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ABSTRACT

We study identifiability of stochastic differential equations (SDE) under multi-
ple interventions. Our results give the first provable bounds for unique recovery
of SDE parameters given samples from their stationary distributions. We give
tight bounds on the number of necessary interventions for linear SDEs, and upper
bounds for nonlinear SDEs in the small noise regime. We experimentally validate
the recovery of true parameters in synthetic data, and motivated by our theoretical
results, demonstrate the advantage of parameterizations with learnable activation
functions in application to gene regulatory dynamics.

1 INTRODUCTION

Stochastic dynamical systems are ubiquitous as models for natural data. They are perfectly suited for
application to time-series data, and therefore also a good candidate to characterize systems that reach
a steady state in the limit. If a system is governed by some stochastic differential equation (SDE) and
the same system is observed under different interventions, ideally one would learn the underlying
parameters governing the dynamics, and guarantee accurate prediction under new interventions.

However, in many natural settings, data is modeled as following and SDE even if one does not
have access to explicit trajectories. Studies of ecological systems focus on the long-term survival
of multiple species modeled by the quasi-stationary state of SDEs with environmental factors as
perturbations (Hening & Li},[2021)). The application of flow cytometry to protein signaling networks
under perturbation (Sachs et al.| |2005) is destructive and yields protein quantification at one time
point, modeled using the stationary distributions of linear SDEs in [Varando & Hansen| (2020).

One highly motivating application is single-cell genomic sequencing with high-throughput CRISPR
perturbations. Biologists are often interested in inferring the gene regulatory network (GRN) that
characterizes the dynamics of gene expression, informing which genes should be targeted for treat-
ment (Dixit et al.; [2016). But the destructive nature of sequencing makes it impossible to observe
the trajectory of a single cell at multiple time-points, and in general it is difficult to obtain any time-
series genomics data due to the high expense. Therefore, practitioners often only collect data at the
end of an experiment, i.e., from the stationary distribution of the system.

Understanding the dynamics is essential for extrapolating to unseen settings, but noise and latent
confounding makes it non-trivial to determine the true dynamics. Causal disentanglement aims to
learn causal factors in spite of these confounders, mainly focusing on directed acyclic graph (DAG)
based methods. To demonstrate these methods are well-founded, there is considerable effort devoted
to understanding which models have identifiability guarantees (Lachapelle et al.l [2022). However,
these models suffer from inherent weakness, in particular 1) being unable to represent cycles or 2)
approximate continuous-time dynamical models.

There has been renewed interest in modeling with stochastic differential equations (SDE) di-
rectly (Peters et al., 2022). In the genomic context, there is precedent for this type of modeling
to represent the so- called “Waddington landscape” (Waddington, 2014), the hypothetical energy
surface of cells. Furthermore, SDEs are commonly used for simulating transcriptomic datasets from
a given gene regulatory network (Pratapa et al., 2020; [Dibaeinia & Sinhal 2020).

As demonstrated in the context of diffusion models, SDEs are fully expressive in practice and can ac-
curately generate observational data (Song et al.,|2021). But to identify the true underlying SDE re-
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quires assumptions on the model. Foundational theoretical works on identifying dynamical systems
typically learn from many trajectories or even the infinitesimal generator of the dynamics (Hansen
& Sokoll [2014), leaving open the harder setting of observing only the stationary distribution.

Our interest in this work is to verify which parametric assumptions are necessary for dynamical
systems to have identifiability guarantees without trajectory data. Namely:

How many interventions are necessary to identify the parameters of a stochastic differential
equation, only given access to the stationary distribution?

Contributions In this work, we offer the first analysis of identifiability of interventional stochastic
differential equations, with data restricted to the stationary measure. Specifically:

* We characterize tight bounds on the number of interventions necessary for identifiability of
linear SDEs with shift interventions.

* We extend this analysis to nonlinear SDEs in the small noise regime, showing that identifi-
ability is possible even without knowing the activation function of the true model.

* We apply this insight to synthetic data and semi-synthetic genomic data to confirm the
efficacy of learned activations in causal SDEs, which improve expressiveness without sac-
rificing a simple structure and enable the inference of gene regulatory networks.

2 SETUP

2.1 NOTATION

We will write the elementary basis vectors as {e; };. We will consider o : R™ — R" as any elemen-
twise function, i.e. o;(x) = o;(x;). This includes elementwise activations as they are applied in
multilayer perceptrons (MLPs), but we also allow for elementwise functions where each component
acts differently. Writing o’ will, unless otherwise described, denote the map R™ — R™ that applies
elementwise the derivative of each component function, i.e. o/ (z) = [0} (z1), ..., 00 (x,)]. We will
use J f to denote the Jacobian of a vector valued function f, and A f to denote the Laplacian of f.

We let P4 denote the orthogonal projection onto the image of matrix A, and Pj = [ — P4 the
orthogonal projection onto its complement. We let AT denote the pseudoinverse of A, and note that
if A has linearly independent columns it is a left inverse such that ATA = I, likewise for rows and

right inverse. We let || - || denote the spectral norm and || - || 7 the Frobenius norm. We will use < to
denote inequality up to constant factor, and iid as independent and identically distributed.

2.2  STOCHASTIC DIFFERENTIAL EQUATIONS

We consider SDEs of the following form, where B, is standard Brownian motion:
We will only consider autonomous systems, i.e. where the drift and noise terms have no dependence

on time ¢. We will enforce the weak conditions on the drift and noise to guarantee a unique stationary
distribution (Berglund, 2021])), with a density p that satisfies the Fokker-Planck equation,

0=-V-(pv)+ %Ap. 2)

2.3 LINEAR SDEs

We need some classical facts about linear SDEs, which are better understood than their nonlinear
cousins, since Fokker-Planck can be solved explicitly.
Theorem 2.1 (Sarkkad & Solin|(2019). Consider the SDE
Assume L is Hurwitz, i.e., all its eigenvalues have strictly negative real parts, and Q) is full rank.
Then the unique stationary distribution is N'(—L~'c,w) where w is the unique solution to the Lya-
punov equation,

Lw+wLT +QQT =o. 4)
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2.4 INTERVENTIONAL SDES

We focus on the setting where we only observe the SDE through the induced stationary density
under k different shift interventions. Specifically, there are vectors {ci}le with each ¢; € R", and
we observe the stationary distribution of the SDE,

dX; = (v(Xy) + ¢;)dt + v/edBy. 5)

We denote the concatenated intervention column vectors by the matrix C' € R™*F, In the causal
disentanglement literature, shift interventions typically give fewer guarantees (Buchholz et al.,[2024;
Squires et al., 2023). Therefore, we assume knowledge of the interventions:

Assumption 2.2. The shift interventions C' are observed.

3 RELATED WORK

3.1 CAUSAL REPRESENTATION

In terms of modeling causality (Pearl, 2009), the most popular underlying model is the structural
causal model (SCM), which characterizes the conditional distribution of a random variable un-
der arbitrary intervention. Learning an SCM typically requires very strong assumptions such as
sparsity (Scholkopf et al., [2021), interventional data (Lachapelle et al.l [2022), parametric assump-
tions (Peters & Bithlmann, [2014), among many other results. Sparsity is a very common theme in
these models, though it may also be expressed in an assumption that the number of latent variables
is small, i.e. a low-rank constraint (Fang et al.,[2023).

