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Abstract

Spectral methods are widely used to estimate eigenvectors of a low-rank signal
matrix subject to noise. These methods use the leading eigenspace of an observed
matrix to estimate this low-rank signal. Typically, the entrywise estimation error of
these methods depends on the coherence of the low-rank signal matrix with respect
to the standard basis. In this work, we present a novel method for eigenvector
estimation that avoids this dependence on coherence. Assuming a rank-one signal
matrix, under mild technical conditions, the entrywise estimation error of our
method provably has no dependence on the coherence under Gaussian noise (i.e.,
in the spiked Wigner model), and achieves the optimal estimation rate up to
logarithmic factors. Simulations demonstrate that our method performs well under
non-Gaussian noise and that an extension of our method to the case of a rank-r
signal matrix has little to no dependence on the coherence. In addition, we derive
new metric entropy bounds for rank-r singular subspaces under ℓ2,∞ distance,
which may be of independent interest. We use these new bounds to improve the
best known lower bound for rank-r eigenspace estimation under ℓ2,∞ distance.

1 Introduction

Spectral methods are extensively used in contemporary data science and engineering [27]. The
fundamental idea underlying these methods is that the eigenspace or singular subspace of an observed
matrix reflects important structure present in the data from which it is derived. Spectral methods have
been deployed successfully in a variety of tasks, including low-rank matrix denoising [30, 10], factor
analysis [21, 32, 3, 61, 11, 62], community detection [49, 52, 1, 40, 50], pairwise ranking [43, 25] and
matrix completion [48, 24, 7]. The widespread use of spectral methods has driven extensive research
into the theoretical properties of eigenspaces and singular subspaces, yielding normal approximation
results [10, 11, 33, 58, 5] as well as perturbation bounds [60, 20, 22, 45]. For a more comprehensive
recent review of spectral methods, see [27].

1.1 Eigenspace estimation in low-rank matrix models

Consider an unknown symmetric matrix M⋆ = U⋆Λ⋆U⋆⊤ ∈ Rn×n, where U⋆ ∈ Rn×r has
orthonormal columns and Λ⋆ ∈ Rr×r is diagonal, containing the nonzero eigenvalues of M⋆

ordered so that |λ⋆1| ≥ |λ⋆2| ≥ · · · ≥ |λ⋆r | > 0. Our goal is to estimate U⋆ from a noisy observation

Y = M⋆ +W ∈ Rn×n, (1)
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where W = [Wij ]1≤i,j≤n is a symmetric random noise matrix with mean zero. We restrict our
attention here to the symmetric case for the sake of simplicity, but we expect that our results can be
extended to the asymmetric case using standard dilation arguments [53].

Throughout this paper, we assume that the entries of W are subgaussian.
Assumption 1. The entries of W on and above the diagonal are independent and symmetric about
zero with common variance σ2 and common subgaussian parameter νW .

We remind the reader that the subgaussian parameter νW serves as a “proxy” for the variance. Indeed,
in the Gaussian case, we have σ2 = νW , while σ2 ≤ νW more generally [54, 56].

Spectral methods often estimate U⋆ directly using the r leading eigenvectors U of Y . As a result,
the entrywise and row-wise behavior of U has attracted considerable attention [31, 22, 41, 2, 4, 14].
Given an estimator Û ∈ Rn×r, the estimation error is measured in terms of the ℓ2,∞ distance

d2,∞(Û ,U⋆) = min
Γ∈Or

∥U⋆ − ÛΓ∥2,∞, (2)

where the presence of Γ is to resolve rotational non-identifiability. In the rank-one case, this reduces
to the ℓ∞ distance,

d∞(û,u⋆) = min {∥u⋆ − û∥∞, ∥u⋆ + û∥∞} (3)

for u⋆ ∈ Rn and a given estimator û ∈ Rn. Estimation error bounds in ℓ∞ or ℓ2,∞ distance typically
rely on the incoherence parameter µ of U⋆, defined as

µ =
n

r
∥U⋆∥22,∞ ∈ [1, n/r].

