a phonetic prior. The chart defines phonetic simi-
larity among phonemes in spoken languages (e.g.,
the English consonant /k/ is more similar to /g/
than /m/). Next, we take a distillation approach to
extend a V&L pretrained model to accept language
inputs written with phonemes. Specifically, we im-
plement IPA-CLIP as illustrated in Fig. 1, a model
which extends CLIP. It consists of three encoders:
the original CLIP image and text encoders, and a
newly trained pronunciation encoder. The input of
the pronunciation encoder is an array of phonemes
written with IPA phonetic symbols (e.g., /2 'fou tou
ov o kaet./ for “A photo of a cat.”’). This allows the
IPA-based phoneme embedding in the encoder to
phonetically process each phoneme. The distilla-
tion approach reduces the cost of extending CLIP to
a new pronunciation modality. Moreover, since the
pronunciation encoder maps pronunciations onto
the CLIP bi-modal embedding space, applications
using CLIP will be able to accept pronunciation in-
puts, even if the target languages lack orthography,
just by replacing encoders.

The contributions of this paper are four-fold:
(1) We propose an IPA-based phoneme embedding
which integrates phonetic similarity on the IPA
chart into its phoneme embedding space, (2) We
implement IPA-CLIP by extending CLIP, to pho-
netically process pronunciation inputs using the
IPA-based phoneme embedding, (3) We confirm
the agreement of the IPA-based phoneme embed-
ding with the phonetic relationships on the IPA
chart, and (4) We verify the general ability of IPA-
CLIP in multimodal retrieval tasks when existing or

nonsense words are input as well as its agreement
with human perception.

2 Related Work

2.1 Phonetics and Computational Approaches

IPA transcription is one of the most common al-
phabetic systems used to describe pronunciation.
It assigns a unique symbol to each phoneme while
also providing symbols for other phonetic com-
ponents such as stresses and syllable boundaries.
The IPA chart denotes the relationships among
phonemes that can appear in spoken languages (See
Appendix A.1 for the whole IPA chart), assigning
each phoneme with multiple phonetic attributes.
Consonants have three attributes: voicing, place
of articulation, and manner of articulation. Vow-
els also have three attributes: height, backness,
and roundedness. For example, the voiceless ve-
lar plosive /k/, as in “Coat”, possesses “voiceless”
(voicing), “velar” (place), and “plosive” (imanner)
attributes, and the close-mid back rounded vowel
/o/, as in “Coat”, possesses “close-mid” (height),
“back” (backness), and “rounded” (roundedness)
attributes.

Several studies integrate such phonetic knowl-
edge into the calculation of the phonetic similarity
between words. Vitz and Winkler (1973) propose a
dissimilarity measure between two word pronunci-
ations based on the edit distance. Hahn and Bailey
(2005) incorporate phonetic features into the edit
distance, regarding two English phonemes sharing
certain attributes (e.g., /k/ and /g/) as closer than
other pairs of phonemes sharing fewer attributes
(e.g., /k/ and /m/). Parrish (2017) proposes a bi-
gram model based on phonetic features for poetic
applications. Bay et al. (2017) use the structure of
the IPA chart to calculate the phonetic similarity for
text transformation. They regard all three conso-
nant attributes, as described above, as categorical,
and height and backness of the vowel attributes



as continuous. When calculating the similarity be-
tween consonants, they check and count which out
of three attributes two consonants have in common.
For vowels, they manually reconstruct the vowel
chart on a 2D Cartesian plane (they ignore round-
edness) and measure the Euclidean distance.

Recent Natural Language Processing (NLP)
techniques also obtain neural phoneme embeddings
that reflect phonetic relationships without explicit
supervision. Kolachina and Magyar (2019) con-
firm if phoneme-level Word2vec (Mikolov et al.,
2013a,b) learns the phoneme relationships, con-
cluding that Word2vec captures them from the
phonological restrictions in the training data quite
well. Boldsen et al. (2022) perform a similar analy-
sis of character embeddings in multiple languages
using some language models, showing strong corre-
lations between the learned character relationships
and actual phonetic relationships.

For constructing the IPA-based phoneme embed-
ding, this paper follows the usage of the IPA chart
by Bay et al. (2017) and treats two vowel attributes
as continuous while other attributes as categorical.
We also compare the IPA-based embedding with a
neural phoneme embedding obtained via training
without such a prior as a baseline.

2.2 CLIP Extensions for Other Types of Data

Many methods extend CLIP to other modalities to
spread its effectiveness in other multimodal tasks.
For the audio, some train a new audio encoder in
addition to the original image and text encoders us-
ing multimodal datasets. Guzhov et al. (2022) train
three encoders for each modality simultaneously us-
ing uni- and multimodal datasets. Wu et al. (2022)
distill the CLIP image encoder to train only an ad-
ditional audio encoder with an audio-image dataset.
Elizalde et al. (2022) use a text-audio dataset to
train audio and text encoders from scratch. All
these methods employ contrastive learning for train-
ing like the original CLIP.

Within the image and text modalities, Carlsson
et al. (2022) expand the CLIP text encoder, which
was trained mainly on the English vocabulary, to
process multiple languages. They first prepare a
number of English sentences and then machine-
translate them into multiple languages to obtain a
multilingual dataset. Using this, similar to Wu et al.
(2022), they train a multilingual text encoder with
multilingual sentence pairs by distilling the CLIP
text encoder using Mean Squared Error (MSE) loss.

