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Abstract

Question Answering (QA) is widely used for001
evaluating the reasoning capabilities of NLP002
systems, where an important ability is to de-003
cide on answerability — whether the question004
can be answered with the information at hand.005
Previous works have studied answerability by006
including a fixed proportion of unanswerable007
questions in a collection, without explaining008
the reasons for such proportion or its impact009
on systems’ results. In this work, we study010
different scenarios for answerability detection011
and evaluate several Large Language Models012
using different rates of unanswerable questions013
by introducing unanswerable questions in the014
popular multiple-choice QA dataset RACE. We015
show that a 30% rate of unanswerable ques-016
tions at training seems optimal across a variety017
of scenarios, and support this with a series of018
extended experiments. Despite this, we ob-019
serve that systems tend to expect the same rate020
of unanswerable questions seen at training and021
that the ability to decide on answerability al-022
ways comes at the expense of the ability to find023
the answer when it exists.024

1 Introduction025

The last few years have shown an increase in perfor-026

mance for Natural Language technologies. One of027

the main reasons for this improvement is the devel-028

opment of systems based on transformer architec-029

tures (Vaswani et al., 2017), which are the predom-030

inant architectures of the current models (Devlin031

et al., 2019; Yang et al., 2019a). Researchers have032

proposed several tasks for evaluating systems’ ca-033

pabilities and Question Answering (QA) is used034

as a way of evaluating reasoning. In the QA task,035

a system must extract the span of text containing036

the correct answer to a question (extractive QA) or037

select the correct answer among a set of candidates038

(multiple-choice QA) (Rogers et al., 2020).039

QA benchmarking has tried to evaluate different040

reasoning capabilities (Weston et al., 2016), help-041

ing to detect room for improvement. Most bench- 042

marks are of general domain, using documents 043

from Wikipedia, e.g. WikiQA (Yang et al., 2015) 044

or news articles, e.g. NewsQA (Trischler et al., 045

2017); while others are domain-specific, e.g. on 046

the biomedical domain (Tsatsaronis et al., 2015). 047

One important ability of QA systems is answer- 048

ability, the ability to detect if a question has a cor- 049

rect answer, which is tested by including questions 050

without a correct answer in the datasets (Rogers 051

et al., 2022). The objective of testing answerability 052

is to detect missing information1. If the answer 053

is not contained in the reference document(s), as- 054

suming that a question is answerable leads to a 055

wrong answer. These questions require, as it is 056

mentioned in Rajpurkar et al. (2018), to ”know 057

what you don’t know´´. Otherwise, a system can 058

return a random answer, which could be correct. 059

The inclusion of such questions lead to a slight drop 060

in performance (about 30%), which was quickly 061

overcome. The best examples of these benchmarks 062

are SQuAD 2.0 (Rajpurkar et al., 2018) for ex- 063

tractive QA and QuAIL for multiple-choice QA 064

(Rogers et al., 2020). 065

The distribution of questions without a correct 066

answer usually ranks between 30-50% of the whole 067

dataset, depending on the benchmark. However, 068

it is unclear: (1) why the authors selected such 069

distributions and (2) how the distribution affects 070

results. In fact, it may remain open if systems are 071

learning about answerability. 072

In this paper, we study answerability using dif- 073

ferent distributions of questions without correct an- 074

swers. We firstly modify RACE (Lai et al., 2017), a 075

well-known multiple-choice collection, and create 076

several versions containing different distributions 077

of questions without correct answers, from 0% to 078

1This is different to the option of not responding, where
a system is unsure about its ability to answer a question and
prefers not to answer instead giving an incorrect answer (Peñas
and Rodrigo, 2011).
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100% in 10% splits2. Then, we train and evaluate079

a system in all the versions, testing all the possi-080

ble combinations. We observe the model tends081

to reproduce the distribution seen at training and082

to train the with a 30% of unanswerable questions083

seems to be the best strategy. But, we show that any084

training strategy including unanswerable questions085

reduces the performance when answering answer-086

able questions. So, we hope our study promotes087

new proposals for improving systems’ abilities to088

predict question answerability.089

2 Related Work090

Question Answering (QA) requires inferring the091

answer to a given question from a given context.092

This formulation can adopt different forms (Chen,093

2018): the context can be a short paragraph or094

a document with several paragraphs; the notion095

of question can be expanded to a cloze-style (fill-096

in-the-gap) task (Hermann et al., 2015); and the097

task can involve extracting a span of text from the098

context (Joshi et al., 2017), choosing an answer099

among multiple options (Sugawara et al., 2018), or100

even generating a free-form answer (Nguyen et al.,101

2016).102

One of the main challenges of constructing large-103

scale datasets is how to obtain the questions. Sev-104

eral datasets obtain questions from crowdsourc-105

ing. This hampers the applicability of experiments106

to real-world scenarios, where users information107

needs are spontaneous and unconstrained (Clark108

et al., 2019). One solution is to build bench-109

marks based on naturally occurring questions such110

as MS MARCO (Nguyen et al., 2016), Narra-111

tiveQA (Kočiskỳ et al., 2018) and Natural Ques-112

tions (Kwiatkowski et al., 2019). However, it is113

more difficult and costly to create such collections.114

As systems reach human performance on the115

most popular QA benchmarks, different strategies116

has been followed to create more difficult datasets.117

For example, the ARC dataset discards questions118

if they are too easy for a word co-occurrence algo-119

rithm (Clark et al., 2018), and ComQA (Abujabal120

et al., 2019) discards questions whose answer could121

be found by existing search engine technologies.122

Other datasets focus on specific types of reasoning,123

such as sorting data (Dua et al., 2019) or finding124

coreferences (Dasigi et al., 2019).125

Lai et al. (2017) establish five levels of reason-126

2We release the script to create these versions in [ANONY-
MOUS IN THE REVIEW PERIOD]

