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Abstract

We present GeoMorph, a geometric deep learning image registration framework that takes
two cortical surfaces on the spherical space and learns a smooth displacement field that
aligns the features on the moving surface to those on the target. GeoMorph starts with
feature extraction: independently extracting low-dimensional feature representations for
each input surface using graph convolutions. These learned features are then registered
in a deep-discrete manner by learning the optimal displacement for a set of control points
that optimizes the overlap between features across the two surfaces. To ensure a smooth
deformation, we propose a regularization network that considers the input sphere structure
based on a deep conditional random field (CRF), implemented using a recurrent neural
network (RNN). Results show that GeoMorph improves over existing deep learning meth-
ods by improving alignment whilst generating smoother and more biologically plausible
deformations. Performance is competitive with classical frameworks, generalizing well even
for subjects with atypical folding patterns.
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1. Introduction

Cortical surface registration is an essential step in neuroimaging research that allows the
comparison of common features of brain organization across subjects by mapping all data
to a global average space in which these features overlap. Such alignment is generally driven
using univariate summary measures of cortical folding, e.g., sulcal depth or average surface
curvature (Fischl, 2012; Yeo et al., 2009; Robinson et al., 2014); in some cases, alignment of
the cortical functional organization is also performed (Nenning et al., 2017; Robinson et al.,
2014, 2018).

Classical approaches to cortical registration typically work following the projection of the
cortical anatomy to a sphere; this simplifies the registration problem from one of matching
complex shapes in 3D to one of matching functions on a smooth 2D surface. Registration
is then performed by optimizing a similarity measure between the features on the target
sphere and those on the deformed source sphere while enforcing smoothness constraints.
Examples of such approaches include Freesurfer (Fischl et al., 1999), Spherical Demons
(SD) (Yeo et al., 2009), and Multimodal Surface Matching (MSM) (Robinson et al., 2014,
2018). Such methods are meant to optimize a cost function for each pair of input images
to improve feature overlap (hence, exhibit long execution times) while constraining the
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solution to be as smooth (or biologically plausible) as possible. However, they differ in
calculating similarity, imposing regularization and diffeomorphism1, and optimizing the
similarity cost. Discrete-based optimization registration methods (Robinson et al., 2014,
2018) have shown advantages in learning functional mappings and large deformations over
classical-based optimization methods. Note that while the existence of a diffeomorphism
has been considered a prerequisite for cortical surface registration, emerging evidence shows
that cortical topology can vary in a way that breaks this assumption (Glasser et al., 2016).

Recently, deep learning registration methods (Balakrishnan et al., 2019; Dalca et al.,
2019; De Vos et al., 2019; Heinrich, 2019; Pielawski et al., 2020; Shao et al., 2021) have
gained considerable interest on the grounds that they have faster execution times, are better
at learning the space of variation to tackle topographical variation, and are more efficient
in learning population-specific templates. Whilst originally developed for 2D Euclidean
domains, increasing efforts have been made to extend these methods to surfaces, including
S3Reg (Zhao et al., 2021), which learns displacements via the implementation of a spherical
U-net network (Zhao et al., 2019), which compares the overlap of moving and target features
at baseline, and seeks to enforce diffeomorphisms using the scaling and squaring approach
of (Dalca et al., 2019). A fundamental limitation of S3Reg is that the hexagonal filter
implemented in (Zhao et al., 2019) is not rotationally equivariant due to the lack of the
global spherical coordinate; hence, it flips directions at the poles and generates distortions.
S3Reg overcomes this by using a combination of three networks, each trained on a different
rotated version of the input. In contrast, DDR (Suliman et al., 2022) addresses the problem
of rotational equivariance by employing MoNet convolutions (Monti et al., 2017) (learned
from a mixture of Gaussian kernels) to learn deformations in spherical space. Recent work
(Fawaz et al., 2021) showed that MoNet convolutions could be trained to be rotationally
equivariant. Unlike S3Reg, which learns deformations in a continuous setting, DDR learns
deformations in a deep-discrete setting and is shown to improve alignment, especially in
brains with atypical topographies, and provide smoother deformations (Suliman et al.,
2022).