The proposed IPA-CLIP extends CLIP for pro-
nunciation inputs. To this end, we take a similar
distillation approach as proposed by Carlsson et al.
(2022) to reduce the costs of training a pronuncia-
tion encoder compatible with the CLIP encoders.
We automatically convert English sentences into
IPA phonetic transcriptions using dictionaries and
then use the text-pronunciation pairs in place of
their multilingual sentence pairs.

3 IPA-CLIP: Phonetic Embedding
Distillation of CLIP

The overview of the proposed IPA-CLIP is illus-
trated in Fig. 1. It consists of three encoders: The
CLIP image encoder, the CLIP text encoder, and a
new pronunciation encoder, all of which share the
same multimodal embedding space.

3.1 IPA-based Phoneme Embedding

This section proposes a phoneme embedding that
considers the phoneme relationships on the IPA
chart. This phoneme embedding layer works by
replacing the word embedding layer of language
models including BERT. As it is based on the IPA
chart, the pronunciation input to this layer is theo-
retically universal and not specific to any language.

As mentioned in Section 2.1, the IPA chart as-
signs three attributes for each phoneme. Inspired by
previous work (Bay et al., 2017), we treat the two
vowel attributes, height and backness, as continu-
ous and thus consider the extent of the difference
between these attributes. For instance, the close
front unrounded vowel /i/ is treated as more simi-
lar to the close-mid front unrounded vowel /e/ than
the open front unrounded vowel /a/. In contrast,
the other four attributes are regarded as categorical
and thus we only consider whether two phonemes
have any attribute in common.

As shown in Fig. 2a, the proposed method cal-
culates the phoneme embedding p as a linear com-
bination ) _, x;w;, where z; is a magnitude and w;
is a feature vector for the i-th attribute. In detail,
for each phoneme, we calculate the multiplication
of the transpose of the /NV-dimensional sparse mag-
nitude vector x and the N x D feature matrix W,
which is written as p = x' . A magnitude vec-
tor x also includes attributes for letters other than
phonemes such as stresses, spaces, commas, and ex-
clamation marks, which are also projected onto the
same phoneme embedding space despite not being
phonemes. The aim of this is to ensure the equiv-
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Figure 2: Detailed illustration of the construction of the pronunciation encoder of IPA-CLIP.

alent flexibility of the input of the pronunciation
encoder to the CLIP text encoder. Thus, the pro-
nunciation encoder can differentiate between ho-
mophonic texts such as “everyday” vs. “every day”
and “a cat” vs. “a cat!”. More detailed examples
of this calculation are available in Appendix A.2.

3.2 Training by Distilling CLIP Text Encoder

The training of the pronunciation encoder of IPA-
CLIP is based on the distillation methods proposed
by Carlsson et al. (2022) and Wu et al. (2022). Al-
though the implementation of this paper focuses
only on English, the distillation itself can be ap-
plied to other languages if resources are available.

The distillation procedure is illustrated in Fig. 2b.
First, to create sentence-pronunciation pairs from
a number of sentences, we convert each sentence
to its pronunciation using an existing dictionary.
Specifically, by looking up the dictionary, all words
in a sentence are replaced with their pronunciations.
For example, a sentence “a photo of a cat.” is con-
verted to its pronunciation /o 'fou tov ov o ket./.
We ignore cases in the Latin alphabet and do not
exclude letters other than the Latin alphabet.

With this dataset, our pronunciation encoder is
distilled from the CLIP text encoder, where the
weights of the text encoder are frozen during the
training. Given a sentence-pronunciation pair, the
pronunciation encoder is trained to output the iden-
tical pronunciation embedding to the sentence em-
bedding calculated by the text encoder. MSE loss
is employed for the training objective as opposed to
the contrastive loss used in training CLIP (Radford
et al., 2021), because it is known to work better for
the distillation purpose (Carlsson et al., 2022).

3.3 Implementation

DistilBERT (Sanh et al., 2019) is adopted as the ar-
chitecture of the pronunciation encoder. We replace

its word embedding with the proposed IPA-based
phoneme embedding and add an additional linear
layer to match the dimensionality of its output to
that of the CLIP encoders, but we do not mod-
ify any other part. The pronunciation encoder is
trained from scratch.

As training data, we use a dataset compiled by
Carlsson et al. (2022), which is a mixture of sen-
tences taken from some image captioning datasets.
In addition, to increase the vocabulary, sentences
consisting of only one word are also created us-
ing Spell Checker Oriented Word Lists (SCOWL)!,
an English wordlist that comprises 102,305 words.
For text-to-pronunciation conversion, we use the
Carnegie-Mellon University (CMU) Pronouncing
Dictionary?, which is also used by many previous
studies (Parrish, 2017; Bay et al., 2017; Kolachina
and Magyar, 2019), resulting in training data of
1,168,451 sentences in total. The pretrained CLIP
model called ViT-L/14 is used throughout the eval-
uation. See Appendix A.3 for more details.

4 Quantitative Evaluations

This section evaluates both the proposed [PA-based
phoneme embedding and IPA-CLIP in a quantita-
tive manner. With prior knowledge of phonetics,
IPA-CLIP learns both phoneme embeddings and
pronunciation embeddings through distillation.