3.2 CAUSAL DISENTANGLEMENT WITH INTERVENTIONAL DATA

The bulk of the literature on causal disentanglement focuses on SCMs with an underlying DAG.
Relevant to our work are results that assume access to multiple interventional environments, either
acting directly on the observed variables (Brouillard et al.,[2020) or identifying a latent model under
some distributional assumptions (Lachapelle et al.|[2022;|Squires et al.,2023;|Buchholz et al .| [2024)).

Some of these works have addressed the crucial limitation of acyclicity (Zheng et al.l 2018} [Lee
et al., 2019 |Atanackovic et al.,[2023)), but without necessarily incorporating dynamics. Many works
require hard interventions, where an intervened variable is a function of exogenous noise, although
some can handle soft interventions (Zhang et al.,[2024).

3.3 DYNAMICAL SYSTEM METHODS

Previous work has considered modeling perturbations with dynamical systems (Peters et al., [2022)).
One can prove identifiability of SDE parameters from the generator (Hansen & Sokol, [2014) or
trajectories (Guan et al., 2024). Other methods work in our harder setting where observed data is
drawn from the stationary distribution under an SDE, and match a learned SDE under numerous
interventions. These works focus on linear drift and intervention-dependent parameters (Rohbeck:
et al.; [2024) or non-linear drift with shift interventions (Lorch et al.| [2024). Notably, neither paper
gives theory to confirm if these models are identifiable.

There are also methods specific to a particular scientific domain. In genomics, some methods act
on pseudotime, an inferred notion of time from cell states when very few “real” timepoints are
available (Wang et al., 2024} Hossain et al., [2024). Although harder to obtain due the destructive
nature of RNA sequencing, genuine temporal data (even with very few timepoints) can also be
modeled with the intent of extracting a GRN (Lin et al., 2025)).

The closest work to ours proves an identifiability bound for linear SDEs under a strong sparsity
assumption (Dettling et al., 2023). However, their result doesn’t consider any interventional data,
and the exact pattern of sparsity in the drift matrix is assumed to be known a priori, which is rarely
the case in applied problems of interest. Another closely related work is |Guan et al.| (2024), which
can simultaneously infer the drift and diffusion. However, this work applies only in an easier setting
that assumes linearity, doesn’t study interventions, and assumes multiple temporal marginals rather
than just the stationary distribution.
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4 MAIN RESULTS

We consider two main parameterizations of the drift as linear or a two-layer neural network (an
MLP) to verify when the model may be uniquely identified up to appropriate invariances. Prior work
has considered sparsity in the linear setting only (Dettling et al.,2023)), but we focus on parameteri-
zations that project to a low-dimensional space. In other words, although the ambient dimension n
may be large, we assume the hidden dimension 7 is much smaller, at least n > 2r, and ideally the
number of interventions to uniquely identify the parameters should scale with 7.

4.1 LINEAR CASE

We start with the linear case and consider the parameterization v(x) = (AB — D)x where A €
R™"*" B € R™"™, D € R"*". Clearly AB is a redundant parameterization of a rank r matrix, but
we use this notation to contrast the non-linear setting in Section[#.2] To ensure the drift is Hurwitz
and the SDE has a stationary distribution, we assume ||AB|| < v < 1 and D > I. Intuitively, AB
drive the dynamics while D is a decay term to prevent unbounded dynamics. This parameterization
is similar to the one used in [Rohbeck et al.| (2024), which also uses linear SDEs but considers hard
interventions with having entirely new rows in the drift matrix, rather than shift interventions.

It is impossible to get a good deterministic guarantee if the dynamics and interventions are chosen
adversarially, as seen in the following proposition:

Proposition 4.1. In the linear setting, there exist choices for parameters A, B, D and interventions
C such that the drift matrix AB — D is not identifiable with less than n — r interventions.

The proof is provided in Appendix [A] Intuitively, one can choose interventions that don’t affect the
system dynamics at all. But this situation is pathological, and in the linear case under some weak
distributional assumptions we can show identifiability.

Assumption 4.2. The matrices A and B are almost surely (a.s.) full-rank, have spectral norm less
than one, and are invariant to applying a rotation matrix on the left or the right. Each column of C
is drawn iid from some distribution with a density on R".

We take care to explain why these assumptions are not particularly restrictive. The low-rank con-
straint is already enforced by the drift function so A and B are almost surely full-rank when drawn
from any density. The spectral norm bound is necessary to guarantee the SDE has a stationary distri-
bution. And the rotational invariance assumption encodes an uninformative prior on which low-rank
subspace governs the dynamics. Two simple choices that satisfy these assumptions are sampling
A and BT from either the uniform measure on the Stiefel manifold (rectangular matrices with or-
thonormal columns) or with iid Gaussian entries, and then scaling down to ensure a spectral norm
strictly smaller than one, with C sampled from any density.

Additionally, for theoretical tractability, we presume knowledge of the decay term D. This is a
stronger assumption, but plausible in some applied contexts. For example, in single-cell genomics
the decay rate of genes can be estimated with external experiments (e.g., from BRIC-seq (Imamachi
et al.,[2014)).

Assumption 4.3. The decay matrix D is observed.

Altogether, we can now present a nearly tight identifiability result in the linear case.

Theorem 4.4. Consider the linear drift in Equation 5| Suppose A, B are drawn from any density
such that ||Al|, || B|| < v < 1. Then the drift AB — D is identifiable a.s. with r interventions, and
unidentifiable a.s. with at most r — 2 interventions.

See Appendix [A] for the proof. Naively, one might count 2nr unknown parameters in the entries
of A and B, and assume the n? entries of the stationary covariance w would be enough to identify
them, but this isn’t the case. One needs exactly enough interventions to account for the hidden rank.

Identifying the decay. If diagonal decay term D is not inferred in advance, learning it simultane-
ously is comparable to the setting of robust PCA (Candes et al., 201 1)) or recovery of a diagonal plus
a positive semidefinite low rank term (Saunderson et al., 2012). However, unlike the usual matrix
completion setting where entries of the matrix are revealed uniformly at random, we have access to
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Figure 1: Contour plot of the stationary SDE under different activations and interventions. Activa-
tion contractivity enforces one mode, but the linear distribution is Gaussian with fixed covariance
across interventions, while the nonlinear distribution can be more expressive.

correlated low-rank measurements of the form eich for {e;}7_; the elementary basis. This setting
is well studied with sub-Gaussian measurement vectors (Zhong et al., 2015)), but the tools do not
readily apply to our setting with non-random measurements and the constraints of the Lyapunov
equation. Nevertheless, we observe in Section 5] that identifiability with an unknown diagonal decay
matrix D is empirically achieved, while still subject to the lower bound established in Theorem 4.4}

4.2 NONLINEAR CASE

The nonlinear case is more challenging, because there is no longer a nearly closed form characteri-
zation of the stationary distribution. To apply tools from above, we consider when a linearized SDE
can approximately capture the true dynamics, by restricting to contractive drift and small noise.