ing difficulty (in increasing order): word matching, 127

paraphrasing, single-sentence reasoning, multiple- 128

sentence reasoning and insufficient/ambiguous. 129

These authors claimed that many questions in popu- 130

lar datasets like CNN (Chen et al., 2016) or SQuAD 131

(Rajpurkar et al., 2016) are simple factoid ques- 132

tions, or they can be solved by simple word match- 133

ing or paraphrasing. Single-sentence reasoning is 134

easier than multi-sentence reasoning (Richardson 135

et al., 2013), while integrating the information con- 136

tained in multiple sentences is also much more 137

difficult for humans (Berninger et al., 2011). A 138

dataset that focuses on multi-sentence reasoning 139

is MultiRC (Khashabi et al., 2018), and this con- 140

cept is extended to long documents in NarrativeQA 141

(Kočiskỳ et al., 2018), and multiple documents 142

in HotpotQA (Yang et al., 2018). A comprehen- 143

sive approach to several reasoning phenomena is 144

QuAIL (Rogers et al., 2020), a multiple-choice QA 145

dataset where questions are annotated by type of 146

reasoning skill. QuAIL also includes unanswerable 147

questions. 148

Datasets such as CNN/Daily Mail (Hermann 149

et al., 2015), SQuAD (Rajpurkar et al., 2016) or 150

RACE (Lai et al., 2017) were constructed with the 151

assumption that a correct answer for every ques- 152

tion exist within the given context. However, this 153

assumption does not hold in real-world QA appli- 154

cations. For example, in web search there can be 155

multiple possible sources of information (typically 156

web snippets) that 157

Adding onto the previous version of SQuAD, 158

SQuAD 2.0 (Rajpurkar et al., 2018) included more 159

than 50k unanswerable questions written by crowd- 160

workers. The premise was to add relevant questions 161

with plausible (yet incorrect) answers within the 162

given passage, but these questions were unanswer- 163

able based on the passage alone. Analyses showed 164

that systems’ performance is overestimated in the 165

presence of unanswerable questions. 166

Adversarial training Several studies have used 167

automatic adversarial methods to probe model ro- 168

bustness with similar conclusions. Jia and Liang 169

(2017) showed how model performance on SQuAD 170

degrades by more than half when tested over ex- 171

amples adversarially modified with their AddSent 172

algorithm, which appends a sentence that resem- 173

bles the question to the reference passage. How- 174

ever, the data generated are similar to the origi- 175

nal, resulting in a less diverse test set. Wang and 176

Bansal (2018) proposed an improved version of 177
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the algorithm, AddSentDiverse, and an improved178

