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Abstract

Question Answering (QA) is widely used for
evaluating the reasoning capabilities of NLP
systems, where an important ability is to de-
cide on answerability — whether the question
can be answered with the information at hand.
Previous works have studied answerability by
including a fixed proportion of unanswerable
questions in a collection, without explaining
the reasons for such proportion or its impact
on systems’ results. In this work, we study
different scenarios for answerability detection
and evaluate several Large Language Models
using different rates of unanswerable questions
by introducing unanswerable questions in the
popular multiple-choice QA dataset RACE. We
show that a 30% rate of unanswerable ques-
tions at training seems optimal across a variety
of scenarios, and support this with a series of
extended experiments. Despite this, we ob-
serve that systems tend to expect the same rate
of unanswerable questions seen at training and
that the ability to decide on answerability al-
ways comes at the expense of the ability to find
the answer when it exists.

1 Introduction

The last few years have shown an increase in perfor-
mance for Natural Language technologies. One of
the main reasons for this improvement is the devel-
opment of systems based on transformer architec-
tures (Vaswani et al., 2017), which are the predom-
inant architectures of the current models (Devlin
et al., 2019; Yang et al., 2019a). Researchers have
proposed several tasks for evaluating systems’ ca-
pabilities and Question Answering (QA) is used
as a way of evaluating reasoning. In the QA task,
a system must extract the span of text containing
the correct answer to a question (extractive QA) or
select the correct answer among a set of candidates
(multiple-choice QA) (Rogers et al., 2020).

QA benchmarking has tried to evaluate different
reasoning capabilities (Weston et al., 2016), help-

ing to detect room for improvement. Most bench-
marks are of general domain, using documents
from Wikipedia, e.g. WikiQA (Yang et al., 2015)
or news articles, e.g. NewsQA (Trischler et al.,
2017); while others are domain-specific, e.g. on
the biomedical domain (Tsatsaronis et al., 2015).

One important ability of QA systems is answer-
ability, the ability to detect if a question has a cor-
rect answer, which is tested by including questions
without a correct answer in the datasets (Rogers
et al., 2022). The objective of testing answerability
is to detect missing information'. If the answer
is not contained in the reference document(s), as-
suming that a question is answerable leads to a
wrong answer. These questions require, as it is
mentioned in Rajpurkar et al. (2018), to “know
what you don’t know “ *. Otherwise, a system can
return a random answer, which could be correct.
The inclusion of such questions lead to a slight drop
in performance (about 30%), which was quickly
overcome. The best examples of these benchmarks
are SQuAD 2.0 (Rajpurkar et al., 2018) for ex-
tractive QA and QuAIL for multiple-choice QA
(Rogers et al., 2020).

The distribution of questions without a correct
answer usually ranks between 30-50% of the whole
dataset, depending on the benchmark. However,
it is unclear: (1) why the authors selected such
distributions and (2) how the distribution affects
results. In fact, it may remain open if systems are
learning about answerability.

In this paper, we study answerability using dif-
ferent distributions of questions without correct an-
swers. We firstly modify RACE (Lai et al., 2017), a
well-known multiple-choice collection, and create
several versions containing different distributions
of questions without correct answers, from 0% to

IThis is different to the option of not responding, where
a system is unsure about its ability to answer a question and
prefers not to answer instead giving an incorrect answer (Pefas
and Rodrigo, 2011).



100% in 10% splits>. Then, we train and evaluate
a system in all the versions, testing all the possi-
ble combinations. We observe the model tends
to reproduce the distribution seen at training and
to train the with a 30% of unanswerable questions
seems to be the best strategy. But, we show that any
training strategy including unanswerable questions
reduces the performance when answering answer-
able questions. So, we hope our study promotes
new proposals for improving systems’ abilities to
predict question answerability.

2 Related Work

Question Answering (QA) requires inferring the
answer to a given question from a given context.
This formulation can adopt different forms (Chen,
2018): the context can be a short paragraph or
a document with several paragraphs; the notion
of question can be expanded to a cloze-style (fill-
in-the-gap) task (Hermann et al., 2015); and the
task can involve extracting a span of text from the
context (Joshi et al., 2017), choosing an answer
among multiple options (Sugawara et al., 2018), or
even generating a free-form answer (Nguyen et al.,
2016).

One of the main challenges of constructing large-
scale datasets is how to obtain the questions. Sev-
eral datasets obtain questions from crowdsourc-
ing. This hampers the applicability of experiments
to real-world scenarios, where users information
needs are spontaneous and unconstrained (Clark
et al.,, 2019). One solution is to build bench-
marks based on naturally occurring questions such
as MS MARCO (Nguyen et al., 2016), Narra-
tiveQA (Kocisky et al., 2018) and Natural Ques-
tions (Kwiatkowski et al., 2019). However, it is
more difficult and costly to create such collections.