We consider the vector field v(z) = Ao (Bx) — x, with the constraints that || A||, | B|| < 1. Notably,
we will not assume prior knowledge of the elementwise map o : R™ — R", only some assumptions:

Assumption 4.5. The map o € C? acts on each element independently and satisfies:
1. maxzepoi(z) =7 <1
2. mingeroi(z) =7>0
3. maxger o) (z)] =M <
4. The set {x € R: o}/(x) = 0} is measure zero.

The strongest constraint here is condition 1, upper bounding the first derivative of the activation, as
it implies the noiseless dynamics are globally contractive, but it guarantees a stationary distribution
exists for any intervention vector c. Furthermore, these conditions still allow for a wide class of
possible activations o, mainly constrained to be increasing with bounded first and second derivative.
We observe the improved expressiveness of the stationary distribution of nonlinear SDEs in Figure[T]
Note constraint 4 rules out functions that are linear (or locally linear). This enables a stronger
possible identifiability guarantee than only recovering A and B up to rotation as in the linear case.

Noiseless Setting. One might be tempted to simply consider the noiseless case, where the SDE
reduces to an ordinary differential equation (ODE), and rather than recovering the stationary distri-
bution one recovers instead the unique global stable point. However, the noiseless case cannot take
advantage of the low-rank structure, and requires {2(n) interventions a.s. for identifiability.

Proposition 4.6. Setting ¢ = 0 in equation |5| the parameters are a.s. not identifiable with fewer
than n — r interventions.

The proof is in Appendix [A] Intuitively, the equilibrium points of the noiseless ODE approximate
the mean of the SDE for small noise (note this is not true for larger noise, for example see Ma et al.
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(2015)). This suggests that in order to make use of the low-rank assumption on the dynamics, one
must at least take advantage of second order moments of the SDE even in the small noise limit.

Moments in the zero-noise limit. As the noise converges to zero, the stationary distribution con-
verges to a dirac centered on the global stable point, and there are no higher order moments. How-
ever, the rescaled second-order moments have a non-trivial limit as noise goes to zero:

Theorem 4.7. Let x* be unique solution v(z*) + ¢ = 0, and define L = Jv(z*). If w solves
the Lyapunov equation Lw + wL” + I = 0, and m. and ¥, are the mean and covariance of the
stationary distribution of Equation [B)) intervened by c, we have for sufficiently small €,

1/2
en
e < ’ 6
el < (1) ©
1/2,5/2,1/2 ) f
S Je—wl| < M 7
Iefe -l § @

The proof is given in Appendix [A] This is one instance of perturbation theory for SDEs (Gardiner,
2021} |Sanz-Alonso & Stuart, [2016). Equipped with this fact, one can consider access to the sta-
tionary distribution of an SDE, specifically the first and second-order moments, and inspect what
happens now as the noise goes to zero. In this case, we obtain a non-trivial identifiability bound:

Theorem 4.8. Suppose we observe the first and second moments m. and % /€ of the stationary
distribution of the SDE in Equation (9), in the limit as ¢ — 0. Then a.s. with r + 1 interventions, A
and BT are both identifiable up to (simultaneous) permutation and scaling of their columns.

We give a brief sketch of the proof, to capture the novel elements and how the identifiability of A
and B appears here but not in the linear case. The zero-noise limit approximately linearizes each
intervened SDE. Unlike the exactly linear case, the stationary covariance is not identical across
interventions. By Theorem[4.7] the covariance under the ith intervention approximately matches the
SDE with drift A(Jo(Bzx}))B where x? is the unique zero of the intervened drift v(z) + ¢;.

Sufficient variability in these fixed points (guaranteed by our assumptions on o) enables the identi-
fication of A and B. Suppose one had access to the drift matrices: because the Jacobian term in the
drift is diagonal, a linear combination of drifts across 7 interventions can yield a rank-one matrix,
which must correspond to the outer product of a column of A and a row of B. But we don’t have ac-
cess to the drift matrices directly, only the covariances they induce, and so the proof relies on finding
a different set of matrices where rank-one matrices that characterize A and B can be isolated.

Crucially, the proof doesn’t require knowledge of the activation function itself. This enables iden-
tification of the bias term absorbed by o, but furthermore one can identify the parameters A and B
even if each elementwise activation in ¢ is distinct. This observation motivates learnable activations,
which we experiment with in Section 3]

We hypothesize the constraint that the SDE drift have a single absorbing point is unnecessary. If the
ODE given by fli—f = v(x) 4 ¢; had multiple stable equilibria, then in the limit of small noise, the
SDE stationary distribution should approach a Gaussian mixture centered around each equilibrium
point. The proof only requires certain linear independence conditions of vectors induced by each
fixed point, so one intervention with multiple equilibria would offer essentially the same information
as additional unimodal interventions. This is consistent with the observations in|Lorch et al.| (2024)
that nonlinear SDE models generalize well with a limited number of interventions.

5 EXPERIMENTS

To validate the theory given above, we consider experiments demonstrating the recovery of SDE pa-
rameters and generalization to unseen interventions. To show the broad applicability of the theory,
we consider multiple loss functions: a loss acting directly on the parameters in the linear case (Ro-
hbeck et al} 2024)), a kernelized Stein discrepancy (Barp et al.l |2019), and rollout loss for neural
SDEs (Kidger et al., [ 2021)).



Under review as a conference paper at ICLR 2026

5.1 LINEAR SDE RECOVERY

Because we are fitting linear SDEs where the stationary distribution is Gaussian, we can choose a
very simple loss that matches the population mean and covariance of each intervented distribution,
to verify the claim of identifiability (Theorem [.4). This loss is akin to the one used in the Bicycle
method introduced in[Rohbeck et al.|(2024)) that fits interventional linear SDEs. Assuming the noise
scale € is known and L denotes the true drift, we fit the parameters A, B, and D. Letting our estimate
for the drift be denoted by L := AB — D, the loss function matches the mean and covariance of
each intervention:

Lin(A,B,D) = ||L7'C — L7'C||p + ||Lw + wLT + €I | 5. (8)

We evaluate the recovery of AB under different numbers of interventions for two different ambient
dimensions n and two different true ranks 7 in Figure[2] For each sampled SDE, we use the best train
error from 100 independent initializations to deal with the nonconvexity of the objective. The only
exception is the oversampled k = r log(n) where we need only 5 initializations, as the landscape is
empirically easier to learn. Further details are given in Section [B]

We confirm our theory: when the decay is known, » — 2 interventions fails to grant identifiability
with poor performance and extremely high variance, even with many independent initializations,
while 7 interventions clearly succeed. When the decay isn’t known, we use a modest oversampling
of rlog(n) interventions. This amount is informed by the literature on matrix completion, where
Q(rnlog(n)) revealed matrix entries were proven to be necessary for a rank r matrix recovery prob-
lem (Candes & Tao} [2010). We scale down by a factor of n because in our setting each intervention
yields the mean vector of the perturbed linear SDE in R™, hence n measurements.

