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UNDERSTANDING THE TRAINING AND GENERALIZA-
TION OF PRE-TRAINED TRANSFORMER FOR SEQUEN-
TIAL DECISION MAKING

ABSTRACT

In this paper, we consider the supervised pre-trained transformer for a class of se-
quential decision-making problems. The class of considered problems is a subset
of the general formulation of reinforcement learning in that there is no transition
probability matrix; though seemingly restrictive, the subset class of problems cov-
ers bandits, dynamic pricing, and newsvendor problems as special cases. Such a
structure enables the use of optimal actions/decisions in the pre-training phase,
and the usage also provides new insights for the training and generalization of the
pre-trained transformer. We first note the training of the transformer model can
be viewed as a performative prediction problem, and the existing methods and
theories largely ignore or cannot resolve an out-of-distribution issue. We propose
a natural solution that includes the transformer-generated action sequences in the
training procedure, and it enjoys better properties both numerically and theoreti-
cally. The availability of the optimal actions in the considered tasks also allows
us to analyze the properties of the pre-trained transformer as an algorithm and
explains why it may lack exploration and how this can be automatically resolved.
Numerically, we categorize the advantages of pre-trained transformers over the
structured algorithms such as UCB and Thompson sampling into three cases: (i)
it better utilizes the prior knowledge in the pre-training data; (ii) it can elegantly
handle the misspecification issue suffered by the structured algorithms; (iii) for
short time horizon such as T ≤ 50, it behaves more greedy and enjoys much
better regret than the structured algorithms designed for asymptotic optimality.

1 INTRODUCTION

In recent years, transformer-based models [48] have achieved great success in a wide range of tasks
such as natural language processing [46, 12], computer vision [20], and also reinforcement learning
(RL) [13]. In particular, an offline RL problem can be framed as a sequence prediction problem [19]
that predicts the optimal/near-optimal/human action based on the observed history. [13, 29] pioneer
this approach with the Decision Transformer (DT), which leverages the auto-regressive nature of
transformers to maximize the likelihood of trajectories in offline datasets. In this paper, we focus
on a subset class of reinforcement learning problems, which we call sequential decision-making
problems, that has no transition probability matrix compared to a general RL problem. This subset
of problems are general enough to capture a wide range of applications including stochastic and
linear bandit problems [35], dynamic pricing [16, 15], and newsvendor problem [37, 9]. Most
importantly, the structure brings two benefits: (i) pre-training – the optimal action is either in closed
form or efficiently solvable and thus the optimal action can be used as the prediction target in the pre-
training data and (ii) understanding – the setting is more aligned with the existing study [53, 22] on
the in-context learning ability of the transformer which gives more insight to the working machinery
of transformer on decision-making tasks. Moreover, as a side product, our paper extends pre-trained
transformers to the application contexts of business, economics, and operations research which are
less studied by the existing works.

To summarize, we work on the following aspects in this paper:

- The pre-training procedure (Section 3): We mathematically formulate the learning setup of super-
vised pre-trained transformer for sequential decision-making problems, and propose a standardized
procedure to generate the pre-training data. In addition, for the training process, we identify an
out-of-distribution (OOD) issue largely ignored or unsolved by the existing literature. Specifically,
the pre-training data involves two streams of actions – one is the actions in the history (features),
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Figure 1: Comparison between the pre-trained transformer framework and traditional sequential
decision-making methods (such as the structured algorithm of UCB and Thompson sampling).
For traditional methods, the decision-making agent (or policy) interacts directly with a single en-
vironment sampled from the real environment distribution, focusing on exploration and exploitation
within that specific environment. In contrast, the pre-trained transformer is trained across multiple
environments sampled from a simulator distribution. During pre-training, the transformer collects
trajectories and updates its parameters by interacting with diverse environments. Once pre-trained,
the transformer functions works as an algorithm and can be applied effectively in the real environ-
ment just as the structured algorithms. But unlike the structured algorithms, the pre-trained trans-
former leverages the huge amount of pre-training data sampled from the simulation environment.

and the other is the action to predict (target). [38] show that when both streams are generated by
one structured algorithm (say UCB or Thompson sampling), the pre-training of the transformer will
result in an imitation learning procedure that imitates the structured algorithm at best. If one desires
to obtain a better algorithm than the structured algorithm, like using the optimal action [36] as the
target to predict in our case, this will cause the OOD issue (reflected by an Θ(expT ) factor in the
regret bound of [38]). To resolve this matter, we propose an algorithmic solution by injecting the
transformer-generated action sequence into the pre-training data, and this also draws a connection
with the problem of performative prediction [43].

- Understanding transformers as decision makers (Section 4): The structure of sequential decision-
making problems enables the usage of optimal actions in pre-training data, and as noted earlier
and will be exemplified throughout our paper, this brings benefits for both training and theoretical
understanding. First, we connect the pre-trained transformer with the existing literature studying
in-context learning [53, 56, 6] and we establish the pre-trained transformer as a near Bayes-optimal
predictor for the optimal action in a Bayesian sense. Next, we show that (i) why the transformer
model exhibits a lack of exploration and (ii) how it achieves a paramount or better performance
than the structured algorithms. Other than these, an important aspect is that the problem structure
of sequential decision-making renders the setup of our pre-trained transformer different from the
existing works that also involve interactions with the underlying environment under the general RL
setup. For example, the Online Decision Transformer (ODT) [57] lets the transformers interact with
the underlying environment during the training phase, but the interactions are limited to a single
environment and are designed to explore better trajectories or policies within that environment than
the given offline data. We defer a more detailed comparison between the existing usage of pre-
trained transformers on general RL problems and our framework to Appendix A.2.

- Numerically, when and why the pre-trained transformer is better than the structured algorithms
(Section 5): While there are many structured algorithms such as UCB and Thompson sampling
for each of the decision-making problems that the transformer model is applied to, the question is
whether and when the transformer can achieve a better performance than these algorithms. We use
numerical experiments to attribute the advantage of the pre-trained transformer into three scenarios:
(i) it better utilizes the prior knowledge in the pre-training data; (ii) it can elegantly handle the
misspecification issue suffered by the structured algorithms; (iii) for short time horizon such as
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T ≤ 50 or 100, it behaves more greedy and enjoys much better regret than the structured algorithms
which are designed for asymptotic optimality.

We defer more discussions on the related works to Section A.

2 PROBLEM SETUP

In this section, we introduce a general formulation for sequential decision-making and describe
the setup of supervised pre-training. An agent (decision maker) makes decisions in a sequential
environment. The full procedure is described by the sequence

(X1, a1, o1, X2, a2, o2, . . . , XT , aT , oT ).

Here T is the horizon. At each time t = 1, . . . , T , the agent first observes a context vector Xt ∈
X ⊂ Rd and takes the action/decision at ∈ A, and then observes an outcome ot ∈ O ⊂ Rk. Define
the history

Ht := (X1, a1, o1, . . . , Xt−1, at−1, ot−1, Xt),

and the agent’s decision at is based on Ht, i.e., non-anticipatory. In this light, we can model the
decision as a function of Ht,

at = TFθ(Ht)

where θ encapsulates all the parameters of the function. That is, the agent learns from the past
interactions with the underlying environment – tuples of (Xt, at, ot)’s to optimize future decisions,
and this process that transfers the past knowledge to the future is described by the function TFθ. The
function TFθ can take as inputs a variable-length sequence (Ht can be of variable length), which is
the case for the generative pre-trained transformers [46].

2.1 ENVIRONMENT AND PERFORMANCE METRICS

The function TFθ describes how the actions at’s are generated. Now we describe how Xt’s and ot’s
are generated. Assume the context Xt’s are i.i.d. and ot follows a conditional distribution given Xt

and at
Xt

i.i.d.∼ Pγ(·), ot
i.i.d.∼ Pγ(·|Xt, at) (1)

where γ encapsulates all the parameters for these two probability distributions. In particular, we
emphasize that the parameter γ is unknown to the agent.

At each time t, the agent collects a random reward Rt = R(Xt, at) which depends on Xt, at,
and also some possible exogenous randomness. The observation ot includes Rt as its first coordi-
nate. The expected reward is defined by r(Xt, at) = E[R(Xt, at)|Xt, at]. Specifically, this reward
function r(·, ·) is unknown to the agent and it also depends on the underlying environment γ.

The performance of the agent, namely, the decision function TFθ, is usually measured by the notion
of regret, which is defined by

Regret(TFθ; γ) := E

[
T∑

t=1

r(Xt, a
∗
t )− r(Xt, at)

]
(2)

where the action a∗t is the optimal action that maximizes the reward

a∗t := argmax
a∈A

r(Xt, a) (3)

and the optimization assumes the knowledge of the underlying environment, i.e., the parameter γ.
In the regret definition equation 2, the expectation is taken with respect to the underlying probability
distribution equation 1 and possible randomness in the agent’s decision function TFθ. We use the
arguments TFθ and γ to reflect the dependency of the regret on the decision function TFθ and the
environment γ. Also, we note that the benchmark is defined as a dynamic oracle where a∗t maybe
different over time. Regret is not a perfect performance measure for the problem, and we also do not
believe the algorithm design for sequential decision-making problems should purely aim for getting
a better regret bound. Despite this, it serves as a good monitor for the effectiveness of the underlying
learning and the optimization procedure.
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2.2 SUPERVISED PRE-TRAINING

In the classic study of these sequential decision-making problems, the common paradigm is to as-
sume some structure for the underlying environment and/or the reward function, and to design al-
gorithms accordingly. These algorithms are often known as online or reinforcement learning algo-
rithms and are usually hard to combine with prior knowledge such as pre-training data. Compara-
tively, the supervised pre-training formulates the decision-making problem as a supervised learning
prediction task that predicts the optimal or a near-optimal action, and thus it can utilize the vast
availability of pre-training data that can be generated from simulated environments.

Specifically, the supervised pre-training first constructs a pre-training dataset

DPT :=
{(

H
(i)
1 , a

(i)∗
1

)
,
(
H

(i)
2 , a

(i)∗
2

)
, . . . ,

(
H

(i)
T , a

(i)∗
T

)}n

i=1
.

In particular, we assume the parameter γ (see equation 1) that governs the generation of Xt and
ot are generated from some environment distribution Pγ . Then, we first generate n environments
denoted by γ1, . . . , γn. Then there are two important aspects with regard to the generation of DPT:

- Action a
(i)∗
t : For this paper, we generate a(i)∗t as the optimal action specified by equation 3 and this

requires the knowledge of the underlying environment γi. A common property of all these sequential
decision-making problems is that the optimal action can be easily or often analytically computed.
Other option is also possible, say, a(i)∗t can be generated based on some expert algorithms such as
Thompson sampling or UCB algorithms. In this case, the action a

(i)∗
t = Alg(H(i)

t ) where Alg(·)
represents the algorithm that maps from H

(i)
t to the action without utilizing knowledge of γi.

- History H
(i)
t =

(
X

(i)
1 , a

(i)
1 , o

(i)
1 , . . . , X

(i)
t−1, a

(i)
t−1, o

(i)
t−1, X

(i)
t

)
. Note that X(i)

t ’s and o
(i)
t ’s are

generated based on the parameter γi following equation 1. The action a
(i)
t is generated based on

some pre-specified decision function f in a recursive manner:

a
(i)
t = f

(
H

(i)
t

)
, H

(i)
t+1 =

(
H

(i)
t , a

(i)
t , o

(i)
t , X

(i)
t+1

)
(4)

for t = 1, . . . , T.

Formally, we define a distribution Pγ,f that generates Ht and a∗t as

Xτ ∼ Pγ(·), aτ = f(Hτ ), oτ ∼ Pγ (·|Xτ , aτ ) , Hτ+1 = (Hτ , aτ , oτ , Xτ+1) . (5)

for τ = 1, . . . , t − 1 and a∗t is specified by equation 3. The parameter γ and the function f jointly
parameterize the distribution Pγ,f . The parameter γ governs the generation of Xt and ot just as in
equation 1. The decision function f maps from the history to the action and it governs the generation
of aτ ’s in the sequence Ht. In this way, the pre-training data is generated with the following flow:

Pγ → γi → Pγi,f →
{(

H
(i)
1 , a

(i)∗
1

)
, . . . ,

(
H

(i)
T , a

(i)∗
T

)}
where f is a prespecified decision function used to generate the data.

Based on the dataset DPT, the supervised pre-training refers to the learning of the decision function
TFθ through minimizing the following empirical loss

θ̂ := argmin
θ

1

nT

n∑
i=1

T∑
t=1

l
(
TFθ

(
H

(i)
t

)
, a

(i)∗
t

)
(6)

where the loss function l(·, ·) : A × A → R specifies the prediction loss. Thus the key idea of
supervised pre-training is to formulate the sequential decision-making task as a sequence modeling
task that predicts the optimal action a

(i)∗
t given the history H

(i)
t .

In the test phase, a new environment parameter γ is generated from Pγ and we apply the learned
decision function TFθ̂. Specifically, the procedure is described by

Xτ ∼ Pγ(·), aτ = TFθ̂(Hτ ), oτ ∼ Pγ (·|Xτ , aτ ) , Hτ+1 = (Hτ , aτ , oτ , Xτ+1) . (7)

The only difference between the test dynamics equation 7 and the training dynamics equation 5 is
that the action at (or aτ ) is generated by TFθ̂ instead of the pre-specified decision function f . In this
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way, we can write (Ht, a
∗
t ) ∼ Pγ,TFθ

for the test phase. Accordingly, we can define the expected
loss of the decision function TFθ under the environment specified by γ as

L (TFθ; γ) := E(Ht,a∗
t )∼Pγ,TFθ

[
T∑

t=1

l (TFθ (Ht) , a
∗
t )

]
(8)

where the expectation is taken with respect to Xt, ot and the possible randomness in at. As before,
a∗t are the optimal action defined by equation 3 and obtained from the knowledge of γ.