training regime including adversarial data augmen-179

tation. Gan and Ng (2019) proposed adversarial180

question paraphrasing to test models’ reliance on181

string matching, and also applyed the method to182

create training data, improving models’ robustness.183

Yang et al. (2019b) experimented over both SQuAD184

and RACE, but instead of corrupting the datasets185

they applyed adversarial perturbations at the level186

of word embeddings during training.187

In contrast to SQuAD 2.0, these adversarial188

methods have the advantage of needing less human189

labour. However, they do not necessarily produce190

unanswerable questions. An exception is the work191

by Zhu et al. (2019), but the question variations192

produced are too lexically similar to the original193

ones and do not clarify whether the model fully194

understands them or relies on superficial cues.195

Answer removal While the above adversarial196

methods work by producing modified questions for197

extractive QA, other dataset formats allow simpler198

methods. Pradel et al. (2020) showed an example of199

unanswerable question generation in Knowledge-200

Based QA. They modified the Spider KB ques-201

tion answering dataset by deliberately removing202

some information from the underlying relational203

databases. The present work follows a similar ap-204

proach over the multiple-choice QA format.205

Most of these studies add changes to collections206

or make them more difficult for evaluating reason-207

ing capabilities. However, it is unclear in what208

grade these changes affect results or evaluate rea-209

soning capabilities. Besides, the studies lack of210

notions about the proportion of changes that should211

be included in a new collection. In our study, we try212

to fill this gap regarding unanswerable questions.213

3 Dataset214

Our definition of unanswerable question is akin to215

the one seen in QuAIL (Rogers et al., 2020), where216

a question is annotated as unanswerable when the217

supporting passage does not provide sufficient in-218

formation, and world knowledge does not make219

one of the answers more likely. With this definition220

in mind, we modify a collection without unanswer-221

able questions, RACE, creating different splits with222

different distributions of unanswerable questions.223

The original RACE dataset is a canonical bench-224

mark in Multiple-Choice QA. RACE collects real225

English as a Second Language exams for 12- to226

18-year-old students in China. The exams are inten-227

tionally designed by human experts to evaluate hu- 228

man language understanding and reasoning, which 229

makes RACE an adequate tool to examine QA sys- 230

tems. The dataset is also large enough to allow the 231

training of current data-driven technologies. The 232

collected exams consist of a supporting passage 233

accompanied by a variable number of questions 234

about it. Each of these questions is paired with 4 235

candidate answers, of which only one is correct. A 236

sample passage and two corresponding questions 237

from RACE-M can be seen in Figure 3 in Appendix 238

B. 239

The exams originate from either middle- (12 to 240

15 years old) or high-school (15 to 18) examina- 241

tions, thus allowing the dataset to be separated in 242

two levels of difficulty, which the authors denom- 243

inate RACE-M and RACE-H respectively. There 244

is a wide gap in difficulty; passages, questions 245

and candidate answers in RACE-H are 52% longer 246

on average, and contain a much wider vocabulary 247

(125120 tokens in RACE-H vs. 32811 in RACE- 248

M). The authors claim that, since both the ques- 249

tions and candidate answers are human generated, 250

RACE is more challenging than comparable-scale 251

QA datasets. To support this claim, they annotate a 252

sample of questions with the type of reasoning phe- 253

nomena involved. Their statistics show that 33% of 254

the questions in RACE involve single-sentence rea- 255

soning and 26% multi-sentence reasoning, while 256

a combined 37% can be solved with word match- 257

ing or paraphrasing – this last figure is 74% for 258

SquAD. 259

RACE contains a total of 27933 text passages 260

with 97687 questions. The authors provide prede- 261

fined train, validation and test splits. Tables 1 and 262

2 in Appendix A detail the numbers of passages 263

and questions per difficulty level and split. 264

To render a question unanswerable, we simply 265

replace the correct answer option with a sentence 266

that implies that no answer exists among the given 267

options, i.e. None of the answers are correct. Elim- 268

inating the correct answer turns a question unan- 269

swerable regardless of the type of reasoning in- 270

volved. The remaining three options are plausible 271

but incorrect, thus the only correct answer is None 272

of the answers are correct. 273

To prevent model overfitting (i.e. that systems 274

learn to identify None of the answers are correct. 275

as the correct answer to any question) and again 276

following QuAIL, we also introduce the “unan- 277

swerable” option in questions that should remain 278
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answerable. In these cases, we replace one of the279

incorrect options chosen at random, keeping the280

correct answer choice available, but at the same281

time introducing a different kind of distractor: one282

that indicates that the question may be unanswer-283

able given its particular context and the other an-284

swer choices. We give an example of the original285

passage and questions turned into the new ones in286

Figures 3 and Figure 4 in Appendix B.287

We create a series of altered versions of the orig-288

inal dataset to simulate scenarios with a different,289

measurable occurrence of unanswerable questions.290

For every version, we apply the modification pro-291

cedure described above. A parameter C governs292

the rate of unanswerable questions in each version,293

and thus the probability of eliminating (replacing)294

the correct answer choice. We divide the dataset by295

split and difficulty level, and apply the parameter to296

each group separately, choosing C ×N examples297

at random, where N is the number of questions298

in a particular difficulty level and split. On these299

chosen instances, we replace the correct answer300

by None of the answers are correct.. On the rest301

of the instances, we preserve the correct answer302

and replace an incorrect candidate at random. For303

test splits, the process is repeated 5 times, creat-304

ing 5 test splits per dataset with differently altered305

instances.306

The value of the parameter C is in the range307

[0− 1], where 0 indicates that the replaced option308

will always be an incorrect one and therefore all309

questions remain answerable, and 1 indicates that310

for all questions the correct option will be replaced,311

producing a scenario where all questions become312

unanswerable. Intuitively, these extreme scenarios313

are senseless, and we expect the middle values of C314

to produce the interesting results. Still, the aim of315

the experiment is to compare all possible scenarios.316

We give C the whole range of values [0−1] in steps317

of 0.1, producing 11 modified copies of RACE with318

proportions of 0%, 10%, 20%, 30%, 40%, 50%,319

60%, 70%, 80%, 90%, and 100% of unanswerable320

questions.321

4 Main experiment322

We use the English BERT-base3 model from hug-323

gingface (Wolf et al., 2019) in a Google Colab4324

instance with 8 TPUv2 cores. Furthermore, we325

3https://huggingface.co/
bert-base-uncased

4https://colab.research.google.com

make use of the PyTorch framework (Paszke et al., 326

2019) and the huggingface’s Datasets (Lhoest et al., 327

2021) library. 328

On each of the 11 datasets we fine-tune a pre- 329

trained BERT model with the same hyperparam- 330

eters. We fine-tune on the train splits of both 331

RACE-M and RACE-H. We give more details of 332

pre-processing and training in Appendix C. 333

Each of these trained models is evaluated on 11 334

evaluation datasets. For each dataset, the model is 335

evaluated on 5 different test splits (with the same 336

distribution of unanswerable questions, but the set 337

of questions turned unanswerable is different). We 338

obtain results separately for each of these 5 test 339

splits, and then average results by dataset. We use 340

accuracy, which measures the proportion of correct 341

answers, and is the common metric in multiple- 342

choice QA. 343

5 Results 344

We show our results using (11× 11) heatmap ma- 345

trixes that relates the 11 models (each trained with 346

a different version of the RACE dataset) with the 11 347

test sets. We intend to compare all the results in a 348

single overview. Columns represent the 11 trained 349

models ordered by the percentage of unanswerable 350

questions on the training set, and rows represent 351

the 11 test sets — also ordered by the percentage 352

of unanswerable questions in them. In this setup, a 353

cell contains the results of a particular model over 354

a particular test set. For instance, on Figure 1, cell 355

(4, 2)5 contains the accuracy (0.54) obtained after 356

evaluating on a test set with 30% of unanswerable 357

questions, a model trained on a set with 10% of 358

unanswerable questions. 359

We shall see that some cells are light grey in 360

some matrixes focused on showing answerability. 361

This indicates that their value is undetermined be- 362

cause it is caused by a zero division. For example, 363

if we look at the results on unanswerable questions 364

(Figure 7 in Appendix D), the bottom row is greyed 365

because it represents a test set with zero unanswer- 366

able questions and, therefore, calculating results 367

here involves a zero division. 368

We show column and row averages, respectively, 369

at the upper and right ends of every heatmap. Col- 370

umn averages contain an overview of the same 371

model across multiple testing scenarios, while row 372

averages summarize the difficulty of a test set for 373

different models. 374

5Row tagged as 30%, column tagged as 10%
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Figure 1: Model accuracy on modified RACE test sets