Linear SDE drift recovery Linear SDE drift recovery
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Figure 2: Normalized Frobenius error of learned drift against true drift in linear SDEs with £ inde-
pendent Gaussian interventions. Error bars are standard deviation over 5 independent runs.

5.2 NONLINEAR SDE RECOVERY

We repeat this verification of identifiability in the setting of Theorem [4.8] using a very small value
of ¢ = 1077 to approximately linearize. For some randomly chosen A and B, we define the true
drift v( ) Ao (Bz) — z and use each intervened drift v 4 ¢; to calculate the corresponding sample
mean m! and sample covariance Y.

We define a parameterized drift of the form 0g(2) = Aog(Bz) — 2 where o is a learned MLP that
acts elementwise. We train with the loss function
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The motivation for this loss comes from Theorem[4.7} The first term enforces the approximate fixed
point property of the mean, and the second term enforces the approximate Lyapunov equation of
the covariance. Thus we can train Uy to match the first and second moments of the true stationary
distribution of v, which will be approximately Gaussian for sufficiently small €.

To empirically evaluate identifiability, we calculate the normalized error in recovering A and B from
the parameters A and B, chosen from the run with minimum training loss across 100 independent
runs. Further details are given in the Appendix. We observe that r + 1 interventions enable con-
sistently good recovery of the underlying drift parameters, whereas r interventions leads to high
variance estimates. This suggests that the r + 1 upper bound proven in Theorem .8 may be tight,
and offers a direction for further work refining the theory of identifying the nonlinear case.

Table 1: Normalized Frobenius error of drift parameters with £ independent Gaussian interventions,
over 20 independent runs.

A Error B Error
k=r 0.134+0.13 0.14 +£0.15
k=r-+11 0.065+0.04 | 0.07 = 0.04

5.3 SYNTHETIC NONLINEAR SDE GENERALIZATION

For an evaluation of Theorem [4.8] we apply the insight that identifiability doesn’t require knowing
o and consider learnable MLPs. Learnable activations (Goyal et al., |2019) have been proposed
before (Apicella et al.,[2019) but to our knowledge not previously applied to SDE parameterizations.

To assess generalizability, we consider a loss function proposed by [Lorch et al.| (2024): the kernel
deviation from stationarity (KDS), or equivalently the kernelized Stein discrepancy of the stationary
distribution (Barp et al.,[2019). When the parametric drift is defined as vy(x) = Ao (Bx) — Dz and
the target stationary distribution is y, the KDS is,

EKps(Q) = ExNHEx/NHAw.Aw/k(l‘, JJ/). (10)

where k is a given kernel and A, is the SDE generator acting on the variable x (for more details
see|Lorch et al.|(2024)). We use samples from the true stationary distribution y to approximate these
expectations, further training details are given in the Appendix. This loss is nevertheless unstable
when using noise small enough to reach the limit proven in Theorem [4.8] and therefore we assess
generalizability according to performance on unseen interventions.

We observed numerical instability in the Sinkhorn divergence without large entropic regulariza-
tion (Cuturil 2013). Therefore, we follow Zhang et al.|(2023)); Lorch et al.|(2024) and evaluate with
the mean squared error (MSE) between the true and predicted distribution. Further details are given
in Section [B.3] The results are given in Table[2] We observe a clear benefit for low noise SDEs,
which gets smaller as the noise gets bigger and hence further away from our proven settings. This
is consistent with our theory, and also intuitive: as the noise gets larger, the stationary distribution
gets smoother and has less dependence on the intervention vectors. Nevertheless, in the low noise
regime we see that learnable activations improve prediction on test interventions without overfitting.

5.4 SIMULATED GRN SDE GENERALIZATION

We consider an applied setting for learnable activations, and how they impact the recovery of GRNs.
In the genomics context, n is the number of expressed genes in the thousands, and r corresponds
to a much smaller number of latent gene modules/pathways. Because there are few fully known
regulatory networks we rely on semi-synthetic data to produce data with similar characteristics to
true perturbed transcriptomic samples and a ground-truth GRN.
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Table 2: Mean distance between true and predicted distribution with n = 20, » = 3, over 20 inde-
pendent seeds with 20 test interventions per seed, with sigmoid activation versus learned activation.

Sigmoid Activation MLP
e=0.05| 21.78 £12.78 | 9.51 +£1.28
e=0.1 | 16.54£6.35 9.23 +1.65
e=0.2 | 11.53£3.47 7.96 +1.44
e=0.3 7.97+2.19 6.69 £ 2.07

We use the PerturbODE model from |Lin et al.| (2025)), similar to our setup and modified to handle
a loss for parameterized SDEs (Kidger et al., 2021). We consider the inferred GRN as the matrix
multiplication of the weight matrices in the MLP that parameterizes the drift, corresponding to a
first-order Taylor approximation of the dynamics. GRN recovery can be measured as a classification
task of individual edges. As a baseline, we also consider the Bicycle interventional linear SDE
method (Rohbeck et al.|[2024). To simulate a known GRN, we use the boolean ODE based-simulator
BEELINE (Pratapa et al., 2020). BEELINE uses the provided GRN to parametrize an SDE in the
space of mRNA expression and protein expression, with physically plausible regulation dynamics.
More precise details are given in the Appendix in Section[B.4]

GRN recovery is still extremely difficult (random guessing is =~ 0.0586 and maximum AUPRC for
dynamical methods ~ 0.07), but we observe improvement using nonlinear SDEs over linear SDEs,
and substantial improvement using learnable activation in the SDE parameterization (Figure [3).

Performance across Models on BoolODE Simulated Data (AUPRC)

T m
P m

45 5.0 5.5 6.0 6.5 7.0
AUPRC le-2

Figure 3: Gene regulatory network recovery on three tested SDE models for 5 independent runs.

6 DISCUSSION

We confirm identifiability directly in the linear case and non-linear, low-noise limit, and see im-
proved generalization using learned activations for small noise. It may be beneficial to increase the
capacity of the SDE beyond two-layer neural networks, if the extracted drift were still identifiable.

We note some limitations of the given theory. The results demonstrate identifiability in a setup
with infinitesimal small noise and restrictions on the possible drift functions. Generalizing to larger
noise regimes may be possible with higher order moment information about the stationary distribu-
tion, although understanding the stationary distribution outside of linearization is very challenging.
Broader parameterizations of the drift or interventions are interesting extensions for future work.

7 CONCLUSION

In this work, we’ve given the first provable results regarding identifiability of interventional SDEs,
in both the linear and nonlinear case. Although such models are currently less popular and less stud-
ied then comparable SCM-based modeling, the ability to obtain provable guarantees for dynamical
systems without any temporal data suggests they may become more fruitful for causal inference in
the future. As longitudinal genomics datasets often have a small number of time-points, future work
may consider how to incorporate sparse trajectory information with the stationary distribution for
better identifiability guarantees or more effective architectures for recovering regulatory networks.
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A PROOFS OF RESULTS

PROOF OF PROPOSITION [4.1]

Consider block matrices such that,

r 1o
= | 27"
A { 5 5 (11D
1
B = {g%io (12)

and set D = I and ¢ = 1. If we also set

| o
w= [ 0TI ] (13)

then it is straightforward to confirm that the drift matrix L = AB — I satisfies the Lyapunov equation
Lw+wLl+1=0 (14)

12
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Now, consider any skew-symmetric matrix () that is only supported in the top left » x r block.
Then AB + Qw~! will only be supported in the top left block and therefore still have rank 7.
Furthermore, () obeys the trivial Lyapunov equation Qw + w@Q” = 0, so we have that the drift
matrix L := AB + Quw™' — I also satisfies the Lyapunov equation Lw+wlT +1=0. Choosing
the norm of @) small enough guarantees that L is still Hurwitz, while choosing ) # 0 guarantees
L# L.