We defer discussions on how various sequential decision-making problems can be formulated under
the general setup above and how the pre-training loss is related to the regret to Section B.

3 PRE-TRAINING AND GENERALIZATION

We first point out a subtle point of the supervised pre-training setting presented in the previous
section. Unlike supervised learning, the expected loss equation 8 may not be equal to the expectation
of the empirical loss equation 6. As noted earlier, this is because in the sequence Ht, the action
at = TFθ̂(Ht) as in equation 7 during the test phase as opposed to that at = f(Ht) as in equation 5
for the pertraining data DPT. Taking expectation with respect to γ in equation 8, we can define the
expected loss as

L(TFθ) := Eγ∼Pγ
[L(TFθ; γ)] .

However, the expectation of the empirical loss equation 6 is

Lf (TFθ) := Eγ∼Pγ
[Lf (TFθ; γ)] (9)

where

Lf (TFθ; γ) := E(Ht,a∗
t )∼Pγ,f

[
T∑

t=1

l (TFθ (Ht) , a
∗
t )

]
.

Here f is the pre-specified decision function used in generating the pre-training data DPT. We note
that the discrepancy between L(TFθ) and Lf (TFθ) is caused by the difference in the generations of
the samples (Ht, a

∗
t ), namely, Pγ,TFθ

versus Pγ,f ; which essentially reduces to how the actions at’s
are generated in Ht. In the training phase, this is generated based on f , while measuring the test
loss requires that the actions to be generated are based on the transformer TFθ. This discrepancy is
somewhat inevitable because when generating the training data, there is no way we can know the
final parameter θ̂. Consequently, there is no direct guarantee on the loss for L(TFθ̂; γ) or L(TFθ̂)

with θ̂ being the final learned parameter. This out-of-distribution (OOD) issue motivates the design
of our algorithm.

Algorithm 1 describes our algorithm to resolve the above-mentioned OOD issue between training
and test. It consists of two phases, an early training phase and a mixed training phase. For the
early training phase, the data are generated from the distribution Pγi,f , while for the mixed training
phase, the data are generated from both Pγi,f and Pγi,TFθt

with a ratio controlled by κ. The decision
function f can be chosen as a uniform distribution over the action space as in the literature [13, 54,
36], or other more complicated options (details on the f used in our experiments are provided in
Appendix E.1.2). When there is no mixed phase, i.e., M0 = M , the algorithm recovers that of
[36]. Intuitively, the benefits of involving the data generated from Pγi,TFθt

is to make the sequences

H
(i)
t ’s in the training data closer to the ones generated from the transformer. For the mixed training

phase, a proportion of the data is still generated from the original Pγi,f because the generation from
Pγi,TFθt

costs relatively more time. For our numerical experiments, we choose κ = 1/3.

As far as we know, this OOD matter is largely ignored in the existing empirical works on supervised
pre-training transformers. Theoretically, [36] directly assumes the pre-trained transformer learns
(for discrete action space) the optimal decision function Alg∗ defined in the next section and de-
velops their theoretical results accordingly. [38] show that when (i) a(i)∗t ’s in the training data are
no longer the optimal actions a∗t in our setting but generated from some algorithm Alg and (ii) the
decision function f = Alg in the distribution Pγi,f , the pre-trained transformer TFθ̂ → Alg as
the number of training samples goes to infinity. We note that this only implies that the transformer
model can imitate an existing algorithm Alg. In other words, setting f = Alg brings the theoretical
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Algorithm 1 Supervised pre-training transformers for sequential decision making

Require: Iterations M , early training phase M0 ∈ [1,M ], number of training sequences per itera-
tion n, ratio κ ∈ [0, 1], pre-training decision function f , prior distribution Pγ , initial parameter
θ0

1: Initialize θ1 = θ0
2: for m = 1, . . . ,M0 do

%% Early training phase
3: Sample γ1, γ2, . . . , γn from Pγ and Si =

{(
H

(i)
1 , a

(i)∗
1

)
, . . . ,

(
H

(i)
T , a

(i)∗
T

)}
from Pγi,f

4: Optimize over the generated dataset Dm = {Si}ni=1 and obtain the updated parameter θm+1

5: end for
6: for m = M0 + 1, . . . ,M do

%% Mixed training phase
7: Sample γ1, γ2, . . . , γn from Pγ

8: For i = 1, . . . , κn, sample Si =
{(

H
(i)
1 , a

(i)∗
1

)
, . . . ,

(
H

(i)
T , a

(i)∗
T

)}
from Pγi,f

9: For i = κn, . . . , n, sample Si =
{(

H
(i)
1 , a

(i)∗
1

)
, . . . ,

(
H

(i)
T , a

(i)∗
T

)}
from Pγi,TFθm

10: Optimize over the generated dataset Dm = {Si}ni=1 and obtain the updated parameter θm+1

11: end for
12: Return: θ̂ = θM+1

(a) Training dynamics (b) t-SNE of the generated H30’s

Figure 2: (a) Training dynamics. Orange: M0 = M = 130. Blue: M0 = 50 and M = 130. It shows the
effectiveness of injecting/mixing the transformer-generated sequence into the training procedure. (b) A visu-
alization of the Ht with aτ ’s in Ht generated from various TFθm . For each TFθm , we generate 30 sequences.
The decision function Alg∗ is defined in the next section. We observe (i) there is a shift over time in terms of
the transformer-generated action sequence, and thus the training should adaptively focus more on the recently
generated sequence like the design in Algorithm 1; (ii) the action sequence gradually gets closer to the optimal
decision function Alg∗. The experiment setups are deferred to Appendix E.4.

benefits of consistency, but it excludes the possibility of using the optimal a∗t in the pre-training and
thus makes it impossible for the pre-trained transformer TFθ̂ to perform better than the algorithm
Alg. When f ̸= Alg, the OOD issue is reflected by the distribution ratio in Definition 5 of [38];
the ratio can be as large as Θ(expT ) and thus renders the regret bound to be a vacuous one on the
order of Θ(expT ). Compared to these works, our algorithm provides an algorithmic approach to
resolve the OOD issue.

Algorithm 1 from an optimization perspective can be viewed as an iterative procedure to optimize

Eγ∼Pγ

[
E(Ht,a∗

t )∼κPγ,f+(1−κ)Pγ,TFθ

[
T∑

t=1

l (TFθ (Ht) , a
∗
t )

]]

6
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where both the input data pair (Ht, a
∗
t ) and the prediction function involve the parameter θ. This

falls into the paradigm of performative prediction [43, 28, 39] where the prediction model may affect
the data generated to be predicted. In the literature of performative prediction, a critical matter is
the instability issue which may cause the parameter θm to oscillate and not converge. [43] shows
that the matter can be solved with strong conditions such as smoothness and strong convexity on the
objective function. However, we do not encounter this instability in our numerical experiment, and
we make an argument as the following claim. That is, when the underlying function class, such as
{TFθ : θ ∈ Θ} is rich enough, one does not need to worry about such instability.
Claim 3.1. The instability of a performative prediction algorithm and the resultant non-convergence
does not happen when the underlying prediction function is rich enough.

The claim will be further reinforced by the optimal decision function Alg∗ and Proposition 4.1
in the next section. We also defer more discussions on the claim to Section D.1. While it brings
a peace of mind from the optimization perspective, the following proposition justifies the mixed
training procedure from a statistical generalization perspective.

Proposition 3.2. Suppose θ̂ is determined by equation 6 where κn data sequences are from Pγ,f

and (1 − κ)n data sequences are from Pγ,TFθ̃
for some parameter θ̃. For a Lipschitz and bounded

loss l, the following generalization bound holds with probability at least 1− δ,

L(TFθ̂) ≤ L̂(TFθ̂) +

√
Comp({TFθ : θ ∈ Θ})

nT

+O

κTEγ∼Pγ

[
W1

(
Pγ,f ,Pγ,TFθ̂

)]
+ (1− κ)TEγ∼Pγ

[
W1

(
Pγ,TFθ̃

,Pγ,TFθ̂

)]
+

√
log
(
1
δ

)
nT


where Comp(·) denotes some complexity measure and W1(·, ·) is the Wasserstein-1 distance. The
notation O(·) omits the boundedness parameters.

The proof of Proposition 3.2 is not technical and follows the standard generalization bound [40]
together with the OOD analysis [8]. We hope to use the result to provide more insights into the
training procedure. The parameter θ̃ can be interpreted as close to θ̂ as in the design of our algorithm.
This will result in the term related to the distance between Pγ,TFθ̃

and Pγ,TFθ̂
small. At the two ends

of the spectrum, when κ = 1, it will result in a large discrepancy between the training and the test
data and thus the right-hand-side will explode; when κ = 0, this will result in the tightest bound but
it will cause more computational cost in the training procedure.

4 LEARNED DECISION FUNCTION AS AN ALGORITHM

In the previous section, we discuss the training and generalization aspects of the pre-trained trans-
former. Now, we return to the perspective of sequential decision-making and discuss the properties
of the decision function when it is used as an algorithm.

In the ideal case, we define the Bayes-optimal decision function as follow

Alg∗(H) := argmin
a∈A

E [l(a, a∗(H, γ))|H]

= argmin
a∈A

∫
γ

l(a, a∗(H, γ))P(H|γ)dPγ

where Pγ is the environment distribution that generates the environment parameter γ, the optimal
action a∗(H, γ) depends on both the history H and the environment parameter γ (as defined in
equation 3), and P(H|γ) is proportional to the likelihood of observing the history H under the
environment γ

P(H|γ) ∝
τ∏

t=1

Pγ(Xt) ·
τ−1∏
t=1

Pγ(ot|Xt, at)

where H = (X1, a1, o1, . . . , Xτ−1, aτ−1, oτ−1, Xτ ) for some τ ∈ {1, . . . , T} and the distributions
Pγ(·) and Pγ(·|Xt, at) are as in equation 1. In the definition, the integration is with respect to
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the environment distribution Pγ , and each possible environment γ is weighted with the likelihood
P(H|γ).
The following proposition relates Alg∗(H) with the pre-training objective which justifies why it is
called the optimal decision function. The loss function Lf (Alg) is defined as equation 9; recall that
the decision function f is used to generate the actions in Ht and the decision function Alg is used
to predict a∗t .
Proposition 4.1. The following holds for any distribution Pγ,f :

Alg∗(·) ∈ argmin
Alg∈F

Lf (Alg) = Eγ∼Pγ

[
E(Ht,a∗

t )∼Pγ,f

[
T∑

t=1

l (Alg (Ht) , a
∗
t )

]]
where F is the family of all measurable functions (on a properly defined space that handles variable-
length inputs). In particular, we can choose the decision function f properly to recover the test loss
L(TFθ) or the expected training loss Lf (TFθ) in Section 3.

(a) Dynamic pricing (b) Newsvendor

Figure 3: The pre-trained transformer TFθ̂ well matches the optimal decision function Alg∗. For both figures,
we plot decision trials for Alg∗ and TFθ̂ . The optimal actions change over time because Xt’s are different for
different time t. The experiment setup is deferred to Appendix E.4.

Proposition 4.1 states that the function Alg∗ is one minimizer of the expected loss under any distri-
bution Pγ,f . To see this, Alg∗ is defined in a pointwise manner for every possible H. The probability
Pγ,f defines a distribution over the space of H . The pointwise optimality of Alg∗ easily induces the
optimality of Alg∗ for any Pγ,f . Furthermore, this implies that Alg∗ is also the optimal solution
to the expected test loss and the expected training loss. This means that if the transformer class of
TFθ is rich enough to cover Alg∗, and with an infinite amount of data, the supervised pre-training
will result in Alg∗ at best. Thus we can interpret the property of the supervised pre-trained trans-
former by Alg∗ as a proxy. Such a Bayes-optimal function and the Bayesian perspective have been
discussed under various settings in the in-context learning literature [53, 56, 30].
Example 4.2. Alg∗ behaves as (a) posterior sampling under the cross-entropy loss; (b) posterior
averaging under the squared loss; (c) posterior median under the absolute loss; where the posterior
distribution is with respect to γ and it is defined by P(γ|H) ∝ P(H|γ) · Pγ(γ).

We defer more details for Example 4.2 to Appendix D.4. Part (a) has been directly employed as
Assumption 1 in [36] for their theoretical developments. Indeed, part (a) corresponds to a discrete
action space such as multi-armed bandits while part (b) and part (c) correspond to the continuous
action space such as linear bandits, pricing, and newsvendor problems.
Proposition 4.3. There exist a linear bandits problem instance and a dynamic pricing problem
instance, i.e., an environment distribution Pγ , such that the optimal decision function learned under
the squared loss incurs a linear regret for every γ, i.e., Regret(Alg∗; γ) = Ω(T ) for every γ.

Proposition 4.3 states a negative result that the optimal decision function Alg∗, albeit being opti-
mal in a prediction sense (for predicting the optimal action), does not serve as a good algorithm
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for sequential decision-making problems. To see the intuition, the decision function is used recur-
sively in the test phase (see equation 7). While it gives the best possible prediction, it does not
conduct exploration which is critical for the concentration of the posterior measure. This highlights
one key difference between the sequential decision-making problem and the regression problem
[22] when applying the pre-trained transformer. For the regression problem, the in-context samples
(in analogy context-action-observation tuples in Ht) are i.i.d. generated, and this results in a con-
vergence/concentration of the posterior to the true model/environment γ [23]. Yet for sequential
decision-making problems, the dynamics equation 7 induces a dependency throughout Ht, and it
may result in a non-concentration behavior for the posterior. And this is the key for constructing the
linear-regret example in Proposition 4.3 and the examples are also inspired from and share the same
spirit as the discussions in [24]. Such lack of exploration does not happen for discrete action space
[36]; this is because for discrete action space, the output TFθ̂ gives the posterior distribution as a
distribution over the action space. The distribution output will lead to a randomized action and thus
automatically perform exploration.