As systems reach human performance on the
most popular QA benchmarks, different strategies
has been followed to create more difficult datasets.
For example, the ARC dataset discards questions
if they are too easy for a word co-occurrence algo-
rithm (Clark et al., 2018), and ComQA (Abujabal
etal., 2019) discards questions whose answer could
be found by existing search engine technologies.
Other datasets focus on specific types of reasoning,
such as sorting data (Dua et al., 2019) or finding
coreferences (Dasigi et al., 2019).

Lai et al. (2017) establish five levels of reason-
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ing difficulty (in increasing order): word matching,
paraphrasing, single-sentence reasoning, multiple-
sentence reasoning and insufficient/ambiguous.
These authors claimed that many questions in popu-
lar datasets like CNN (Chen et al., 2016) or SQuAD
(Rajpurkar et al., 2016) are simple factoid ques-
tions, or they can be solved by simple word match-
ing or paraphrasing. Single-sentence reasoning is
easier than multi-sentence reasoning (Richardson
et al., 2013), while integrating the information con-
tained in multiple sentences is also much more
difficult for humans (Berninger et al., 2011). A
dataset that focuses on multi-sentence reasoning
is MultiRC (Khashabi et al., 2018), and this con-
cept is extended to long documents in NarrativeQA
(Kodisky et al., 2018), and multiple documents
in HotpotQA (Yang et al., 2018). A comprehen-
sive approach to several reasoning phenomena is
QuAlIL (Rogers et al., 2020), a multiple-choice QA
dataset where questions are annotated by type of
reasoning skill. QuAIL also includes unanswerable
questions.

Datasets such as CNN/Daily Mail (Hermann
et al., 2015), SQuAD (Rajpurkar et al., 2016) or
RACE (Lai et al., 2017) were constructed with the
assumption that a correct answer for every ques-
tion exist within the given context. However, this
assumption does not hold in real-world QA appli-
cations. For example, in web search there can be
multiple possible sources of information (typically
web snippets) that

Adding onto the previous version of SQuAD,
SQuAD 2.0 (Rajpurkar et al., 2018) included more
than 50k unanswerable questions written by crowd-
workers. The premise was to add relevant questions
with plausible (yet incorrect) answers within the
given passage, but these questions were unanswer-
able based on the passage alone. Analyses showed
that systems’ performance is overestimated in the
presence of unanswerable questions.

Adversarial training Several studies have used
automatic adversarial methods to probe model ro-
bustness with similar conclusions. Jia and Liang
(2017) showed how model performance on SQuAD
degrades by more than half when tested over ex-
amples adversarially modified with their AddSent
algorithm, which appends a sentence that resem-
bles the question to the reference passage. How-
ever, the data generated are similar to the origi-
nal, resulting in a less diverse test set. Wang and
Bansal (2018) proposed an improved version of



the algorithm, AddSentDiverse, and an improved
training regime including adversarial data augmen-
tation. Gan and Ng (2019) proposed adversarial
question paraphrasing to test models’ reliance on
string matching, and also applyed the method to
create training data, improving models’ robustness.
Yang et al. (2019b) experimented over both SQUAD
and RACE, but instead of corrupting the datasets
they applyed adversarial perturbations at the level
of word embeddings during training.

In contrast to SQuAD 2.0, these adversarial
methods have the advantage of needing less human
labour. However, they do not necessarily produce
unanswerable questions. An exception is the work
by Zhu et al. (2019), but the question variations
produced are too lexically similar to the original
ones and do not clarify whether the model fully
understands them or relies on superficial cues.

Answer removal While the above adversarial
methods work by producing modified questions for
extractive QA, other dataset formats allow simpler
methods. Pradel et al. (2020) showed an example of
unanswerable question generation in Knowledge-
Based QA. They modified the Spider KB ques-
tion answering dataset by deliberately removing
some information from the underlying relational
databases. The present work follows a similar ap-
proach over the multiple-choice QA format.

Most of these studies add changes to collections
or make them more difficult for evaluating reason-
ing capabilities. However, it is unclear in what
grade these changes affect results or evaluate rea-
soning capabilities. Besides, the studies lack of
notions about the proportion of changes that should
be included in a new collection. In our study, we try
to fill this gap regarding unanswerable questions.

3 Dataset

Our definition of unanswerable question is akin to
the one seen in QuAIL (Rogers et al., 2020), where
a question is annotated as unanswerable when the
supporting passage does not provide sufficient in-
formation, and world knowledge does not make
one of the answers more likely. With this definition
in mind, we modify a collection without unanswer-
able questions, RACE, creating different splits with
different distributions of unanswerable questions.
The original RACE dataset is a canonical bench-
mark in Multiple-Choice QA. RACE collects real
English as a Second Language exams for 12- to
18-year-old students in China. The exams are inten-

tionally designed by human experts to evaluate hu-
man language understanding and reasoning, which
makes RACE an adequate tool to examine QA sys-
tems. The dataset is also large enough to allow the
training of current data-driven technologies. The
collected exams consist of a supporting passage
accompanied by a variable number of questions
about it. Each of these questions is paired with 4
candidate answers, of which only one is correct. A
sample passage and two corresponding questions
from RACE-M can be seen in Figure 3 in Appendix
B.