Contributions: Building on our recent work DDR (Suliman et al., 2022), we propose
GeoMorph, a geometric deep learning framework for cortical surface registration based on
MoNet that learns deformation in a discrete manner. GeoMorph is inspired by the deep-
discrete registration framework (Heinrich, 2019), which shows capability in learning larger
deformations than continuous-based ones. A key difference between DDR and GeoMorph
is that while the registration in DDR is derived directly using input features, GeoMorph
imposes a feature extraction network to learn a low-dimensional feature representation of
the input. We hypothesize that such a step will improve cortical alignment by allowing the
registration network to weight features based on their importance. This gains higher im-
portance in multi-modal registration, where individual channels’ contribution to the overall
alignment becomes challenging. Moreover, we propose a new geometric-based regulariza-
tion in GeoMorph that restricts the network to generate feasible deformation updates at
training time in a way that minimizes the local mesh distortion, a constraint that is not
present in DDR. We show that these contributions allow GeoMorph to surpass DDR in
registration alignment quality and distortion measures.

.1. A diffeomorphism is a globally one-to-one smooth and continuous mapping with derivatives that are
invertible (i.e., non-zero Jacobian determinant) (Ashburner, 2007).
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2. Method

Let M,F be the vertices of the triangular meshes on the moving and fixed images, respec-
tively, formed on a sphere S2 centred on the origin; each has Nd vertices, i.e., M,F ∈ RNd×3.
Our goal is to learn a spatial transformation Φ : M→ F in the form

Φ = Fη (M,F) (1)

that aligns the cortical features on M to those on F upon optimizing a dissimilarity metric
L between them2. Such a problem is a severely ill-posed problem that has many possible
solutions. Here, Φ shifts the vertices of M to a new location such that the features on the
newly deformed mesh overlap with those on F. The function Fη is obtained by a geometric
deep neural network, with η being a set of learnable parameters.

Let {ci}Nc
i=1 ∈ RNc×3 be a set of Nc control points on the moving sphere, generated from

the vertices of a low-resolution icosphere (withNc << Nd), and let {li}Nl
i=1 ∈ RNl×3 represent

a set of label points, defined around each control point ci, that represent all potential
endpoints of the transformation Fη(ci). In all instances, the target labels are derived
from the vertices of a higher-resolution icosphere (Fig. 2b). The objective of GeoMorph is,
therefore, to learn in one go the optimal label assignment for each ci, such that the features
on M and F are optimally aligned.

The general architecture of the GeoMorph network is shown in Fig. 1 with three parts:
1) feature extraction, which learns low-dimensional representations of the features on M
and F, 2) classifier network that estimates probabilities for each label assignment, i.e., Q =
Softmax (U) ∈ RNc×Nl ; 3) a CFR-RNN network which imposes smoothness by encouraging
neighboring control points to take similar/adjacent labels.

2.1. Surface Convolutions and Pooling

Geometric convolutions: Surface convolutions are implemented using MoNet-style Gaus-
sian mixture model convolutions (Monti et al., 2017). Let x be a vertex on a graph/surface
and y ∈ N (x) be the points on the neighborhood of x each associated with a d-dimensional
vector of pseudo-coordinates u (x, y). Then, MoNet convolutions are defined as

(f ? g) (x) =
J∑

j=1

gjDj (x) f, (2)

where f is the input feature, g is a learnable filter, J is the dimensionality of the extracted
patch, and D (x) f is a patch operator given by Dj (x) f =