We have evaluated the models on (modified ver-375

sions of) RACE high and RACE middle separately376

(models were trained on both), but we have ag-377

gregated the results. These results over (a version378

of) RACE middle are always better than those over379

(the corresponding version of) RACE high. How-380

ever, we have dismissed these differences because381

they are always similar and we want to focus on382

comparing training strategies. For a breakdown by383

difficulty level, please see Appendix F.384

5.1 Overall Results385

We show the values of accuracy for each combina-386

tion of model and test set in Figure 1. The bottom387

left cell displays the accuracy of a BERT model388

that has seen a 0% of unanswerable questions, nei-389

ther during training nor during evaluation, which390

corresponds to the original RACE collection. The391

general observation on this table comes from look-392

ing at the diagonal starting from the bottom-left:393

a model’s accuracy is better when it is tested on a394

dataset with an proportion of unanswerable ques-395

tions similar to the dataset on which it was trained.396

For models trained on datasets with a high pro-397

portion (80-100%) of unanswerable questions, the398

accuracy on any particular test set almost matches399

the amount of unanswerable questions in that set.400

This suggests that these models have learnt to iden-401

tify the “unanswerable” option as the correct an-402

swer, and they fail to discern the small percentage403

of truly answerable questions.404

To further break down these results, we have405

split the accuracy for each group of questions: an-406

swerable and unanswerable. Figure 6 (Appendix407

D) shows the general accuracy when only taking408

answerable questions into account. Here, we ob-409

serve that model accuracy remains relatively con-410

stant across test sets (i.e. by column), but declines411

rapidly across models as the percentage of unan-412

swerable questions seen in training rises (i.e. to- 413

wards the right side of the table). The reason for 414

this is predictions are independent of each other, 415

thus when only looking at answerable questions, 416

the number of unanswerable questions in a test set 417

does not matter. What we are looking at here is 418

each model’s ability to correctly answer answerable 419

questions and this ability is severely impacted by 420

the presence of unanswerable questions in training. 421

In fact, models trained on over 80% of unanswer- 422

able questions are almost completely unable to give 423

proper answers. 424

We show in Figure 7 (Appendix D) the accuracy 425

on unanswerable questions, where we can see the 426

reverse pattern: models trained on a high propor- 427

tion of unanswerable question can reliably detect 428

them. The models that saw over 80% of unanswer- 429

able questions in training can almost detect all of 430

them, but as we saw earlier (Figure 6) this is at 431

the expense of the ability to deal with answerable 432

questions. On the other hand, on the left-most 433

column we see that the model that saw 0% of unan- 434

swerable questions in training never detects them. 435

However, the model that saw only 10% of unan- 436

swerable questions in training does show a certain 437

ability to detect them above expectations (though 438

still unreliable). But as we saw on Figure 6, this 439

comes at the expense of the capacity to deal with 440

answerable questions. 441

Looking at the average accuracy over different 442

datasets, we see that the model trained on 60% of 443

unanswerable questions has the highest average 444

accuracy of all models over all modified versions 445

of RACE. 446

5.2 Answerability 447

To focus on answerability, we have dismissed the 448

answer given to answerable questions, paying at- 449

tention only to whether the system identifies unan- 450

swerable questions. So, we convert into a binary 451

response the model’s responses. That is, instead of 452

A, B, C or D, we interpret the model’s responses 453

as unanswerable or answerable. A model decides 454

a question is unanswerable when it chooses the 455

option that contains “None of the answers are cor- 456

rect.” and decides the question is answerable when 457

it chooses any of the other 3 answers. In this way, 458

we switch the problem from identifying the right 459

answer to recognizing if the question is answerable 460

given the candidates. Note that for the calculation 461

of subsequent metrics, we consider unanswerable 462
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Figure 2: Answerability accuracy, i.e. accuracy at unan-
swerable question detection.