The exams originate from either middle- (12 to
15 years old) or high-school (15 to 18) examina-
tions, thus allowing the dataset to be separated in
two levels of difficulty, which the authors denom-
inate RACE-M and RACE-H respectively. There
is a wide gap in difficulty; passages, questions
and candidate answers in RACE-H are 52% longer
on average, and contain a much wider vocabulary
(125120 tokens in RACE-H vs. 32811 in RACE-
M). The authors claim that, since both the ques-
tions and candidate answers are human generated,
RACE is more challenging than comparable-scale
QA datasets. To support this claim, they annotate a
sample of questions with the type of reasoning phe-
nomena involved. Their statistics show that 33% of
the questions in RACE involve single-sentence rea-
soning and 26% multi-sentence reasoning, while
a combined 37% can be solved with word match-
ing or paraphrasing — this last figure is 74% for
SquAD.

RACE contains a total of 27933 text passages
with 97687 questions. The authors provide prede-
fined train, validation and test splits. Tables 1 and
2 in Appendix A detail the numbers of passages
and questions per difficulty level and split.

To render a question unanswerable, we simply
replace the correct answer option with a sentence
that implies that no answer exists among the given
options, i.e. None of the answers are correct. Elim-
inating the correct answer turns a question unan-
swerable regardless of the type of reasoning in-
volved. The remaining three options are plausible
but incorrect, thus the only correct answer is None
of the answers are correct.

To prevent model overfitting (i.e. that systems
learn to identify None of the answers are correct.
as the correct answer to any question) and again
following QuAIL, we also introduce the “unan-
swerable” option in questions that should remain



answerable. In these cases, we replace one of the
incorrect options chosen at random, keeping the
correct answer choice available, but at the same
time introducing a different kind of distractor: one
that indicates that the question may be unanswer-
able given its particular context and the other an-
swer choices. We give an example of the original
passage and questions turned into the new ones in
Figures 3 and Figure 4 in Appendix B.

We create a series of altered versions of the orig-
inal dataset to simulate scenarios with a different,
measurable occurrence of unanswerable questions.
For every version, we apply the modification pro-
cedure described above. A parameter C' governs
the rate of unanswerable questions in each version,
and thus the probability of eliminating (replacing)
the correct answer choice. We divide the dataset by
split and difficulty level, and apply the parameter to
each group separately, choosing C' x N examples
at random, where IV is the number of questions
in a particular difficulty level and split. On these
chosen instances, we replace the correct answer
by None of the answers are correct.. On the rest
of the instances, we preserve the correct answer
and replace an incorrect candidate at random. For
test splits, the process is repeated 5 times, creat-
ing 5 test splits per dataset with differently altered
instances.

The value of the parameter C' is in the range
[0 — 1], where 0 indicates that the replaced option
will always be an incorrect one and therefore all
questions remain answerable, and 1 indicates that
for all questions the correct option will be replaced,
producing a scenario where all questions become
unanswerable. Intuitively, these extreme scenarios
are senseless, and we expect the middle values of C
to produce the interesting results. Still, the aim of
the experiment is to compare all possible scenarios.
We give C' the whole range of values [0—1] in steps
of 0.1, producing 11 modified copies of RACE with
proportions of 0%, 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%, and 100% of unanswerable
questions.

4 Main experiment

We use the English BERT-base® model from hug-
gingface (Wolf et al., 2019) in a Google Colab*
instance with 8 TPUv2 cores. Furthermore, we

*https://huggingface.co/
bert-base—-uncased
4https://colab.research.google.com

make use of the PyTorch framework (Paszke et al.,
2019) and the huggingface’s Datasets (Lhoest et al.,
2021) library.

On each of the 11 datasets we fine-tune a pre-
trained BERT model with the same hyperparam-
eters. We fine-tune on the train splits of both
RACE-M and RACE-H. We give more details of
pre-processing and training in Appendix C.

Each of these trained models is evaluated on 11
evaluation datasets. For each dataset, the model is
evaluated on 5 different test splits (with the same
distribution of unanswerable questions, but the set
of questions turned unanswerable is different). We
obtain results separately for each of these 5 test
splits, and then average results by dataset. We use
accuracy, which measures the proportion of correct
answers, and is the common metric in multiple-
choice QA.

5 Results

We show our results using (11 x 11) heatmap ma-
trixes that relates the 11 models (each trained with
a different version of the RACE dataset) with the 11
test sets. We intend to compare all the results in a
single overview. Columns represent the 11 trained
models ordered by the percentage of unanswerable
questions on the training set, and rows represent
the 11 test sets — also ordered by the percentage
of unanswerable questions in them. In this setup, a
cell contains the results of a particular model over
a particular test set. For instance, on Figure 1, cell
(4,2)° contains the accuracy (0.54) obtained after
evaluating on a test set with 30% of unanswerable
questions, a model trained on a set with 10% of
unanswerable questions.