A baseline method in these experiments em-
ploys a pronunciation encoder that uses an ordinary
character-level (phoneme-level) embedding layer
instead of the IPA-based one. Thus, its phoneme
embedding does not consider phonetic relation-
ships but implicitly learns such relationships only

"http://wordlist.aspell.net/ (Accessed Jan.
19, 2023)

https://github.com/menelik3/
cmudict-ipa/ (Accessed Jan. 19, 2023)

Shttps://github.com/openai/CLIP/blob/
main/model-card.md (Accessed Jan. 19, 2023)
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Figure 3: Core ideas of measuring the correlation of the vowel layout on a phoneme space to phonetic relationships.

from the phonological restrictions in the training
data. We also test whether the weights of the fea-
ture matrix W of IPA-CLIP should be trainable or
frozen as randomly initialized values. If frozen, the
mapping of W becomes a random mapping (We
call this setting Proposed (Frozen)). If trainable, it
reflects the phonetic relationships learned from the
English phonological rules, which could be both
a boon and a bane (We call this Proposed (Train-
able)). In any case, the weights of the DistilBERT
and the additional linear layer are always trained.
Note that the experiments in the following sec-
tions measure performance only towards English
phonemes for a fair comparison with the baseline.

4.1 Experiment on Phoneme Spaces

First, the proposed IPA-based embedding (pro-
posed methods) is compared with the conventional
phoneme-level embedding (baseline method). We
measure the three characteristics of the learned
phoneme embedding spaces with different metrics:
(1) How distinct the distributions of the consonant
cluster and the vowel cluster are, (2) How the con-
sonant layout represents the phonetic relationships
among consonants, and (3) How the vowel layout
represents the phonetic relationships among vow-
els. The clear distinction between consonants and
vowels makes IPA-CLIP easier to distinguish the
two types. The accordance of the phoneme lay-
outs with the IPA Chart helps IPA-CLIP to process
phoneme differences based on phonetic similarity.

4.1.1 Consonant and Vowel Distributions

To measure the distinctness of consonants and vow-
els on the phoneme embedding space, we calcu-
late the silhouette coefficient (Rousseeuw, 1987),
a metric for a clustering technique, between the
consonant and vowel clusters on the embedding
space. A higher silhouette coefficient for a con-
sonant (vowel) cluster means that the consonant
(vowel) cluster is well apart from the vowel (conso-
nant) cluster. After computing these values for all
consonants (vowels), the silhouette coefficient for
the consonant (vowel) cluster, sc, (s¢,) € [—1, 1],

is aggregated by averaging the values among all
consonants (vowels). See Appendix A.4 for the
mathematical formulation of this metric.

4.1.2 Consonant Distribution and Phonetics

To measure the consistency of the consonant layout
on the phonetic space and the consonant catego-
rization on the IPA chart, we calculate the mean
Average Precision (mAP), a metric for retrieval
tasks, for each consonant attribute. First, for each
consonant, all other consonants are retrieved based
on the Euclidean distance on the phonetic space.
Then, to calculate the Average Precision (AP), we
regard consonants that share the focused attribute
as relevant. For instance, when the voiced conso-
nant /b/ is evaluated in terms of voicing attribute,
the set of its relevant consonants, I, then becomes
a set of all voiced consonants containing e.g., /d/,
/m/, and /g/. If the retrieved ranking for the con-
sonant /b/ is [/p/,/d/,/t/,/m/,/g/, ...] in order,
the AP score for /b/, AP, is

1 /1 2 3
AP 1
The mAP metric for each attribute is calculated by
averaging the AP scores among all consonants.

4.1.3 Vowel Distribution and Phonetics

Figure 3 illustrates the core idea of measuring the
correlation between the vowel layout on the pho-
netic space and the vowel order on the IPA chart.
First, inspired by Bay et al. (2017), we map every
vowel onto the 3D Cartesian space that replicates
the IPA chart. The three axes of the Cartesian
space represent vowel attributes of height, back-
ness, and roundedness, respectively. Next, for each
attribute/axis, we calculate Spearman’s rank corre-
lation between the vowel distribution on this Carte-
sian space and that on the phonetic space. We
create two ground-truth rankings for each attribute
by sorting vowels that share one of the other two at-
tributes. For instance, as illustrated in Fig. 3, when
evaluating the vowel /a/ on the height attribute, the
following two rankings are calculated: (1) the rank-
ing of the back vowels: /a/ > /o/ > o/ > /u/,



Table 1: Quantitative evaluation of phoneme embedding spaces. Silhouette coefficient (Sil), mean Average Precision
(mAP), and Spearman’s rank correlation (RCorr) denote the distinctness between consonants and vowels, consistency
of consonant distributions with phonetics, and correlation of vowel distributions to phonetics, respectively.

Sil 1 mAP 1 (Consonant)

RCorr 1 (Vowel)

Method sc, sc,

Voicing

Place Manner Height Back Round

Baseline

—0.014 0.054  0.589
Proposed (Trainable) —0.036  0.217  0.705
Proposed (Frozen) 0.233  0.568 0.735

0421 0342 0541 0592 0.753
0.767  0.642 0.891 0.680 0.925
0810 0.837 0.890 0.685 0.925

and (2) the ranking of the unrounded vowels: /a/
=/a/ > &/ > [e/ > [o/ > [e/ > [1/ > [i/. With
these ground-truth rankings, we calculate two rank
correlations between each of the two ground-truth
rankings and the ranking of the vowels retrieved
based on the Euclidean distance on the phonetic
space. Lastly, for each vowel attribute, we compute
the average value among all vowels to be the rank
correlation metric on the phonetic space.

4.1.4 Results and Discussions

The results of this experiment are shown in Table 1.
Overall, Proposed (Frozen) performs best in almost
all metrics. Proposed (Trainable) is also compara-
ble except for the silhouette coefficient.

The great advantage of Proposed (Frozen) to the
other methods is the silhouette coefficient. A high
silhouette coefficient means that the distributions
of the consonant and the vowel clusters are distinct
and thus have little overlap on the phoneme embed-
ding space. As the coefficient drops in the baseline
and the Proposed (Trainable) methods, this com-
parison indicates that the embeddings learned from
the phonological restrictions in sentences do not
clearly distinguish consonants and vowels. This
contradicts the fact that such neural embeddings
are known to represent phonetic relationships quite
well (Kolachina and Magyar, 2019; Boldsen et al.,
2022). Yet, since even the baseline performs mod-
erately in the other metrics, such embeddings seem
to learn relationships within consonants and within
vowels well even without explicit priors.