In the worst case, every intervention is of the form e; for ¢ > r. The block structure and Woodbury
matrix identity imply that (AB + Qw ™! — I)~le; = —e; for any @ chosen as above, and therefore
—[A/_lei = —L_lei.

We conclude that for each intervention e; with ¢ > r, by Theorem the drift matrices L and L
both induce identical stationary distributions. Thus, even with n — r interventions, the drift is not
identifiable.

PROOF OF THEOREM [4.4]

We show separately the upper and lower bounds for number of interventions needed for almost sure
identifiability.

Theorem A.1. Suppose the true A and B are sampled according to Assumption with the con-
straint that a.s. | Al|, || B|| < /7. Then L = AB — D is a.s. identifiable.

Proof. Recall that C' = [cy, ..., ¢,] is the matrix of interventions as columns. The means of the
interventional stationary distributions are given by,
~L7'C=(D'+D'AI-BD'A)'BDY)C (15)

So with knowledge of D and C, we can calculate A(I — BD~'A)"!BD~!C. This matrix is a.s.
full rank, and its range is equal to the range of A. Hence we can infer P := Py

Now, using the Lyapunov equation, we have,

0= LwP +wL'P +¢€P (16)
= LwP — wDP + eP (17)

Rearranging,
2wP = L™ (wD + eI)P (18)

(wD +€el)Pistank n —r, so a.s. im(wD + €I ) P & im C is n dimensional. Hence we recover L~}
and therefore L.

O

Theorem A.2. Sample A € R"*" and B € R"*" according to Assumption Then a.s. AB is
not identifiable with r — 2 interventions.

Proof. Assume the decay is fixed at D = I, so L = AB — I with induced covariance w. With
r — 2 interventions, ABL~1C is at most rank r — 2, and by assumption the kernel of AT is at most

dimension n — r, so there is guaranteed to be a two dimensional subspace orthogonal to the previous

spaces, say with basis vectors z and v. Let Q* = uv” — vuT.

Then we consider L = L + wQ where Q = BT ATQ* AB, and claim that L is a valid, distinct drift
matrix that generates the same data.

First, note that u, v are orthogonal to the kernel of AT and BT is full-rank a.s., so BTATQ* is non-
zero. Transposing and applying the same reasoning, we get that Q = BT ATQ*AB # 0. Scaling

down the magnitude of Q* if necessary, we have that L is Hurwitz and distinct from L.

Second, note that L= I+ wBTATQ*)AB — 1, so it satisfies the rank r constraint on the non-
diagonal part.

Now we show it agrees on the induced stationary distributions. Again from the choice of the two
dimensional subspace, we have that Q* ABL~'C = 0, which implies QL~'C = 0.

13
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From the Woodbury matrix identity, we see the means of all stationary distributions are conserved,

L7'C = (L+wQ)"tC (19)
=[L7' - L'w(I + QL 'w)QL '] C (20)
=L 'C 2D

Finally, note that by antisymmetry of (),

Lw+wl” = Lw+wL” + wQuw + wQTw (22)
= Lw+wL” (23)

which implies L satisfies the same Lyapunov equation and therefore induces the same covariance
w. O

PROOF OF PROPOSITION [4.6]

In the zero-noise setting, the SDE reduces to an ODE, and in the limit as time goes to infinity, the
stationary distribution is simply a point mass on the unique fixed point of the drift. Therefore, one
only gets access to the stationary points x for each vector field v + ¢;: other higher moments are
not defined.

Suppose we have n — r — 1 interventions. Since A has r columns, there must be a vector u in R"
orthogonal to the columns of A and C'.

Let B = B + bu” for any non-trivial b € R”. We claim B induces the same data as B. First,
note that because u is orthogonal to every c;, and x} — ¢; is in the image of A, it follows u is also
orthogonal to each ;.

Thus, one can confirm that ij‘ = Bz}, so the fixed points don’t change. But B # B, and they are
clearly not equivalent up to permutation or scaling invariance.

PROOF OF THEOREM [4.7]

We will require two lemmas.

Lemma A.3. Consider a vector field v(x) = Ac(Bx)—x+cwith |A|l,||B]l < L ||0]lec =7 < 1.
Let p be the stationary distribution of our usual SDE, x* be the unique stationary point of v, and P
be an orthogonal projection such that BP = B and PA = A. Assume 2(j — 1) < Tr(P), then,

By 1P - o)) < (T2 ) (4

Proof. Let f(x) = Ao(Bx) + c¢. Note f is a contraction and f(x) = f(Px). We have by Cauchy-
Schwarz,

Pz —2a*) -v(x) =Pz —z%) - (v(z) —v(z")) (25)
=Pz —a") - (f(z) - f(2") - (x —27)) (26)
= P(z —a") - (f(Pz) - f(Pz") — (z — 27)) 27)
< -(1=9)|P—-a")|? (28)

Choose gj(z) = |[P(x — x*)||*/, then if T := T'r(P) we have,

Vgi(x) = 2jgj—1(z)P(z — 2%) (29)
Agj(z) = 2jTgj-1(z) +4j(j — 1)gj-1(z) (30)

14
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The generator of the SDE is Ag = Vg - v + 5Ag. So Fokker-Planck gives,

0= E,[Ag)] GD)
= B, [Vg; - v(a) + 529;] (32)
= B, [2ig;-1P(a —a") - v(@) + 5 (2T + 4§ = 1))gj1 («) (33)
< By [~2i(1 = 7)g; + 52T + 45 = 1))g;1(2)| (34)
(35)

Simple algebra gives,

Eplgj-1(z)] (36)

Now apply the assumption 2(j — 1) < T and the result follows by induction. O

Lemma A.4. Assume same conditions as previous lemma. Then the Taylor expansion with remain-
der around x* given by

v(z) = Ju(z*)(z — =) + R(x), 37
satisfies the bound
IR(2)]| < 2v2r*°M||P(z — 2*)|%, (38)
where M := sup; ||07 || so-

Proof. Assume that im A @ (ker B)* is only supported on the first 2 coordinates. The ith coordi-
nate of the Taylor remainder must take the form,

Ri(z) = vi(z) — el Jv(z")(z — z¥) (39)
=2 %(x —a’)* /1(1 — 1)0avi (2™ 4 t(x — x*))dt (40)
=2 al 0

By assumption, second order derivatives of v are always bounded by M, and they are identically
zero if ¢ > 2r. This implies R; is only nonzero for ¢ < 27, in which case,

2

R <M > Sl@—a)] (1)
|a|=2,a52,-=0
2
2r
<MY - (42)
j=1
2r
<2rM Z |z — x;‘\z 43)
j=1
= 2rM||P(x — z*)|? (44)

where P the projection onto the first 2 coordinates.
Hence,

IR()[|* < 8r°M?|| P2 — 2)||* (45)
Now, we drop the assumption that im A @& (ker B)* is restricted to the first 2r elements and extend
the result more generally.