We shall see that some cells are light grey in
some matrixes focused on showing answerability.
This indicates that their value is undetermined be-
cause it is caused by a zero division. For example,
if we look at the results on unanswerable questions
(Figure 7 in Appendix D), the bottom row is greyed
because it represents a test set with zero unanswer-
able questions and, therefore, calculating results
here involves a zero division.

We show column and row averages, respectively,
at the upper and right ends of every heatmap. Col-
umn averages contain an overview of the same
model across multiple testing scenarios, while row
averages summarize the difficulty of a test set for
different models.

SRow tagged as 30%, column tagged as 10%
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Figure 1: Model accuracy on modified RACE test sets

We have evaluated the models on (modified ver-
sions of) RACE high and RACE middle separately
(models were trained on both), but we have ag-
gregated the results. These results over (a version
of) RACE middle are always better than those over
(the corresponding version of) RACE high. How-
ever, we have dismissed these differences because
they are always similar and we want to focus on
comparing training strategies. For a breakdown by
difficulty level, please see Appendix F.

5.1 Overall Results

We show the values of accuracy for each combina-
tion of model and test set in Figure 1. The bottom
left cell displays the accuracy of a BERT model
that has seen a 0% of unanswerable questions, nei-
ther during training nor during evaluation, which
corresponds to the original RACE collection. The
general observation on this table comes from look-
ing at the diagonal starting from the bottom-left:
a model’s accuracy is better when it is tested on a
dataset with an proportion of unanswerable ques-
tions similar to the dataset on which it was trained.

For models trained on datasets with a high pro-
portion (80-100%) of unanswerable questions, the
accuracy on any particular test set almost matches
the amount of unanswerable questions in that set.
This suggests that these models have learnt to iden-
tify the “unanswerable” option as the correct an-
swer, and they fail to discern the small percentage
of truly answerable questions.

To further break down these results, we have
split the accuracy for each group of questions: an-
swerable and unanswerable. Figure 6 (Appendix
D) shows the general accuracy when only taking
answerable questions into account. Here, we ob-
serve that model accuracy remains relatively con-
stant across test sets (i.e. by column), but declines
rapidly across models as the percentage of unan-

swerable questions seen in training rises (i.e. to-
wards the right side of the table). The reason for
this is predictions are independent of each other,
thus when only looking at answerable questions,
the number of unanswerable questions in a test set
does not matter. What we are looking at here is
each model’s ability to correctly answer answerable
questions and this ability is severely impacted by
the presence of unanswerable questions in training.
In fact, models trained on over 80% of unanswer-
able questions are almost completely unable to give
proper answers.

We show in Figure 7 (Appendix D) the accuracy
on unanswerable questions, where we can see the
reverse pattern: models trained on a high propor-
tion of unanswerable question can reliably detect
them. The models that saw over 80% of unanswer-
able questions in training can almost detect all of
them, but as we saw earlier (Figure 6) this is at
the expense of the ability to deal with answerable
questions. On the other hand, on the left-most
column we see that the model that saw 0% of unan-
swerable questions in training never detects them.
However, the model that saw only 10% of unan-
swerable questions in training does show a certain
ability to detect them above expectations (though
still unreliable). But as we saw on Figure 6, this
comes at the expense of the capacity to deal with
answerable questions.

Looking at the average accuracy over different
datasets, we see that the model trained on 60% of
unanswerable questions has the highest average
accuracy of all models over all modified versions
of RACE.

5.2 Answerability

To focus on answerability, we have dismissed the
answer given to answerable questions, paying at-
tention only to whether the system identifies unan-
swerable questions. So, we convert into a binary
response the model’s responses. That is, instead of
A, B, C or D, we interpret the model’s responses
as unanswerable or answerable. A model decides
a question is unanswerable when it chooses the
option that contains “None of the answers are cor-
rect.” and decides the question is answerable when
it chooses any of the other 3 answers. In this way,
we switch the problem from identifying the right
answer to recognizing if the question is answerable
given the candidates. Note that for the calculation
of subsequent metrics, we consider unanswerable
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Figure 2: Answerability accuracy, i.e. accuracy at unan-
swerable question detection.

as the positive class.
We define answerability accuracy as:

| unanswerable A pred. unanswerable |
+ | answerable A pred. other |
N

(D

We show in Figure 2 the heatmap matrix for an-
swerability accuracy. In this Figure, we observe
that answerability accuracy has a distribution pat-
tern similar to the general accuracy (shown in Fig-
ure 1). However, values towards the lower left cor-
ner of the table are higher in this case, indicating
that models hardly ever choose the unanswerable
option when it was hardly seen in training. We can
see this on Figure 5 (Appendix D), which shows
the proportion of unanswered options given by the
models. In fact, this Figure shows how the model
select the unanswered option in a similar propor-
tion to the already seen at training.

