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Abstract

Query augmentation is a crucial technique for001
refining semantically imprecise queries. Tradi-002
tionally, query augmentation relies on extract-003
ing information from initially retrieved, poten-004
tially relevant documents. If the quality of005
the initially retrieved documents is low, then006
the effectiveness of query augmentation would007
be limited as well. We propose Brain-Aug,008
which enhances a query by incorporating se-009
mantic information decoded from brain signals.010
Brain-Aug generates the continuation of the011
original query with a prompt constructed with012
brain signal information and a ranking-oriented013
inference approach. Experimental results on014
fMRI (functional magnetic resonance imaging)015
datasets show that Brain-Aug produces seman-016
tically more accurate queries, leading to im-017
proved document ranking performance. Such018
improvement brought by brain signals is partic-019
ularly notable for ambiguous queries.020

1 Introduction021

Understanding users’ intentions is the key to the022

effectiveness of search engines. However, search023

engine users often struggle to precisely express024

their information needs, resulting in queries that025

are short (Kacprzak et al., 2017), vague (Yano et al.,026

2016; Cronen-Townsend et al., 2002), or inaccu-027

rately phrased, which compromise the retrieval ef-028

fectiveness. To address this problem, query aug-029

mentation emerges as a crucial technique to re-030

fine the original queries into more effective ex-031

pressions (Lavrenko and Croft, 2017; Mei et al.,032

2008). Traditionally, this reformulation process033

relies heavily on external document information034

such as expanding the query with contents from035

documents users have engaged with (Chen et al.,036

2021; Ahmad et al., 2019; Pereira et al., 2020).037

The advent of neurophysiological interfaces of-038

fers a novel source of data to understand users’039

search intentions (Ye et al., 2022b; Michalkova040

et al., 2024). In information retrieval (IR) scenarios, 041

several studies have revealed that brain signals can 042

be used to predict users’ relevance perception (Ye 043

et al., 2022c; Eugster et al., 2014; Pinkosova et al., 044

2020) and cognitive state (Moshfeghi et al., 2016). 045

These advances open new avenues in using brain 046

signals as an alternative to conventional signals 047

for query augmentation. Existing studies have in- 048

vestigated the use of brain signals to predict the 049

relevance of perceived input (Eugster et al., 2016), 050

which can be further used to extract relevant con- 051

tent for query augmentation (Ye et al., 2022a, 2024). 052

The current process of query augmentation still re- 053

lies on the quality of initially retrieved documents 054

and cannot kick off before potentially unsatisfac- 055

tory user interactions with those documents. 056

In this paper, we propose query augmentation 057

with brain signals (Brain-Aug), which directly re- 058

fines queries submitted by users through decoding 059

semantics from their brain signals. With the help 060

of computational language models, Brain-Aug pro- 061

poses two techniques to effectively refine queries: 062

(i) Prompt construction with brain signals: Brain 063

signals corresponding to the query context are de- 064

coded into the language model’s latent space to 065

construct prompts accordingly; (ii) Training based 066

on next token prediction and ranking-oriented in- 067

ference: We teach the model to predict tokens in 068

relevant documents as query continuation during 069

training. Ranking-oriented features, i.e., inverse 070

document frequency (IDF), are incorporated to gen- 071

erate effective query continuation that can distin- 072

guish different documents during inference. 073

We conduct experiments on three functional 074

magnetic resonance imaging (fMRI) datasets. Re- 075

sults show that Brain-Aug can accurately gener- 076

ate query continuations for its augmentation and 077

improve the ranking performance. Further inves- 078

tigation delves into different types of queries and 079

shows that brain signals are particularly useful in 080

enhancing the performance of ambiguous queries. 081
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Figure 1: The procedure of query augmentation by decoding semantics from brain signals (Brain-Aug).