Consider the orthogonal matrix @ such that im QA @ (ker BQT) is restricted to the first 27 com-
ponents, then by design the above result can be applied to the new drift function

15
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0(y) = QAr(BQ"y) —y + Qc (46)
whose unique stationary point is y* = Qx*.

Hence, applying the above result to the remainder term R(y) := o(y) — Jo(y*)(y — y*), with P the
projection onto the first 2r components, we get

|R(y)|l < 2v2r¥2M||P(y — y*)|? 47)

If we let y = Qx, then some algebra reveals

R(y) = d(y) — Jo(y*)(y — v") (48)
= QAc(BQ"y) — y+ Qc — (QAJo(BQ y")BQ" — I)(y — y*) (49)
= Q(Ao(Bz) —x +c— (AJo(Bx*)B — I)(xz — ™)) (50)
= Q(v(x) — Ju(z*)(x — z*)) (51)
= QR(x) (52)

And so we can finally conclude

IR(z)|| = |R(y)| (53)
< 2V2r*2 M| P(y — y*)|? (54)
= 2v2r32 M| QT PQ(z — a™) |2 (55)

Note that by our choice of Q, Q7 PQ is the orthogonal projection onto im A & (ker B)~, and so we
have the bound.

O
Using these results, we can proceed to the main perturbation theory result:

Proof of Theorem[{.7] 'We will drop the e subscript, where it is clear that m := m. and ¥ := 3. are
the first and second order moments of the stationary distribution.

The mean bound follows from Lemma[A.3]and Jensen’s inequality,

Im — z*|| = | Eylz — 2| (56)
w2 1/2
< B, ||z -] (57)
n 1/2
< ( ) . (58)
1—v

Fokker-Planck yields a formula for second-order moments of the SDE stationary distribution (see
for example Chapter 5.5 in|Sarkkd & Solin| (2019)), such that,

0= E,[(x —m)v(z)" +v(z)(x —m)" +el] (59)

Note the simple fact that
Ey[(x —m)(x —2")T] = Ey[(x — m)(z — m+m — z*)7] (60)
=Ep[(z —m)(z—m)"] =% (61)

combined with the linearization of v we can write,

0=FEyf(x —m)(xz —2)'LT + L(z — 2*)(x —m)T + el + (x — m)R(z)" + R(z)(z —m)"]
(62)

=LY+ XL + el + E,[(x — m)R(z)" + R(z)(x — m)*] (63)
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and dividing by e,

0=LZ 4 217 4 T4 2Byl — m)R()" + R(x)(z —m)"] (64)

As in the lemmas, we let P be the orthogonal projection onto im A (ker B)+. Then by Lemma
Lemma[A.4]and Cauchy-Schwarz we have,

By (e —m| - |[R(@)|] S r*2ME, [(|& —m| - | P(z — 2*)|?] (65)
1/2 e 1471/2
SrPME, (o = ml*] " B, | P(x — 2*))"] (66)
er®/2M 911/2
ST [[|2 — ml[?] (67)
er®/2 M N " 1/2
<G B lle—a P 4l = )] (68)
_ 3/2p5/21/2 )1 )
T A=)
By the fact that ||zy” || < ||z|| - ||y|| and Jensen’s inequality,
1 1
By (@ - m)R(z)" + R(z)(z —m)"] ‘ S ZEBpllz = mll - [|R(2)Il] (70)
1/2,.5/2,)1/2
< € n M 1)

> TP

Now, if we choose € small enough to guarantee the above bound is strictly less than 1, then the Lya-
punov equation given in Equation (64)) has a unique solution. Furthermore, the Lyapunov equation
has an integral form (Sarkkd & Solinl 2019), which states that the unique positive definite matrix w
that satisfies Lw + wL? + QQ? = 0 can be written as

w = / eLtQQTeLTtdt (72)
0
It’s easy to then conclude from the integral form of the Lyapunov equation in Equation that,
1/205/2p1/2 1 o© -
I2/e - wll S S [ R et . 73)
(1-7) 0

By assumption, L is Hurwitz, and in fact || L|| < 1 — +. By the fact that ||e”|| < el ZIl,

1/2,5/2,1/2 5 o0
IS/e —wl| < S (q ”)2 / 2Lt gy o
-7 0
1/2,5/2,,1/2 00
< W 2=t 34 (75)
-7 0
1/2,.5/2,1/2 01
< % (76)
(I—=7)
L]

PROOF OF THEOREM [4.§]
We begin with a series of lemmas. We first need a result about the equilibrium points of the drift,

ruling out any degeneracies. As before, we let 2} denote the unique zero of v(z) + ¢; = Ao(Bz) —
T+ ¢;.
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Lemma A.S. For r independently sampled interventions, x; — c; are a.s. linearly independent for
1< <.

Proof. Letg(y,z) = o(BAy+z). By the contractive constraint on the activation, and the constraints
that || A||, || B]| < 1, it’s clear g is a uniform contraction mapping. The derivatives of g satisfy,

Jyg(y, z) = Jo(BAy + z) BA a7
J=9(y, 2) = Jo(BAy + z) (78)
with all spectral norms bounded by v < 1.

By the uniform contraction mapping principle, the fixed point map y*(z) such that g(y*(2), z) =
y*(z) is differentiable, with Jacobian

Jy*(2) = (I = Jyg(y*(2),2) " Lg(y” (2), 2) (79)

Notice this Jacobian never vanishes, and furthermore ||y*(z)|| — oo as ||z|] — oo. This follows
from the fact that o’ > 7,

Iy ()l = lo(BAy™(2) + ) (80)

> [lo(0) + 7(BAy*(2) + )| (81)

which is clearly impossible for ||z|| sufficiently large and ||y*|| bounded.
Therefore, by the Hadamard global inverse theorem, y*(z) is a diffeomorphism on R".

Now, condition on A and B, which are a.s. full rank. Consider the random variable y* (Bc) where ¢
is a sampled intervention vector. Because Bc has a density in R", so does y*(Bc).

The terms y*(Be;) are sampled independently and hence are a.s. linearly independent. By unique-
ness of fixed points, it must be the case that x} — ¢; = Ay*(Bc;). Therefore, given r interventions,
the vectors x; — ¢; for 1 <4 < r are also a.s. linearly independent.

O

Lemma A.6. The set of vectors o' (Bxl) /o’ (Bx}), where [ denotes elementwise division, for 1 <
i < rarea.s. abasis for R". Furthermore, the one-dimensional subspace of of o« € R™1 such that
Mg’ (Bag) /o' (Bx})] = 0 almost surely satisfies the constraint ™1 # 0 for non-zero .

Proof. Again we first condition on A and B. By the same argument as in Lemma we have
that o (Bz}) = y*(Bc;), and therefore since o is smooth and strictly monotonic, we have that each
Bz} = o~ 1(y*(Bc;)) has a density and is independent of the other interventions.