Proposition 4.4. Consider a finite prior Pγ supported on Γ = {γ1, ..., γk}. Suppose there exists
constants ∆Exploit and ∆Explore such that for any γ ∈ Γ and Ht, TFθ̂ and Alg∗(Ht) satisfies

• E[r(Xt,Alg
∗(Ht))− r(Xt,TFθ̂(Ht))|Ht] ≤ ∆Exploit, where the expectation is taken with

respect to the possible randomness in Alg∗ and TFθ̂.

• The KL divergence

KL
(
Pγ(·|Xt,TFθ̂(Ht))∥Pγ′(·|Xt,TFθ̂(Ht))

)
≥ ∆Explore

for any γ′ ∈ Γ, and the log-likelihood ratio between Pγ(·|Xt,TFθ̂(Ht)) and
Pγ′(·|Xt,TFθ̂(Ht)) is Cσ2∆Explore-sub-Gaussian for any γ′ ∈ Γ.

Then under conditions on the boundedness of the reward and environment parameters, we have

Regret(TFθ̂; γ) ≤ O

(
∆ExploitT +

log k

∆Explore

)
for any γ ∈ Γ, where the notation O(·) omits logarithm terms in T and the parameters in the
boundedness assumptions.

There are simple remedies to the linear regret behavior of the Bayes-optimal decision function, for
example, using an ϵ-greedy version of Alg∗ (and TFθ̂). Numerically, we do not observe such be-
havior for any experiment even without any further modification of the pre-trained transformer TFθ̂.
Proposition 4.4 provides a simple explanation for why one does not have to be too pessimistic. In-
tuitively, the pre-trained model TFθ̂ can be viewed as the optimal decision function Alg∗ plus some
random noise, and the random noise actually plays the role of exploration and helps the posterior
to concentration. Proposition 4.4 materializes such an intuition and it involves two conditions. The
first condition is that TFθ̂ behaves closely to Alg∗ and the (reward) deviation between these two is
captured by ∆Exploit. This condition can be justified by Figure 3. The second condition characterizes
the KL divergence between the conditional distribution of the observation ot for two environments:
the true testing environment γ and any other one γ′ ∈ Γ. Note that this KL divergence critically
depends on TFθ̂ because the ability to distinguish between two environments depends on the inten-
sity of exploration of the underlying algorithm. These conditions work more like a stylized model
to understand the behavior of the transformer. It is a largely simplified model; say, the parameter
∆Explore should have a dependency on t for many online learning algorithms such as UCB or Thomp-
son sampling. Nevertheless, the conditions give us a perspective to understand how the transformer
works as an online algorithm. In particular, TFθ̂ deviates from Alg∗ by an amount of ∆Exploit in
terms of the reward, and this deviation accumulates over time into the first term in the regret bound.
On the other hand, this deviation also gives an exploration whose intensity is measured by ∆Explore,
and the second term captures the regret caused during the concentration of the posterior onto the
true environment. In Appendix D.7, we provide some further justifications for these conditions. We
also note that the finiteness of Γ is not essential. The KL divergence condition can be modified for
a continuous Γ and combined with a covering argument to obtain the bound accordingly.

9
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5 NUMERICAL EXPERIMENTS AND DISCUSSIONS

The following figure summarizes the experiments for our model against benchmarks for each task.
We note that the prior environment distribution Pγ takes an infinite support which means the envi-
ronment γ in the test phase is different from the environment γi’s used for training with probability
1. This provides a fair and possibly more challenging setup to examine the ability of the transformer.

(a) Multi-armed bandits (b) Linear bandits (c) Dynamic pricing (d) Newsvendor

Figure 4: The average out-of-sample regret of TFθ̂ against benchmark algorithms (see details in Appendix
E.3) calculated based 100 runs. The numbers in the legend bar are the final regret at t = 100. The shaded
area in the plots indicates the 90% (empirical) confidence interval for the regrets. The prior distribution Pγ is
continuous (infinitely many possible γ). The problem dimension: number of arms for MAB =20, dimension of
linear bandits = 2, dimension of Xt for pricing = 6, dimension of Xt for newsvendor = 4.

We make the following observations on the numerical experiment. The transformer achieves a
better performance than the structured algorithms for each task. This result is impressive to us in
that the transformer is not replicating/imitating the performance of these benchmark algorithms but
it discovers a new and more effective algorithm. This in fact shows the effectiveness of using the
optimal actions a∗t as the target variable for training the transformer. Moreover, we attribute the
advantage of the transformer against the benchmark algorithms to two aspects: prior knowledge
from pre-training data and more greedy exploitation. First, the transformer well utilizes the pre-
training data and can be viewed as tailored for the pre-training distribution. Comparatively, all the
benchmark algorithms are cold-start. Second, the benchmark algorithms are all designed in ways
to cater for asymptotic optimality and thus may sacrifice short-term rewards. Comparatively, the
transformer behaves more greedy; just like Alg∗ is a decision function that does not explicitly
encourage exploration. And such greedy behavior brings better reward when T is small such as
T ≤ 100.

We provide more numerical experiments to Section C. In Section C.1, we present additional ex-
periments on training dynamics, including an ablation study on f and κ as well as further results
extended from Figure 2 (a). Section C.2 provides more results regarding the alignment of TFθ̂ and
Alg∗. Section C.3 compares the performance of TFθ̂ and Alg∗, showing that TFθ̂ can outperform
Alg∗ in certain scenarios. In Section C.4, we demonstrate that TFθ̂ can be a solution to model mis-
specifications. We also evaluate the performance of TFθ̂ under environments with varying levels of
problem complexity (Section C.5), longer testing horizons (Section C.6), and the case of model mis-
specification when the test environment is sampled from a distribution different from pre-training
(i.e., its OOD performance) (Section C.7). Finally, we conduct an ablation study on the model
architecture, model size, and task complexity in Section C.8 and Section C.9.

6 CONCLUSION

In this paper, we study the pre-trained transformer for sequential decision-making problems. Such
problems enable using the optimal action as the target variable for training the transformer. We
mathematically formulate the setup of the training pipeline and propose a way to utilize simulation
environments to generate pre-training data. We investigate the training and generation aspect of
the transformer and identify an OOD issue that is largely ignored by the existing literature. The-
oretically, we interpret how the transformer works as an online algorithm through the lens of the
Bayes-optimal decision function. The numerical experiments are encouraging in that the trained
transformer learns a decision function significantly better than all the benchmark algorithms.

10
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A RELATED WORKS

A.1 LITERATURE REVIEW

In this section, we discuss more related works which complement our discussions in Section 1. In
particular, we elaborate the literature in three streams.

Understanding transformer and in-context learning.

A remarkable characteristic of pre-trained transformers is their ability to perform in-context learning
(ICL). Once pre-trained on a vast corpus, transformers can solve new tasks with just a few exam-
ples, without updating their parameters. ICL has captured the attention of the theoretical machine
learning community, leading to considerable efforts into understanding ICL from different theo-
retical perspectives [53, 4, 49, 38]. A stream of literature that is related to our work explains the
transformer’s behavior as Bayesian inference. See [53, 56] for the Bayesian argument in regres-
sion context, [41] for approximating a large set of posteriors, and [36] for the Bayesian analysis
in decision-making. Another stream of literature aims to develop generalization bound or other
types of convergence results. See [30, 6] for such results in the regression context and [38] in the
decision-making context.

Pre-trained transformer for RL.

The earliest effort of applying transformers to reinforcement learning lies in the area of offline
RL [29, 13]. By autoregressively maximizing the likelihood of trajectories in the offline dataset,
this paradigm essentially converts offline RL to a supervised learning problem. When evaluating
the policy, the actions are sampled according to the likelihood of PT conditioned on the so called
“return-to-go”, which is commonly chosen to be the cumulative reward of “good” trajectories in
the dataset. By doing so, PT retrieves information from trajectories in training data with similar
return-to-go values and performs imitation learning to high-reward offline trajectories. Based on
this observation, several works further examine the validity of return-to-go conditioning [21, 3, 11]
and propose alternative methods that improve this approach or extend to other settings [34, 5, 57, 52].
For example, one of the drawbacks of the return-to-go conditioning is that it often fails in trajectory-
stitching when offline data comes from sub-optimal policies. One recent work [42] finds that pre-
trained LLMs, although trained by text data, can behave like a follow-the-perturbed-leader (FTPL)
algorithm in bandits and games. It further introduces a regret-based training loss, through which
transformers can be trained in an unsupervised way.

Sequential decision-making.

We carry out experiments involving some stylized sequential decision-making models including
dynamic pricing and inventory management. Dynamic pricing entails setting prices to discern the
underlying revenue function, usually defined as the product of demand and price [16]. Algorithms
that purely exploit based on historical data tend to be suboptimal and have been found converging to
non-optimal prices with a positive probability [33, 32]. Therefore, random exploration is essential
for a more accurate understanding of the demand function and to avoid settling on suboptimal prices.
See [24, 17, 10, 15] for algorithms that tackle this exploration-exploitation trade-off and achieving
near-optimal regret under different settings.

For inventory management, demand estimation is different from that in dynamic pricing due to the
censored demand [26]. When demand exceeds inventory levels, the unmet demand is not observed,
leading to lost sales. The optimal decision-making policy must balance exploration and exploitation,
which involves occasionally setting inventory levels higher than usual to gather more demand data,
but not so high that the additional costs of exploration become prohibitive. Regarding near-optimal
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policies, various works [27, 55, 2] have developed algorithms that achieve an O(
√
T ) regret bound

with different assumptions about lead times.

A.2 TFθ̂ V.S. ONLINE DECISION TRANSFORMER

In this section, we compare TFθ̂ with online decision transformer (ODT) [57]. As shown in Figure
5, although both approaches involve a pre-training phase and an (online) interaction phase, they are
indeed very different and designed to address different problems. Specifically:

• ODT interacts with a specific testing environment to fine-tune the policy, whereas TFθ̂
(with Algorithm 1) interacts with different environments and does the learning in the pre-
training stage. As a result, ODT is tailored to optimize performance in a single test environ-
ment, while TFθ̂ learns various policies across different environments during pre-training,
enabling it to perform well in online evaluations across different environments.

• ODT has been shown to underperform in stochastic environments. Although some RL en-
vironments—such as Atari and Gym—are relatively less stochastic, sequential decision-
making often involves more stochasticity. This is why ODT has rarely been applied
to sequential decision-making problems like bandit problems. More specifically, ODT,
along with its precursor Decision Transformer (DT) [13], belongs to the class of “return-
conditioned supervised learning” methods, which are not suitable even for offline reinforce-
ment learning in stochastic environments. In such cases, the transformers (ODT or DT) is
prone to learning from a “survival bias”, as demonstrated in [11], leading to suboptimal
performance.

(a) Online Decision Transformer (ODT) (b) TFθ̂ with Algorithm 1 (ours)

Figure 5: Comparison between training frameworks of Online Decision Transformer (ODT) [57]
and TFθ̂. The online interactions of ODT is in the (single) test environment to explore a (single)
good policy in the same environment, while our proposed training framework (Algorithm 1) has
online interactions in multiple environments to mitigate the OOD issue in the pre-training data (as
discussed in Section 3), and TFθ̂ can handle different test environments.

We further conduct an experiment comparing our framework with ODT as shown in Figure 6 to
highlight their differences. Specifically, we use a noiseless linear bandits task (i.e., no reward noise)
with dimension d = 2 and a horizon of T = 20, where the test environments are entirely unseen
during the training phase, including the online fine-tuning phase for ODT. It is important to empha-
size that this problem setting differs from the one for which ODT is designed (as shown in Figure
5(a), where the test environment is identical to the environment used during online fine-tuning), and
aligns with the setting we study in this work. We set fair configurations for training ODT and TFθ̂
(which will be specified later). As expected, Figure 6 demonstrates that ODT fails in this setting,
performing no better than a random policy that uniformly samples actions.

Setup: for both ODT and TFθ̂, we set the transformer architecture with 4 layers, 4 heads, 512 em-
bedding dimensions, and a 20-length context window, which are the same as in [57]. For the offline
dataset, we sample 100,000 environments by the same method in our paper, and then use Thompson
sampling to generate trajectories for each environment. And for the online interactions, the envi-
ronments are sampled from the same distribution as the offline data. The testing environments are
still sampled from the same distribution. We set the offline training phase (pre-training stage for
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Figure 6: We test the ODT and our method in a same linear bandits task, where test environments
are unseen before the evaluation phase. The ODT fails in the test environments, which are different
from the online fine-tuning phase’s.

ODT and stage 1 for TFθ̂) with 20 iterations (each iteration has 500 updates/gradient descents on
parameters), and set the online interaction phase (online fine-tuning for ODT and stage 2 for TFθ̂)
with 30 iterations (each iteration has 50 updates/gradient descents on parameters). The other train-
ing parameters (e.g., learning rate) are set the same as in [57] except the return-to-go (RTG): we set
the eval RTG as 55, which is the maximum RTG observed in the offline dataset, and online RTG as
110, which doubles the eval RTG as used in [57].

B PROBLEM EXAMPLES FOR THE GENERAL SETUP IN SECTION 2

Throughout the paper, we make the following boundedness assumption.

Assumption B.1. Assume the context space X , the action space A, and the observation space O is
bounded (under the Euclidean norm) by D.

We provide a few examples as special cases of the framework in Section 2. We hope these examples
make the actions, observations, and context in the general setup more tangible.

• Stochastic multi-armed bandits : There is no context, Xt = null for all t. The action
at ∈ A = {1, 2, . . . , k} denotes the index of the arm played at time t. The observation
(also the random reward) is generated following the distribution Pat

. The parameter γ
encapsulates the distributions P1, . . . , Pk.