2 Related Work082

Query augmentation. Traditionally, query aug-083

mentation can be categorized into two types:084

based on pseudo-relevance signals (Bi et al., 2019;085

Lavrenko and Croft, 2017) and based on user sig-086

nals (Li et al., 2020). Approaches based on pseudo-087

relevance signals usually treat top-ranked docu-088

ments in the initial retrieval step as relevant. Based089

on these relevant documents, Rocchio Jr (1971)090

and Lavrenko and Croft (2017) adopt a vector091

space model and a language model for refining the092

query representation to be closer to the top-ranked093

documents, respectively. In contrast, approaches094

based on user signals usually integrate information095

from documents the user has previously interacted096

with or queries they submitted historically. E.g.,097

Chen et al. (2021) and Ahmad et al. (2019) build098

a sequence model to extract semantic representa-099

tions from historical clicked documents to refine100

the query representation. Existing methods, either101

based on pseudo signals or user signals, are limited102

by their reliance on the quality of the documents103

and the accuracy of estimating their relevance.104

Neuroscience & IR. There is increasing literature105

that adopts neuroscientific methods into IR sce-106

narios (Chen et al., 2022; Gwizdka et al., 2017;107

Mostafa and Gwizdka, 2016). For example, Chen108

et al. (2022) built a prototype in which users109

can interact with the search systems with a brain-110

computer interface. Allegretti et al. (2015); Mosh-111

feghi et al. (2016); Michalkova et al. (2024) con-112

ducts a series of work to study the cognitive mech-113

anisms involved in the process of information re-114

trieval. A common finding observed by existing115

literature is that(Allegretti et al., 2015; Eugster116

et al., 2014) brain signals can be utilized to as117

a relevance indicator. This indicator can be em-118

ployed for query rewriting (Ye et al., 2022a; Eu-119

gster et al., 2016). Although this paradigm has120

been shown to be effective, it still relies on the121

quality of the retrieved documents. On the other 122

hand, other studies have demonstrated that seman- 123

tics could be decoded to some extent with brain 124

signals (Wang and Ji, 2022) such as fMRI (Xi 125

et al., 2023; Ye et al., 2023; Zou et al., 2021) and 126

magnetoencephalogram (MEG) (Défossez et al., 127

2023). However, there is currently a lack of re- 128

search investigating the utilization of the decoded 129

semantics for query augmentation. 130

3 Method 131

We first formalize the query augmentation task and 132

then present Brain-Aug. 133

3.1 Task formalization 134

The input to the task of augmenting queries with 135

brain signals is a query submitted by a user plus 136

the brain signals associated with the query con- 137

text. We use Q to denote the query that is com- 138

posed of n tokens, Q = {q1, q2, . . . , qn}. We use 139

B = {b1, . . . , bt} ∈ Rt×c to represent the brain 140

signal, which is a sequence of features extracted 141

from fMRI data, where c is the number of fMRI 142

features and t is the number of time frames in which 143

brain recordings are collected. 144

Given the input query and brain signals, the task 145

is to learn an autoregressive function F to refine 146

the query based on the user’s cognitive process. F 147

generates a query continuation M = {m1, ...,mk}, 148

which will be concatenated to the initial query Q 149

as the augmentated query. Let mi be the i-th token 150

in M , the generation process is formalized as: 151

mi = F ({q1, . . . , qn,m1, . . . ,mi−1}, B; Θ), (1) 152

where Θ is the model parameters of F . 153

The effectiveness of query augmentation is mea- 154

sured extrinsically using the document ranking per- 155

formance. Formally, let D be a document corpus 156

and G be a ranking model (e.g., BM25 (Robert- 157

son et al., 2009), RepLLaMA (Ma et al., 2023)). 158

The ranking model G estimates a ranking score 159

G({Q,M}, d) for each document d ∈ D and the 160
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document ranking performance can be measured161

by a ranking-based metric such as normalized dis-162

counted cumulative gain (NDCG) (Järvelin and163

Kekäläinen, 2002) or mean average precision164

(MAP) (Järvelin and Kekäläinen, 2017).165

3.2 Overall procedure166

Fig. 1 provides an overview of the four-stage pro-167

cess of Brain-Aug: S1 : Input to Brain-Aug con-168

sists of the original query and brain signals associ-169

ated with the user’s cognitive response within the170

query context. S2 : Then a brain decoder is trained171

to align the representations of brain signals with172

the representation space of text embedding in the173

language model. This allows for creating a unified174

prompt representation that jointly models the brain175

responses and original queries. S3 : A language176

model is adopted to generate the continuation of177

the original query by using a unified prompt rep-178

resentation. A ranking-oriented inference method179

is utilized to enhance the generation process to180

improve the ranking performance. S4 : In this181

case, the original query “Raspberry” (sampled from182

Pereira’s dataset in our experiment) is augmented183

to “Raspberry is eaten fresh or cooked”. Conse-184

quently, documents with a focus on the subtopic of185

“eating raspberry” are ranked higher than those on186

“raspberry’s nutrition” or “raspberry Pi”.187

3.3 Prompt construction188

Motivated by existing literature that combines mul-189

timodal information as prompt (Ye et al., 2023; Liu190

et al., 2023a), the prompt for Brain-Aug is con-191

structed by integrating the textual query with cog-192

nitive information derived from brain signals. First,193

the query’s text Q is directly fed to the language194

model’s embedding layer fq to transform the tokens195

into latent vectors V Q = {vq1, . . . , v
q
i , . . . , v

q
n} ∈196

Rn×d, where n is the number of tokens, d is the197

embedding size of the language model.198

Second, a brain decoder fb is devised to em-199

bed each brain representation bi ∈ B into the200

same latent space Rd, which can be formulated201

as vBi = fb(bi). Based on preliminary empiri-202

cal comparisons of transformers (Vaswani et al.,203

2017), linear layer, multilayer perceptron (MLP),204

and recurrent neural network (RNN), we decide205

to construct the brain decoder as a deep neu-206

ral network fb comprises (i) a MLP network207

fm with ReLU (Fukushima, 1980) as the acti-208

vation function, and (ii) a position embedding209

P = {p1, . . . , pt} ∈ Rt×c. The position em-210

bedding is initialized using a uniform distribution. 211

Element-wise addition is applied where each po- 212

sition embedding pi ∈ P is added to its corre- 213

sponding fMRI features bi ∈ B. The multi-layer 214

perceptron network fm is constructed with an input 215

layer and two hidden layers that have the same di- 216

mensionality c as the input fMRI features, as well 217

as the output layer with the dimensionality of d. 218

In summary, the fMRI features corresponding to 219

the i-th time frame, i.e., bi, are fed into the brain 220

decoder fb, which can be expressed as: 221

vBi = fb(bi) = fmlp(pi + bi). (2) 222

Finally, the brain embedding V B and the query 223

embedding V Q are concatenated with embeddings 224

of two special tokens, i.e., ⟨b⟩ and ⟨/b⟩, marking 225

the beginning and end of the brain embedding, re- 226

spectively. The two special tokens are randomly 227

initialized as one-dimensional vectors aligned with 228

the dimensional structure of token embeddings in 229

the language model. As a result, the prompt se- 230

quence S can be represented as: 231

S = {⟨b⟩, vB1 , . . . , vBt , ⟨/b⟩, vW1 , . . . , vWn }. (3) 232

This sequence, integrating both brain information 233

and textual data, can be input to the language model 234

for generating the query continuation. 235

Prior to the main training task detailed in Sec- 236

tion 3.4, a warmup step (Huang et al., 2023) is 237

adopted to align the distribution of the brain em- 238

bedding with that of the text token’s embeddings, 239

ensuring that the brain embedding is primed for 240

integration with the text prompt embedding. To 241

streamline the process and enable training in an 242

unsupervised manner, each vBi ∈ V B is mapped to 243

the mean value of the corresponding query embed- 244

dings, i.e., 1
n

∑n
j=1 v

Q
j . Mean square loss (MSE) 245

loss is adopted for the warmup process: 246

LMSE = 1
t

∑t
i=1

(
vBi − 1

n

∑n
j=1 v

Q
j

)2
. (4) 247

3.4 Training objective 248

Given the unified prompt S, the training task is 249

selected as the next token prediction task which 250

predicts the continuation of S. The prompt se- 251

quence S is fed into a language model, e.g., the 252

7B version of LLaMA (Touvron et al., 2023) in 253

our implementation. The language model then es- 254

timates the likelihood of the ground truth contin- 255

uation M∗ = {m∗
1, . . . ,m

∗
k} by using an autore- 256

gressive function PLM(m∗
i | {m∗

1, . . . ,m
∗
i−1}, S) 257

over the sequence S. The training objective is to 258

maximize the likelihood of generating the ground 259
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truth continuation:260