The retrieval of answerable questions, or speci-
ficity, is shown in Figure 8 (Appendix D) and yields
a pattern similar to the one seen on Figure 6. Values
here are generally higher, indicating that models
that saw few unanswerable questions in training
tend to fail by choosing “proper” but incorrect an-
swers, not by choosing the unanswerable option.

5.3 Comparing Results on Imbalanced
Datasets

In this work, we have compared the results of test-
ing a series of models on a series of imbalanced
datasets (the proportion of answerable and unan-
swerable questions differ). While the datasets are
(deliberately) imbalanced, we hypothesize that re-
trieving one class is as important as retrieving the
other. In such a situation, the ideal scenario is a
combination of model and test set that yields good

accuracy over the two classes. But so far, the re-
sults indicate that the ability to retrieve one class is
detrimental to the ability to retrieve the other. Thus,
we need a metric that takes into account accuracy
scores on each of the two classes at the same time.
To that end, we propose to use Youden’s J statistic
or Youden’s index (Youden, 1950), defined as:

J = recall + specificity — 1

Youden’s J statistic is a measure of informedness
that gives equal weight to the two types of error:
false negatives (unanswerable questions for which
the system chooses a "proper” answer) and false
positives (answerable questions for which the sys-
tem chooses "None of the answers are correct."). It
produces values in the range [0 — 1] (by definition
[—1 — 1], but a negative value can be corrected by
switching the classes), and it can be seen as a lin-
ear transformation of the balanced accuracy (the
arithmetic mean of recall and specificity). We have
chosen Youden’s J statistic over balanced accuracy
because it produces a wider range of values.

We show results according to Youden’s J statistic
in Figure 9 (Appendix D). The values in Figure 9
reveal that both Figure 1 and Figure 2 are too opti-
mistic. As we have seen above, a model’s accuracy
is generally good on test sets that are similar to the
one the model was trained on, which leads to good
values towards the lower left and upper right cor-
ners of the tables — where train and test sets have
little uncertainty concerning answerability and also
match. We see a different behaviour in Figure 9:
as expected, the values on the leftmost and three
rightmost columns are almost 0, again confirming
that the respective models only have predictive ca-
pability for the class they have seen most. Results
are not much better towards the centre of the table,
and no value reaches 0.5, indicating all models’
poor informedness concerning answerability. How-
ever, we see that the “30%” model is clearly better
informed than the others.

Although our results generally speak of a big
trade-off between recognizing answerability and
correctly answering abilities, and do not allow us to
prescript any particular training regime, the 30% of
unanswerable questions in training (the proportion
used in several collections) could be an interesting
proportion in combination with the proposals we
discuss in Section 7.



6 Additional Experiments

In this Section, we describe the results of additional
experiments on answerability. We have modified
several dimensions of the previous experiments to
study their impact on results and, therefore, to learn
more about the behavior of current technologies in
scenarios where there are questions without correct
answers. In the following subsections, we describe
these experiments:

6.1 Testing other LLMs

In Section 4, we only used BERT-base for our ex-
periments, what could narrow our conclusions to
this model. This is why, in this section, we have per-
formed the same experiments with two additional
models: DeBERTa and T5.

DeBERTa (Decoding-enhanced BERT with Dis-
entangled Attention) improves on BERT’s attention
mechanism by representing the word’s content and
position separately and by incorporating absolute
positions in the decoding layer (He et al., 2020).
We use DeBERTaV3, which also uses a more ef-
ficient pre-training task, and replaced token detec-
tion, instead of the usual mask language modeling.
Besides, this model has obtained better results than
BERT on several tasks. We fine-tune DeBERTaV3-
base models on the 11 modified versions of RACE
previously described, with the same learning rate
and batch size as in the BERT experiment.

TS5 is an encoder-decoder model which has to be
used using text-to-text format (Raffel et al., 2020).
We have selected TS5 because it uses a different
architecture than the other two models. For our pur-
poses, we have used Flan-T5 (Chung et al., 2022),
which uses a pre-training method based on prompt-
ing and has given us better results. We use a learn-
ing rate of 0.0001 and a batch size of 8. The details
about the changes on the input are given in Ap-
pendix E.

We show results using DeBERTa in Figures 17,
20 and 23, and results using T5 in Figures 18, 21
and 24 in Appendix G.1. As expected, the results
using DeBERTa are superior across all training-test
combinations. Although in this case, it is the model
trained on a 40% rate of unanswerable questions
that performs best on average, the observed pattern
is overall similar to the results using BERT. Regard-
ing TS5, the results are inferior to the ones obtained
with the other two models, however, they display a
similar pattern. Therefore, results on answerability
seem to be not connected to the model used in the

experiments. This is why we perform the following
experiments using only BERT.

6.2 Augmenting the dataset

In the main experiment, we modified the dataset by
replacement. That is, every instance of the RACE
dataset was either made unanswerable or had one
of the incorrect answers replaced by a distractor. In
this experiment, we have augmented the training
datasets by adding the modified instances to the
originals, effectively having two versions of every
question. Thus, models have more information for
learning when a question cannot be answered with
the given options.