Now, additionally conditioning on the value of ¢/(Bx{), we want to show that o' (Bx() /o’ (Bx})
for each index ¢ are linearly independent.

Define f(z) = o/ (Bx{)/o’(2). It's quick to see that .J f(z) is diagonal for any z, and rank deficient
only when there’s some index j such that ¢/ (2) is zero. By assumption on o, this set of points is
measure zero. Hence the Jacobian of f is a.s. full-rank.

By the change of variable theorem induced by the area theorem (Evans, [2018) we have that f(Bc;)
has a density, and therefore the set of vectors { f(Bc¢;)}i_; is a.s. linearly independent.

Finally, let U be the matrix with the columns o'(Bxf)/o’(Bx}) for 1 < ¢ < r. The second

statement of the lemma now concerns the existence of & = [, a1, . . . -] such that
aq
al+U | =0 (82)
Oy

By above, U is invertible so there is a one-dimensional subspace of satisfying a. Then the condition
al'l = 0is equivalent to 17U 11 = 1.
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Note this matrix inverse condition can be equivalently written as 17adj(U)1 = det(U) where
adj(U) denotes the adjugate matrix. This is a non-trivial polynomial equation on a random variable
M with density, and therefore it is satisfied only on a set of measure zero, hence a.s. a’'1 # 0.

O
Lemma A.7. Suppose X € R™*" has full rank and 'Y € R"™" is invertible. Furthermore, sup-
pose the matrices D1, ..., D, € R"™" are diagonal, with the vectors along each diagonal linearly
independent.

Then only observing XD;Y for 1 < i < r, X and Y are uniquely identifiable up to permutation
and scaling of their columns and rows, respectively.

Proof. First, note that by the independence assumption, there’s some choice of & € R" such that
> i_, @;D; has only one non-zero element along its diagonal, and therefore Y ., a; X D;Y is
rank-one.

Conversely, suppose > ., a; X D;Y were rank-one but >_._, «;D; had at least two non-zero ele-
ments on the diagonal, w.1.0.g. the first and second elements. We will index X by its columns and Y’
by its rows. By the independence assumptions, there are vectors w1, us such that y; L uy iff i # 1,
and likewise for us. Thus,

(Z aiXDiY> up =X (Z aiDi> e1(yi,u1) = fras (83)

i=1

(Z aiXDiY> ug = X (Z aiDi> ea(y2, u2) = Pax (84)

i=1

where by assumption 31, B2 # 0. Again by independence, x; and x5 are not collinear contradicting
the rank-one assumption.

Thus, a linear combination of terms that is rank-one offers a certificate that the given linear combi-
nation « does in fact yield >__, o; D; with only one non-zero term. By considering all possible «
vectors, one will arrive at each possible rank-one term ;z;y7 for some unknown scalar ;. O

For the proof of the main theorem, because we have a total of » + 1 interventions we will zero-
index the interventions and consider 0 < ¢ < r for convenience. We introduce the notation afi] to
denote the Jacobian of o evaluated at Bz}, to distinguish it from an element of o. Because o acts
elementwise, ofi] is necessarily a diagonal matrix.

Proof of Theorem{.8] By Theorem [4.7] for each intervention in the limit of zero noise we recover
the mean vector z; and the covariance matrix w;, which satisfies Jv(z} )w; +w;(Jv(z}))T +1 = 0.
The Jacobian of the vector field satisfies Jv(x}) = Aafi]B -1

From Lemma[A.5} any 7 terms x} — ¢; are linearly independent. Since they are all in the image of A,
we can derive P4 and hence Pj(. From a similar calculation as in the linear case, one can confirm
that,

1 _
2w Py = (I — §Aafi]B) lps, (85)
and taking the transpose,
1 _

2Ptw; = P+(I — 53%@.} ATY—L, (86)

This matrix is rank n — r, so its kernel is dimension r and clearly generated by the columns of

1

(I— 53%@ AT A (87)

Thus, taking an arbitrary basis of the above mentioned kernel must be of the form,

1
Zi = (I - §BTUfi]AT)AQi, (88)
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for some invertible matrix ); € R"*". Note that here, Z; is observed but @; is not.
Note that,
1
PiZ; = _iijTafi] ATAQ;. (89)
Observe two facts: 1) O'fi] AT AQ; is a.s. an invertible matrix in R"*", and 2) P4 BT maps from R"
to an n — r subspace, so if n > 27 then a.s. this is full-rank.

Because PjZi and PjZo are a.s. full-rank with the same range, we can derive the unique M; such
that,

PiZ;M; = Py Zy. (90)
Furthermore the pseudoinverse (Pj{ BT)T acts as a left inverse, so we derive the identity,
ofy AT AQ:M; = iy AT AQo. 91)
Notice that Z; and M; are observed variables while the (); are not. Nevertheless, we can rewrite,
ZiM; = AQ;M; (92)
= A(ATA)"! (AT AQ; M) 93)
= (AN oy (o) T AT AQo (94)

By Lemma the diagonal parts of Ufo] (afi])_l are linearly independent for 1 < i < r.

Now, by Lemma we observe the rows of (A")” and the columns of AT AQq up to permutation
and scaling. W.Lo.g. we can assume the permuted rows of (A)7 are placed in the true order,
and we can conclude we observe (AT)TA;* and A, AT AQq for some unobserved, diagonal scaling
matrices A1 and As.

Taking transpose and another pseudoinverse, we recover AA1, so it remains to recover B.
We can observe,
(=2Px Z0)(A2ATAQo) ™! = Py B ol AT AQo(A2 AT AQo) ™! 95)
= PiB o[A; " (96)
Taking a transpose, we’ve observed A5 1afO]BPj§. Now, returning to equation , we can rewrite

the observed matrix with Woodbury,

1
2w Py = (I — 5Aafi]3)—1pj (97)

1 1 -
Subtracting P7, applying the left inverse of AA; and the right inverse of A5 1O'f0]BPj( and finally
multiplying by two, we observe,
_ 1 _ _
ATHI - §afi]BA) Lot (o) T Az (99)
The whole matrix is R”*" and invertible, so taking an inverse we calculate,

A;lafo] (af.])*lAl - %A;lafO]BAAl (100)

?

Now, we claim we can calculate a non-zero o € Rt such that Z::o a;Z;M; = 0. Indeed, by the
decomposition in[92] we know this matrix sum is zero if and only if

> aiofylof) =0 (101)
=0
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By lemmal[A.6] one can find non-zero « satisfying this constraint, and furthermore a.s. a1 # 0.
Thus, we can determine « by finding a non-trivial solution to Z;:O o; Z; M; = 0, because Z; and
M;; are observed.

Consequently, summing equation [[00] across several choices for ¢ we can calculate the term:

- _ _ 1, _ a1
Zo‘i (A2 10{0] (Ufi]) "Ay - §A2 1‘7fo}BAA1> = _TAQ 1Ufo]BAAl (102)
i=0
Notice that
((AA)TAN)THAAN)T = ATHATA) 7T AT, (103)
and so multiplying this term on the right and dividing out the non-zero scalar term — O‘TTl we observe
A3 oy BPa (104)

Because we observe A;lofo} BPj asabove, and P4+ Py = I, we at last observe A;lcrfo] B. Hence
we’ve also recovered B up to scaling of its rows.