max
Θ

=

k∑
i=1

log(PLM(m∗
i |{m∗

1, . . . ,m
∗
i−1}, S; Θ)), (5)261

where Θ = {ΘLM ,Θfb ,Θsp} is the model parame-262

ters, ΘLLM , Θfb , and Θsp are the parameters of the263

language model, the brain decoder, and the special264

tokens ⟨b⟩ and ⟨/b⟩, respectively.265

Here, we propose to set the ground-truth label of266

the continuation as the content from the labeled rel-267

evant documents (see Section 4 for details). First,268

when a document is relevant, it must contain im-269

portant information and tokens that can potentially270

be decoded from the brain signals (Pereira et al.,271

2018). Second, teaching models to expand queries272

with terms in potentially relevant documents could273

improve the performance of downstream retrieval274

models (Robertson et al., 2009). The training pro-275

cess follows the “prompt tuning” approach (Liu276

et al., 2023b) by keeping the parameters of the277

language model unchanged and fine-tuning only278

the prompt representation, i.e., Θfb , and Θsp. In279

this way, we can train Brain-Aug efficiently with280

limited training data.281

3.5 Ranking-oriented inference282

During the inference stage, the generated continu-283

ations should also be able to distinguish between284

different documents. Therefore, we incorporate the285

IDF information (Robertson, 2004) of each token286

in the vocabulary when generating query continua-287

tion M̂ = {m̂1, . . . , m̂k}. Let IDF(m̂) be the IDF288

of token m̂, then the generation likelihood of each289

token in m̂i ∈ M̂ during the inference stage can be290

estimated as:291

Pinf(m̂i)=
PLM(m̂i)+α IDF(m̂i)∑

m∈Vocab(PLM(m)+α IDF(m))
, (6)292

where PLM (m) = PLM (m | {m̂1, . . . , m̂i−1}, S; Θ)293

represents the estimated likelihood of the next294

token m given the previously generated tokens295

{m̂1, . . . , m̂i−1}, α is a hyperparameter, Vocab296

indicates the language model’s vocabulary. This297

approach ensures that the query’s continuation is298

not only contextually relevant but also effective in299

distinguishing documents in the retrieval process.300

4 Experimental Setup301

Next, we detail our experimental settings, which302

are designed to address three research questions:303

(RQ1) Is it possible to generate an augmented304

query with user’s brain signals? (RQ2) Can we305

improve document ranking performance using the306

augmented query? (RQ3) How do brain signals307

improve different queries for document ranking? 308

Together, these questions help us to understand the 309

effectiveness of Brain-Aug to refine a query and 310

improve ranking performance. Below, we describe 311

the datasets and baselines. More implementation 312

details are provided in Section A.4. 313

4.1 Datasets 314

Three publicly available fMRI datasets are adopted, 315

namely Pereira’s dataset (Pereira et al., 2018), 316

Huth’s dataset (LeBel et al., 2023), and the Nar- 317

ratives dataset (Nastase et al., 2021). We process 318

the text stimuli in these datasets to transform them 319

into ranking datasets consists of a document corpus 320

and a set of queries. The dataset information is 321

provided in Section A.1. 322

4.2 Data processing 323

Due to the lack of clear definitions for query and 324

document parts in those existing fMRI datasets, 325

we use the inverse cloze test (ICT) setting (Izac- 326

ard et al., 2021; Lee et al., 2019) to test the 327

query augmentation performance. The ICT set- 328

ting selects a text span in the document as a 329

pseudo query and the corresponding document 330

is treated as relevant for this query. Formally, 331

for a document D = {w1, . . . , wm}, ICT ex- 332

tracts a span Q = {wl, wl+1, . . . , wr} to form a 333

relevant query-document pair {Q,D\Q}, where 334

D\Q = {w1, . . . , wl−1, wr+1, . . . , wm}. 335

In Pereira’s dataset, each document consists of 336

3-4 sentences, which are presented to the user as 337

visual stimuli one by one. Due to the length of 338

a sentence being too long as a query, we truncate 339

the first one-third and two-thirds of the sentence to 340

construct two queries for each sentence, resulting 341

in 6-8 relevant query-document pair for each docu- 342

ment. In Huth’s and Narratives datasets, continuous 343

contents are presented to the user as auditory stim- 344

uli. We utilize a fixed time interval of 20 seconds, 345

which corresponds to 10 fMRI scans, to segment 346

the stimuli into documents. Then, smaller time 347

intervals of 2, 4, and 6 seconds are employed to 348

segment queries of varying lengths from the docu- 349

ment. We provide more details and statistical data 350

for the document corpus and queries constructed in 351

each dataset in Section A.2. 352

Due to the variability in brain data across par- 353

ticipants, we trained separate models for each par- 354

ticipant and evaluated Brain-Aug using a five-fold 355

cross-validation on each participant’s data. The 356

data samples are randomly split into five folds ac- 357
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cording to which document they belong to. Each358