Moreover, between the baseline and the pro-
posed methods, the increase of mAP and rank cor-
relation is observed. This suggests the effectiveness
of the proposed IPA-based embedding in differenti-
ating both within consonants and within vowels.

4.2 Experiments on Pronunciation Spaces

Second, the performance of IPA-CLIP is discussed
in the following three multimodal retrieval tasks:
(1) Retrieval-based image classification from the

pronunciations of existing words, (2) Image re-
trieval from the pronunciations of nonwords, and
(3) Text retrieval from the pronunciations of non-
words. Note that the nonwords here denote such
words that do not exist in the English vocabulary
but sound similar to certain existing words. Mea-
suring the performance on these tasks evaluates the
accordance of the pronunciation encoder (1) with
the image encoder for existing words, (2) with the
image encoder for nonwords, and (3) with the text
encoder for nonwords, respectively.

Here, the ImageNet (Deng et al., 2009) valida-
tion dataset is used as a source of image-text pairs.
The dataset provides 50 images for each of its 1,000
classes. We convert each class label into its pro-
nunciation in the same way as Section 3.3. By
removing the classes where this conversion failed,
we obtain 912 classes with 50 images each in to-
tal. Note that we use the class labels identical to
the ones used by the authors of CLIP (Radford
et al., 2021), which differ from the class labels that
ImageNet provides. As the previously described re-
lated work does not consider multimodal retrieval
tasks, this section only evaluates the original CLIP
as a comparison method, as it outperforms other
methods (Carlsson et al., 2022; Wu et al., 2022).

4.2.1 Image Classification from Pronunciation

The retrieval-based image classification task is sim-
ilar to the one in a previous study (Radford et al.,
2021). Here, IPA-CLIP classifies an image by mea-
suring the cosine similarities between the embed-
ding of the image and those of the class labels in the
form of, e.g., /o 'fou tov ov <CLASS>/ (“A photo
of <CLASS>"). For example, given an image and
two class labels “Dog” and “Cat”, IPA-CLIP first
calculates the embedding of the image and those
of the two pronunciations /o 'fou tou ov dog/ and
/o 'fou tov ov kaet/. It then measures the cosine
similarity between the image embedding and each
of the pronunciation embeddings. The class label
of the image is determined by finding the image-



label pair that gives the maximum similarity. We
also filter out classes by measuring the word fre-
quency (as the Zipf scale, which we call Zipf fre-
quency) of their labels using an existing Python
package (Speer et al., 2018). This allows us to see
how rare class labels, which would never appear or
appear few in the distillation process of IPA-CLIP,
affect the classification results. We compare the ac-
curacy of our methods with CLIP, which classifies
images from text labels using the text encoder. To
see the modality gap between the IPA-CLIP pro-
nunciation encoder and the CLIP text encoder, we
also merge the two by taking the average of their
embeddings on the joint embedding space, which
we call “Proposed (Frozen) + CLIP”.

4.2.2 Nonword-to-Image Retrieval

To evaluate the robustness of IPA-CLIP towards
nonwords having certain similar-sounding existing
words, a set of nonwords is prepared by slightly
modifying the class labels of ImageNet. First, we
focus only on the labels whose Zipf frequency is
three or more (297 classes). Then, for labels start-
ing with a sole consonant (216 classes satisfy this),
the initial consonant is substituted with other conso-
nants (e.g., from /desk/: “Desk” to /zesk/, /nesk/,
etc.) to make nonwords that sound similar to the
original word. Next, by removing words that hap-
pen to exist in the English vocabulary, we obtain
3,530 nonwords stemming from any of the 216
classes. Meanwhile, text equivalents are also pre-
pared by automatically converting each phoneme
into its spelling (“Zesk” for /zesk/) to evaluate the
text-based original CLIP. See Appendix A.6 for a
more detailed procedure of this nonword creation.
With these nonwords, an image retrieval task
is performed. Given a nonword, the objective is
to retrieve the images belonging to the class from
which the nonword stems. For instance, given the
nonword /zesk/, we measure how many of the 50
images in the class “Desk” are retrieved from the
pronunciation embedding of /o 'fou tov ov zesk/.
Recall@50 is measured as a metric. We split
the evaluation based on how phonetically similar
the nonword is to its original word by counting
the number of shared attributes between the two
contrasting consonants. This assesses whether each
method captures the phonetic similarity among con-
sonants. Giving always similar scores regardless
of the number of shared attributes mean that the
method does not consider phonetic similarity, while
a high correlation between the scores and the num-

Table 2: Accuracies of the image classification on 1,000-
class ImageNet (Deng et al., 2009) dataset. We use Zipf
frequency to filter out the classes having less frequent
and rare label names.

Zipf Frequency >00>152>302>45

912 492 297 29

0.600 0.696 0.777 0.877
0.712 0.751 0.765 0.891

Proposed (Trainable) 0.581 0.686 0.769 0.886
Proposed (Frozen) 0.590 0.683 0.764 0.885
Proposed (Frozen) + CLIP (Radford et al., 2021) 0.705 0.765 0.799 0.897
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Figure 4: Results of (a) image retrieval and (b) text
retrieval from nonwords written with either phonetic
symbols (Baseline and Proposed) or texts (CLIP).

ber of shared attributes indicates that the method
associates nonwords with their similar-sounding
words according to phonetic similarity.