We show the results of this experiment in Fig-
ures 25-30 in Appendix G.2. In the Figures with
results using augmented data, the rates indicate the
proportion of instances where the modified version
is unanswerable.

In these Figures, we can see how the overall
accuracy per column is slightly better when using
the augmented dataset. However, according to the
Figures with answerability accuracy, models do not
improve their performance when deciding if they
have to answer or not the question. Thus, it seems
that the improvement in the overall accuracy is due
to having more training data, despite the fact they
are duplicates. According to these results, we think
that the models are unable to learn the patterns that
make a question unanswerable from the augmented
datasets. In fact, the pattern observed is the same
as in the original experiment.

6.3 Fewer Answer Options

As we have already pointed out, the distribution of
questions without correct answers usually ranks be-
tween 30-50% in other datasets. This corresponds
with the rates where we obtain the best results in
our main experiment. Given that we have four op-
tions per question and therefore, each option has
a probability of 0.25 of being correct, a rate of
30% seems to be natural. Therefore, the number
of options could be another variable that affects
answerability. To study the effect on results of the
number of available options, we have changed the
previously modified datasets (with different rates
of unanswerable questions) and created one set
where we remove one option per instance (three
options remain) and another set where we remove
two options per instance (two options remain).
We show the results of this experiment in Fig-
ures 31-39 in Appendix G.3. In general, the fewer



the options, the better the accuracy because the
probability of finding the correct answer is higher.
However, the patterns are similar to what we ob-
tained in the original experiment. Thus, it seems
that the number of options does not affect the pro-
portion of questions without correct answers.

7 Discussion

Our experimental results indicate a strong prefer-
ence for certainty regarding answerability, but not
a clear path on how to deal with uncertainty re-
garding answerability, the main aim of the study.
Models only obtain strong results when dealing
with datasets that: a) were similar to the ones they
had been trained on and b) contained a very low
or very high number of unanswerable questions.
Models were mostly unable to deal with distractors
and only reproduced training bias.

Youden’s J statistic (see Figure 9) has revealed
that a proportion of 30% of unanswerable questions
during training yields the most informed system,
but this informedness always emerges at the ex-
pense of the ability to correctly answer genuinely
answerable questions (see Figure 6). Once training
includes unanswerable questions, at any rate, the
general performance of the system decreases. This
is why, at this point, we cannot recommend this
setup, even with the settings that generate the most
informedness model. We have observed the same
behavior no matter the number of available options
per question.

We can try to establish a pattern regarding if a
system needs to see a higher proportion of unan-
swerable questions in training to identify them in
test. In fact, looking at Figure 1 by row we see
that in an evaluation scenario with 50% of unan-
swerable questions, the amount of them seen in
training does not matter as long as there are some
of them (over a 10%). For scenarios with less
than 50% of unanswerable questions (presumably
more likely), it is better to use models that saw
a lower proportion. If we relax the criteria and
look only at answerability detection (Figure 2), the
evaluation scenario with a 50% of unanswerable
questions is also better handled by models that saw
a lower proportion during training. On the other
hand, in scenarios with more than a 50% of unan-
swerable questions, it is better to train with a higher
proportion of unanswerable questions. Therefore,
the proportion of unanswerable questions a model
should see during training largely depends on the

end application.

Our results show that the models generally ben-
efit from biased training. However, if we pay at-
tention to the performance separately in each class,
the ability to detect answerability or to correctly an-
swer answerable questions remains constant across
different scenarios. There is a trade-off between
the two abilities which appears in any scenario,
but while a model’s performance depends on the
evaluation scenario being biased in the same direc-
tion as the model, the model’s informedness stays
the same. Therefore, we would advise that it is
unnecessary to test models in different scenarios
regarding answerability. A single scenario with 10—
50% of unanswerable questions, which matches
what is proposed in other literature, would suffice.

8 Conclusions and Future Work

In this paper, we have studied different scenarios
for testing answerability, the ability to detect unan-
swerable questions, in multiple-choice Question
Answering (QA). Previous studies have tested an-
swerability including a fixed proportion of unan-
swerable questions between 10-50% without ex-
plaining the reasons for such proportions or ana-
lyzing how it affects systems’ results. So, we have
used different distributions of unanswerable ques-
tions for both training and testing.

We have seen how systems tend to reproduce
the distribution seen at training. That is, systems
select that a question is unanswerable in the same
proportion seen at training, no matter the distribu-
tion in the test collection. However, when systems
improve answerability detection, they reduce their
ability to correctly answer genuinely answerable
questions, which is an unexpected and undesired
behavior. So, further research should achieve a
scenario where unanswerable questions can be rec-
ognized to a significant extent without harming the
system’s ability to answer answerable questions.

It remains unclear what makes a question unan-
swerable. In multiple-choice QA, a system is right
selecting the option “None of the above” or “None
of the answers are correct” (depending on how this
option is introduced in the dataset), but we do not
know if the system understands what this option
means or if it truly detects that there is no correct
answer. Hence, further research should also be ori-
ented in this line, by studying the main features of
unanswerable questions and how systems behave
with these questions.