fold of the cross-validation involves selecting one359

fold of the data as the test set, while the remaining360

four folds are split into training and validation sets.361

The sizes of the training, validation, and testing sets362

were roughly proportional to 3:1:1, respectively.363

4.3 Training and evaluation setup364

We train Brain-Aug with a next token prediction365

task. A data sample during this task consists of366

the query, its ground truth continuation, and corre-367

sponding brain signals. The ground truth contin-368

uation is selected as the textual content presented369

within a fixed period of time after the query (see370

Section A.2 for details). Taking into account the de-371

layed effect of fMRI signals(Mitchell et al., 2008),372

we collect user’s brain signals in a period of several373

seconds after the user perceives the textual content374

of the query. During this period, the user’s brain375

representation has the potential to encode semantic376

information related to the query itself, as well as377

its continuation.378

We first conduct query generation analysis to in-379

vestigate the ability of Brain-Aug to generate query380

continuation that matches the ground truth label.381

The logarithm perplexity (Meister and Cotterell,382

2021) is used to measure the likelihood of gener-383

ating the ground truth continuation. The lower384

perplexity indicates the language model deems385

the ground truth continuation as more expected.386

We also investigate language similarity to demon-387

strate the extent to which the generated continua-388

tion is similar to the ground truth using the Rouge389

score (Lin, 2004).390

Next, we augment the original query with its gen-391

erated continuation and evaluate its performance in392

terms of document ranking. We employ document393

ranking metrics, including NDCG at different cut-394

offs (10 and 20) (Järvelin and Kekäläinen, 2002),395

Recall@20, and MAP (Järvelin and Kekäläinen,396

2017).397

4.4 Baselines and controls398

Given the augmented query, we select two ranking399

models for document ranking, i.e., a sparse rank-400

ing model, BM25 (Robertson et al., 2009), and401

a dense ranking model, RepLLaMA (Ma et al.,402

2023). To assess whether Brain-Aug helps docu-403

ment ranking, we compare its document ranking404

performance with several baselines and controls.405

As baselines we select (i) the original query,406

and (ii) the query augmented with pseudo-407

relevance signals (denoted as Unsup-Aug). When 408

using BM25 as the ranking model, we implemented 409

RM3 (Lavrenko and Croft, 2017) as Unsup-Aug, 410

which expands the query by selecting relevant 411

terms from the top-ranked documents in the initial 412

retrieval. When using RepLLaMA as the ranking 413

model, we implement Rocchio (Bi et al., 2019) 414

as Unsup-Aug, which refines the query vector to 415

be closer to the top-ranked documents. (iii) We 416

also reported the additional results by first using 417

Brain-Aug, followed by Unsup-Aug, denoted as 418

Brain+Unsup. 419

As controls we select variants or ablations of 420

Brain-Aug. The first control is Brain-Aug without 421

any brain input (denoted as w/o Brain), and thus 422

the query continuation is generated solely depend- 423

ing on the original query and the language model. 424

The second control is Brain-Aug with randomly 425

sampled brain input (denoted as RS Brain). RS 426

Brain involves sampling brain input that does not 427

correspond to the query but is randomly selected 428

from the same dataset. The last control is Brain- 429

Aug without ranking-oriented generation in which 430

the generation likelihood of each token is estimated 431

without the IDF weight (denoted as w/o IDF). 432

5 Experiments and Results 433

We first analyze the performance of the generated 434

query continuation by comparing it with the ground 435

truth label. Then we investigate the document rank- 436

ing performance with Brain-Aug and examine the 437

relationship between query features and their rank- 438

ing performance. 439

5.1 Query generation analysis 440

The query generation analysis results are presented 441

in Table 1. From Table 1, we have the following 442

observations. 443

(1) Brain-Aug exhibits lower perplexity and 444

higher Rouge-L than its ablations without brain 445

input (w/o Brain) and randomly sampled brain sig- 446

nals as input (RS Brain). This indicates that the 447

semantic information decoded from brain signals 448

can be integrated with a query to construct a more 449

effective prompt for generating query continuation. 450

(2) The overall perplexity and Rouge-L on the 451

Pereira dataset are lower and higher than on the 452

other two datasets, respectively. This implies that 453

the Pereira dataset, derived from Wikipedia data, 454

exhibits superior performance in the task of query 455

generation compared to the other two datasets, 456
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Dataset Query log(PPL)(↓) Rouge-L(↑)

Pereira’s
w/o Brain 2.219∗ 0.213∗

RS Brain 1.967∗ 0.267∗

Brain-Aug 1.946 0.272

Huth’s
w/o Brain 3.573∗ 0.148∗

RS Brain 3.111∗ 0.159∗

Brain-Aug 2.997 0.167

Narratives
w/o Brain 4.328∗ 0.083∗

RS Brain 3.532∗ 0.105∗

Brain-Aug 3.471 0.109

Table 1: Query generation performance averaged across
participants in different datasets. Best results in bold-
face. * indicates p ≤ 0.05 for the paired t-test of Brain-
Aug (Ours) and the controls. PPL indicates perplexity.

which are based on spoken stories.457

(3) The RS Brain outperforms w/o Brain across458

three datasets. Although RS Brain uses brain sig-459

nals that do not correspond to the current query460

context, the unified prompt can enable generating461

content that aligns with the common data distribu-462

tion of language usage in the dataset (e.g., all stim-463

uli in Pereira’s dataset are Wikipedia-style). On464

other other hand, w/o Brain is equivalent to a stan-465

dard language model that generates continuations466

soly based on the query text. This difference ex-467

plains RS Brain’s superior performance compared468

to the w/o Brain. However, in the discussion in469

Section 5.2, we will show that this performance im-470

provement in query generation does not necessarily471

lead to an improvement in document ranking.472

Answer to RQ1. The results show that queries aug-473

mented with semantics decoded from brain signals474

are more aligned with the content of the relevant475

document with the help of brain signals.476

5.2 Document ranking performance477

Overall performance. Table 2 shows the478

document ranking performance with original479

queries, queries augmented with unsupervised sig-480

nals (Unsup-Aug), and queries augmented with481

brain signals (Brain-Aug). We observe:482

(1) Regardless of whether BM25 or RepLLaMa483

is used as the ranking model, Brain-Aug substan-484

tially outperforms the original query and Unsup-485

Aug. The only exception is observed when using486

RepLLaMa and metric MAP on Pereira’s dataset.487

A possible explanation for this exception is the Rep-488

LLaMA’s high performance on the Pereira dataset,489

which we discuss in observation (3).490

(2) When considering various datasets and met-491

rics, the Unsup-Aug query does not consistently492

outperform the original query. Significant differ-493

ences between the performance achieved by the 494

Unsup-Aug query and the original query emerge 495

on the metric of Recall@20 when using BM25 496

as the ranking model. This observation suggests 497

that Unsup-Aug, which improves query representa- 498

tion by tackling term mismatch issues, leads to an 499

improvement in recall. When Brain-Aug is com- 500

bined with Unsup-Aug (Brain+Unsup), we observe 501

a performance gain when compared to Unsup-Aug. 502

This highlights the effectiveness of brain signals in 503

query augmentation and underscores the potential 504

of combining them with traditional signals. 505

(3) We observe little difference in performance 506

between RepLLaMa and BM25 on Huth’s dataset 507

and Narratives’s dataset. This implies that in a 508

zero-shot setting and cross-domain scenario (the 509

datasets are derived from spoken stories, which dif- 510

fers from the training data of RepLLaMa), dense 511

retrieval models like RepLLaMa are not necessar- 512

ily better than traditional sparse retrieval models 513

like BM25. This phenomenon is also observed in 514

the BEIR dataset (Thakur et al., 2021). However, 515

in Pereira’s dataset, RepLLaMa shows significant 516

improvement over BM25 with different query in- 517

puts. The impressive performance of RepLLaMa 518

on Pereira’s dataset can likely be attributed to the 519

fact that the data in Pereira are likely to be used in 520

the original construction of RepLLaMa. 521

Decomposing Brain-Aug. Next, we investigate 522

the contribution of brain signals and the ranking- 523

oriented inference approach to Brain-Aug. Experi- 524

mental results are presented in Table 3. First, we 525

observe that removing (w/o Brain) or random sam- 526

pling the brain inputs (RS Brain) leads to a decrease 527

in performance. This indicates that semantic infor- 528

mation decoded from brain signals within the query 529

context enhances the query. Furthermore, while RS 530

Brain consistently outperforms w/o Brain approach 531

in terms of generation perplexity (see Section 5.1), 532

it struggles to achieve better document ranking per- 533

formance on the Huth’s and Narratives datasets. 534

This can be attributed to the fact that RS Brain, 535

despite generating content that closely matches the 536

token distribution of the whole dataset and reducing 537

perplexity, fails to effectively differentiate between 538

different documents within the dataset without se- 539

mantics related to the query context. Last, we also 540

observe a significant performance improvement 541

when comparing Brain-Aug against its ablation 542

without ranking-orient generation (w/o IDF). This 543

suggests the importance of generating content that 544

can be used to differentiate between documents. 545
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Dataset Query BM25 RepLLaMA