• Linear bandits: There is no context, Xt = null for all t. The action at ∈ A ∈ Rd is selected
from some pre-specified domain A. The random reward R(Xt, at) = w⊤at + ϵt where ϵt
is some noise random variable and w is a vector unknown to the agent. The observation
ot = R(Xt, at) and the expected reward r(Xt, at) = E [R(Xt, at)|Xt, at] = w⊤at. The
parameter γ encapsulates the vector w and the noise distribution.

• Dynamic pricing: The context vector Xt describes the market-related information at time
t. Upon the reveal of Xt, the agent takes the action at as the pricing decision. Then the
agent observes the demand dt = d(Xt, at)+ϵt where ϵt is some noise random variable and
d(·, ·) is a demand function unknown to the agent. The random reward Rt(Xt, at) = dt ·at
is the revenue collected from the sales at time t (which equals the demand times the price),
and the observation ot = dt. The expected reward r(Xt, at) = E [R(Xt, at)|Xt, at] =
d(Xt, at)·at. The parameter γ governs the generation of Xt’s and also contains information
about the demand function d and the noise distribution.
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• Newsvendor problem: As the dynamic pricing problem, the context vector Xt describes
the market-related information at time t. Upon its reveal, the agent takes the action at
which represents the number of inventory prepared for the sales at time t. Then the agent
observes the demand dt = d(Xt, at) + ϵt where ϵt is some noise random variable and
d(·, ·) is a demand function unknown to the agent. The observation ot = dt, and the
random reward is the negative cost R(Xt, at) = −h · (at−dt)

+− l · (dt−at)
+ where (·)+

is the positive-part function, h is the left-over cost, and l is the lost-sale cost. The expected
reward r(Xt, at) = E [R(Xt, at)|Xt, at] with the expectation taken with respect to ϵt. The
parameter γ governs the generation of Xt’s and encodes the demand function f and the
noise distribution.

For the general problem setup in Section 2, the following proposition relates the pre-training and the
regret through the lens of loss function.

Proposition B.2 (Surrogate property). We say the loss function l(·, ·) satisfies the surrogate property
if there exists a constant C > 0 such that

Regret(f ; γ) ≤ C · L (f ; γ)

holds for any f and γ. We have

(a) The cross-entropy loss satisfies the surrogate property for the multi-armed bandits problem.

(b) The squared loss satisfies the surrogate property for the dynamic pricing problem.

(c) The absolute loss satisfies the surrogate property for the linear bandits and the newsvendor
problem.

Proposition B.2 gives a first validity of the supervised pre-training approach. The surrogate property
is a property of the loss function and it is not affected by the distribution or the decision function
TFθ. Specifically, it upper bounds the regret with the action prediction loss. It is also natural in that
a closer prediction of the optimal action gives a smaller regret. One implication is that the result
guides the choice of the loss function for different underlying problems.

B.1 PROOF OF PROPOSITION B.2

To prove Proposition B.2, we assume the following mild conditions. First, for all these problems,
the noise random variable ϵt has mean 0, is i.i.d. across time, and is independent of the action at.
Second, for the linear bandits problem, the L∞ norm of the unknown parameter w is bounded by
D. Third, for the dynamic pricing problem, we assume the demand function is differentiable with
respect to the action coordinate, and both the absolute value of the first- and second-order derivatives
is bounded by D. Further details regarding the problem formulations can be found in Appendix E.2.

Proof. Since both the regret Regret(f ; γ) and the prediction error L(f ; γ) are the sums of single-
step regret and prediction error over the horizon, it is sufficient to prove the single-step surrogate
property of the loss function. Therefore, in the following proof, we will focus on proving the single-
step surrogate property and omit the subscript t for simplicity.

• For the multi-arm bandits problem, without loss of generality, we assume A =
{a1, . . . , aJ} and the optimal arm is a1. For 1 ≤ i ≤ J , let µj be the mean of the re-
ward distribution for arm j, and define ∆j = µ1 − µj as the reward gap for arm j. Define
∆max = max {∆1, · · · ,∆J} as the maximum action gap. Under cross-entropy loss, we
denote the output distribution of decision function f is (p1, . . . , pJ). Then the single-step
regret can be bounded by:

E [r (X, a∗)− r (X, f(H)) |H] = µ1−
J∑

j=1

pjµj =

J∑
j=2

pj∆j ≤ ∆max(1−p1) ≤ −∆max·log(p1),

where the last step is by the inequality 1 − x ≤ − log(x) for 0 < x ≤ 1. Then by the
definition of cross-entropy loss, we finish the proof.
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• For the dynamic pricing problem, we have

r(X, a∗)−r(X, f(H)) = ∇ar(X, a∗)(a∗−f(H))+∇2
ar(X, ã)|f(H)−a∗|2 ≤ D|f(H)−a∗|2

where ã is in the line of f(H) and a∗. Here, the first step is by the Taylor expansion, and
the second step is by the first order condition of a∗ and the assumption. Then by noting
|f(H)− a∗|2 is the square loss, we finish the proof.

• For the linear bandits problem, we have

r(X, a∗)−r(X, f(H)) = w⊤a∗−w⊤f(H) ≤ ||w||∞||f(H)−a∗||1 ≤ D||f(H)−a∗||1,

where the second step is by the Holder’s inequality and the last step is by the assumption.
Then by noting ||f(H)− a∗||1 is the absolute loss, we finish the proof.

• For the newsvendor problem, we have

r(X, a∗)− r(X, f(H)) ≤ max {h, l}EX [|a∗ − d(X)− f(H) + d(X)|]
= max {h, l} |a∗ − f(H)|

where the first line is because the (random) reward function is max {h, l}-Lipschitz in
a− d(X). Then by noting |f(H)− a∗| is the absolute loss, we finish the proof.

C MORE EXPERIMENTS

C.1 MORE EXPERIMENTS ON TRAINING DYNAMICS

C.1.1 ABLATION STUDY ON f AND κ

In this section, we present ablation studies to explore the impact of two key factors: the decision
function f used for generating pre-training data, and the mix ratio κ applied in Algorithm 1. Figure 7
summarizes the results, where we pre-train and test models in multi-armed bandits problems defined
in Appendix E.2, and only tune f or κ during the pre-training and keep all other parameters the same
as in Appendix E.1.2.

• Effect of f : We evaluate the influence of different decision functions f on the performance
of the transformer in a multi-armed bandit task. Three types of decision functions are
considered: the one we designed, as defined in Appendix E.1.2 , the UCB algorithm for
multi-armed bandits [35], and a 50/50 mixture of both. The training dynamics for each
function are shown in Figure 7a. We observe that all three approaches achieve similar final
performance once training ends. While it is possible that some decision functions could
lead to faster convergence or better performance after pre-training, we did not encounter
any training failures due to the choice of f .

• Effect of κ: We also conduct an experiment to numerically investigate the impact of dif-
ferent mix ratios κ. The results are presented in Figure 7b. We test four values of κ
(10%, 33%, 66%, 90%), keeping all other hyperparameters constant for a multi-armed ban-
dit task. The findings show that transformer’s performance remains robust across different
values of κ, except when κ = 0.9, where performance declines. This supports our earlier
discussion in Algorithm 1, highlighting the importance of mixing a non-trivial amount of
self-generated data (i.e., non-trivial value for 1− κ).

C.1.2 ADDITIONAL RESULTS ON FIGURE 2 (A)

In addition to Figure 2 (a), we further evaluate the effectiveness of Algorithm 1 across various tasks
and architectures, as illustrated in Figure 8.

Figure 8 presents comparisons of the transformer’s testing regret (see definition and implementation
in Appendix E.1) with and without self-generated data (i.e., using Algorithm 1 or not) during the
training, colored by blue and orange respectively. The comparisons are conducted on (a) linear
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(a) Impact of f (b) Impact of κ

Figure 7: (a) The effect of f (decision function for generating the pre-training data), where we mix
the UCB algorithm [35] and decision function designed in Appendix E.1.2 with different ratios to
create the pre-training data. (b) The effect of κ (ratio of samples generated by f in the mixed training
phase).

(a) Linear bandits (b) Newsvendor (c) Multi-armed bandits (DPT)

Figure 8: Effectiveness of Algorithm 1. The values are averaged out-of-sample regrets based on 128
runs, where the shaded area indicates the standard deviation.

bandits and (b) newsvendor tasks. Additionally, (c) includes a similar comparison conducted in a
model with different architecture, the Decision Pre-trained Transformer (DPT) [36], on the multi-
armed bandits task. The results consistently demonstrate the same pattern observed in Figure 2 (a):
incorporating transformer-generated data significantly reduces the testing regret loss at each iteration
m > 50 compared to not using it. This shows the effectiveness of Algorithm 1 (i) across different
tasks and (ii) for various model architectures.

Setup. In Figure 8 (a) and (b), we consider two tasks: a linear bandits task (with 2-dimensional
action space) and a newsvendor task (with 4-dimensional contexts). Both tasks have infinite support
of the prior environment distribution Pγ (i.e., infinite possible environments in both the pre-training
and testing). The details of the tasks can be found in Appendix E.2. For each task, we independently
train two transformer models by Algorithm 1. For both models, the training parameters are identical
except for the M0: the first curve (blue, thick line) uses M0 = 50, while the second curve (orange,
dashed line) uses M0 = 130, meaning no transformer-generated data is utilized during training.
All other parameters follow the configuration detailed in Appendix E.1. The figure shows the mean
testing regret at each training iteration across 128 randomly sampled environments from Pγ , with
the shaded areas representing the standard deviation. We conduct the same experiment on the multi-
armed bandits task (with infinite possible environments and 20 arms) for a different architecture for
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sequential decision making, Decision Pre-trained Transformer (DPT) [36], in Figure 8 (c). We refer
to the original paper for details on the DPT’s architecture.

C.2 MORE EXPERIMENTS ON MATCHINGS OF TFθ̂ AND ALG∗

This section provides more results regarding the matching of TFθ̂ and Alg∗ across different tasks:
Figure 9 provides more examples comparing decisions made by TFθ̂ and Alg∗ at sample path levels,
while Figure 10 compares them at population levels.

(a) Dynamic pricing, 100 environments, linear de-
mand type

(b) Dynamic pricing, 16 environments, linear and
square demand types

(c) Newsvendor, 100 environments, linear demand
type

(d) Newsvendor, 16 environments, linear and square
demand types

Figure 9: Examples to compare the actions from the transformer TFθ̂ and the optimal decision
function Alg∗.

We plot the actions generated from TFθ̂ and Alg∗ on the same environment with the same contexts
in Figure 9 across dynamic pricing and newsvendor tasks. Each subfigure has a different number
of possible environments or possible demand types (which are shared in both the pre-training and
testing phases). The population-level differences {TFθ̂(Ht)−Alg∗(Ht)}Tt=1 are presented in Figure
10. We observe that across different tasks: (1) TFθ̂ nearly matches Alg∗, but (2) the matchings are
not perfect. The actions from TFθ̂ and Alg∗ are not exactly the same, and their differences increase
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(a) Multi-armed bandits, 4
environments

(b) Dynamic pricing, 4 en-
vironments

(c) Newsvendor, 4 envi-
ronments

(d) Linear bandits, 4 envi-
ronments

(e) Multi-armed bandits,
100 environments

(f) Dynamic pricing, 100
environments

(g) Newsvendor, 100 envi-
ronments

(h) Linear bandits, 100 en-
vironments

Figure 10: TFθ̂(Ht) − Alg∗(Ht) across different tasks with various numbers of possible environ-
ments. More possible environments lead to a harder decision-making problem.

as the underlying problems become more complex, as seen by comparing the first and second rows
in Figure 10. This latter observation numerically supports the conditions in Proposition 4.4.

Setup. For Figure 9, each subfigure is based on a sampled environment with a sampled sequence
of contexts {Xt}30t=1 from the corresponding task. For tasks in (a),(c), the data generation process
follows the description detailed in Appendix E.2, and the architecture of TFθ̂ and the definition of
Alg∗ can be found in Appendix E.1 and Appendix E.3 respectively. For tasks in (b), (d), there are
16 environments included in the support of Pγ , where 8 environments have demand functions of
the linear type and the other 8 have demand functions of the square type (see Appendix E.2 for the
definitions of these two types). Both the pre-training and testing samples are drawn from Pγ , i.e.,
from these 16 environments. The remaining setups for these tasks follow the methods provided in
Appendix E.2.

For each task shown in Figure 10, we generate 100 sequences of {TFθ̂(Ht) − Alg∗(Ht)}100t=1, i.e.,
each subfigure is based on 10000 samples of TFθ̂(Ht) − Alg∗(Ht). For dynamic pricing and
newsvendor, actions are scalars and thus TFθ̂(Ht) − Alg∗(Ht) is also a scalar; For multi-armed
bandits, the action space is discrete and we use the reward difference associated with the chosen
actions (by TFθ̂(Ht) or Alg∗(Ht)) as the value of TFθ̂(Ht) − Alg∗(Ht). We use histograms to
summarize the samples from them. For linear bandits, the actions are 2-dimensional and thus we
use the scatters to show TFθ̂(Ht)− Alg∗(Ht) in Figure 10 (d) or (h).

C.3 REGRET COMPARISON WITH ALG∗

In this subsection, we study the behavior of TFθ̂ by comparing regret performances on TFθ̂ and
Alg∗, which utilizes the posterior distribution P(γ|H) of environments. As shown in Section 4,
Alg∗’s are defined as the Bayes-optimal decision functions.

Algorithm 2 presents a general framework for the Bayes-optimal decision functions/algorithms in
Example 4.2: posterior averaging, sampling, and median. For simplicity of notation, we omit the
subscript t and only consider a finite space Γ of environments, while the algorithms can be easily
extended to the infinite case. For the posterior median algorithm, we assume the action space A ⊆ R.