Limitations

This study is only applicable to multiple-choice
QA, by introducing the option “None of the an-
swers are correct” in datasets. For extractive QA,
where the correct answer to unanswerable ques-
tions is an empty text span, systems could develop
a different strategy for answering these questions
and behave different when changing the distribu-
tion of unanswerable questions. In fact, as we have
already discussed in Sections 7 and 8, it is unclear
what makes a question unanswerable beyond lack
of information in the source text. Besides, results
could be biased for other reasons different from the
unanswerability introduced in the modified collec-
tions.

On the other hand, we base results on the accu-
racy achieved by BERT, DeBERTa and TS5 models.
Although other transformer-based models should
behave similarly, different technologies might show
different results and abilities.

While RACE is a good QA benchmark, it was
created for human evaluation. So, other collections
created, for example, by crowd-sourcing, could be
easier and then, systems may have a better ability
detecting unanswerable questions.
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A RACE Distribution

division train validation test all
RACE-H 18728 1021 1045 20794
RACE-M 6409 368 362 7139
all 25137 1389 1407 27933

Table 1: Number of passages per difficulty level and
split in RACE.

division train validation test all

RACE-H 62445 3451 3498 69394
RACE-M 25421 1436 1436 28293
all 87866 4887 4934 97687

Table 2: Total number of questions per difficulty level
and split in RACE.

B Examples of the Datasets

A question modified to be unanswerable:

1) It took Mark _ to run the mile.

A. None of the answers are correct.
B. more than 13 minutes

C. only 12 minutes

D. less than 12 minutes

A question modified to remain answerable:

1) Why did Mark cry when he ran the last lap?
A. Because he was quite happy.

B. Because he was too upset.

C. Because he got a pain in his heart.

D. None of the answers are correct.

Figure 4: Modified sample questions from RACE. Cor-
rect answer in bold.

C Pre-processing and Training Details

A large portion of questions in RACE are not proper
questions but cloze tasks, where a gap in a sen-
tence must be filled with a word or short span of
words. Candidate answers to cloze tasks usually
do not constitute fully formed sentences. We iden-
tify cloze tasks by the character “_", used to signal
the gap to be filled. By contrast, proper questions
usually contain the character “?”. We count the
questions containing ““_" and/or “?” (see Table 3)
and manually examine questions that contain both
or none and their corresponding answers, decid-
ing to treat all questions containing “_” as cloze
tasks and questions not containing that character as
proper questions.

12

Passage:

In my second year of high school, the class was scheduled to run
the mile. when the coach yelled, "Ready. Set. Go!", I rushed out
like an airplane, faster than anyone else for the first 20 feet. I
made up my mind to finish first. As we came around the first of
four laps, there were students all over the track. By the end of the
second lap, many of the students had already stopped. They had
given up and were on the ground breathing heavily. As I started
the third lap, only a few of my classmates were on the track. By
the time I hit the fourth lap, I was alone. Then it hit me that
nobody had given up. Instead, everyone had already finished.
As I ran that last lap, I cried. And 12 minutes, 42 seconds after
starting, I crossed the finishing line. I fell to the ground. I was
very upset.

Suddenly my coach ran up to me and picked me up, yelling,
"You did it. Mark! You finished, son. You finished" He looked
at me straight in the eyes, waving a piece of paper in his hand.
It was my goal for the day which I had forgotten. I had given
it to him before class. He read it aloud to everyone. It simply
said, "I, Mark Brown, will finish the mile run tomorrow, come
what may." My heart lifted. My tears went away, and I had a
smile on my face as if I had eaten a banana. My classmates
clapped. It was then I realized winning isn’t always finishing
first. Sometimes winning is just finishing.

Questions (correct answer in bold):

1) It took Mark _ to run the mile.
A. about 13 minutes

B. more than 13 minutes

C. only 12 minutes

D. less than 12 minutes

1) Why did Mark cry when he ran the last lap?
A. Because he was quite happy.

B. Because he was too upset.

C. Because he got a pain in his heart.

D. Because he was hungry.

Figure 3: Original sample passage and corresponding
questions from RACE.

BERT needs to be fed with sequences of sen-
tences separated by a special token, [CLS].
Thus, to feed the model we need to transform
the dataset’s instances from a set {passage,
question, 4 options, answer} to a se-
quence. The generation of this sequence de-
pends on the type of questions. For proper ques-
tions, the resulting sequence has three items, of
the form [passage, question, option].
By contrast, for cloze tasks we substitute the
answer within the question, obtaining a se-
quence with two items of the form [passage,
question+option]. For the answer option
that has been replaced, “proper question” instances
have the form [passage,
of the answers are correct.],
cloze tasks have the form [passage,
of the answers are correct.]