4.2.3 Nonword-to-Text Retrieval

The procedure of the nonword-to-text retrieval is
similar to the one described in Section 4.2.2, but
this experiment targets texts instead of images. We
use 3,530 nonwords prepared in Section 4.2.2. In
this experiment, models retrieve the text of the
class from which the nonword stems. For example,
given the nonword /zesk/, we assess whether each
method can retrieve the text embedding of the text
“A photo of desk” among the text embeddings of
216 classes. Accuracy is measured as a metric.

4.2.4 Results and Discussions

The results of the image classification are shown in
Table 2. It indicates a strong effect of the rareness
of the class labels on the performance. As can be
seen on the left side, the proposed methods perform
much worse than CLIP when the classes contain
rare words. This is mainly because these models,
as student models, have not been exposed much to
these rare words during the distillation. In contrast,
as the rare words drop out from the evaluation, their
performance comes to be comparable.

Most interesting is “Proposed (Frozen) + CLIP”.
Despite its simple fusion strategy of the two modali-



ties, it performs best in almost all settings. This sug-
gests the effectiveness of introducing the pronuncia-
tion modality into existing V&L pretrained models.
Looking into the 297-class confusion matrix (See
supplementary materials) revealed the characteris-
tics of each encoder. The pronunciation encoder is
more sensitive to pronunciation differences, while
the text encoder is stronger against the meaning
gaps. For example, Proposed (Frozen) misclassi-
fied “Block plane” as “Buckle” since they sound
similar. In contrast, CLIP misclassified “Screw”
as “Metal Nail” since their meanings are similar.
As “Proposed (Frozen) + CLIP” correctly classi-
fied both, averaging the embeddings of the two
encoders could have compensated for their weak-
nesses.

Next, Fig. 4 shows the results of the nonword-
to-image and -text retrieval tasks. The tendency
is similar throughout the two tasks: The baseline
method retrieves best when the number of shared
attributes is 0 or 1, while Proposed (Frozen) per-
forms best when it is 2. This suggests that Pro-
posed (Frozen) associates nonwords with the orig-
inal word only when the words are phonetically
similar, which confirms that Proposed (Frozen) con-
siders the phonetic similarity between consonants
more accurately than the other methods in the pro-
nunciation embedding space.

We also observed that the proposed methods al-
ways outperform CLIP in these nonword-centered
tasks. This verifies that the proposed pronunciation
modality makes CLIP robust against nonwords.

5 Qualitative Evaluation

This section evaluates how much the proposed
methods attune the CLIP embedding space to actual
human perception regarding pronunciation similar-
ity. We use the pronunciation similarity rankings
collected by Vitz and Winkler (1973). In each of
their four trials, native English speakers rated the
sound similarity between a given target word and
each of its 25 comparison words. The four trials dif-
fer only in the target word, which is “Sit”, “Plant”,
“Wonder”, and “Relation”, respectively, as well as
its comparison words. More details are explained
in Appendix A.8. In our evaluation, given a target
word, we first calculate the cosine similarity be-
tween the word and each of its comparison words
on the pronunciation space to create a similarity
ranking. Then, its rank correlation to the ground
truth is measured as a metric. A higher value means

Table 3: Qualitative evaluation of the pronunciation em-
bedding space. Scores denote rank correlations between
the word similarity measured on the embedding space
of each method and the ground truth rated by humans.

‘Wonder

0.693
0.526
0.640

0.585

Relation

0.442
0.485
0.504

0.304

Target Word Sit Plant

0.535 0.397
0.642 0.549
0.385 0.420

0.353 0.402

Baseline
Proposed (Trainable)
Proposed (Frozen)

CLIP (Radford et al., 2021)

that the embedding space better fits human percep-
tion regarding pronunciation similarity.

Table 3 shows the results. All pronunciation-
based methods outperform the text-based CLIP,
which verifies that the phonetic prior forces similar-
sounding words to become closer to each other.
Within the pronunciation-based methods, the per-
formance of Proposed (Frozen) is particularly bad
when the target word is “Sit”. This is due to the
short syllable length of its comparison words, yield-
ing much more possible similar-sounding words
than the other target words. Thus, its phonetic
knowledge could have disturbed the calculation
of the embeddings of such short syllable words,
which would be a shortcoming of the proposed ap-
proach. Nevertheless, since this evaluation covers
just these four specific cases, the results do not
spotlight which of the pronunciation-based meth-
ods works best in general.

6 Conclusion

We proposed an IPA-based phoneme embedding
and IPA-CLIP which integrate the phonetic rela-
tionships on the IPA (International Phonetic Alpha-
bet) chart into a character/phoneme-level embed-
ding and the Vision and Language pretrained model
CLIP. The phonetic prior enables it to process in-
puts even if they contain nonsense words (non-
words). Evaluations showed the effectiveness of
the IPA-based phoneme embedding against conven-
tional embeddings and the potential of IPA-CLIP
to outperform the original CLIP in some multi-
modal retrieval tasks. When nonwords are input,
IPA-CLIP performs always better than CLIP, which
verifies its robustness against nonwords. Further
evaluation verified the correlation between its pro-
nunciation embedding space and human perception
regarding pronunciation similarity.

For future work, further analysis is needed to
investigate under which conditions the proposed
approach has advantages over text-based methods.



Ethics Statement

We have evaluated ethics and social concerns in
this research and believe there are only limited
concerns.