∑
y∈N (x)wj (u (x, y)) f (y) , ∀j

which extracts the values of f from the surface and then maps it at the neighborhood of
x using learnable filter weights wj . The weights wj are formulated using the Gaussian

function, i.e., wj (u) = exp
(
−1

2

(
u− µj

)T
Σ−1

j

(
u− µj

))
, where Σj and µj are learnable

matrix and mean vector of the Gaussian kernel, respectively.
Icosphere resolutions: Starting from an icosphere of order 0, which has 20 faces, 30

edges, and 12 vertices, higher order resolutions can be generated by hierarchically adding a

.2. We assume that S2 is parametrized by different resolutions (orders) of regularly sampled icospheres.
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new vertex to the center of each edge in each triangle (see Fig. 2a). Let the number of the
vertices at the current resolution level be N , then, the next higher resolution level will have
(N × 4)− 6 vertices, while the previous lower resolution level will have (N + 6) /4 vertices.

Surface downsampling/upsampling: Based on the icosphere nature above, we define
the downsampling as the process of extracting only the vertices of the lower icosphere order.
For the upsampling, we add new vertices as the average of their direct neighbors (Fig. 2a).

Surface pooling: We define the pooling operation as the process of replacing the vertex
and its neighbors by the mean or the max of the accumulated features from all of them.
Hence, we obtain a downsampled icosphere N → (N + 6) /4 with new features.
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Figure 1: GeoMorph network architecture. The dimensions in red boxes shows the input
and the output dimensions at different network stages.
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Figure 2: a) Up and downsampling on icospheres. b) Example of a control point with its
labels on the surface. c) FCB architecture. d) ResNet architecture.
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2.2. Feature Extraction

The network takes the input features and the mesh topology in the form of vertex locations
and neighborhood structure N , where (i, j) ∈ N ⊂ {1, . . . , Nd}2 indicates that vertex i
is connected to j by a triangle edge. A series of feature convolutional blocks (FCBs) are
applied to learn a low-dimensional feature space. The features on M and F are learned
independently on separate paths, with only the weights of the last two FCBs being shared.

At each FCB stage i, the number of vertices Vi is related to the previous one through
Vi = (Vi−1 + 6) /4, with V1 = VM. A total of Ci features are learned at each stage i using
two MoNet convolutional filters with a kernel size of 3, spherical polar pseudo-coordinates,
and mean aggregation operators followed by a LeakyReLU activation with parameter 0.2.
The output features are then passed through a surface max pooling operator. To allow for
global feature incorporation, the max pooling output is concatenated with a downsampled
version of the LeakyReLU output. The result is then passed through a gate function G
with G = A for i = 1, . . . , 4 and G = B for i = 5 (see Fig. 2c).

2.3. Classifier Network

The learned features from the previous stage are concatenated and passed through a series
of five ResNet-inspired blocks, each learning C̄i features, with the last one learning Nl

features. The output of each network is first upsampled to the next icosphere order and
then passed to the next stage. At each block, we perform two surface convolutions followed
by a LeakyReLU activation with parameter 0.2 (see Fig. 2d). The output of the final ResNet,
which is of dimension Nd ×Nl, is downsampled to the desired control grid resolution, i.e.,
U ∈ RNc×Nl . The optimal label assignment is obtained as a softmax operation on U.
Finally, we deform ci using the spherical coordinates of the labels.

2.4. Regularization Network

As the resulting deformation does not incorporate any constraint, we introduce the CRF-
RNN network (Zheng et al., 2015) to impose smoothness upon forcing neighboring control
points to deform into adjacent/similar label points. Consider the energy cost function

E =
∑
i

Q(ci,li) +
∑
i 6=j

ϕ
(
lci , lcj

)
, (3)

where Q(ci,li) is the likelihood of deforming ci to li while ϕ
(
lci , lcj

)
= µ (li, lj)KG

(
lci , lcj

)
is the cost of deforming ci and cj to li and lj , respectively. Here, µ is a learnable label
compatibility function that captures correspondences between different pairs of label points,
while KG is a Gaussian kernel (Krähenbühl and Koltun, 2011; Zheng et al., 2015) of the
form