None
while

question,

None



contains contains contains “?” neither “?”
level split “r “r “r nor “_”
RACE-H train 29438 31340 557 1110
validation 1610 1737 33 71
test 1588 1815 33 62
RACE-M train 10965 13629 549 278
validation 620 771 34 11
test 617 774 18 27

Table 3: Number of questions in RACE, per difficulty level and split, containing the characters “_"" and/or “?”

avg test 097 1.00 0.51
100%
90% 0.97 1.00
- 80% 0.97 1.00
% 70% 0.97 1.00
g 60% 0.97 1.00
2 50% 097 1.00
= 40% 0.97 1.00
30% 0.97 1.00
20% 0.97 1.00
10% 0.97 1.00
0% 0.97 1.00
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Train dataset

avg train

Figure 5: Proportion of times the “unanswerable” option
is chosen.
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Figure 6: Model accuracy on modified RACE test sets
when taking only answerable questions into account.

D Additional Results of the Main
Experiment

E Input to TS model

We have changed the input to the model with re-
spect to BERT and DeBERTa, converting the task
into a text-to-text format by substituting each in-
stance’s question, options, and article
into the following template:

Question:  {question}
Options:

Option_A:  {option A}
Option B: _ {option B}

avg test
100%

0.80 0.87 0.98 0.99 1.00

90% gU 0.80 0.87 0.98 099 1.00
. 80% 080 0.87 098 099 1.00
% 70% 0.80 087 0.98 099 1.00 m
é 60% 0.80] 0.87 0.98 099 1.00 m
g 50% 080 0.87 098 099 1.00
B 40% 080 087 0.98 098 1.00 [ 0.5 |
30% 081 0.87 098 099 1.00 0.65
20% 081 087 0.98 099 100 [ 065 |
10% 0.81 087 098 098 1.00 0.65
0%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%  avg train

Train dataset

Figure 7: Accuracy on unanswerable questions only, or
recall, on modified RACE test sets.
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Figure 8:
tion.

Specificity at unanswerable question detec-

avg test
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Figure 9: Youden’s J statistic in terms of answerability.
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Option C: _{option C} avg test
Option_D: ,{option D}
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Figure 11: Answerability accuracy on high test set.

avg test avg test
100% 100%
90% 90%
80% 80%
o o
2 70% 3 70%
g ot
5 60% 5 0%
o o
g 5% & s
40% 40%
30% 30%
20% 20%
10% 10%
0% 0%
na0 nal0O na20 na30 na40 na50 na60 na70 na80 na90nal00  avg train na0 nalO na20 na30 na40 na50 na60 na70 na80 na90nal00  avg train
Train dataset Train dataset
. . N . e . . . 5 P .
Figure 12: Youden’s J statistic on high test set. Figure 15: Youden’s J statistic on middle test set.
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G Comparison of results by experiment avg test
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Figure 16: General accuracy of models based on BERT
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Figure 20: Answerability accuracy of models based on
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Figure 17: General accuracy of models based on De-

BERTa
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Figure 21: Answerability accuracy of models based on
Figure 18: General accuracy of models based on TS TS
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Figure 22: Youden’s J statistic of models based on
BERT
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Figure 23: Youden’s J statistic of models based on De-
BERTa
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Figure 24: Youden’s J statistic of models based on T5

G.2 Results by dataset modification strategy:
replacement vs. augmentation

avg test

100%
90%
80%
70%
60%
50%

Test dataset

40%
30%
20%
10%

0%

na0 nalO na20 na30 na40 na50 na60 na70 na80 na90nal00
Train dataset

avg train

Figure 25: Accuracy using datasets generated by re-
placement only.
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Figure 26: Accuracy using datasets augmented with
unanswerable questions.
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Figure 27: Answerability accuracy using datasets gener-
ated by replacement only.
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G.3 Results by number of options per
question
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Figure 28: Answerability accuracy using datasets aug- 30%
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Figure 31: Accuracy: 4 options per question (A, B, C,

avg test

100%
90%
80%

g 70% avg test

s

5 60%

g so% 100%

&

40% 90%

30% 80%

20% g 7%

8

3 60%

10%
a - :
0% E 50%
. 40%
na0 nalO na20 na30 na40 na50 na60 na70 na80 na90nal00  avg train
Train dataset 30%

20%

Figure 29: Youden’s J statistic using datasets generated 1o

by replacement only. ”

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  avg train
Train dataset

Figure 32: Accuracy: 3 options per question (A, B, C)
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Figure 30: Youden’s J statistic using datasets augmented
with unanswerable questions. Figure 33: Accuracy: 2 options per question (A, B)
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Figure 34: Accuracy: 4 options per question (A, B, C,
D)
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Figure 35: Accuracy: 3 options per question (A, B, C)
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Figure 36: Accuracy: 2 options per question (A, B)
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Figure 37: Youden’s J statistic: 4 options per question
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Figure 38: Youden’s J statistic: 3 options per question
(A,B,O)
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Figure 39: Youden’s J statistic: 2 options per question
(A, B)