as the positive class.463

We define answerability accuracy as:464

| unanswerable ∧ pred. unanswerable |
+ | answerable ∧ pred. other |

N
(1)465

We show in Figure 2 the heatmap matrix for an-466

swerability accuracy. In this Figure, we observe467

that answerability accuracy has a distribution pat-468

tern similar to the general accuracy (shown in Fig-469

ure 1). However, values towards the lower left cor-470

ner of the table are higher in this case, indicating471

that models hardly ever choose the unanswerable472

option when it was hardly seen in training. We can473

see this on Figure 5 (Appendix D), which shows474

the proportion of unanswered options given by the475

models. In fact, this Figure shows how the model476

select the unanswered option in a similar propor-477

tion to the already seen at training.478

The retrieval of answerable questions, or speci-479

ficity, is shown in Figure 8 (Appendix D) and yields480

a pattern similar to the one seen on Figure 6. Values481

here are generally higher, indicating that models482

that saw few unanswerable questions in training483

tend to fail by choosing “proper” but incorrect an-484

swers, not by choosing the unanswerable option.485

5.3 Comparing Results on Imbalanced486

Datasets487

In this work, we have compared the results of test-488

ing a series of models on a series of imbalanced489

datasets (the proportion of answerable and unan-490

swerable questions differ). While the datasets are491

(deliberately) imbalanced, we hypothesize that re-492

trieving one class is as important as retrieving the493

other. In such a situation, the ideal scenario is a494

combination of model and test set that yields good495

accuracy over the two classes. But so far, the re- 496

sults indicate that the ability to retrieve one class is 497

detrimental to the ability to retrieve the other. Thus, 498

we need a metric that takes into account accuracy 499

scores on each of the two classes at the same time. 500

To that end, we propose to use Youden’s J statistic 501

or Youden’s index (Youden, 1950), defined as: 502

J = recall + specificity − 1 503

Youden’s J statistic is a measure of informedness 504

that gives equal weight to the two types of error: 505

false negatives (unanswerable questions for which 506

the system chooses a "proper" answer) and false 507

positives (answerable questions for which the sys- 508

tem chooses "None of the answers are correct."). It 509

produces values in the range [0− 1] (by definition 510

[−1− 1], but a negative value can be corrected by 511

switching the classes), and it can be seen as a lin- 512

ear transformation of the balanced accuracy (the 513

arithmetic mean of recall and specificity). We have 514

chosen Youden’s J statistic over balanced accuracy 515

because it produces a wider range of values. 516

We show results according to Youden’s J statistic 517

in Figure 9 (Appendix D). The values in Figure 9 518

reveal that both Figure 1 and Figure 2 are too opti- 519

mistic. As we have seen above, a model’s accuracy 520

is generally good on test sets that are similar to the 521

one the model was trained on, which leads to good 522

values towards the lower left and upper right cor- 523

ners of the tables — where train and test sets have 524

little uncertainty concerning answerability and also 525

match. We see a different behaviour in Figure 9: 526

as expected, the values on the leftmost and three 527

rightmost columns are almost 0, again confirming 528

that the respective models only have predictive ca- 529

pability for the class they have seen most. Results 530

are not much better towards the centre of the table, 531

and no value reaches 0.5, indicating all models’ 532

poor informedness concerning answerability. How- 533

ever, we see that the “30%” model is clearly better 534

informed than the others. 535

Although our results generally speak of a big 536

trade-off between recognizing answerability and 537

correctly answering abilities, and do not allow us to 538

prescript any particular training regime, the 30% of 539

unanswerable questions in training (the proportion 540

used in several collections) could be an interesting 541

proportion in combination with the proposals we 542

discuss in Section 7. 543
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6 Additional Experiments544