KG

(
lci , lcj

)
= ω (ci, cj) exp

(
− 1

2γ2

(
lci − lcj

)T
Λ
(
lci − lcj

))
. (4)

ω are learnable filter weights, γ is a kernel parameter, lci is the new spatial location of the
deformed ci, while Λ is a symmetric, positive-definite, kernel characterization matrix. The
function in (3) is optimized using the Recurrent Neural Network (RNN) implementation of
(Zheng et al., 2015), which is based on learning multiple iterations of a mean-field CRF.
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2.5. Optimization

The deformed control grid from the CRF-RNN network D̄ ∈ RNc×3 is upsampled to the
input level M̄ ∈ RNd×3 using bilinear interpolation. Then, we resample the moving image
features to M̄ using bilinear interpolation and compare with the fixed image features.

Loss functions: The network optimization is derived using an unsupervised loss func-
tion L in the form:

L = λsimLsim + λsmLsm + λarapLarap. (5)

The term Lsim measures the similarity between the features on F and those on M̄. We use
a measure that is a sum of the MSE and cross-correlation (CC), i.e.,

Lsim =
1

Nd

Nd∑
i=1

(∣∣∣∣Fvi − M̄vi

∣∣∣∣2
2
−
cov

(
Fvi , M̄vi

)
σFvi

σM̄vi

)
, (6)

where Fvi , M̄vi denote the corresponding features at vertex i, cov (·, ·) is the covariance op-
erator, and σ is the standard deviation. Lsm is introduced to provide user control over the
balance between accurate alignment and smooth deformation and is formulated as a diffu-
sion regularization penalty on the gradients of the Φ, i.e., Lsm = (|5Φx|+ |5Φy|+ |5Φz|),
where x,y, z refer to the cardinal directions. We apply the hexagonal filter in (Zhao et al.,
2019) to compute 5.

Finally, the as-rigid-as-possible loss Larap is introduced to regularize the trajectory of
deformations updates during training. Let D̄k and D̄k+1 be the outputs of the CRF-RNN
at time k and k+ 1, respectively, with d̄i,k being vertex i at time k. Larap locally preserves
the shape of the mesh as we go from D̄k to D̄k+1 by restricting the mesh to change as
rigidly as possible. To formulate Larap, we use the as rigid as possible measure (Sorkine and
Alexa, 2007) as

Larap

(
D̄k, D̄k+1

)
=

1

2
min

Ri∈SO(3)
i=1,...,Nc

∑
i,j∈N

∣∣∣∣Ri

(
d̄j,k − d̄i,k

)
−
(
d̄j,k+1 − d̄i,k+1

)∣∣∣∣2
2
. (7)

As equation (7) shows, Larap rotates d̄i,k to the corresponding d̄i,k+1 and then regularizes
the deviation from the local rigid transformation (Eisenberger et al., 2021). The rotation
matrices Ri can be computed in a closed form, as shown in (Sorkine and Alexa, 2007).

Coarse-to-fine-registration: As with surface registration methods, we perform multi-
stage registration in the form of coarse-to-fine using two networks. The first network is
trained to align features using a coarse grid of control points. The result is upsampled
to the next network level and passed to the second network that uses a higher resolution
control grid with higher label resolution.

3. Experiments Setup

We conduct a series of experiments to register multiple cortical surfaces to a global template.
Dataset: We use the adult Human Connectome Project (HCP) dataset (Glasser et al.,

2013), which consists of cortical surface metrics and meshes. Using barycentric interpola-
tion, we resample left cortical hemispheres to an icosphere of order 6. A total of 1110 cortical
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surfaces were used in the experiments with a split of 888-111-111 train-validation-test. To
simplify the problem, we drive registration using sulcal depth as the sole feature.