Figure 11 presents the testing regret and action suboptimality for TFθ̂ compared to the Bayes-optimal
decision functions/algorithms. Generally, all algorithms exhibit good regret performance. However,
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Algorithm 2 Posterior averaging/sampling/median at time t

Require: Posterior probability P(γ|H) and optimal action a∗γ for each environment γ ∈ Γ, algo-
rithm Alg ∈ {posterior averaging, posterior sampling, posterior median}

%% Posterior averaging
1: if Alg=posterior averaging then
2: a =

∑
γ∈Γ P(γ|H) · a∗γ

%% Posterior sampling
3: else if Alg=posterior sampling then
4: a = a∗γ̃ , where γ̃ ∼ P(·|H)

%% Posterior median
5: else if Alg=posterior median then
6: Sort and index the environments as {γi}|Γ|i=1 such that the corresponding optimal actions are

in ascending order: a∗γ1
≤ a∗γ2

≤ . . . ≤ a∗γ|Γ|
.

7: Choose a = min
{
a∗γi

∣∣∑i
i′=1 P(γi′ |H) ≥ 0.5

}
8: end if
9: Return: a

we observe that TFθ̂ is (i) superior to posterior sampling in multi-armed bandits, as shown in (a),
and (ii) outperforms posterior averaging in linear bandits, as shown in (c).

Specifically, (b) shows that posterior sampling has higher action suboptimality during the initial time
steps compared to TFθ̂. This suggests that the exploration inherent in the sampling step of poste-
rior sampling can introduce additional regret, which might be unnecessary for simpler problems.
Conversely, (d) indicates that the decisions from posterior averaging do not converge to the optimal
action a∗t as quickly as those from TFθ̂ and posterior sampling. This suggests that posterior averag-
ing may be too greedy, thus failing to sufficiently explore the environment. This second observation
also numerically supports Proposition 4.3.

These observations illustrate that TFθ̂ can outperform Bayes-optimal decision functions in certain
scenarios. This further demonstrates that the advantage of TFθ̂ over benchmark algorithms is not
solely due to its use of prior knowledge about the task. Rather, TFθ̂ discovers a new decision rule
that achieves better short-term regret than oracle posterior algorithms. It can be more greedy than
posterior sampling while exploring more than posterior averaging.

Setup. We consider a multi-armed bandits task (with 20 arms) and linear bandits task (with 2-
dimensional actions) with 4 environments. The results are based on 100 runs. The details of tasks
with their specific oracle posterior algorithms are provided in Appendix E.2 and Appendix E.3.

C.4 TFθ̂ AS A SOLUTION TO MODEL MISSPECIFICATION

Most sequential decision-making algorithms, including all the benchmark algorithms in our exper-
iments, rely on structural or model assumptions about the underlying tasks. For instance, demand
functions in pricing and newsvendor problems are typically assumed to be linear in context. Apply-
ing these algorithms in misspecified environments, where these assumptions do not hold, can lead
to degraded performance.

In contrast, TFθ̂ offers a potential solution to model misspecifications. By generating pre-training
samples from all possible types of environments (e.g., newsvendor models with both linear and non-
linear demand functions), TFθ̂ leverages its large capacity to make near-optimal decisions across
different types. Figure 12 demonstrates the performance of TFθ̂ trained on tasks with two types
of demand functions: linear and square (definitions provided in Appendix E.2). It compares TFθ̂
with benchmark algorithms designed solely for linear demand cases. The performance is tested in
environments where demand functions (i) can be either type with equal probability (first column);
(ii) are strictly square type (second column); and (iii) are strictly linear type (third column). The
benchmark algorithms face model misspecification issues in the first two cases.
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(a) Regret for multi-armed bandits (b) Action suboptimality for multi-armed bandits

(c) Regret for linear bandits (d) Action suboptimality for linear bandits

Figure 11: Performances of TFθ̂ and Bayes-optimal decision functions. The numbers in the legend
bar are the final regret at t = 100 and the shaded areas indicate the 90% (empirical) confidence
intervals.

For both pricing and newsvendor tasks, TFθ̂ consistently outperforms all benchmarks across the
three scenarios, especially in the first two cases. This result highlights the potential of TFθ̂ to
effectively handle model misspecifications.

Setup. For both the pricing and newsvendor tasks, during the pre-training phase of TFθ̂, the pre-
training data are generated from two types of demand functions: linear and square, with each type
having a half probability. The support of Pγ is infinite, meaning the parameters in the demand
functions are not restricted. The context dimension is 6 for the pricing task and 4 for the newsvendor
task. The generating details and definitions of these two types of demands are provided in Appendix
E.2. Additionally, when generating data using TFθm in Algorithm 1, the sampled environment also
has an equal probability of having a linear or square demand type.

Each subfigure in Figure 12 is based on 100 runs. We consider three different cases during testing:
(i) the environment can have either the square or linear demand type (each with half probability);
(ii) the environment can only have the linear demand type; and (iii) the environment can only have
the square demand type. In the first case, the testing environment is sampled in the same way as the
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(a) Pricing, two demands (b) Pricing, square demand (c) Pricing, linear demand

(d) Newsvendor, two demands (e) Newsvendor, square demand (f) Newsvendor, linear demand

Figure 12: The average out-of-sample regret on dynamic pricing (first row) and newsvendor (second
row) with two possible demand types: linear and square. The numbers in the legend bar are the final
regret at t = 100 and the shaded areas indicate the 90% (empirical) confidence intervals. The details
of benchmarks can be found in Appendix E.3.

pre-training environment, while in the other two cases, we only include the sampled environments
with the specified demand type until the total testing samples reach 100.

C.5 ADDITIONAL RESULTS ON TFθ̂ PERFORMANCES

This subsection presents further results on the performance of TFθ̂. Specifically, we compare TFθ̂
with benchmark algorithms on (i) simple tasks, which include only 4 possible environments in both
pre-training and testing samples (Figure 13), and (ii) more complex tasks, which involve either 100
possible environments (Figure 14 (a), (b)) or 16 environments with two possible types of demand
functions (Figure 14 (c), (d)).

Figures 13 and 14 illustrate the consistently and significantly superior performance of TFθ̂ and Alg∗

across all tasks compared to the benchmark algorithms. These results underscore the advantage of
leveraging prior knowledge about the tested environments.

Setup. All figures are based on 100 runs. We consider four tasks with 4 environments (i.e., the
support of Pγ contains only 4 environments) in Figure 13 and two tasks with 100 environments in
Figure 14 (a), (b). The setup for these tasks follows the generation methods provided in Appendix
E.2.

For the tasks in Figure 14 (c), (d), there are 16 environments included in the support of Pγ , where
8 environments have demand functions of the linear type and the other 8 have demand functions
of the square type (see Appendix E.2 for the definitions of these two types). Both the pre-training
and testing samples are drawn from Pγ , i.e., from these 16 environments. The remaining setups for
these tasks follow the methods provided in Appendix E.2.
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(a) Multi-armed bandits (b) Linear bandits (c) Dynamic pricing (d) Newsvendor

Figure 13: The average out-of-sample regret on tasks with simpler environments, where each task
only has 4 possible environments. The numbers in the legend bar are the final regret at t = 100 and
the shaded areas indicate the 90% (empirical) confidence intervals. The details of benchmarks can
be found in Appendix E.3.

(a) Multi-armed bandits,
100 environments, linear
demand

(b) Linear bandits, 100
environments, linear de-
mand

(c) Dynamic pricing, 16
environments, 2 demand
types

(d) Newsvendor, 16 en-
vironments, 2 demand
types

Figure 14: The average out-of-sample regret on harder tasks: with 100 environments in (a) multi-
armed bandits and (b) linear bandits; or with 16 environments, 2 demand types in (c) dynamic
pricing and (d) newsvendor. The numbers in the legend bar are the final regret at t = 100 and the
shaded areas indicate the 90% (empirical) confidence intervals. The details of benchmarks can be
found in Appendix E.3

C.6 PERFORMANCE ON LONGER TESTING HORIZON

Our paradigm can be generalized to a longer testing horizon (beyond the length of the pre-training
data) by introducing a context window. Specifically, we define a context window size W and limit
the input to the last min{W, t} timesteps of the input sequence Ht to predict a∗t during both the
pre-training and testing phases. By considering only the latest min{W, t} timesteps, we enable the
model to handle testing sequences of any length, even when t > T . This technique is commonly
used in the literature (e.g., Chen et al. [13]).

In this part, we evaluate TFθ̂’s generalization ability when the testing horizon is longer than that seen
during pre-training. As for a shorter testing horizon, TFθ̂ can simply run until the end of the horizon,
and previous results demonstrate strong performances in such cases, particularly when the horizon is
less than 100. Figure 15 shows the performance when the testing horizon is extended from 100 (pre-
training horizon) to 200 in the newsvendor problem. The results demonstrate that TFθ̂ generalizes
well in this extended horizon scenario, even in the censored demand setting where exploration is
essential. Its actions remain nearly optimal beyond t = 100, resulting in lower regret compared to
benchmark algorithms. For this experiment, all the pre-training and testing setups follow Appendix
E, except the testing horizon length.

C.7 OUT-OF-DISTRIBUTION PERFORMANCE

In this section, we evaluate TFθ̂’s generalization ability under out-of-distribution (OOD) conditions,
using dynamic pricing problems as the test case.
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(a) Regret (b) Action suboptimality

Figure 15: Performance under horizon generalization in newsvendor problems, where the pre-
training samples have a horizon of 100 but the testing samples have a horizon of 200. It shows
the average out-of-sample regret (first row) and action suboptimality, i.e., |a∗t − Alg(Ht)|, (second
row) of TFθ̂ against benchmark algorithms. The numbers in the legend bar are the final regret at
t = 200.

(a) σ2 = 0.1 (< pre-training) (b) σ2 = 0.2 (= pre-training) (c) σ2 = 0.3 (> pre-training)

(d) σ2 = 0.1 (< pre-training) (e) σ2 = 0.2 (= pre-training) (f) σ2 = 0.3 (> pre-training)

Figure 16: OOD performance under different testing noise variances, which may deviate from the
pre-training variance of σ2 = 0.2. It shows the average out-of-sample regret (first row) and action
suboptimality, i.e., |a∗t − Alg(Ht)|, (second row) of TFθ̂ against benchmark algorithms. The num-
bers in the legend bar are the final regret at t = 100.

We test TFθ̂ in three different problem settings with varying testing noise variances while keeping
the pre-training variance as 0.2 for all of them: σ2 = 0.2, which matches the noise variance used
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in pre-training; σ2 = 0.1, which is smaller than that used in pre-training; and σ2 = 0.3, which is
larger. Figure 16 provides the results. We do not observe any significant sign of failure in TFθ̂’s
OOD performance: across all three settings, the benchmark algorithms consistently incur higher re-
gret than TFθ̂. Although TFθ̂ shows some variation in mean regret across OOD settings (specifically,
lower regret when σ2 = 0.2 and higher regret when σ2 = 0.3), this is partially due to the varying
“difficulty” of the underlying tasks. As expected, higher noise variances, which need more data for
accurately estimating the demand function compared to lower variance cases, lead to worse perfor-
mance for all algorithms tested. However, these variations should not be interpreted as evidence
of TFθ̂ failing to handle OOD issues. In fact, all benchmark algorithms show similar performance
fluctuations under these conditions, further demonstrating TFθ̂’s good OOD performances. For this
experiment, all the pre-training and testing setups follow Appendix E, except the noise variance in
the testing samples.

C.8 IMPACT OF NETWORK ARCHITECTURE

Here we investigate the effect of different network architectures on performance. Specifically, we
replace the transformer/GPT-2 architecture used in TFθ̂ with Long Short-Term Memory (LSTM)
[25].

We maintain the overall architecture of TFθ̂, as described in Appendix E.1 except for replacing
the transformer/GPT-2 module with LSTM. We evaluate two LSTM variants: a 5-layer LSTM and
a 12-layer LSTM (for comparison, the tested transformer also has 12 layers). Typically, LSTM
architectures should be shallower than transformers in practice, which is why we also include the
5-layer version. Other hyperparameters like embedding space dimension are kept the same across
all models. We pre-train and test these models on dynamic pricing problems (see Appendix E.2 for
the experimental setup), and the pre-training procedure is identical to the one outlined in Appendix
3.

Figure 17 presents the testing regret for the three models. The results indicate no significant dif-
ference between the 5-layer and 12-layer LSTM models. However, the transformer consistently
performs better than both LSTM variants. This outcome aligns with the transformer’s superior per-
formance in other domains, such as natural language processing, and suggests that transformers are
more effective for sequential decision making tasks as well.

Figure 17: Comparison of the average out-of-sample regret between using the Transformer and
LSTM architectures.

C.9 ABLATION STUDY ON MODEL SIZE AND TASK COMPLEXITY

In this section, we explore the performance changes when tuning both model size and task complex-
ity. Specifically, we adjust the number of layers to control the model size and the problem dimension
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(the dimension of the context) in a dynamic pricing task to control the task complexity, where the
number of unknown parameters is twice the context dimension. Since the optimal reward may scale
differently across dimensions, we provide a relatively fair comparison by evaluating the advantage
of TFθ̂ relative to the best-performing benchmark algorithm. This advantage is defined as the re-
ward improvement rate of TFθ̂ compared to the best benchmark algorithm (the one among ILSE,
CILS, and TS that achieves the highest reward). Thus, a positive value indicates TFθ̂ outperforms
all benchmark algorithms, and a larger value indicates a better performance of TFθ̂. We test three
model sizes (4, 8, and 12 layers) and three problem dimensions (4, 10, and 20), while keeping other
hyperparameters the same. The results are presented in Figure 18.

Figure 18: The advantage of TFθ̂ compared to the best benchmark algorithm in dynamic pricing,
across different model size (number of layers) and problem complexity (problem dimensions).