In the rank-one case with Gaussian noise, if the leading eigenvalue λ⋆ of M⋆ satisfies |λ⋆| =
Ω(σ

√
n), Theorem 4.1 of [27] shows that with probability at least 1−O(n−8), the leading eigenvector

u of Y satisfies

d∞(u,u⋆) ≲
σ
(√

log n+
√
n∥u⋆∥∞

)
|λ⋆|

=
σ
√
log n+ σ

√
µ

|λ⋆|
. (4)

When σ
√
n ≲ |λ⋆| ≲ σ

√
n log n, a regime of most interest (no ploynomial-time algorithm is known

when |λ⋆| ≪ σ
√
n [6], and estimation is easy when |λ⋆| ≫ σ

√
n log n), we show in Lemma 1 that

Equation (4) is not improvable up to log-factors , as a result of the Baik-Ben Arous-Péché (BBP)
phase transition [8] (see [12, 38, 34] for BBP-style phase transitions in the setting of this paper).

Lemma 1. Under Equation (1) with Gaussian noise, let M⋆ = λ⋆u⋆u⋆⊤. If both limits
limn→∞ λ⋆/(σ

√
n) >1 and limn→∞ µ/n exist, then for any µ∈ [1, n], there exists u⋆ ∈ Sn−1 such

that almost surely,

lim inf
n→∞

d∞(u,u⋆) ≥ lim
n→∞

σ2√nµ
2
√
2|λ⋆|2

. (5)

Equation (5) shows that the spectral estimate u has an intrinsic dependence on µ, with especially
bad performance when µ is large and |λ⋆|=Θ(σ

√
n log n). In this large-µ regime, beyond low-

rankedness, M⋆ exhibits additional structure (e.g., sparsity) that is not fully utilized by the spectral
estimator. This suggests that the dependence on µ in Equations (4) and (5) is a shortcoming of the
spectral estimator. In Algorithm 1, we present a new estimator designed to remove this dependence
on µ. Theorem 1 shows that up to log-factors, it matches the minimax lower bound discussed below
(see Equation (9) in Section 1.2). Experiments in Section 5 further support our theoretical results.

In the rank-r case with Gaussian noise, Theorem 4.2 in [27] shows that when |λ⋆r | ≳ σ
√
n log n,

d2,∞(U ,U⋆) ≲
σ
(
κ
√
µr +

√
r log n

)
|λ⋆r |

(6)

with probability at least 1 − O(n−8), where κ = |λ⋆1|/|λ⋆r | is the condition number of M⋆. Here
again, the estimation error depends on µ, and we conjecture that this dependence is also sub-optimal.
Algorithm 2 extends our rank-1 estimation algorithm to this more general rank-r case. Experiments
in Section 5 show that Algorithm 2 outperforms the naïve spectral method in the general rank-r
case, with little to no sensitivity to the coherence µ. We note in passing that the dependence on κ in
Equation (6) can likely be removed [3, 62, 57], though we do not pursue this here.
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1.2 Minimax lower bounds for subspace estimation

Minimax lower bounds have been established for a variety of subspace estimation problems, including
sparse PCA [21, 55], matrix denoising [20], structural matrix estimation [19], network estimation
[35, 63] and estimating linear functions of eigenvectors [42, 28]. Most of these studies focus on
minimax lower bounds under the Frobenius or operator norm, derived using the packing numbers of
Grassmann manifolds [46, 13]. In the matrix denoising literature, it is well-known that for r ≥ 1,

min
Γ∈Or

∥∥∥ÛΓ−U⋆
∥∥∥
F
≳ min

{
σ
√
nr

|λ⋆r |
,
√
r

}
(7)

holds in a minimax sense (see Theorem 3 in [28] or Theorem 4 in [63]). Far fewer papers have
considered lower bounds under d2,∞ [18, 4], and these results are derived via the trivial lower bound