We first hope that the proposed IPA-CLIP as well
as the IPA-based phoneme embedding will be ef-
fectively used in pronunciation-related downstream
tasks such as image-pronunciation matching, im-
age captioning (image-to-pronunciation), and im-
age generation (pronunciation-to-image). However,
as they provide a method to relate nonwords with
their phonetically similar words, this research could
potentially impair the dignity of proper nouns in-
cluding peoples’ names, even though it is not our
intended use. For instance, some might perceive
unpleasant if their names are associated with such
existing words that have negative and unpleasant
meanings. This might also occur when IPA-CLIP
is applied to multimodal downstream tasks if no
modification is made to the implementation of this
paper. One example is image generation, which
can generate images having unpleasant content for
the pronunciation of a name.

Second, since IPA-CLIP is based on OpenAlI’s
pretrained CLIP models which are trained using
data extensively collected from the Web, IPA-CLIP
would inherit existing biases that those models al-
ready have. Also, in the current implementation,
we do not consider dialects and other regional dif-
ferences in pronunciations, which could have a
minor impact on the use of our framework.

Finally, we declare that all data used in this paper
are properly cited and used in accordance with their
respective licenses.
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A Appendix

A.1 International Phonetic Alphabet Chart

Figure 5 shows the International Phonetic Alpha-
bet (IPA) chart (International Phonetic Association,
1999) used in this paper. The chart connects almost
all phonemes that can appear in any natural lan-
guage and the proximity on it indicates phonetic
similarities. On the chart, each phoneme is charac-
terized by multiple phonetic attributes. Consonants
have three attributes: voicing, place of articula-
tion, and manner of articulation. Vowels also have
three attributes: height, backness, and roundedness.
According to the chart, for example, the voiceless
velar plosive /k/, as in “Coat”, possesses “voice-
less” (voicing), “velar” (place), and “plosive” (man-
ner) consonant attributes, and the close-mid back
rounded vowel /o/, as in “Coar”, possesses “close-
mid” (height), “back” (backness), and “rounded”
(roundedness) vowel attributes. Some consonants
such as the voiced labial-velar approximant /w/
have multiple places of articulation. In this case,
/w/ is characterized by four consonant attributes
(“voiced”, “labial”, “velar”, and “approximant”).

A.2 IPA-based Phoneme Embedding

This section describes the details of the calculation
of the proposed IPA-based phoneme embedding.
As shown in Fig. 2a, the proposed method calcu-
lates the phoneme embedding p as a linear combi-
nation ) . x;w;, where x; is a magnitude and w;
is a feature vector for the i-th attribute. Specifi-
cally, for each phoneme, the proposed IPA-based
phoneme embedding calculates the multiplication
of the transpose of the /NV-dimensional sparse mag-
nitude vector x and the NV x D feature matrix W,


https://doi.org/10.18653/v1/2020.coling-main.4
https://doi.org/10.18653/v1/2020.coling-main.4
https://doi.org/10.18653/v1/2020.coling-main.4
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1609/aiide.v13i2.12971
https://doi.org/10.1609/aiide.v13i2.12971
https://doi.org/10.1609/aiide.v13i2.12971
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.5281/zenodo.1443582
https://doi.org/10.5281/zenodo.1443582
https://doi.org/10.5281/zenodo.1443582
https://doi.org/10.1016/S0022-5371(73)80016-7
https://doi.org/10.1016/S0022-5371(73)80016-7
https://doi.org/10.1016/S0022-5371(73)80016-7
https://doi.org/10.1109/ICASSP43922.2022.9747669
https://doi.org/10.1109/ICASSP43922.2022.9747669
https://doi.org/10.1109/ICASSP43922.2022.9747669

Bilabial L‘:‘I:‘l: Dental Alveolar ;111—)\' ((J\:)tl:n Palatal Velar Glottal Front 1;!‘0‘:{ Central llr“c‘i: Back
Nasal m m n n n Close iy R w | u
Plosive p| b t | d c t|lkig]|? Near-close 1]y 2]
Sibilant affricate ts | dz q d3 t¢ | dz Close-mid | @ | @ 5|6 ¥ |0
Sibilant fricative S z | 3 [ 2 Mid E)
Nonsibilant fricative ¢ B flv]|O|d C J X ¥ |h A Open-mid | € | 0@ 3 a3 AlD
Approximant L bl J w Near-open | g2 e
Lateral approximant | A L Open al e a alp
Symbols to the Ioft i cach column are voiceless consonants, symbols to the right are voiced consonants Symbols to the left in cach column are mnrounded vowels,
symbols to the right are rounded vowels
(a) Consonants (Pulmonic) (b) Vowels

Figure 5: IPA Chart (International Phonetic Association, 1999) for pulmonic consonants and vowels used in this
paper. It connects almost all phonemes occurring in natural languages regarding their phonetic relationships. English

phonemes, as used in this paper, are colored in red.

Table 4: Examples of attributes that each of the dimen-
sions of the magnitude vector x represents.

Examples of x

Attribute Categor Range -
i R ANANCARAR
Consonant z; €{0,1} | 1 1 0 010
Voicing z;€{0,1} | O 1 0 0|0
Manner 1: Nasal z;€{0,1} | 0 0 0 010
Manner 2: Plosive z;€{0,1} | 1 0 0 010
: Consonant : : : :
Place 1: Bilabial z; €{0,1} | 1 0|0 010
Place 2: Labiodental z;€{0,1} | O 1 0 010
Vowel z€{0,1}| 0|0 | 1] 1]0
Height 0<a; <1 0 [ 0| 2| % |0
Backness Vowel 0<z;<1| 0 0 0 § 0
Roundedness z;€{0,1} | 0 0 0 1 10
Primary stress /'/ z;€4{0,1} | 0 0 0 010
Secondary stress /,/ z;€{0,1} | 0 | 0 | O 010
Char “ *: Space ) z;€{0,1} | O 0 0 010
Char ‘;: Comma Others z;€{0,1} | O 0 0 0 |1
Char ‘!’: Exclamation z;€{0,1} | O 0 0 0 0
written as
N
T
P=X W = E T;Wj.
2

i=1
=T1W1 + ToWg + -+ TNW)p.