O

B EXPERIMENTAL DETAILS

B.1 LINEAR SDE RECOVERY

For the true simulated linear SDE, A and B are sampled with iid Gaussian entries, and then normal-
ized to have spectral norm equal to 0.9. The true decay matrix D has each diagonal entry sampled
iid from the uniform distribution on the interval [1,2]. The model is trained with the loss given in
Equation ([S]), with the Adam optimizer (Kingmal [2014) with an initial learning rate of 0.005 and
3000 iterations. Additionally, due to the non-convexity of the objective, on each training instance
we run 100 independent initializations and pick the one with the smallest training error. This ex-
cludes the oversampled setting with & = r * log(n), where we get good performance with only 5
independent initializations.

The plotted mean and standard deviations in Figure 2] are based on 5 separate instantiations of the
true model and fitting a new model on the stationary distribution. Experiments were run on CPU.
All experiments (including those below) were run on a Linux system.

B.2 NONLINEAR SDE RECOVERY

The true simulated SDF has A and BT sampled uniformly from the Stiefel manifold, and rescaled
by v = 0.995, with ¢ = 10~° and o a sigmoid. We use ambient dimension n = 8 and true low-
rank dimension r = 2. To get training data, we sample 1000000 samples from each perturbed SDE,
initialized at the stationary point with thinning of 300 and burnin of 100. We then calculate the mean
and covariance for use in the loss.

In training, the learned network has a MLP to parameterize the learned activation with a hidden
dimension of 20, trained for 10000 iterations and learning rate 0.002 also in Adam, using the loss
L ontin introduced in Section [5.2} The interventions are iid Gaussians with standard deviation of
0.5. We do 100 runs, choose the drift with smallest training loss, and measure the normalized
Frobenius error against the true matrices A and B (after unit scaling and minimized over all column
/ row permutations, as the identifiability is only up to scaling and permutation), then report the mean
and standard deviation across 20 independent instances.

B.3 SYNTHETIC NONLINEAR SDE GENERALIZATION

To parameterize learnable activations, given an input x € R"”, we learn a function that acts el-
ementwise on x without necessarily being the same function on each element, i.e. o(z) =
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[o1(21),...,0n(x,)]. We choose to parameterize eacho; as two-layer MLP using the actual sig-
moid & as the activation function. As a warm start, we also add 0.15 () as the initialized activation
may be too unstable to train on its own.

We consider a fixed true SDE, with hidden dimension » = 3, where the rectangular matrices A
and BT have one down the diagonal and zero elsewhere, D = I, v = 0.98, and the elementwise
activation function is given by

o1(x) = 3cos(3(z — 0.5))

o2(x) = 2sin(2(x + 1.5)) — 1

o3(z) = o1(z)
The hidden dimension of the activation MLPs is fixed at 20.
Each intervention is sampled as a Gaussian vector with mean zero and variance 0.1 on each entry,
and from each intervened SDE we collect 5000 samples. To do this, we use the Euler-Maruyama
scheme to solve the SDE, and use MCMC to draw approximately independent samples from the

stationary distribution, using d¢ = 0.01, a thinning factor of 300 and the first 500 samples treated as
burn-in. We use an radial basis function kernel to parameterize the KDS loss.

We train with 10 interventions, and evaluate on 20 held-out interventions. Training is done with
AdamW (Loshchilov}, |2017)), with initial learning rate 0.003 and 50000 iterations. The hyperparam-
eter ranges considered are given in Table[3] All experiments were run on CPU.

Table 3: Hyperparameter ranges considered for synthetic nonlinear SDE experiments.

Hyperparameter Range
model hidden size r {4,8,16}
kernel bandwidth {3,5,7}

L, weight regularization  {0,107°,1074}

B.4 SIMULATED GRN SDE GENERALIZATION

We first give a summary of the simulator. BoolODE is scRNA-seq data simulator that samples
mRNA readouts via a stochastic differential equation (SDE). The underlying cyclic GRN is encoded
in the SDE via a Hill function based approximation to a boolean logical circuit. x;, p;, and R[i] each
represents the mRNA concentration for gene i, the concentration of the protein encoded by gene i,
and the set of proteins that regulate gene ¢. Further, r, [,,, [;, and s are scalar coefficients representing
translation rate, RNA decay rate, protein decay rate, and noise standard deviation respectively. The
functions f;(-) encodes the gene regulatory network. The default SDE is given by,

d.l?i

T fi(prpi)) — loi + 5\/ZidBy (105)
dpi _ l dB;] 106
dt =Trr; — ppz""s\/piz t ( )

where B and B’ are independent Brownian motions.

We simulate overexpression (e.g., CRISPR-a) experiments by inducing perfect intervention coupled
with increased transcription for a set of intervened genes I;. For each intervened gene j € I, we
set f;(-) = 0 and add a positive shift (set to 20 in the experiments) to dz;/dt. We consider K
such intervention regimes, plus the observational setting (k = 0) with no intervention, i.e, Iy = 0,
for a total of K + 1 regimes. With this setup, we obtain a family of distributions {px }1_, in gene
expression space.

We adapt the neural ODE architecture proposed in [Lin et al.| (2025)). The base SDE model under
I}, parametrizes the change of gene expression via the drift function as below. A and B are the
coefficient matrices encoding the modular graph. « is a scaling vector controlling the rate of non-
linear activation in the module, where the activation o is the logistic sigmoid. Further, /3 is a bias
term that shifts the activation threshold of the modules. The GRN is extracted as A diag(a o 15)B.
The intervention is modeled as a combination of standard basis vectors, > el € specifying the
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overexpression. The model also learns a single diffusion coefficient scalar. Lastly, M is a masking
matrix blocking the signals from the intervened genes’ regulators. Altogether, the drift is given by,

vk(z) = MyAo(ao (Bx — B)) + Y e; — Du. (107)
J€Ik
We alternatively consider the architecture using a learnable MLP to model the nonlinear activation
of modular signals,
vk(z) = My, Ao.(Bz — ) + > e — (108)
J€EIx

where o, denotes the MLP as described above. The model loss is the Sinkhorn divergence (Feydy
et al.,2019) applied to the true perturbed distribution and the samples drawn from the learned SDE.

Each interventional distribution py, is obtained by taking the observational data pg as initial distribu-
tion and simulating the SDE via the Euler-Maruyama method.

We fit the hyperparameters by testing the ODE architecture in|Lin et al.|(2025)) on the same simulated
datasets, and then doing zero-shot transfer of the hyperparameters to the SDE models. For Bicycle,
we sweep the hyperparameters in Table 4] and use the package defaults for the remaining values.
Experiments are run on an nvidia tesla V100 gpu.

Table 4: Hyperparameter ranges for GRN simulation.

Hyperparameter Range
scale L, {0.0001, 0.001,0.01,0.1,1.0}
scale spectral {0,1.0}
scale Lyapunov {0.1,1,10}
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