d2,∞(Û ,U⋆) ≥ 1√
n

min
Γ∈Or

∥∥∥ÛΓ−U⋆
∥∥∥
F
, (8)

which holds for any Û ,U⋆ ∈ Rn×r. Applying the lower bounds in Equations (7) and (8), we have

sup
U⋆∈Rn×r:U⋆⊤U⋆=Ir

d2,∞(Û ,U⋆) ≳ min

{
σ
√
r

|λ⋆r |
,

√
r

n

}
(9)

holds for any estimator Û ∈ Rn×r. When U⋆ is incoherent, meaning that µ = O(1), this lower
bound is achieved by the spectral estimation rate in Equation (6) when |λ⋆r | = Ω(σ

√
n log n), and is

achieved trivially by Û = 0n,r when |λ⋆r | = o(σ
√
n). On the other hand, when U⋆ is coherent, in

the sense that µ = ω(1), and |λ⋆r | = Ω(σ
√
n log n), our discussion above in Section (1.1) (including

our new results in Theorem 1) suggests that the rate in Equation (9) can be achieved up to log-factors.

This leaves open the question of the minimax rate when µ = ω(1) and |λ⋆r | = o(σ
√
n). In this case,

the lower bound in Equation (9) cannot exceed
√
r/n. This seems suboptimal, as we expect some

dependence on ∥U⋆∥2,∞ (for example, consider the extreme case when λ⋆ is very near zero). This
suboptimality arises from the naïve lower bound in Equation (8). In Theorem 2, we improve this
lower bound, removing the

√
r/n dependence in Equation (9). This improved lower bound makes

use of novel metric entropy bounds for singular subspaces, which may be of independent interest.

1.3 Notation and roadmap

We use C to denote a constant whose precise values may change from line to line. For a positive
integer n, we write [n] = {1, 2, . . . , n}. |A| denotes the cardinality of a set A. For real numbers a
and b, we write a∨b = max{a, b} and a∧b = min{a, b}. For a vector v = (v1, v2, . . . , vn)

⊤ ∈ Rn,
we use the norms ∥v∥2 =

√∑n
i=1 v

2
i and ∥v∥∞ = maxi |vi|. We let ei ∈ Rn, i ∈ [n] denote

the standard basis vectors of Rn. Sn−1 = {u ∈ Rn : ∥u∥2 = 1} denotes the unit sphere. For a
matrix M ∈ Rn×n, M i,· denotes its i-th row as a row vector, ∥M∥ denotes its operator norm and
∥M∥2,∞ = maxi∈[n] ∥M i,·∥2 indicates the maximum row-wise ℓ2 norm. In ∈ Rn denotes the n-
by-n identity matrix. Or denotes the r-dimensional orthogonal group. We use both standard Landau
notation and asymptotic notation: for positive functions f(n) and g(n), we write f(n) ≫ g(n),
f(n) = ω(g(n)) or g(n) = o(f(n)) if f(n)/g(n) → ∞ as n → ∞. We write f(n) ≳ g(n),
f(n) = Ω(g(n)) or g(n) = O(f(n)) if for some constant C > 0, we have f(n)/g(n) ≥ C for all
sufficiently large n. We write f(n) = Θ(g(n)) if both f(n) = O(g(n)) and g(n) = O(f(n)).

The remainder of the paper is organized as follows. In Section 2, we study the eigenspace estimation
problem for rank-one matrices and propose a new algorithm that achieves the minimax optimal
error rate up to logarithmic factors in the growth regime where |λ⋆| = Ω(σ

√
n log n) (Theorem 1).