Since x is sparse, only the feature vectors where x;
is non-zero are summed.

Table 4 shows examples of the IV attributes and
magnitudes in the vector x for some phonemes.
As shown in the table, x also includes attributes
for letters other than phonemes such as stresses,
spaces, commas, and exclamation marks. In the
proposed method, we also project these letters onto
the same phoneme embedding space despite not
being phonemes. The aim of this is to ensure the
equivalent flexibility of the input of the pronunci-
ation encoder to the CLIP text encoder (Radford
et al., 2021). Thus, the pronunciation encoder can
differentiate between homophonic texts such as
“everyday” vs. “every day” and “a cat” vs. “a cat!”.
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Figure 6: Illustration of the pronunciation encoder used
in IPA-CLIP. IPA-CLIP employs the proposed IPA-
based phoneme embedding in its phoneme embedding
layer.

A.3 Details of Implementation and Data
Preparation

As the architecture of the pronunciation encoder,
we adopt DistilBERT (Sanh et al., 2019), a light
and efficient version of BERT. Figure 6 illustrates
the implementation. We replace its word embed-
ding with the proposed [PA-based phoneme embed-
ding and add an additional linear layer to match the
dimensionality of its output to that of the CLIP en-
coders (Radford et al., 2021), but we do not modify
any other part of DistilBERT. The pronunciation
encoder is trained from scratch.

For the training data to distill the original CLIP
models, we use a list of English sentences com-
piled by Carlsson et al. (Carlsson et al., 2022). It
is a mixture of sentences taken from several image
caption datasets, which could be strongly linked
with the visual domain. In addition, to increase
the vocabulary, we prepare sentences consisting of
only one word using Spell Checker Oriented Word
Lists (SCOWL)', an English wordlist that com-
prises 102,305 words. We convert these sentences



into pronunciation written with IPA symbols using
the Python package eng-to-ipa*. The package uses
the Carnegie-Mellon University (CMU) Pronounc-
ing Dictionary?, which is also used by many pieces
of previous work (Parrish, 2017; Bay et al., 2017;
Kolachina and Magyar, 2019). We remove sen-
tences containing words whose pronunciations are
not provided in the package. This results in train-
ing data of 1,168,451 sentences in total. Following
the implementation of the previous work (Carlsson
et al., 2022), we fix the size of the validation split
as 1,000, resulting in a split of 1,167,451 sentences
for training and 1,000 sentences for validation.

Although the main part of this paper discusses
IPA-CLIP distilled from the pretrained CLIP model
called ViT-L/14, we also test on another base model
called ViT-B/32 (The results will be described in
Appendix A.5). ViT-B/32 is the simplest and light-
est model, while ViT-L/14 is a more recently re-
leased and larger model on the OpenAI’s model
card®. These models employ Transformers for both
image and text encoders. We train our pronuncia-
tion encoder with a learning rate 5 x 107>, a batch
size 32, and the Adam optimizer (Kingma and Ba,
2015), up to 50 epochs. Training a model took four
days using a single NVIDIA RTX A6000 GPU.
This paper reports results calculated using models
trained only once for each setting.

A.4 Silhouette Coefficient among Consonant
and Vowel Clusters

This section first describes the mathematical for-
mulation of the calculation of the silhouette co-
efficient metric in Section 4.1.1. The silhouette
coefficient (Rousseeuw, 1987) measures the dis-
tinctness of the consonant and vowel clusters on
the embedding space. Given that C, (respectively
C,) is a set of consonants (vowels), ¢ is an element
of C., and x. is the embedding vector of ¢, the
coefficient s, for the consonant ¢ is calculated as

be —

Qc

" max{ac o) *
where
1
O ToA éecz;c# dwe,e),
. | 4)
be = |Cv| U;U d(x&xv)v

*https://pypi.org/project/eng-to-ipa/
(Accessed Jan. 19, 2023)
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(a) Baseline

(b) Proposed (Frozen)

Figure 7: Visualization of the phoneme embedding
spaces. Consonants and vowels are shown in orange
and purple, respectively, to compare their distributions.

and d( -, -) is the Euclidean distance. The silhou-
ette coefficient for the consonant cluster, sc,, is
then calculated by averaging the coefficients among
all consonants. The coefficient for the vowel clus-
ter, sc,, 1s also achieved in the same way, by swap-
ping c and v in the equations. sc, (respectively
sc,) ranges between [—1, 1], where a high value
indicates that the consonant (vowel) cluster is well
distinct from the vowel (consonant) cluster.

Figure 7 shows the actual distribution of the two
clusters on the phoneme spaces calculated by the
baseline and the Proposed (Frozen) methods. The
scatter plot shows the distribution of all consonants
and vowels on the three-dimensional spaces sup-
pressed by Principal Component Analysis (PCA).
Both s¢, and s, of Proposed (Frozen) will be
higher than those of the baseline method (See Ta-
ble 1 and Table 5) because the consonant and vowel
clusters are more distinct in the phoneme space of
Figure 7b than that of Figure 7a.

A.5 Results for Different CLIP Models

Table 5 shows the results of our quantitative evalua-
tion of the phoneme embedding spaces with differ-
ent pretrained CLIP models (Radford et al., 2021),
along with the validation loss at the point of 50
epochs. This table covers all the results shown in
Table 1. For all metrics, we confirmed no signifi-
cant difference in performance among the choice
of the base models.