From Figure 18, we observe the following: (i) TFθ̂ consistently outperforms the benchmark algo-
rithms, and this advantage grows as the complexity of the problem increases. (ii) Increasing model
size consistently improves the performance of TFθ̂ across all problem dimensions, indicating that
larger models are generally preferred. This highlights TFθ̂’s superior ability to handle more complex
tasks and these observations align with the scaling law [31] for large language models.

D PROOFS

D.1 DISCUSSIONS ON CLAIM 3.1

Consider the following setup where a feature-target pair (X,Y ) is generated from some distribution
PX,Y (θ). Then we consider the minimization of the following loss

min
θ

EPX,Y (θ)[l(fθ(X), Y )]

for some loss function l : R× R → R.

Under this formulation, both the data generation distribution PX,Y (θ) and the prediction function
fθ are parameterized by θ. This describes the performative prediction problem [43].

In addition, we note that in our pre-trained transformer setting, the joint distribution can be factorized
in

PX,Y (θ) = PX(θ) · PY |X .

That is, the parameter θ only induces a covariate shift by affecting the marginal distribution of X , but
the conditional distribution PY |X remains the same for all the θ. This exactly matches our setting
of pre-trained transformer; to see this, different decision functions, f or TFθm , only differ in terms
of the generation of the actions aτ ’s in Ht (for τ = 1, ..., t − 1) which is the features X in this
formulation but the optimal action a∗t will only be affected by Xt in Ht.
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Also, under this factorization, we define the Bayes-optimal estimator as
f∗(X) = min

y
EPY |X [l(y, Y )|X].

Then it is easy to note that when f∗ = fθ∗ for some θ∗, and have
θ∗ ∈ argmin

θ
EPX,Y (θ′)[l(fθ(X), Y )]

for any θ′.

In this light, the oscillating behavior of the optimization algorithms in [43] will not happen. Because
for all the data generation distribution PX,Y (θ

′), they all point to one optimal θ∗.

Back to the context of the pre-trained transformer, such a nice property is contingent on two factors:
(i) the transformer function class is rich enough to cover f∗; (ii) there are infinitely many samples/we
can use the expected loss. Also, the above argument is connected to the argument of Proposition
4.1.

D.2 PROOF OF PROPOSITION 3.2

As noted in the proposition, let b denote the bound of the loss function, and let the loss function
l (TFθ(H), a) is D-Lipschitz with respect to H and a. We remark that the constant D could be very
large for the transformer model; the bound derived here serves more to illustrate the relationship
between the generalization error and various problem parameters, but not really as an empirical
bound to predict the test error of the underlying transformer.

Step 1. We aim to show with probability at least 1− h,

κLf (TFθ̂) + (1− κ)LTFθ̃
(TFθ̂) ≤

1

nT

n∑
i=1

T∑
t=1

l
(
TFθ̂

(
H

(i)
t

)
, a

(i)∗
t

)

+

√
Comp({TFθ : θ ∈ Θ})

nT
+

√
2b2

nT
log

(
4

h

)
,

where Comp({TFθ : θ ∈ Θ}) is some inherent constant describing the complexity of {TFθ : θ ∈
Θ}. Note that when samples follow the generation process (actions are generated by f )

Pγ → γi → Pγi,f →
{(

H
(i)
1 , a

(i)∗
1

)
, . . . ,

(
H

(i)
T , a

(i)∗
T

)}
,

and

Lf (TFθ) = Eγ∼Pγ [Lf (TFθ; γ)] = Eγ∼Pγ

[
E(Ht,a∗

t )∼Pγ,f

[
T∑

t=1

l (TFθ (Ht) , a
∗
t )

]]
.

Since l (TFθ(·), ·) is bounded by b, we can apply the McDiarmid’s inequality (see Theorem D.8 in

[40] for more details) with constant 2b
nT to sup

θ∈Θ

∣∣∣∣ 1
nT

n∑
i=1

T∑
t=1

l
(
TFθ

(
H

(i)
t

)
, a

(i)∗
t

)
−Lf (TFθ)

∣∣∣∣ such

that with probability at least 1− h, we have

sup
θ∈Θ

∣∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

l
(
TFθ

(
H

(i)
t

)
, a

(i)∗
t

)
− Lf (TFθ)

∣∣∣∣∣
≤E(Ht,a∗

t )∼Pγ,f

[
sup
θ∈Θ

∣∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

l
(
TFθ

(
H

(i)
t

)
, a

(i)∗
t

)
− E(Ht,a∗

t )∼Pγ,f

[
T∑

t=1

l (TFθ (Ht) , a
∗
t )

] ∣∣∣∣∣
]

(10)

+

√
2b2

nT
log

(
2

h

)

≤2E(Ht,a∗
t )∼Pγ,f ,wit

[
sup
θ∈Θ

∣∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

witl
(
TFθ

(
H

(i)
t

)
, a

(i)∗
t

) ∣∣∣∣∣
]
+

√
2b2

nT
log

(
2

h

)

≤
√

Comp({TFθ : θ ∈ Θ})
nT

+

√
2b2

nT
log

(
2

h

)
, (11)
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where the second inequality uses the symmetric tricks (see Theorem 3.3 in [40] for more details),
and wit, so-called Rademacher variables are independent uniform random variables taking values in
{−1, 1}.

Similarly, when samples follow the generation process (actions are generated by TFθ̄)

Pγ → γi → Pγi,TFθ̃
→
{(

H
(i)
1 , a

(i)∗
1

)
, . . . ,

(
H

(i)
T , a

(i)∗
T

)}
,

by using the same tricks, we can have that with probability at least 1− h,

sup
θ∈Θ

∣∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

l
(
TFθ

(
H

(i)
t

)
, a

(i)∗
t

)
− LTFθ̃

(TFθ)

∣∣∣∣∣ ≤
√

Comp({TFθ : θ ∈ Θ})
nT

+

√
2b2

nT
log

(
2

h

)
.

(12)

Since θ̂ is determined by equation 6 where κn data sequences are from Pγ,f and (1 − κ)n data
sequences are from Pγ,TFθ̃

, by taking the uniform bound of equations (11) and (12), we have with
probability at least 1− h,

κLf (TFθ̂) + (1− κ)LTFθ̃
(TFθ̂) ≤

1

nT

n∑
i=1

T∑
t=1

l
(
TFθ̂

(
H

(i)
t

)
, a

(i)∗
t

)

+

√
Comp({TFθ : θ ∈ Θ})

nT
+

√
2b2

nT
log

(
4

h

)
.

Step 2. Now we show

L(TFθ̂) ≤ Lf (TFθ̂) + TD · Eγ∼Pγ

[
W1

(
Pγ,f ,Pγ,TFθ̂

)]
,

L(TFθ̂) ≤ Lf (TFθ̂) + TD · Eγ∼Pγ

[
W1

(
Pγ,TFθ̃

,Pγ,TFθ̂

)]
,

where W1(·, ·) is the Wasserstein-1 distance.

By Kantorovich-Rubinstein’s theorem, for distributions D1 and D2, we have

W1(D1,D2) = sup
{∣∣EX∼D1

g(X)− EX∼D2
g(X)

∣∣ ∣∣ g : Rp → R, g is 1-Lipschitz
}
.

Since l (TFθ(H), a) is D-Lipschitz with respect to H and a for all θ ∈ Θ, we have

L
(
TFθ̂; γ

)
− Lf

(
TFθ̂; γ

)
= E(Ht,a∗

t )∼Pγ,TF
θ̂

[
T∑

t=1

l
(
TFθ̂ (Ht) , a

∗
t

)]
− E(Ht,a∗

t )∼Pγ,f

[
T∑

t=1

l
(
TFθ̂ (Ht) , a

∗
t

)]
≤ TD ·W1

(
Pγ,f ,Pγ,TFθ̂

)
,

which implies that L(TFθ̂) ≤ Lf (TFθ̂) + TD · Eγ∼Pγ

[
W1

(
Pγ,f ,Pγ,TFθ̂

)]
. Similarly, we have

L(TFθ̂) ≤ Lf (TFθ̂) + TD · Eγ∼Pγ

[
W1

(
Pγ,TFθ̃

,Pγ,TFθ̂

)]
.

Therefore, by combining step 1 and step 2, we can conclude that with probability at least 1− h,

L(TFθ̂) ≤L̂(TFθ̂) +

√
Comp({TFθ : θ ∈ Θ})

nT

+ κTD · Eγ∼Pγ

[
W1

(
Pγ,f ,Pγ,TFθ̂

)]
+ (1− κ)TD · Eγ∼Pγ

[
W1

(
Pγ,TFθ̃

,Pγ,TFθ̂

)]
+

√
2b2

nT
log

(
4

h

)
,

which completes the proof.

D.3 PROOF OF PROPOSITION 4.1

Proof. The proof can be done with the definition of Alg∗. Also, we refer more discussion to Section
D.1.
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D.4 PROOF OF EXAMPLE 4.2

Proof. Since Alg∗ is a function of any possible history Ht, we omit the subscrpit t for the optimal
actions for notation simplicity, and use a(γ)∗ as the optimal action of γ.

• Posterior sampling under the cross-entropy loss. We assume that A = {a1, . . . , aJ} and
the output of Alg∗ is a probability vector (p1, . . . , pJ) such that

∑J
j=1 pj = 1, meaning

the probability of choosing each action. Then

Alg∗(H) = argmin∑J
j=1 pj=1

∫
γ

− log (pa(γ)∗)P(H|γ)dPγ

= argmin∑J
j=1 pj=1

J∑
j=1

(− log (pj))

∫
{γ: a(γ)∗=j}

P(H|γ)dPγ .

By nothing
∫
{γ: a(γ)∗=j} P(H|γ)dPγ is the probability such that action j is the optimal

action conditional on H (i.e., the posterior distribution of the optimal action), we are indeed
minimizing the cross-entropy of the posterior distribution of the optimal action relative to
the decision variables pj . Thus, the optimal solution p∗j =

∫
{γ: a(γ)∗=j} P(H|γ)dPγ for

each j and Alg∗(Ht) behaves as the posterior sampling.

• Posterior averaging under the squared loss. By definition,

Alg∗(H) = argmin
a∈A

∫
γ

||a− a(γ)∗||22P(H|γ)dPγ

=

∫
γ
a(γ)∗P(H|γ)dPγ∫
γ
P(H|γ)dPγ

= Eγ [a
(γ)∗|H]

where the second line is by the first order condition.

• Posterior median under the absolute loss. By definition,

Alg∗(H) = argmin
a∈A

∫
γ

|a− a(γ)∗|P(H|γ)dPγ .

Then by zero-subgradient condition, we can conclude that Alg∗(H) satisfies∫
{γ: Alg∗(H)≤a(γ)∗}

P(H|γ)dPγ =

∫
{γ: Alg∗(H)≥a(γ)∗}

P(H|γ)dPγ .

Divide both sides of this equation by
∫
γ
P(H|γ)dPγ , we can conclude that∫

{γ: Alg∗(H)≤a(γ)∗}
dP (γ|H) =

∫
{γ: Alg∗(H)≥a(γ)∗}

dP (γ|H)

where P (γ|Ht) is the posterior distribution of γ. Hence Alg∗(H) is the posterior median.

D.5 PROOF OF PROPOSITION 4.3

Proof. For the linear bandits problem, we consider the following example. Suppose we have
two environments, γ1, γ2, each with standard normal distributed noise and unknown parameters
wγ1

= (1, 0) and wγ2
= (0, 1), respectively. Let the action space be A = [−1, 1] × [−1, 1]. The

optimal actions for the two environments are a(1)∗ = (1, 0), a(2)∗ = (0, 1). We assume the prior
distribution Pγ is given by Pγ(γ1) = Pγ(γ2) =

1
2 .
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Then if Alg∗ is the posterior averaging, we have

at = Alg∗(Ht) = Pγ (γ1|Ht) · a(1)∗ + Pγ (γ2|Ht) · a(2)∗,

where the posterior distribution Pγ (γi|Ht) is given by

Pγ (γi|Ht) =

∏t−1
τ=1 Pγi(oτ |aτ )∑2

i′=1

∏t−1
τ=1 Pγi′ (oτ |aτ )

, i = 1, 2.

We now use induction to show Pγ (γi|Ht) = 1
2 for any t ≥ 1 and i = 1, 2, where Ht can be

generated by either γ1 or γ2. This results in at =
1
2a

(1)∗ + 1
2a

(2)∗ =
(
1
2 ,

1
2

)
, which does not change

with respect to t and will cause regret linear in T .

Step 1. Since Pγ (γi|H0) = Pγ (γi) = 1
2 , we have a1 = 1

2a
(1)∗ + 1

2a
(2)∗ = ( 12 ,

1
2 ), and the

conclusion holds for t = 1.

Step 2. Now assume the conclusion holds for t, i.e., Pγ (γi|Ht) = 1
2 , and at =

(
1
2 ,

1
2

)
. Since

wT
γ1
at = wT

γ2
at =

1
2 , we have Pγi(ot|at) = 1√

2π
exp

(
− (ot− 1

2 )
2

2

)
for i = 1, 2. Observe that

Pγ(γi|Ht+1) =
Pγi

(ot+1|at+1)Pγ(γi|Ht)∑2
i′=1 Pγi′ (ot+1|at+1)Pγ(γi′ |Ht)

=
1

2
,

which implies at+1 =
(
1
2 ,

1
2

)
, and the conclusion holds for t+ 1.

Thus, the conclusion holds for all t ≥ 1. Then the regret is

Regret(Alg∗; γi) = E

[
T∑

t=1

r(Xt, a
∗
t )− r(Xt, at)

]
=

1

2
T

for i = 1, 2.

For the dynamic pricing problem, we can construct a similar example. Suppose we have two
environments without context Xt, denoted by γ1, γ2. The demands ot of them are set to be ot =

2 − at + ϵt and ot = 4
5 − 1

5 · at + ϵt respectively, where ϵt
i.i.d.∼ N (0, 1) and at is the price.