In Section 3, we extend this algorithm to rank-r eigenspace estimation. In Section 4, we present
theoretical results for the metric entropy of subspaces under d∞ and d2,∞ and improve Equation (9)
under the growth regime where |λ⋆| = O(σ

√
n) (Theorem 2). Numerical results are provided in

Section 5. We conclude in Section 6 with a discussion of the limitations of our study and directions
for future work. Detailed proofs of all lemmas and theorems can be found in the appendix.
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2 Rank-one matrix eigenspace estimation

In this section, we study the model in Equation (1) when M⋆ is rank-one with eigendecomposition
M⋆=λ⋆u⋆u⋆⊤, where λ⋆∈R and u⋆ ∈ Sn−1. As discussed in Section 1, spectral methods may
have sub-optimal dependence on µ compared to the lower bound in Equation (9). We show that a
better estimator is possible by working with a carefully selected subset of entries of Y . We start with
a key observation in Lemma 2, which states that any unit vector contains a subset of large entries,
and this subset has a sufficiently large cardinality. This subset is the key to our new estimator.
Lemma 2. Let A ⊂ [0, 1] be the set

A =
{
log−

1
2 n, . . . , log−

⌈L⌉−1
2 n, log−

L
2 n
}
, (10)

where L is given by
L =

log(2n)

log log n
. (11)

For n sufficiently large, for every v ∈ Sn−1, there exists α0 ∈ A such that

1

α2
0

≥ |{i : |vi| ≥ α0}| >
1

α2
0 log

2 n
. (12)

To motivate Algorithm 1, suppose u⋆ is entrywise positive. For α0 ∈ A, denote the set in
Equation (12) by Iα0

. By Equation (12), the sum of entries M⋆
ij with i, j ∈ Iα0

grows as
Ω(|λ⋆||Iα0 | log

−2 n), while the sum of the corresponding entries of W grows as O(σ|Iα0 |
√
log n).

That is, when |λ⋆| is sufficiently large, the signal contained in the entries i, j ∈ Iα0 dominates the
noise. If we knew Iα0 , utilizing the entries in Iα0 would reduce the estimation error incurred by small
entries of u⋆. In practice, we do not know Iα0 and must estimate such a subset. To ensure that this is
possible, we impose a technical assumption on u⋆. We discuss this assumption below in Remark 2.
Assumption 2. There exists an α0 ∈ A satisfying Equation (12) and a constant 0 < ϵ0 ≤ 1 such
that for all sufficiently large n,

{i : |u⋆i | ∈ [(1− ϵ0)α0, (1 + ϵ0)α0]} = ∅.

We pause to give a few examples to illustrate Assumption 2. First, consider u⋆ = c1e1 + c2n
−1/21n,

with c1, c2 = Θ(1) chosen so that ∥u⋆∥2 = 1. We note that c1, c2 both depend on n, but are bounded
away from zero as n grows, and one can verify that Assumption 2 holds with α0 = log−1/2 n
and ϵ0 = 1/2. As another example, consider u⋆ = n−1/21n ∈ Rn. One may verify that taking
α0 = (log n)−L/2 = 1/

√
2n and ϵ0 = 0.4 satisfies the conditions in Assumption 2.

As an example of a setting that violates Assumption 2, consider u⋆ obtained by renormalizing a
vector of i.i.d. Gaussians. This results in u⋆ being Haar-distributed on Sn−1 and Assumption 2 is
violated with high probability. To see this, note that u⋆ ≈ g/

√
n where g ∼ N(0, In) (see Theorem

3.4.6 in [54]). Since with high probability ∥g∥∞ = O(
√
log n), Equation (12) holds only when

α0 ≈ 1/
√
n. For Assumption 2 to hold, there must be a gap of Θ(1) between the entries of g, which

fails with high probability.

It is tempting to conclude from the counter-example just given that renormalizing a vector of
i.i.d. entries must necessarily result in a u⋆ that violates Assumption 2, but this is not always the case.
If the entrywise distribution has suitable structure, u⋆ may still obey Assumption 2. As an illustration,
suppose that u⋆ is obtained by renormalizing a vector g = (g1, g2, . . . , gn)

⊤ ∈ Rn with i.i.d. entries
from a distribution with variance 1, so that u⋆ ≈ g/

√
n. If the gi are drawn by taking gi = a with

probability p and gi = b with probability 1− p, then each entry of u⋆ is either approximately ap/
√
n

or approximately b(1− p)/
√
n. Choosing a, b and p appropriately, we can ensure a gap between the

entries of u⋆ of size O(n−1/2), and we can take α0 = (log n)−L ≈ n−1/2.