In this Section, we describe the results of additional545

experiments on answerability. We have modified546

several dimensions of the previous experiments to547

study their impact on results and, therefore, to learn548

more about the behavior of current technologies in549

scenarios where there are questions without correct550

answers. In the following subsections, we describe551

these experiments:552

6.1 Testing other LLMs553

In Section 4, we only used BERT-base for our ex-554

periments, what could narrow our conclusions to555

this model. This is why, in this section, we have per-556

formed the same experiments with two additional557

models: DeBERTa and T5.558

DeBERTa (Decoding-enhanced BERT with Dis-559

entangled Attention) improves on BERT’s attention560

mechanism by representing the word’s content and561

position separately and by incorporating absolute562

positions in the decoding layer (He et al., 2020).563

We use DeBERTaV3, which also uses a more ef-564

ficient pre-training task, and replaced token detec-565

tion, instead of the usual mask language modeling.566

Besides, this model has obtained better results than567

BERT on several tasks. We fine-tune DeBERTaV3-568

base models on the 11 modified versions of RACE569

previously described, with the same learning rate570

and batch size as in the BERT experiment.571

T5 is an encoder-decoder model which has to be572

used using text-to-text format (Raffel et al., 2020).573

We have selected T5 because it uses a different574

architecture than the other two models. For our pur-575

poses, we have used Flan-T5 (Chung et al., 2022),576

which uses a pre-training method based on prompt-577

ing and has given us better results. We use a learn-578

ing rate of 0.0001 and a batch size of 8. The details579

about the changes on the input are given in Ap-580

pendix E.581

We show results using DeBERTa in Figures 17,582

20 and 23, and results using T5 in Figures 18, 21583

and 24 in Appendix G.1. As expected, the results584

using DeBERTa are superior across all training-test585

combinations. Although in this case, it is the model586

trained on a 40% rate of unanswerable questions587

that performs best on average, the observed pattern588

is overall similar to the results using BERT. Regard-589

ing T5, the results are inferior to the ones obtained590

with the other two models, however, they display a591

similar pattern. Therefore, results on answerability592

seem to be not connected to the model used in the593

experiments. This is why we perform the following 594

experiments using only BERT. 595

6.2 Augmenting the dataset 596

In the main experiment, we modified the dataset by 597

replacement. That is, every instance of the RACE 598

dataset was either made unanswerable or had one 599

of the incorrect answers replaced by a distractor. In 600

this experiment, we have augmented the training 601

datasets by adding the modified instances to the 602

originals, effectively having two versions of every 603

question. Thus, models have more information for 604

learning when a question cannot be answered with 605

the given options. 606

We show the results of this experiment in Fig- 607

ures 25-30 in Appendix G.2. In the Figures with 608

results using augmented data, the rates indicate the 609

proportion of instances where the modified version 610

is unanswerable. 611

In these Figures, we can see how the overall 612

accuracy per column is slightly better when using 613

the augmented dataset. However, according to the 614

Figures with answerability accuracy, models do not 615

improve their performance when deciding if they 616

have to answer or not the question. Thus, it seems 617

that the improvement in the overall accuracy is due 618

to having more training data, despite the fact they 619

are duplicates. According to these results, we think 620

that the models are unable to learn the patterns that 621

make a question unanswerable from the augmented 622

datasets. In fact, the pattern observed is the same 623

as in the original experiment. 624

6.3 Fewer Answer Options 625

As we have already pointed out, the distribution of 626

questions without correct answers usually ranks be- 627

tween 30-50% in other datasets. This corresponds 628

with the rates where we obtain the best results in 629

our main experiment. Given that we have four op- 630

tions per question and therefore, each option has 631

a probability of 0.25 of being correct, a rate of 632

30% seems to be natural. Therefore, the number 633

of options could be another variable that affects 634

answerability. To study the effect on results of the 635

number of available options, we have changed the 636

previously modified datasets (with different rates 637

of unanswerable questions) and created one set 638

where we remove one option per instance (three 639

options remain) and another set where we remove 640

two options per instance (two options remain). 641

We show the results of this experiment in Fig- 642

ures 31-39 in Appendix G.3. In general, the fewer 643
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the options, the better the accuracy because the644

probability of finding the correct answer is higher.645

However, the patterns are similar to what we ob-646

tained in the original experiment. Thus, it seems647

that the number of options does not affect the pro-648

portion of questions without correct answers.649

7 Discussion650

Our experimental results indicate a strong prefer-651

ence for certainty regarding answerability, but not652

a clear path on how to deal with uncertainty re-653

garding answerability, the main aim of the study.654

Models only obtain strong results when dealing655

with datasets that: a) were similar to the ones they656

had been trained on and b) contained a very low657

or very high number of unanswerable questions.658

Models were mostly unable to deal with distractors659

and only reproduced training bias.660

Youden’s J statistic (see Figure 9) has revealed661

that a proportion of 30% of unanswerable questions662

during training yields the most informed system,663

but this informedness always emerges at the ex-664

pense of the ability to correctly answer genuinely665

answerable questions (see Figure 6). Once training666

includes unanswerable questions, at any rate, the667

general performance of the system decreases. This668

is why, at this point, we cannot recommend this669

setup, even with the settings that generate the most670

informedness model. We have observed the same671

behavior no matter the number of available options672

per question.673

We can try to establish a pattern regarding if a674

system needs to see a higher proportion of unan-675

swerable questions in training to identify them in676

test. In fact, looking at Figure 1 by row we see677

that in an evaluation scenario with 50% of unan-678

swerable questions, the amount of them seen in679

training does not matter as long as there are some680

of them (over a 10%). For scenarios with less681

than 50% of unanswerable questions (presumably682

more likely), it is better to use models that saw683

a lower proportion. If we relax the criteria and684

look only at answerability detection (Figure 2), the685

evaluation scenario with a 50% of unanswerable686

questions is also better handled by models that saw687

a lower proportion during training. On the other688

hand, in scenarios with more than a 50% of unan-689

swerable questions, it is better to train with a higher690

proportion of unanswerable questions. Therefore,691

the proportion of unanswerable questions a model692

should see during training largely depends on the693

end application. 694

Our results show that the models generally ben- 695

efit from biased training. However, if we pay at- 696

tention to the performance separately in each class, 697

the ability to detect answerability or to correctly an- 698

swer answerable questions remains constant across 699

different scenarios. There is a trade-off between 700

the two abilities which appears in any scenario, 701

but while a model’s performance depends on the 702

evaluation scenario being biased in the same direc- 703

tion as the model, the model’s informedness stays 704

the same. Therefore, we would advise that it is 705

unnecessary to test models in different scenarios 706

regarding answerability. A single scenario with 10– 707

50% of unanswerable questions, which matches 708

what is proposed in other literature, would suffice. 709

8 Conclusions and Future Work 710

In this paper, we have studied different scenarios 711

for testing answerability, the ability to detect unan- 712

swerable questions, in multiple-choice Question 713

Answering (QA). Previous studies have tested an- 714

swerability including a fixed proportion of unan- 715

swerable questions between 10-50% without ex- 716

plaining the reasons for such proportions or ana- 717

lyzing how it affects systems’ results. So, we have 718

used different distributions of unanswerable ques- 719

tions for both training and testing. 720

We have seen how systems tend to reproduce 721

the distribution seen at training. That is, systems 722

select that a question is unanswerable in the same 723

proportion seen at training, no matter the distribu- 724

tion in the test collection. However, when systems 725

improve answerability detection, they reduce their 726

ability to correctly answer genuinely answerable 727

questions, which is an unexpected and undesired 728

behavior. So, further research should achieve a 729

scenario where unanswerable questions can be rec- 730

ognized to a significant extent without harming the 731

system’s ability to answer answerable questions. 732

It remains unclear what makes a question unan- 733

swerable. In multiple-choice QA, a system is right 734

selecting the option “None of the above” or “None 735

of the answers are correct” (depending on how this 736

option is introduced in the dataset), but we do not 737

know if the system understands what this option 738

means or if it truly detects that there is no correct 739

answer. Hence, further research should also be ori- 740

ented in this line, by studying the main features of 741

unanswerable questions and how systems behave 742

with these questions. 743
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Limitations744