N@10 N@20 R@20 MAP N@10 N@20 R@20 MAP

Pereira’s

original 0.643∗,† 0.664∗,† 0.888∗,† 0.594∗,† 0.878 0.881∗,† 0.964∗,† 0.858
Unsup-Aug 0.646∗,† 0.655∗,† 0.924∗,† 0.590∗,† 0.872∗,† 0.877∗,† 0.951∗,† 0.855
Brain-Aug 0.671 0.691 0.941 0.618 0.883 0.887 0.980 0.859
Brain+Unsup 0.673 0.686 0.936 0.615 0.878 0.882 0.975 0.853

Huth’s

original 0.297∗,† 0.326∗,† 0.536∗,† 0.264∗,† 0.299∗,† 0.328∗,† 0.520∗,† 0.275∗,†

Unsup-Aug 0.291∗,† 0.320∗,† 0.575† 0.259∗,† 0.302∗,† 0.333∗,† 0.537∗,† 0.276∗,†

Brain-Aug 0.306 0.340 0.569† 0.273 0.310 0.342 0.550 0.281
Brain+Unsup 0.309 0.342 0.580 0.269 0.308 0.340 0.552 0.279

Narratives

original 0.419∗,† 0.434∗,† 0.629∗,† 0.355∗,† 0.413∗,† 0.426∗,† 0.611∗,† 0.351∗,†

Unsup-Aug 0.440 0.452† 0.670† 0.367∗,† 0.416∗,† 0.431∗,† 0.629∗,† 0.356∗,†

Brain-Aug 0.441 0.458 0.669 0.382 0.430 0.446 0.641 0.382
Brain+Unsup 0.445 0.462 0.678 0.382 0.432 0.446 0.642 0.380

Table 2: Document ranking performance averaged across participants. Best results in boldface. ∗/† indicates
Brain-Aug / Brain+Unsup significantly outperforms the baseline (p ≤ 0.05, paired t-test), respectively.

Dataset Query NDCG@20 MAP

Pereira’s

w/o Brain 0.665∗ 0.586∗

RS Brain 0.678∗ 0.604∗

w/o IDF 0.684∗ 0.609∗

Brain-Aug 0.691 0.618

Huth’s

w/o Brain 0.332∗ 0.265∗

RS Brain 0.321∗ 0.256∗

w/o IDF 0.332∗ 0.266∗

Brain-Aug 0.340 0.273

Narratives

w/o Brain 0.452∗ 0.368∗

RS Brain 0.448∗ 0.367∗

w/o IDF 0.450∗ 0.373∗

Brain-Aug 0.458 0.382

Table 3: Document ranking performance of Brain-
Aug (ours) and its controls with ranking model BM25.
Best results in boldface. * indicates p ≤ 0.05 for the
paired t-test of Brain-Aug and the baseline.

Relationship between document ranking and546

query generation performance. Fig. 2 illustrates547

the relationship between the document ranking per-548

formance of Brain-Aug and RS Brain and the per-549

plexity of query continuation measured using RS550

Brain. The lower perplexity of query generation in-551

dicates a higher likelihood of generating more accu-552

rate query continuation. This higher likelihood, as553

shown in Fig. 2a, further leads to an increase in doc-554

ument ranking performance. Conversely, Fig. 2b555

shows a different trend: when the perplexity is556

higher, the performance gain of Brain-Aug with557

its ablation RS Brain is higher. This implies that558

when generating accurate query continuations is559

difficult, semantics decoded from the query con-560

text with brain signals is more beneficial. This561

observation is consistent with findings by Ye et al.562

(2023) that the addition of brain signals lead to a563

more substantial performance improvement when564

generating continuations with higher uncertainty .565

Example cases. Table 4 presents example cases566

(a) Brain-Aug vs. original (b) Brain-Aug vs. RS B

Figure 2: Relationship between document ranking per-
formance and perplexity of ground-truth query continua-
tion in Pereira’s dataset. “RS B” indicates the ablation of
Brain-Aug that randomizes brain inputs. ∆ NDCG@20
indicates performance gains of Brain-Aug.

with the original query “The shaking can” which 567

is sampled from document d13 in Pereira’s dataset. 568

Brain-Aug leverages brain signals to expand the 569

query with “be caused by an earthquake”. As a 570

result, the relevant document with the topic of the 571

earthquake, d13, is appropriately ranked at the top 572

of the search results. Example cases for Huth’s and 573

Narratives dataset are provided in Section A.5. 574

Answer to RQ2. We verified that a query aug- 575

mented with semantics decoded from brain signals 576

can significantly enhance document ranking per- 577

formance. This performance enhancement is more 578

pronounced when the generated query continuation 579

is more accurately aligned with the query context. 580

5.3 Query performance analysis 581

Next, we investigate the performance improvement 582

achieved by Brain-Aug for different queries by 583

grouping queries according to their features. We 584

select four query features: three pre-retrieval fea- 585

tures (calculated based on query tokens), i.e., ICTF, 586

IDF, and specificity score (Shtok et al., 2012), and 587

one post-retrieval feature (calculated based on the 588

information of retrieved documents), i.e., clarify 589

score (Cronen-Townsend et al., 2002; Meng et al., 590
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Method Query Content Top-ranked document Relevance

Original The shaking can d21: The wind from the hurricane shook the house, shattering a
window ... Later that night, with the wind shaking the house, ... 0

Unsup-Aug The shaking can from
house wind

d21: The wind from the hurricane shook the house, shattering a
window ... Later that night, with the wind shaking the house ... 0

RS Brain
The shaking can last any-
where from a few seconds
to several minutes

d21: The wind from the hurricane shook the house, shattering a
window in the kitchen. ... Later that night, with the wind shaking
the house, we fell asleep huddled on the sofa.

0

Brain-Aug The shaking can be
caused by an earthquake

d13: Earthquakes shake the ground and can knock down build-
ings and other structures. [MASK] also trigger landslides and
volcanic activity. Most earthquakes are caused by ...