A.6 Nonword Creation

This section explains the more detailed procedure
of the nonword creation in Section 4.2.2 and Sec-
tion 4.2.3. In both sections, we use the same set of
nonwords created by slightly modifying the 1,000
class labels of ImageNet (Deng et al., 2009).

To create nonwords that sound similar to certain
common existing words, we first focus only on the


https://pypi.org/project/eng-to-ipa/

Table 5: Quantitative evaluation of the phoneme embedding spaces with different pretrained CLIP models (Radford
et al., 2021). The silhouette coefficient (Silhouette), the mean Average Precision (mAP), and Spearman’s rank corre-
lation (Rank Corr.) denote the distinctness between consonants and vowels, consistency of consonant distributions
with phonetics, and correlation of vowel distributions to phonetics, respectively.

Silhouette 1 mAP 1 (Consonant) Rank Corr. T (Vowel) Loss |

Base Method s, sc,  Voicing Place Manner Height Back Round MSE
g Baseline —0.006 0.049 0.585 0433 0394 0524 0574 0.796 0.0084
g Proposed (Trainable)  0.036  0.193  0.753  0.763  0.717 0913 0.666 0.882 0.0096
B Proposed (Frozen) 0.252  0.558 0.735 0.812 0.845 0.889 0.688 0.925 0.0092
Er Baseline —0.014 0.054 0.589 0.421 0.342 0541 0592 0.753  0.027
d Proposed (Trainable) —0.036 0217  0.705  0.767 0.642  0.891 0.680 0.925  0.028
= Proposed (Frozen) 0.233 0568 0.735 0.810 0.837 0.890 0.685 0.925 0.028
Upper Bound 1.000  1.000 1.000 1.000 1.000 1.000  1.000  1.000 —

Table 6: Candidate consonants and corresponding
spellings used to generate nonwords from the class la-
bels of ImageNet (Deng et al., 2009).

Consonant
Spelling

/s/ In/ [t] ] [z/ [b] /1] [p/ [9/
" n” fF T ‘27 b p g
4/ /m/ /0] Jt] [&] [i] /n/ [v] 1] 19w/

‘d” ‘m’ ‘th® ¢’ Aj! ‘y, ‘h’ v’ ‘sh’‘ch’ ‘w’

/k/

kK’ or ‘¢’

Consonant
Spelling

labels whose Zipf frequency is three or more (297
classes) calculated using an existing Python pack-
age (Speer et al., 2018). Then, for labels starting
with a sole consonant (216 classes satisfy this), we
substitute the initial consonant with other possible
consonants (e.g., from /desk/: “Desk” to /zesk/,
/nesk/, etc.) to make a set of nonwords which
sound similar to the original word. Next, we re-
move the generated words that happen to exist in
the English vocabulary. To check this, we use the
SCOWL wordlist' and the CMU dictionary?. This
process yields 3,530 nonwords stemming from ei-
ther of the 216 classes.

During this preparation, we also prepare the
text equivalents by automatically converting each
phoneme into its spelling (“Zesk” for /zesk/) so
that we can also evaluate the text-based original
CLIP. Table 6 lists all consonants used for the sub-
stitution along with their spelling correspondents.
As shown in the table, the candidate consonants
are selected from all consonants appearing at the
beginning of English words, except for /d/, which
becomes identical to /6/ when spelled.

A.7 Visualization of Text and Pronunciation
Embedding Spaces

As an additional analysis of the difference between
CLIP (Radford et al., 2021) and IPA-CLIP, we vi-
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dridge

Figure 8: t-SNE (van der Maaten and Hinton, 2008)
visualization of the text and pronunciation embeddings
of nonwords. Text embeddings of existing words (red)
and nonwords (purple) are calculated by CLIP (Rad-
ford et al., 2021), while pronunciation embeddings of
nonwords (green) are calculated by IPA-CLIP.

sualize how words and nonwords are distributed
on their shared embedding space. The scatter plot,
shown in Fig. 8, illustrates the embeddings of ex-
isting words and nonwords sounding similar to
“Bridge”, calculated by either CLIP or IPA-CLIP.
It reveals that IPA-CLIP places nonwords such as
“Pridge” (/pud/) and “Britch” (/bitf/) in posi-
tions close to their similar-sounding existing word
“Bridge” (/buds/). In contrast, CLIP does not place
any nonwords, even “Pridge”, near “Bridge”. This
supports the results that IPA-CLIP considers the
phonetic similarity of words.

A.8 Details of Qualitative Evaluation

This section explains the details of the pronunci-
ation similarity rankings collected through four
trials of psychological experiments conducted by
Vitz and Winkler (Vitz and Winkler, 1973). In
each of their four trials, native American English
speakers rated the pure sound similarity between



a given target word and each of its 25 compari-
son words. Their four experiments differ only in
the target word, which is “Sit”, “Plant”, “Won-
der”, and “Relation”, respectively, as well as its
comparison words. In the first three experiments,
comparison words are a mixture of valid and non-
sense English words that have a similar syllable
structure as the target word. In the last experiment,
this constraint for the syllable structure is removed.
For example, the comparison words for the target
word “Sit” include “Pit”, “Sar”, and “Tass”, all
of which have the same syllable structure (Con-
sonant+Vowel+Consonant) as “Sit”. Meanwhile,
those for the target word “Relation” include *“Be-
lation”, “Fascinating”, and “Ger”, which do not
necessarily have the same syllable structure as “Re-
lation”.
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