Accordingly, the optimal actions are then a(1)∗ = 1 and a(2)∗ = 2.

Then if Alg∗ is the posterior averaging, we have

at = Alg∗(Ht) = Pγ (γ1|Ht) · a(1)∗ + Pγ (γ2|Ht) · a(2)∗,

where the posterior distribution Pγ (γi|Ht) is given by

Pγ (γi|Ht) =

∏t−1
τ=1 Pγi(oτ |aτ )∑2

i′=1

∏t−1
τ=1 Pγi′ (oτ |aτ )

, i = 1, 2.

with Pγ1(oτ |aτ ) as the normal distribution N (2− at, 1) and Pγ2(oτ |aτ ) as N
(
4−at

5 , 1
)
.

Observe that a1 = 1
2a

(1)∗ + 1
2a

(2)∗ = 3
2 satisfies 2− a1 = 4−a1

5 . Following a similar analysis as in
the linear bandits example, we can conclude that Pγ (γi|Ht) =

1
2 for any t and i = 1, 2, where Ht

can be generated by either γ1 or γ2. Therefore, at = 3
2 for all t ≥ 1 and the regret is

Regret(Alg∗; γi) = E

[
T∑

t=1

r(Xt, a
∗
t )− r(Xt, at)

]
=

1

4
T · I {γi = γ1}+

1

20
T · I {γi = γ2} ,

for i = 1, 2.
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D.6 PROOF OF PROPOSITION 4.4

We make the following additional assumptions:

• There exists a constant r̄ such that supx∈X ,a∈A,γ∈Γ r(x, a; γ) ≤ r̄, where we use r(x, a; γ)
to denote the reward function of environment γ.

• There exists a constant Cr such that Alg∗ satisfies

E[r(Xt, a
∗
t )− r(Xt,Alg

∗(Ht))|Ht] ≤ Cr

∑
γi ̸=γ

P(γi|Ht),

where the expectation on the left side is taken with respect to the possible randomness in
Alg∗.

• Pγ is a uniform distribution over Γ.

Proof. We first compute a concentration inequality for
∑t

τ=1 log
(

Pγ(oτ |Xτ ,aτ )
Pγ′ (oτ |Xτ ,aτ )

)
. By the

Bernstein-type concentration bound for a martingale difference sequence (Theorem 2.19 in [50]),
under the given conditions, we have for any γ′ ∈ Γ, t > 0 and 1 > δ > 0 with probability 1− δ,

t∑
τ=1

log

(
Pγ(oτ |Xτ , aτ )

Pγ′(oτ |Xτ , aτ )

)
− E

[
log

(
Pγ(oτ |Xτ , aτ )

Pγ′(oτ |Xτ , aτ )

)]
≥ −

√
2Cσ2∆Exploret log(1/δ),

where
t∑

τ=1

E
[
log

(
Pγ(oτ |Xτ , aτ )

Pγ′(oτ |Xτ , aτ )

)]
=

t∑
τ=1

KL
(
Pγ(·

∣∣Xτ , aτ )∥Pγ′(·
∣∣Xτ , aτ )

)
≥ t∆Explore.

We think about two situations:

• If
√

t∆Explore ≥ 2
√
2Cσ2 log(1/δ), then

t∑
τ=1

log

(
Pγ(oτ |Xτ , aτ )

Pγ′(oτ |Xτ , aτ )

)
≥ t∆Explore −

1

2
t∆Explore

=
1

2
t∆Explore

>
1

2
t∆Explore − 4Cσ2 log(1/δ).

• If
√
t∆Explore < 2

√
2Cσ2 log(1/δ), then

t∑
τ=1

log

(
Pγ(oτ |Xτ , aτ )

Pγ′(oτ |Xτ , aτ )

)
> t∆Explore − 4Cσ2 log(1/δ)

≥ 1

2
t∆Explore − 4Cσ2 log(1/δ).

Thus with probability 1− δ, we have

t∑
τ=1

log

(
Pγ(oτ |Xτ , aτ )

Pγ′(oτ |Xτ , aτ )

)
>

1

2
t∆Explore − 4Cσ2 log(1/δ).

Now we apply the union bound to γi for i = 1, . . . , k and for t = 1, . . . , T : with probability 1−1/T ,
for all i = 1, . . . , k, and t = 1, . . . , T

P(γi|Ht) ≤ P(γ|Ht) · exp
(
−1

2
t∆Explore + 4Cσ2 log(1/δ)

)
.
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Now we are ready to prove the regret bound. We first decompose the regret:

Regret(TFθ̂; γ) =

T∑
t=1

E[r(Xt,Alg
∗(Ht))− r(Xt,TFθ̂(Ht))] +

T∑
t=1

E[r(Xt, a
∗
t )− r(Xt,Alg

∗(Ht))]

≤ ∆ExploitT + CrE

 T∑
t=1

∑
γi ̸=γ

P(γi|Ht)

 .

Since P(γi|Ht) + P(γ|Ht) ≤ 1, we have with probability 1 − 1/T , for all i = 1, . . . , k, and
t = 1, . . . , T ,

P(γi|Ht) ≤
1

1 + exp
(
1
2 t∆Explore − 4Cσ2 log(kT 2)

) .
Let t0 =

⌈
16Cσ2 log(kT 2)

∆Explore

⌉
, then we have with probability 1 − 1/T , for all i = 1, . . . , k, and t =

1, . . . , T ,

P(γi|Ht) ≤
1

1 + exp
(
1
2 t∆Explore − 4Cσ2 log(kT 2)

) < exp

(
−1

4
t∆Explore

)
.

Thus, we can conclude that

E

 T∑
t=1

∑
γi ̸=γ

P(γi|Ht)

 < 1 +
16Cσ2 r̄ log(kT 2)

∆Explore
+ kE

[
T∑

t=t0

exp

(
−1

4
t∆Explore

)]

= O

(
log k

∆Explore

)
and finish the regret bound.

D.7 EXAMPLE/JUSTIFICATION FOR THE CONDITIONS IN PROPOSITION 4.4

We use a set of linear bandits problems as a an example to illustrate Proposition 4.4. Consider a set
of linear bandits problems with ot = Rt = w⊤at + ϵt, where ϵt is i.i.d. from a standard Normal
distribution. Recall the environment parameter γ = w here. We assume it has dimension d and
both A and Γ are bounded with respect to the L2 norm. Further, we assume Alg∗(Ht) is posterior
averaging and for each time t,

TFθ̂(Ht) = Alg∗(Ht) + ∆t,

where ∆t follows a uniform distribution in [−1, 1]d, i.i.d. across time and independent of Ht, at,
and γ. This follows the numerical observations in Figure 3.

In this setting, we verify the conditions in Proposition 4.4. To simplify notations, we denote ã∗t =
Alg∗(Ht).

First condition. Since

E[r(Xt,Alg
∗(Ht))− r(Xt,TFθ̂(Ht))|Ht] = E[γ⊤ã∗t − γ⊤ã∗t − γ⊤∆t|Ht] = 0,

we have ∆Exploit = 0.

Second condition. Since ϵt is i.i.d. from a standard Normal distribution, we have for ot = γ⊤at+ϵt
and at = TFθ̂(Ht),

log

(
Pγ(ot|Xt, at)

Pγ′(ot|Xt, at)

)
=

(ot − γ
′⊤at)

2 − (ot − γ⊤at)
2

2

=
((γ − γ′)⊤at)

2

2
− (γ − γ′)⊤atϵt.
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Thus, the KL divergence, which is the expectation of the above term with respect to ϵt and ∆t (which
are independent of Ht), is

E
[
((γ − γ′)⊤(ã∗t +∆t))

2

2

∣∣∣∣Ht

]
≥ 1

6
∥γ − γ′∥22.

And further, for the “noise” term (γ−γ′)⊤atϵt, since its variance is bounded by O(∥γ−γ′∥22) (due
to the assumptions on the boundedness of at and that ϵt follows a standard Normal distribution), we
can set ∆Explore = minγ′∈Γ ∥γ − γ′∥22.
Further, since

E[r(Xt, a
∗
t )− r(Xt,Alg

∗(Ht))|Ht] ≤ r̄
∑
γi ̸=γ

P(γi|Ht),

we can set Cr = r̄.

And thus, we can conclude the regret bound is Regret(TFθ̂, γ) = O
(

log k
minγ′∈Γ ∥γ−γ′∥2

2

)
.

E DETAILS FOR NUMERICAL EXPERIMENTS

E.1 TRANSFORMER ARCHITECTURE AND ALGORITHM 1 IMPLEMENTATION

E.1.1 TRANSFORMER FOR SEQUENTIAL DECISION MAKING

We adopt the transformer architecture for regression tasks from [22] to solve sequential decision-
making tasks, with modifications tailored to our specific setting.

Prompt. At time t, the prompt consists of two types of elements derived from the history Ht: (i)
the “feature” elements, which stack the context Xτ ∈ Rd at each time τ ≤ t and the observa-
tion oτ−1 ∈ Rk from τ − 1 (with o0 set as a k-dimensional zero vector in our experiments), i.e.,
{(Xτ , oτ−1)}tτ=1 ⊂ Rd+k. These elements serve as the “features” in the prediction; and (ii) the “la-
bel” elements, which are the actions {aτ}t−1

τ=1 in Ht. Therefore, the prompt contains 2t−1 elements
in total.

Architecture. The transformer is based on the GPT-2 family [45]. It uses two learnable linear
transformations to map each “feature” and “label” element into vectors in the embedding space
respectively (similar to tokens in language models). These vectors are processed through the GPT-
2’s attention mechanism, resulting in a vector that encapsulates relevant contextual information.
This vector then undergoes another learnable linear transformation, moving from the embedding
space to the action A, ultimately resulting in the prediction of a∗t . In our experiments, the GPT-2
model has 12 layers, 16 attention heads, and a 256-dimensional embedding space. The experiments
are conducted on 2 A100 GPUs with DistributedDataParallel method of Pytorch.

E.1.2 ALGORITHM 1 IMPLEMENTATION AND PRE-TRAINING DETAILS

During pre-training, we use the AdamW optimizer with a learning rate of 10−4 and a weight decay of
10−4. The dropout rate is set to 0.05. For implementing Algorithm 1 in our experiments, we set the
total iterations M = 130 with an early training phase of M0 = 50. The number of training sequences
per iteration is n = 1500 × 64, which are randomly split into 1500 batches with a batch size of
64. The transformer’s parameter θ is optimized to minimize the averaged loss of each batch. As
suggested in Proposition B.2, we select the cross-entropy loss for the multi-armed bandits, squared
loss for the dynamic pricing, and absolute loss for the linear bandits and newsvendor problem.

To reduce computation costs from sampling histories during the early training phase, instead of
sampling a new dataset Dm in each iteration (as described in Algorithm 1), we initially sample 106

data samples before the pre-training phase as an approximation of Pγ,f . Each sample in the batch is
uniformly sampled from these 106 data samples.

To reduce transformer inference costs during the mixed training phase, we reset the number of
training sequences to n = 15× 64 per iteration and set the ratio κ = 1/3, meaning 10× 64 samples
are from Pγ,TFθm

and 5 × 64 samples are from Pγ,f (sampled from the pool of pre-generated 106
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samples as before). Consequently, we adjust the number of batches from 1500 to 50 to fit the smaller
size of training samples, keeping the batch size at 64.

Decision Function f in Pre-Training. To mitigate the OOD issue mentioned in Section 3, we aim
for the decision function f to approximate Alg∗ or TFθ̂. However, due to the high computation cost
of Alg∗ and the unavailability of TFθ̂, we set f(Ht) = a∗t + ϵ′t, where ϵ′t is random noise simulating
the suboptimality of Alg∗ or TFθ̂ and independent of Ht. As we expect such suboptimality to
decrease across t, we also reduce the influence of ϵ′t across t. Thus, in our experiments, ϵ′t is defined
as:

ϵ′t ∼

{
0 w.p. max{0, 1− 2√

t
},

Unif[−1, 1] w.p. min{1, 2√
t
},

where for the multi-armed bandits we replace Unif[−1, 1] by Unif{−2,−1, 1, 2} and for the linear
bandits with dimension d > 1 we apply the uniform distribution of the set [−1,−1]d. We further
project f(Ht) into A when f(Ht) /∈ A.

Curriculum. Inspired by Garg et al. [22] in the regression task, we apply curriculum training to
potentially speed up Algorithm 1. This technique uses “simple” task data initially and gradually
increases task complexity during the training. Specifically, we train the transformer on samples with
a smaller horizon T̃ = 20 (generated by truncating samples from Pγ,f or Pγ,TFθm

) at the beginning
and gradually increase the sample horizon to the target T = 100. We apply this curriculum in both
the early training phase (m ≤ 50) and the mixed training phase (m > 50). The last 30 iterations
focus on training with T̃ = 100 using non-truncated samples from Pγ,TFθ

to let the transformer fit
more on the non-truncated samples. The exact setting of T̃ is as follows:

T̃ =


20× (m%10 + 1) when m = 1, . . . , 50,

20× (m%10− 4) when m = 51, . . . , 100,

100 when m = 100, . . . , 130.

E.2 ENVIRONMENT GENERATION

Throughout the paper, we set the horizon T = 100 for all tasks. The environment distribution Pγ is
defined as follows for each task:

• Stochastic multi-armed bandit: We consider the number of actions/arms k = 20. The
environment parameter γ encapsulates the expected reward ra of each arm a = 1, . . . , 20,
where the reward of arm a is sampled from N (ra, 0.2). Thus, the environment distribution
Pγ is defined by the (joint) distribution of (r1, . . . , r20). We set ra

i.i.d.∼ N (0, 1) for each
action a. The optimal arm is a∗ = argmaxa ra.