1

Table 4: Examples of document ranking with BM25 using the original query or the augmented query in Pereira’s
dataset. Text in blue and in purple indicates content in the original query and generated by the query augmentation
method, respectively. [MASK] indicates the position of the query “The shaking can” in the ICT setting.

(a) Avg ICTF (b) Avg IDF (c) Specificity (d) Clarify
Figure 3: Document ranking performance w.r.t. different query features in Pereira’s dataset.

2023). For details on the query features, see Sec-591

tion A.3. We conjecture that larger feature values592

correspond to a more clarified query and usually593

result in better retrieval quality.594

Fig. 3 depicts the document ranking performance595

w.r.t. different query features on Pereira’s dataset.596

We have two key observations. (i) When the av-597

eraged IDF, specificity score, and clarity score in-598

crease, both Brain-Aug and the RS Brain show599

an improvement in retrieval performance. This in-600

dicates that a more specific query usually has a601

better retrieval performance. (ii) The performance602

gain of Brain-Aug compared to RS Brain is more603

pronounced when these features experience a de-604

crease. This observation is supported by a sig-605

nificant negative Pearson’s r between the improve-606

ment in NDCG@20 for Brain-Aug compared to RS607

Brain and the averaged ICTF, averaged IDF, speci-608

ficity score, and clarity score, which are −0.14,609

−0.19, −0.17, and −0.32, respectively. This indi-610

cates that the performance improvement brought611

by brain signals is larger in queries prone to be612

vague or ambiguous.613

Answer to RQ3. We have observed that queries614

prone to ambiguity (e.g., containing tokens with615

lower IDF scores or with low clarify scores) stand616

to gain more from Brain-Aug.617

6 Discussion and Conclusion 618

Existing research incorporating physiological 619

signals in IR tasks, whether based on eye- 620

tracking (Bhattacharya et al., 2020) or brain sig- 621

nals (Ye et al., 2024; Eugster et al., 2014), has 622

relied on predicting relevance of presented infor- 623

mation. Here, we have investigated an alternative 624

approach for directly augmenting queries based 625

on the semantic information decoded from fMRI 626

brain signals. Our findings revealed that decod- 627

ing semantic representations from brain signals 628

can enhance the generation of queries and subse- 629

quently improving document ranking. Moreover, 630

we have observed that brain signals are more effec- 631

tive when the content to be generated has higher 632

perplexity, indicating that decoded semantic infor- 633

mation for unlikely query augmentations is more 634

effective than it is for likely query augmentations. 635

In conclusion, our findings open a horizon for new 636

types of methods for understanding users by decod- 637

ing semantics associated with information needs 638

directly from brain signals. This process can kick 639

off naturally as it happens as part of perceiving 640

information and without requiring users to engage 641

with any particular interaction technique or user 642

interface. 643
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7 Limitations644

Our work has the following limitations pointing645

towards promising avenues for future research:646

(i) Our study utilized fMRI signals, which are not647

readily accessible in real-world human-computer648

interaction scenarios and have a significant delay649

of 2-8 seconds. More commonly used signals, such650

as electroencephalogram (EEG), have lower signal-651

to-noise ratios, which may limit their utility for652

semantic decoding. Currently, there is a lack of ev-653

idence that EEG can effectively decode semantics.654

In recent years, sensor technology like Functional655

near Infrared Spectroscopy (fNIRS) and MEG may656

become promising directions for future research.657

(ii) Our experiments simulate the document ranking658

with an ICT setting and show significant improve-659

ments over the baselines and carefully designed660

controls. Although ICT is commonly used to test661

retrieval performance, it is different from the most662

realistic search interaction. This simulation with663

ICT was driven by its advantage in building a suf-664

ficient number of queries and obtaining the corre-665

sponding query context to construct a substantial666

amount of training data. In the future, it would667

be worthwhile to explore settings that closely re-668

semble real-world query interaction. This can be669

done through approaches such as training with ICT670

and testing with another corpus of queries, or by671

designing few-shot learning or cross-subject train-672

ing models to enable query augmentation with a673

limited amount of data.674

8 Ethical considerations675

Recently, there has been a series of works attempt-676

ing to utilize brain–computer interface (BCI) tech-677

nology to enhance information accessing perfor-678

mance in various language-related applications,679

such as search (Eugster et al., 2016; Pinkosova680

et al., 2020; Allegretti et al., 2015) and communi-681

cation (Pereira et al., 2018). Such technology is682

currently at a very early stage where such applica-683

tions feel a long way off. However, it is important684

to discuss the associated concerns regarding pri-685

vacy issues as the collection of brain signals is686

inherently susceptible to the actions of malicious687

third parties, which increases the risk of potential688

misuse or mishandling of sensitive information.689

On the one hand, raw data collected via neu-690

rophysiological devices should be treated as pri-691

vate information, as such data can potentially be692

used to identify an individual (Alsunaidi et al.,693

2020) as well as their physiological disorders and 694

thoughts (Yin et al., 2022). This technology may 695

lead to risks such as influencing people’s politi- 696

cal opinions, and discrimination during recruiting 697

based on their neural profiles. Therefore, the raw 698

data should be avoided from being uploaded to the 699

cloud for computation. It is necessary to filter sen- 700

sitive information and decode only the information 701

that helps the user accomplish their task with local 702

computing. For publicly available datasets, ethical 703

review and informed consent from each participant 704

should be obtained, such as the dataset used in 705

this paper (see Section A.1). Additionally, datasets 706

should be used strictly for research purposes fol- 707

lowing their respective licenses. 708

On the other hand, there is a concern regard- 709

ing the interaction log that might be recorded in 710

applications like search engines. Although such 711

interactions, such as clicks, comments, and submit- 712

ted queries, are frequently recorded for improving 713

individual user experience, the utilization of BCI 714

can potentially pose greater risks. For example, it 715

can be employed to capture users’ genuine opin- 716

ions on content within information systems, which 717

can then be adopted in applications such as se- 718

lective exposure and targeted advertising. Hence, 719

users should have the right to decide whether they 720

are willing to provide their interaction history to 721

service providers. This is already specified in the 722

legislation of many countries. In addition, the inter- 723

action history, even with users’ permission, should 724

undergo post-hoc filtering to remove any sensitive 725

information before being utilized to train a model 726

aimed at enhancing the commercial product. 727

9 Reproducibility 728

Our experiments use open-source datasets 729

(Pereira’s dataset (Pereira et al., 2018), Huth’s 730

dataset (LeBel et al., 2023), and the Narratives 731

dataset (Nastase et al., 2021), which can be 732

downloaded from the paper websites or Open- 733

Neuro1). The data from Pereira et al. (2018) 734

is available under the CC BY 4.0 license. The 735

Huth’s dataset and Narratives dataset are provided 736

with a “CC0” license. Code is released using 737

an anonymous link during the review process: 738

https://anonymous.4open.science/r/Brain-Query- 739

Augmentation-B6CC/. All code used in the paper 740

are available under the MIT license after the review 741

process. 742

1https://openneuro.org/
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A Appendix1041