Training: The network is trained by optimizing (5) using ADAM (Kingma and Ba,
2014) with a learning rate of 2 × 10−4. MoNet filters are implemented using the PyTorch
Geometric library (Fey and Lenssen, 2019). During the coarse registration stage, we set the
control grid to be the vertices of an icosphere of order 2, i.e., Nc = 126, and we set Nl = 600
lying on an icosphere of order 5. At the fine stage, we raise the control grid icosphere
resolution to order 4, i.e., Nc = 2542, and we set Nl = 1000, increasing its resolution to
icosphere of order 8. The features of the FCB are set to be {Ci}5i=1 = {32, 32, 64, 64, 128},
during the coarse and the fine stages. For the ResNet, we use {C̄i}4i=1 = {256, 128, 64, 64}
during the coarse stage, and {C̄i}4i=1 = {256, 128, 128, 128} during the fine stage. Finally, we
set λsim = 1, λsm = 1.5, and λarap = 0.02 during the coarse stage, and λsim = 1, λsm = 0.5,
and λarap = 0.02 during the fine stage. The network is trained over 150 epochs (found to
be enough to reach convergence), and we report the performance with the best similarity
score on the validation set.

Benchmarks: We benchmark against SD, MSM, Freesurfer, and the learning-based
methods of S3Reg and DDR. We validate against the official implementations of SD3, MSM
Pair, MSM Strain4, S3Reg5, and DDR6. Parameters for all competing methods were op-
timised in (Suliman et al., 2022). Note that all these frameworks, except DDR, register
two surfaces at 4 levels of icosphere subdivisions (coarse to fine). DDR registration is done
using two icosphere levels.

Evaluation metrics: We evaluate our performance using CC between the features
on the deformed mesh and the fixed mesh, and the distortion measure, which signifies
how much individual triangles on the moving mesh are distorted during registration. We
measure the areal strain (J) and the shape strain (R). Here, J = λ1λ2 and R = λ1/λ2,
where λ1 and λ2 represent the eigenvalues of the local deformation gradient Fpqr estimated
from the deformation of each triangular face, defined by vertices: p, q, r. Note that log2 J
is equivalent to areal distortion, and log2R is equivalent to shape distortion.

4. Results

To provide a fair comparison between different methods, we fix the CC of all algorithms
by using the parameters that give the chosen CC level for each method and compare other
performance measures. From the various runs of the benchmark registration methods, we
found that all algorithms provide a CC of approximately 0.88; hence, we use it as our point
of reference. In Table. 1, we report the exact mean CC across all runs as well as the mean,
max, 95th, and 98th percentiles of the areal and the shape distortions for all algorithms.
The table shows that GeoMorph performs closely to SD, MSM Strain, and DDR, while
S3Reg and MSM Pair provide the worst performance. The result also shows improvements
in the performance of GeoMorph compared to DDR in all distortions measures. GeoMorph,
however, has a higher runtime than DDR. The time is measured on a PC with NVIDIA
Titan RTX 24GB GPU and Intel Core i9-9820X 3.30 GHz CPU.

.3. https://github.com/ThomasYeoLab/CBIG 4. https://github.com/ecr05/MSM HOCR
5. https://github.com/zhaofenqiang/SphericalUNetPackage
6. https://github.com/mohamedasuliman/DDR
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Table 1: Distortions measures and average runtime for different methods at CC ∼ 0.88.
Classical methods (top) and learning-based methods (bottom).