• Linear bandits: We consider the dimension of actions/arms d = 2 and A = B(0, 1), i.e.,
a unit ball centered at the origin (with respect to the Euclidean norm). The environment
parameter γ encapsulates the (linear) reward function’s parameter w ∈ {w̃ ∈ R2 : ∥w̃∥2 =
1}, where the reward of arm a is sampled from N (w⊤a, 0.2). Thus, the environment
distribution Pγ is defined by the distribution of w. We set w to be uniformly sampled from
the unit sphere, and the corresponding optimal arm being a∗ = w.

• Dynamic pricing: We set the noise ϵt
i.i.d.∼ N (0, 0.2) and the context Xt to be sampled i.i.d.

and uniformly from [0, 5/2]d, with d = 6 as the dimension of contexts, and A = [0, 30].
We consider the linear demand function family d(Xt, at) = w⊤

1 Xt−w⊤
2 Xt ·at+ϵt, where

w1, w2 ∈ Rd are the demand parameters. Thus, the environment distribution Pγ is defined
by the (joint) distribution of (w1, w2). We set w1 to be uniformly sampled from [1/2, 3/2]6

and w2 to be uniformly sampled from [1/20, 21/20]6, independent of w1. The optimal

action a∗t =
w⊤

1 Xt

2·w⊤
2 Xt

. We also consider a square demand function family, which will be
specified later, to test the transformer’s performance on a mixture of different demand tasks.

• Newsvendor problem: We set the context Xt to be sampled i.i.d. and uniformly from
[0, 3]d with d = 4, and A = [0, 30]. We consider the linear demand function family
d(Xt, at) = w⊤Xt + ϵt, where w ∈ R2. The environment parameter γ encapsulates (i)
the upper bound ϵ̄ of the noise ϵt, where ϵt

i.i.d.∼ Unif(0, ϵ̄); (ii) the left-over cost h (with
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the lost-sale cost l being 1); and (iii) the demand parameter w. Accordingly, we set (i)
ϵ̄ ∼ Unif[1, 10]; (ii) h ∼ Unif[1/2, 2]; and (iii) w uniformly sampled from [0, 3]2. The
optimal action can be computed by a∗t = w⊤Xt +

ϵ̄
1+h [18], which is indeed the 1

1+h

quantile of the the random variable w⊤Xt+ϵt. We also consider a square demand function
family, which will be specified later, to test the transformer’s performance on a mixture of
different demand tasks.

Finite Pool of Environments. To study the behavior and test the performance of the transformer
on finite possible environments (e.g., to see if and how TFθ̂ converges to Alg∗), we also consider
a finite pool of environments as the candidates of γ. Specifically, for some tasks we first sample
finite environments (e.g., γ1, . . . , γ4) i.i.d. following the sampling rules previously described. We
then set the environment distribution Pγ as a uniform distribution over the pool of sampled environ-
ments (e.g., {γ1, . . . , γ4}). We should notice this pool of environments does not restrict the context
generation (if any): in both the pre-training and testing, contexts are generated following the rules
previously described and are independent of the given finite pool.

Tasks with Two Demand Types. To test the transformer’s performance on tasks with a mixture of
different demand types, we also consider the square demand function family for the dynamic pricing
and newsvendor tasks. Specifically, besides the linear demand function family, we also consider
dsq(Xt, at) = (w⊤

1 Xt)
2 − (w⊤

2 Xt) · at + ϵt in dynamic pricing and dsq(Xt, at) = (w⊤Xt)
2 + ϵt

in the newsvendor problem. Thus, with a slight abuse of notation, we can augment γ such that it
parameterizes the type of demand (linear or square). In experiments related to multi-type demands,
the probability of each type being sampled is 1/2, while the distributions over other parameters of
the environment remain the same as in the linear demand case.

E.3 BENCHMARK ALGORITHMS

E.3.1 MULTI-ARMED BANDITS

• Upper Confidence Bound (UCB) [35]: Given Ht, the action at is chosen by at =

argmaxa∈A r̂a +
√
2 log T

min{1,na} , where na is the number of pulling times of arm a before
time t and r̂a is the empirical mean reward of a based on Ht.

• Thomspon sampling (TS) [47]: Given Ht, the action at is chosen by at = argmaxa∈A r̃a,

where each r̃a ∼ N
(
r̂a,

√
2 log T

min{1,na}

)
is the sampled reward of arm a and r̂a, na follow the

same definitions as in UCB.

• Alg∗: Given Ht from a task with a pool of |Γ| environments {γ1, . . . , γ|Γ|}, the action at
is chosen by the posterior sampling defined in Algorithm 2. The posterior distribution can
be computed by

P(γi|Ht) =
exp(− 1

σ2

∑t−1
τ=1(oτ − riaτ

)2)∑|Γ|
i′=1 exp(−

1
σ2

∑t−1
τ=1(oτ − ri′aτ

)2)
,

where ria is the expected reward of a in environment γi and σ2 is the variance of the noise
(which equals to 0.2 in our experiments).

E.3.2 LINEAR BANDITS

• LinUCB [14]: Given Ht, we define Σt =
∑t−1

τ=1 aτa
⊤
τ + σ2Id, where σ2 is the variance of

the reward noise. The action at is chosen by at ∈ argmaxa∈A ŵ⊤
t a +

√
2 log T∥a∥Σ−1

t
,

where ŵt = Σ−1
t (
∑t−1

τ=1 oτ · aτ ) is the current estimation of w from Ht.

• LinTS [1]: Given Ht, the action at is chosen by at = argmaxa∈A w̃⊤
t a, where w̃t ∼

N
(
ŵt,

√
2 log TΣ−1

t

)
as the sampled version of w and ŵt,Σt follow the same definitions

in LinUCB.

• Alg∗: Given Ht from a task with a pool of |Γ| environments {γ1, . . . , γ|Γ|}, the action at
is chosen by the posterior median defined in Algorithm 2. The posterior distribution can be
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computed by

P(γi|Ht) =
exp(− 1

σ2

∑t−1
τ=1(oτ − w⊤

i aτ )
2)∑|Γ|

i′=1 exp(−
1
σ2

∑t−1
τ=1(oτ − w⊤

i′ aτ )
2)
,

where wi is the reward function parameter in environment γi and σ2 is the variance of the
noise (which equals to 0.2 in our experiments).

E.3.3 DYNAMIC PRICING

All the benchmark algorithms presented below assume the demand model belongs to the linear
demand function family as defined in Appendix E.2 (which can be mis-specified when we deal with
dynamic pricing problems with two demand types).

• Iterative least square estimation (ILSE) [44]: At each t, it first estimates the unknown
demand parameters (w1, w2) by applying a ridge regression based on Ht, and chooses at as
the optimal action according to the estimated parameters and the context Xt. Specifically,
we denote (ŵ1,t,−ŵ2,t) = Σ−1

t (
∑t−1

τ=1 oτ · zτ ) as the estimation of (w1,−w2) through
a ridge regression, where zτ = (Xτ , aτ · Xτ ) serves as the “feature vector” and Σt =∑t−1

τ=1 zτz
⊤
τ + σ2Id (σ2 is the variance of the demand noise). Then the action is chosen as

the optimal one by treating (ŵ1,t, ŵ2,t) as the true parameter: at =
ŵ⊤

1,tXt

2ŵ⊤
2,tXt

.

• Constrained iterated least squares (CILS) [32]: It is similar to the ILSE algorithm except
for the potential explorations when pricing. Specifically, we follow the notations in ILSE

and denote ât =
ŵ⊤

1,tXt

2ŵ⊤
2,tXt

as the optimal action by treating (ŵ1,t, ŵ2,t) as the true parameter
(the chosen action of ILSE), and denote āt−1 as the empirical average of the chosen actions
so far. Then the CILS chooses

at =

{
āt−1 + sgn(δt) t

− 1
4

10 , if |δt| < 1
10 t

− 1
4 ,

ât, otherwise ,

where δt = ât − āt−1. The intuition is that if the tentative price ât stays too close to the
history average, it will introduce a small perturbation around the average as price experi-
mentation to encourage parameter learning.

• Thomspon sampling for pricing (TS) [51]: Like the ILSE algorithm, it also runs a regres-
sion to estimate (w1, w2) based on the history data, while the chosen action is the optimal
action of a sampled version of parameters. Specifically, we follow the notations in ILSE
and then TS chooses

at =
α̃

2 · β̃
,

where (α̃, β̃) ∼ N ((ŵ⊤
1,tXt, ŵ

⊤
2,tXt), Σ̃

−1
t ) ∈ R2 are the sampled parameters of the “in-

tercept” and “price coefficient” in the linear demand function and

Σ̃t =

((
Xt 0
0 Xt

)⊤

Σ−1
t

(
Xt 0
0 Xt

))−1

is the empirical covariance matrix given Xt.

• Alg∗: Given Ht from a task with a pool of |Γ| environments {γ1, . . . , γ|Γ|}, the action
at is chosen by the posterior averaging defined in Algorithm 2. To compute the posterior
distribution, we follow the notations in ILSE and denote w = (w1, w2) as the stacked
vector of parameters, then the posterior distribution is

P(γi|Ht) =
exp(− 1

σ2

∑t−1
τ=1(oτ − w⊤

i zτ )
2)∑|Γ|

i′=1 exp(−
1
σ2

∑t−1
τ=1(oτ − w⊤

i′ zτ )
2)
,

where wi is the demand function parameter in environment γi and σ2 is the variance of the
noise (which equals to 0.2 in our experiments).
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E.3.4 NEWSVENDOR

All the benchmark algorithms presented below assume the demand model belongs to the linear
demand function family as defined in Appendix E.2 (which can be mis-specified when we deal with
newsvendor problems with two demand types).

• Empirical risk minimization (ERM) [7]: Since the optimal action a∗t is the 1
1+h quantile of

the random variable w⊤Xt + ϵt [18], ERM conducts a linear quantile regression based on
the observed contexts and demands {(Xτ , oτ )}t−1

τ=1 to predict the 1
1+h quantile on Xt.

• Feature-based adaptive inventory algorithm (FAI) [18]: FAI is an online gradient descent
style algorithm aiming to minimize the cost

∑T
t=1 h · (at − ot)

+ + l · (ot − at)
+ (we set

l = 1 in our experiments). Specifically, it chooses at = w̃⊤
t Xt, where

w̃t =

{
w̃t−1 − h√

t
· xt−1, if ot−1 < at−1,

w̃t−1 +
l√
t
· xt−1, otherwise,

is the online gradient descent step and w̃0 can be randomly sampled in [0, 1]d.

• Alg∗: Given Ht from a task with a pool of |Γ| environments {γ1, . . . , γ|Γ|}, the action
at is chosen by the posterior median as shown in Algorithm 2. To compute the posterior
distribution, we denote ϵ̄γ and βγ as the noise upper bound and demand function parameter
of γ at τ ≤ t − 1, and define the event Eγ,τ =

{
0 ≤ oτ − β⊤

γ Xτ ≤ ϵ̄
}

to indicate the
feasibility of environment γ from (Xτ , oτ ), and denote Ēγ,t =

⋂τ−1
τ=1 Eγ,τ to indicate the

feasibility at t. Then the posterior distribution of the underlying environment is

P(γi|Ht) =
1Ēγi,t

· ϵ̄1−t
γi∑|Γ|

i′=1 1Ēγ
i′ ,t

· ϵ̄1−t
γi′

.

E.4 DETAILS FOR FIGURES

E.4.1 DETAILS FOR FIGURE 2

Figure 2 (a). In Figure 2 (a), we independently implement Algorithm 1 to train two transformer
models on a dynamic pricing task, which has an infinite support of the prior environment distribution
Pγ and 6-dimensional contexts (more details can be found in Appendix E.2). For both models, the
training parameters are identical except for the M0 in Algorithm 1: the first curve (blue, thick
line) uses M0 = 50, while the second curve (orange, dashed line) uses M0 = 130, meaning no
transformer-generated data is utilized during training. All other parameters follow the configuration
detailed in Appendix E.1. The figure shows the mean testing regret at each training iteration across
128 randomly sampled environments, with the shaded area representing the standard deviation. We
further provide more results in Appendix C.1.2.

Figure 2 (b). In Figure 2 (b), we consider a dynamic pricing task with a pool of 8 linear demand
functions and has 6-dimensional contexts. We generate 30 sequences from TFθm across different
training iterations for this task: before using the transformer-generated data in the training (m =
40, 50) and after using such data (m = 70, 80, 110, 120). All generated sequences share the same
context sequence {Xt}Tt=1 to control the effect of contexts on the chosen actions and the resulting
observations. We stack the first 20 actions and observations into a single sample point and use t-
SNE method to visualize these high-dimension points as shown in Figure 2 (b). We further apply
the same method to generate points from Alg∗ to study the behavior of TF.

We can observe that: (i) compared to the points from TF which have not been trained on self-
generated data (i.e., TFθ40 ,TFθ50 ), the points from the trained ones are closer to the Alg∗’s, i.e.,
the expected decision rule of a well-trained TF; (ii) When being trained with more self-generated
data, the points from TFθm get closer to the Alg∗’s. These observations suggest that utilizing the
self-generated data (like in Algorithm 1) can help mitigate the OOD issue as discussed in Section 3:
the data from TFθm can get closer to the target samples from Alg∗ during the training and thus the
pre-training data is closer to the testing data.
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E.4.2 DETAILS FOR FIGURE 3.

For Figure 3, subfigure (a) is based on a dynamic pricing task with 6-dimensional contexts and (b)
is based on a newsvendor task with 4-dimensional contexts. Both tasks have a pool of 4 environ-
ments, i.e., the support of Pγ only contains 4 environments, with linear demand function type. Each
subfigure is based on a sampled environment with a sampled sequence of contexts {Xt}30t=1 from
the corresponding task. For each task, the data generation process follows the description detailed
in Appendix E.2, and the architecture of TFθ̂ and the definition of Alg∗ can be found in Appendix
E.1 and Appendix E.3 respectively. We further provide more results and discussions in Appendix
C.2.
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