A.1 Dataset Information1042

Huth’s dataset and the Narratives dataset both con-1043

tain fMRI responses recorded while participants1044

listened to English auditory language stimuli of1045

spoken stories. Huth’s dataset comprises data from1046

8 participants, with each participant listening to a1047

total of 27 stories. As a result, each participant1048

contributed approximately 6 hours of neural data,1049

amounting to 9,244 time repetitions (TRs), i.e., the1050

time frames for fMRI data acquisition. On the1051

other hand, the Narratives dataset initially included1052

a total of 365 participants. However, due to the sig-1053

nificantly high computational demand, we selected1054

a subset of 8 individuals who had engaged in at1055

least 4 stories, with an average of 2,109 TRs col-1056

lected from each participant. Pereira’s dataset col-1057

lects participants’ fMRI signals while viewing En-1058

glish visual stimuli composed of Wikipedia-style1059

sentences. In line with previous research by Luo1060

et al. (2022), we selected cognitive data from par-1061

ticipants who took part in both experiments 2 and1062

3. This subset consists of 5 participants, each of1063

whom watched 627 sentences selected from 1771064

passages. Each sentence corresponds to one TR,1065

which represents one scan of fMRI data consisting1066

of signals from approximately 10,000 to 100,0001067

voxels. The statistics of these datasets are provided1068

in Table 5. All datasets received approval from1069

ethics committees and are accessible for research1070

purposes. We present the overall statistics of the1071

above three fMRI datasets in Table 5.1072

A.2 Dataset preprocessing1073

Document corpus construction Pereira’s1074

dataset has a natural segmentation of documents,1075

with approximately 3 to 4 sentences per document.1076

Therefore, we utilized its inherent segmentation1077

for our experiment. After defining the document1078

corpus, we utilize the same protocol to select a1079

query in the ICT task and the next token prediction1080

task construction. So each query Q is either a1081

piece of sentence in Pereira’s dataset or a text span1082

corresponding to a TR. For Huth’s dataset and the1083

Narratives dataset, the language stimuli are pre-1084

sented continuously without any natural document1085

segmentation provided. Hence, we segment text1086

spans presented in every 10 consecutive TRs as1087

a document. This segmentation criterion results1088

in an average document length similar to the1089

passage length found in existing IR benchmarks,1090

such as MS MARCO (Bajaj et al., 2016) (see 1091

Section A.1 for detailed statistics). According to 1092

the segmentation, the average document length is 1093

about 60, which is similar to the passage length 1094

of existing IR datasets, like MS MARCO (Bajaj 1095

et al., 2016), which was used to train our baseline 1096

RepLLaMA. 1097

Query construction Following existing research 1098

in language decoding from brain signals (Tang 1099

et al., 2023; Ye et al., 2023), we split the text stim- 1100

uli to construct the query according to the TR. For 1101

Pereira’s dataset, we split each sentence into three 1102

parts with equal length. Two unique data samples 1103

are constructed by treating (i) the first third as the 1104

query and the second third as the ground truth con- 1105

tinuation as well as (ii) combining the first two 1106

thirds as the query and using the last third as the 1107

ground truth continuation. For Huth’s dataset and 1108

the Narratives dataset, we segmented the data by 1109

considering the perceived textual content during 1110

each TR as the ground truth continuation. We then 1111

truncated the preceding text and used it as the query. 1112

The truncation is accomplished using a sliding win- 1113

dow ranging from 1 to 3 TRs to pick the language 1114

stimuli. We detail the average length of the queries, 1115

the query continuations, and the length of docu- 1116

ments in Section A.1. The statistics of the query 1117

generation task and the document ranking task are 1118

presented in Table 6. 1119

A.3 Query performance features 1120

To study the effect of brain signals in query aug- 1121

mentation in queries with different features. We an- 1122

alyze the document ranking performance according 1123

to the original queries measured by the following 1124

features: 1125

(1) Averaged ICTF (inverse collection term fre- 1126

quency) (Carmel and Yom-Tov, 2010): ICTF is 1127

a popular measure for the relative importance of 1128

the query terms and is usually measured by the 1129

following formulas: 1130

ICTF (w) = log(
| D |

TF (w,D)
) (7) 1131

where | D | is the number of all terms in collection 1132

D, and TF (w,D) is the term frequency (number 1133

of occurrences) of term w in D. Here we use the 1134

averaged ICTF of all terms w in the query. 1135

(2) Averaged IDF (inverse document fre- 1136

quency) (Hauff et al., 2008): IDF is another widely 1137

used measure for the importance of the query terms 1138

and is typically measured by the following formu- 1139
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Dataset #Partic-
ipants

#Total
duration

#Duration per
participant

#Total
TRs

#TRs per
participant

#Total
words

#Words per
participant

Pereira’s 5 7.0 h 1.4 h 3,135 627 38,650 7,730

Huth’s 8 3.5 days 10 h 122,992 15,374 427,296 53,412

Narratives 8 7.5h 56 min 16,868 2,109 80,160 10,020

Table 5: Overall statistics of fMRI datasets.