Methods
CC

Similarity
Areal Distortion Shape Distortion Avg. Time

Mean Max 95% 98% Mean Max 95% 98% CPU GPU

Freesurfer 0.75 0.34 11.73 0.82 1.00 0.63 6.77 1.29 1.54 30 min -
MSM Pair 0.877 0.41 9.17 1.24 1.76 0.62 9.05 1.61 2.16 13 min -

MSM Strain 0.880 0.27 1.06 0.53 0.66 0.64 1.93 1.17 1.30 1 hour -
SD 0.875 0.18 2.00 0.50 0.65 0.24 1.98 0.50 0.65 1 min -

S3Reg 0.875 0.26 22.22 0.82 1.16 0.51 21.65 1.35 2.0 8.8 sec 8.0 sec
DDR 0.875 0.19 2.66 0.53 0.71 0.26 3.14 0.66 0.86 7.7 sec 2.3 sec

GeoMorph 0.875 0.19 2.21 0.52 0.65 0.26 2.30 0.62 0.78 18 sec 3.2 sec

In Fig. 3, we plot the full histogram of the areal and the shape distortions for all test
subjects. Based on Fig. 3a, we observe that most of the areal distortions of SD, GeoMorph,
and DDR are around zero, with GeoMorph having more distortions close to zero than DDR.
MSM Pair, S3Reg, and Freesurfer (with a lower degree) all have extreme distortions across
subjects, as presented by long tails. The same trend appears in Fig. 3b, where we see that
most SD, GeoMorph, and DDR shape distortions centered around one, with other methods
having extreme distortions.

(a) Areal Distortion. (b) Shape Distortion.

Figure 3: Histogram plots comparing areal and shape distortions across all test subjects.

In Fig. 4, we evaluate the methods’ alignments quality on a subject with atypical cortical
folding patterns and also provide the areal and the shape distortions of the methods. Fig. 4
shows that GeoMorph, DDR, SD, and MSM Strain all provide good alignment with minimal
distortions. In contrast, the alignments by MSM Pair and S3Reg are highly distorted.

In Fig. 5, we provide a close comparison between GeoMorph, DDR, SD, and MSM Strain
for the results in Fig. 4 by dropping the threshold to a smaller value. The figure clearly
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(a) Alignment Quality.

(b) Areal Distortion. (c) Shape Distortion.

Figure 4: a) Methods performance on a subject with atypical cortical folding patterns. b)
Associated areal distortions. c) Associated shape distortions.

shows the improvement in distortion in GeoMorph over DDR in both measures. Fig. 5 also
indicates that in terms of areal distortion, GeoMorph has more distortions close to zero
with more positive and less negative distortions than MSM Strain. GeoMorph also has an
overall better shape distortion than MSM Strain.

Finally, we provide in Table. 2 the dice overlap of all methods computed as average
overall test subjects along with the 98% of the areal distortions all at CC ∼ 0.88. Each
test subject’s sulcal depth map is binarized with sulci set to 1 and everything else set to
0. Table. 2 shows that in terms of dice overlap and distortion, GeoMorph performance is
comparable with SD and MSM Strain and is better than all other methods. MSM Pair,
which has a slightly better dice overlap than GeoMorph, exhibits an approximately 3 times
worse distortion.

Table 2: Dice overlap and the 98% of areal distortions for different methods at CC ∼ 0.88.

Freesurfer MSM Pair MSM Strain SD S3Reg DDR GeoMorph

Dice 0.779 0.857 0.856 0.849 0.849 0.848 0.848
Dist 98% 1.00 1.76 0.66 0.65 1.16 0.71 0.65
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(a) Areal Distortion.

(b) Shape Distortion.

Figure 5: Close performance comparison between distortions in Fig. 4.

5. Conclusions

In this work, we developed a geometric deep learning image registration framework (Ge-
oMorph), based on the deep-discrete registration methods, that extracts low dimensional
feature representations on the input features and then learns deformations as a multi-label
classification problem, conditioned by a CRF to prevent neighboring points from deforming
in entirely different directions. Moreover, we propose applying a geometric-based regular-
ization penalty during training time to minimize mesh distortions. Results show that dis-
tortions obtained through GeoMorph outperform other deep-learning-based methods and
are very close to those obtained by classical-based methods. The structure of GeoMorph is
expected to allow for more efficient handling of multi-modal alignment, which will be the
future focus of this work.
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