This study is only applicable to multiple-choice745

QA, by introducing the option “None of the an-746

swers are correct” in datasets. For extractive QA,747

where the correct answer to unanswerable ques-748

tions is an empty text span, systems could develop749

a different strategy for answering these questions750

and behave different when changing the distribu-751

tion of unanswerable questions. In fact, as we have752

already discussed in Sections 7 and 8, it is unclear753

what makes a question unanswerable beyond lack754

of information in the source text. Besides, results755

could be biased for other reasons different from the756

unanswerability introduced in the modified collec-757

tions.758

On the other hand, we base results on the accu-759

racy achieved by BERT, DeBERTa and T5 models.760

Although other transformer-based models should761

behave similarly, different technologies might show762

different results and abilities.763

While RACE is a good QA benchmark, it was764

created for human evaluation. So, other collections765

created, for example, by crowd-sourcing, could be766

easier and then, systems may have a better ability767

detecting unanswerable questions.768
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A RACE Distribution1029

division train validation test all
RACE-H 18728 1021 1045 20794
RACE-M 6409 368 362 7139
all 25137 1389 1407 27933

Table 1: Number of passages per difficulty level and
split in RACE.

division train validation test all
RACE-H 62445 3451 3498 69394
RACE-M 25421 1436 1436 28293
all 87866 4887 4934 97687

Table 2: Total number of questions per difficulty level
and split in RACE.

B Examples of the Datasets1030

A question modified to be unanswerable:

1) It took Mark _ to run the mile.
A. None of the answers are correct.
B. more than 13 minutes
C. only 12 minutes
D. less than 12 minutes

A question modified to remain answerable:

1) Why did Mark cry when he ran the last lap?
A. Because he was quite happy.
B. Because he was too upset.
C. Because he got a pain in his heart.
D. None of the answers are correct.

Figure 4: Modified sample questions from RACE. Cor-
rect answer in bold.

C Pre-processing and Training Details1031

A large portion of questions in RACE are not proper1032

questions but cloze tasks, where a gap in a sen-1033

tence must be filled with a word or short span of1034

words. Candidate answers to cloze tasks usually1035

do not constitute fully formed sentences. We iden-1036

tify cloze tasks by the character “_”, used to signal1037

the gap to be filled. By contrast, proper questions1038

usually contain the character “?”. We count the1039

questions containing “_” and/or “?” (see Table 3)1040

and manually examine questions that contain both1041

or none and their corresponding answers, decid-1042

ing to treat all questions containing “_” as cloze1043

tasks and questions not containing that character as1044

proper questions.1045

Passage:

In my second year of high school, the class was scheduled to run
the mile. when the coach yelled, "Ready. Set. Go!", I rushed out
like an airplane, faster than anyone else for the first 20 feet. I
made up my mind to finish first. As we came around the first of
four laps, there were students all over the track. By the end of the
second lap, many of the students had already stopped. They had
given up and were on the ground breathing heavily. As I started
the third lap, only a few of my classmates were on the track. By
the time I hit the fourth lap, I was alone. Then it hit me that
nobody had given up. Instead, everyone had already finished.
As I ran that last lap, I cried. And 12 minutes, 42 seconds after
starting, I crossed the finishing line. I fell to the ground. I was
very upset.
Suddenly my coach ran up to me and picked me up, yelling,
"You did it. Mark! You finished, son. You finished" He looked
at me straight in the eyes, waving a piece of paper in his hand.
It was my goal for the day which I had forgotten. I had given
it to him before class. He read it aloud to everyone. It simply
said, "I, Mark Brown, will finish the mile run tomorrow, come
what may." My heart lifted. My tears went away, and I had a
smile on my face as if I had eaten a banana. My classmates
clapped. It was then I realized winning isn’t always finishing
first. Sometimes winning is just finishing.

Questions (correct answer in bold):

1) It took Mark _ to run the mile.
A. about 13 minutes
B. more than 13 minutes
C. only 12 minutes
D. less than 12 minutes

1) Why did Mark cry when he ran the last lap?
A. Because he was quite happy.
B. Because he was too upset.
C. Because he got a pain in his heart.
D. Because he was hungry.

Figure 3: Original sample passage and corresponding
questions from RACE.

BERT needs to be fed with sequences of sen- 1046

tences separated by a special token, [CLS]. 1047

Thus, to feed the model we need to transform 1048

the dataset’s instances from a set {passage, 1049

question, 4 options, answer} to a se- 1050

quence. The generation of this sequence de- 1051

pends on the type of questions. For proper ques- 1052

tions, the resulting sequence has three items, of 1053

the form [passage, question, option]. 1054

By contrast, for cloze tasks we substitute the 1055

answer within the question, obtaining a se- 1056

quence with two items of the form [passage, 1057

question+option]. For the answer option 1058

that has been replaced, “proper question” instances 1059

have the form [passage, question, None 1060

of the answers are correct.], while 1061

cloze tasks have the form [passage, None 1062

of the answers are correct.] 1063
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contains contains contains “?” neither “?”
level split “?” “_” “_” nor “_”

RACE-H train 29438 31340 557 1110
validation 1610 1737 33 71

test 1588 1815 33 62
RACE-M train 10965 13629 549 278

validation 620 771 34 11
test 617 774 18 27

Table 3: Number of questions in RACE, per difficulty level and split, containing the characters “_” and/or “?”

Figure 5: Proportion of times the “unanswerable” option
is chosen.

Figure 6: Model accuracy on modified RACE test sets
when taking only answerable questions into account.

D Additional Results of the Main1064

Experiment1065

E Input to T5 model1066

We have changed the input to the model with re-1067

spect to BERT and DeBERTa, converting the task1068

into a text-to-text format by substituting each in-1069

stance’s question, options, and article1070

into the following template:1071

Question: {question}1072

Options:1073

Option A: {option A}1074

Option B: {option B}1075

Figure 7: Accuracy on unanswerable questions only, or
recall, on modified RACE test sets.

Figure 8: Specificity at unanswerable question detec-
tion.