Dataset #Query #Document Query length Continuation length Doc length

Pereira’s 1,254 168 5.8±2.5 4.5±1.5 46±6
Huth’s 26,578 876 10.3±4.3 7.4±0.5 61.2±13

Narratives 4,979 162 9.5±4.7 6.0±1.9 60.0±23.5

Table 6: Overall statistics of the document corpus and query set constructed with the fMRI datasets.

las:1140

IDF (w) = log(
N

Nw
) (8)1141

where N is the number of documents in the collec-1142

tion and Nw is the number of documents containing1143

the term w. Here we use the averaged IDF of all1144

terms w in the query.1145

(3) Specificity (or simplified clarity1146

score) (Cronen-Townsend et al., 2002): Specificity1147

score measures the Kullback-Leibler divergence of1148

the query’s language model from the collection’s1149

language model, which can be formulated as:1150

q =
∑
w∈q

P (w | q)log( P (w | q)
P (w | D)

) (9)1151

where P (w | q) and P (w | D) indicate the token1152

possibility in the query and the document, respec-1153

tively.1154

(4) Clarify (Cronen-Townsend et al., 2002): Clar-1155

ify score quantifies the ambiguity of a query w.r.t. a1156

collection of documents. It measures the KL diver-1157

gence between a relevance model induced from top-1158

ranked documents retrieved by the original query.1159

Clarify(q,Dk
q:M ) =

∑
w∈V

P (w | Dk
q:M )

P (w | Dk
q:M )

P (w | D)

(10)1160

where w and V denote a query term and the entire1161

collection vocabulary, respectively, Dk
q:M indicates1162

the top-k document retrieved by model M using1163

query q. The conjecture suggests that a larger KL1164

divergence corresponds to a more clarified query1165

and a better retrieval quality.1166

A.4 Implementation Details1167

To efficiently manage and analyze the high-1168

dimensional fMRI data, we employ two methods1169

to reduce dimensionality. For Huth’s dataset and1170

Narratives dataset, we select features from brain1171

regions identified by Musso et al. (2003), which1172

are known to be relevant to language processing1173

in the human brain. For Pereira’s dataset, we ap- 1174

ply component analysis (Abdi and Williams, 2010) 1175

on the original fMRI features to reduce the dimen- 1176

sionality to 1000. The 7B version of the Llama-2 1177

model (Touvron et al., 2023) released in Hugging- 1178

face 2 is adopted as the language model for gener- 1179

ating the query continuation. 1180

We train Brain-Aug with the Adam opti- 1181

mizer (Kingma and Ba, 2014) using a learning rate 1182

of 1×10−4 and a batch size of 8. The learning rate 1183

is selected from the set {1× 10−3, 1× 10−4, 1× 1184

10−5} based on the experimental performance on 1185

Pereira’s dataset. The training of the warm-up step 1186

is stopped after ten epochs, while an early stop 1187

strategy was adopted in the training of the next 1188

token prediction task when no improvement was 1189

observed on the validation set for ten epochs. The 1190

entire training process was conducted on 16 A100 1191

graphics processing units with 40 GB of memory 1192

and took approximately 12 hours to complete. Dur- 1193

ing the inference stage, we utilize a beam search 1194

protocol with a width of 5. 1195

When performing query generation for docu- 1196

ment ranking, we set the maximum number of 1197

words that can be expanded to 5. In Pereira’s 1198

dataset, the continuation will be 5 tokens unless 1199

the model generates a token indicating the end of 1200

the continuation. In the other two datasets, due 1201

to their higher perplexity, the model may generate 1202

content with lower quality. Therefore, during the 1203

generation process, we calculate the perplexity of 1204

the content generated up to the current step (note 1205

that this is the perplexity of the generated content, 1206

not the ground truth label). If the averaged perplex- 1207

ity at the current step exceeds a threshold of 1.5, 1208

the generation process is early stopped. 1209

2https://huggingface.co/models
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Dataset Method Query Content Top-ranked document Relevance

Huth’s

Original with one hand tied behind cup holder and gets ready to hand him some change
and ... if he got a cellphone I gotta get one ... 0

Unsup-Aug with one hand tied behind
my eyes shut

... like we’re gonna hit and I just did the only thing
I thought seemed right I just shut my eyes ... 0

RS Brain
with one hand tied behind
thinking and what he’s
gonna

... he just yells to me his like we’re gonna hit and I
just did the only thing I thought seemed right I just
shut my eyes I took a deep

0

Brain-Aug with one hand tied behind
my back and I’m thinking

[MASK] my back which I only probably ever would
have to do with ... they were a handful she was
paying ten dollars an hour in nineteen eighty eight I
kind of thought that all of my

1

Narratives

Original you get undressed and get
into

gentlemen you can’t get away with this sooner or
later somebody the or somebody is going to get
wind of this madness ...

0

Unsup-Aug
you get undressed and
get into somebody going
away

gentlemen you can’t get away with this sooner or
later somebody the or somebody is going to get
wind of this madness ...

0

RS Brain
you get undressed and get
into the bathtub and I’ll
wash

you just come with me where into the tunnel I’ll
show you henry swanson led guy to a small hole on
the ...

0

Brain-Aug you get undressed and get
into bed and I’ll join you

... now Arthur listen I say this in all sincerity will
[MASK] bed like a good guy and relax ... 1

Table 7: Examples of document ranking with BM25 using the original query or the augmented query in Huth’s and
Narratives dataset. Text in blue and in purple indicates content in the original query and generated by the query
augmentation method, respectively. [MASK] indicates the position of the selected query in the ICT setting.

A.5 Example cases1210

We present the manually selected example cases in1211

Huth’s and Narratives’s dataset in Table 7. In these1212

cases, Brain-Aug leverages brain signals and ranks1213

the relevant document as top-1. The selection of1214

these examples was based on the higher NDCG@11215

scores of the Brain-Aug compared to the baselines1216

and controls. More cases can be found in the pro-1217

vided repository.1218

A.6 Failures and Insights1219

In our research, we have also conducted two mean-1220

ingful attempts, despite being unsuccessful, may1221

provide insights for further research. The first at-1222

tempt was to explore whether EEG signals can be1223

utilized for Brain-Aug, as EEG signals are easier1224

to collect in real-world scenarios than fMRI. How-1225

ever, we found that in our experiment with two1226

public EEG datasets, i.e., UERCM 3 and Zuco 4,1227

Brain-Aug did not outperform RS Brain. This im-1228

plies that the existing quality of EEG data have1229

limitations in their ability to decode semantics with1230

Brain-Aug. The second attempt was to train a1231

query augmentation model with brain signals to1232

directly facilitate the document ranking task. We1233

3https://github.com/YeZiyi1998/UERCM
4https://osf.io/2urht/

constructed the unified prompts using the same 1234

method of Brain-Aug and fed them into Repllama 1235

to obtain query representations. Then, we used a 1236

contrastive loss function to make these representa- 1237

tions closer to the relevant documents. We found 1238

that training the model in this way makes it chal- 1239

lenging to generalize the performance to the vali- 1240

dation set. This could be potentially attributed to 1241

the label-inefficient issue in dense retrieval training 1242

settings. Future research can further explore this 1243

direction. 1244

A.7 AI assistants usage 1245

After completing the paper, we employ ChatGPT5 1246

and Gemini6 to identify writing typos. Subse- 1247

quently, manual review and revision are performed 1248

to address these typos. 1249

5https://chat.openai.com/
6https://gemini.google.com/app
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