Figure 9: Youden’s J statistic in terms of answerability.
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Option C: {option C}1076

Option D: {option D}1077

Context: {article}1078

Answer:1079

F Comparison of results by level of1080

difficulty1081
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Figure 10: General accuracy on high test set.

na0 na10 na20 na30 na40 na50 na60 na70 na80 na90na100  avg train
Train dataset

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 

avg test

Te
st

 d
at

as
et

1.00 0.93 0.84 0.74 0.59 0.49 0.34 0.26 0.15 0.00 0.00 0.48

0.90 0.86 0.79 0.72 0.59 0.51 0.39 0.32 0.23 0.10 0.10 0.50

0.80 0.78 0.74 0.70 0.59 0.53 0.44 0.39 0.31 0.20 0.20 0.52

0.70 0.71 0.69 0.66 0.60 0.56 0.49 0.45 0.38 0.30 0.30 0.53

0.60 0.64 0.64 0.64 0.60 0.58 0.53 0.51 0.46 0.40 0.40 0.55

0.50 0.57 0.61 0.62 0.59 0.61 0.57 0.57 0.54 0.50 0.50 0.56

0.40 0.49 0.56 0.59 0.59 0.63 0.62 0.63 0.63 0.60 0.60 0.58

0.30 0.42 0.51 0.57 0.58 0.66 0.67 0.70 0.70 0.70 0.70 0.59

0.20 0.36 0.47 0.55 0.59 0.69 0.71 0.76 0.78 0.80 0.80 0.61

0.10 0.29 0.42 0.52 0.58 0.72 0.75 0.82 0.86 0.90 0.90 0.62

0.00 0.22 0.37 0.49 0.58 0.74 0.80 0.88 0.94 1.00 1.00 0.64

0.50 0.57 0.60 0.62 0.59 0.61 0.58 0.57 0.54 0.50 0.50 0.56

Figure 11: Answerability accuracy on high test set.
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Figure 12: Youden’s J statistic on high test set.
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Figure 13: General accuracy on middle test set.
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Figure 14: Answerability accuracy on middle test set.
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Figure 15: Youden’s J statistic on middle test set.
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G Comparison of results by experiment1082

G.1 Results by model1083
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Figure 16: General accuracy of models based on BERT

na0 na10 na20 na30 na40 na50 na60 na70 na80 na90na100  avg train
Train dataset

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 

avg test

Te
st

 d
at

as
et

0.85 0.81 0.77 0.72 0.70 0.61 0.56 0.51 0.34 0.00 0.00 0.54

0.77 0.78 0.75 0.71 0.71 0.62 0.59 0.55 0.40 0.10 0.10 0.55

0.68 0.75 0.73 0.71 0.71 0.64 0.62 0.59 0.46 0.20 0.20 0.57

0.60 0.71 0.71 0.70 0.72 0.66 0.64 0.62 0.52 0.30 0.30 0.59

0.51 0.67 0.69 0.69 0.72 0.67 0.67 0.66 0.57 0.40 0.40 0.60

0.43 0.64 0.67 0.68 0.72 0.68 0.70 0.70 0.63 0.50 0.50 0.62

0.34 0.60 0.64 0.66 0.72 0.69 0.72 0.73 0.69 0.60 0.60 0.64

0.25 0.57 0.63 0.66 0.73 0.71 0.75 0.77 0.75 0.70 0.70 0.66

0.17 0.55 0.61 0.66 0.73 0.73 0.78 0.81 0.80 0.80 0.80 0.68

0.09 0.51 0.59 0.65 0.74 0.75 0.81 0.85 0.86 0.90 0.90 0.69

0.00 0.47 0.58 0.64 0.74 0.76 0.83 0.88 0.91 1.00 1.00 0.71

0.43 0.64 0.67 0.68 0.72 0.68 0.70 0.70 0.63 0.50 0.50 0.62

Figure 17: General accuracy of models based on De-
BERTa
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Figure 18: General accuracy of models based on T5
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Figure 19: Answerability accuracy of models based on
BERT
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Figure 20: Answerability accuracy of models based on
DeBERTa
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Figure 21: Answerability accuracy of models based on
T5
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Figure 22: Youden’s J statistic of models based on
BERT
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Figure 23: Youden’s J statistic of models based on De-
BERTa
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Figure 24: Youden’s J statistic of models based on T5

G.2 Results by dataset modification strategy: 1084

replacement vs. augmentation 1085
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Figure 25: Accuracy using datasets generated by re-
placement only.
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Figure 26: Accuracy using datasets augmented with
unanswerable questions.
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Figure 27: Answerability accuracy using datasets gener-
ated by replacement only.
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Figure 28: Answerability accuracy using datasets aug-
mented with unanswerable questions.
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Figure 29: Youden’s J statistic using datasets generated
by replacement only.
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Figure 30: Youden’s J statistic using datasets augmented
with unanswerable questions.

G.3 Results by number of options per 1086

question 1087
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Figure 31: Accuracy: 4 options per question (A, B, C,
D)
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Figure 32: Accuracy: 3 options per question (A, B, C)
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Figure 33: Accuracy: 2 options per question (A, B)
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Figure 34: Accuracy: 4 options per question (A, B, C,
D)
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Figure 35: Accuracy: 3 options per question (A, B, C)
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Figure 36: Accuracy: 2 options per question (A, B)
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Figure 37: Youden’s J statistic: 4 options per question
(A, B, C, D)
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Figure 38: Youden’s J statistic: 3 options per question
(A, B, C)
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Figure 39: Youden’s J statistic: 2 options per question
(A, B)
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