Our new estimator of u⋆ is a refinement based on the leading eigenvector and eigenvalue of Y . For
the spectral estimator to provide a useful initialization, we make Assumption 3 on λ⋆.
Assumption 3. There exists a constant C1 > 2400/ϵ0, where ϵ0 is as in Assumption 2, such that the
leading eigenvalue λ⋆ of M⋆ satisfies

|λ⋆| ≥ C1

√
νWn log n. (13)
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Remark 1. The dependence on ϵ0 in Assumption 3 is for technical reasons discussed in Remark 2.
In our proofs, we do not optimize the dependence on C1 and assume that C1 > 2400/ϵ0. As
demonstrated in our experiments in Section 5, |λ⋆| ≥

√
νWn log n appears sufficient in practice.

When |λ⋆| ≤ √
νWn, the spectral estimator fails to provide any useful initial estimate and it is

believed that no polynomial-time algorithm can succeed. We provide more discussion on this matter
in Remark 6.

The final ingredient required for Algorithm 1 is a leading eigenvalue estimate λ̂ that recovers the true
signal eigenvalue λ⋆ suitably well.

Assumption 4. Under Assumption 3, λ̂ is such that with probability at least 1−O(n−8 log n),∣∣∣λ̂− λ⋆
∣∣∣ ≤ C2

√
νW log5/2 n.

Assumption 4 seems stringent at first. The top eigenvalue λ of Y achieves only aO(
√
νWn) error rate

(see Lemma 2.2 and Equation (3.12) in [27]). This is because λ=λ⋆+nσ2/λ⋆+O(
√
νW log n) (see

[47] or Theorem 2.3 in [23]; see also [26, 51, 17]). Luckily, in our setting, the bias-corrected estimate

λ̂c =
1

2

(
λ+

√
λ2 − 4nσ2

)
, (14)

does satisfy Assumption 4 [26]. Another estimator, which falls naturally out of Algorithm 1, also
satisfies Assumption 4. We find that it performs similarly to the debiased estimator λ̂c empirically,
and so we do not explore it here. Theoretical results for this estimator are in the appendix.

With the above assumptions in hand, we propose a new method given in Algorithm 1. We note that
the main computational bottleneck of Algorithm 1 is to find the leading eigenvector u of Y , and thus
the runtime is essentially the same as for standard spectral methods (see, e.g., [37]).

Algorithm 1 Coherence-free eigenvector estimation algorithm

Input: Observed matrix Y ∈ Rn×n; leading eigenvalue estimate λ̂; parameter β > 0.
Output: û ∈ Rn

1: If λ̂ < 0, set Y = −Y . Obtain the top eigenvector u ∈ Sn−1 of Y .
2: Pick any α̂ ∈ A such that the set Î = {i : |ui| ≥ α̂} satisfies

|Î| ≥ 1

α̂2 log2 n
, and (15)

{i : (1− β)α̂ < |ui| < (1 + β)α̂} = ∅, (16)

3: Let Q ∈ Rn×n be diagonal with Qkk =

{
sgn (uk) if k ∈ Î

1 if k ∈ Îc
and let Ỹ = QY Q.

4: Set Ŝ =
√∑

j,k∈Î Ỹjk and let v̂j =
(∑

k∈Î Ỹjk

)/(
Ŝ
√
λ̂
)

for j ∈ [n].

5: For each j ∈ [n], set ûj = uj if |uj | ≤
(
σ/λ̂

)
log n, and ûj = Qjj v̂j otherwise.

Remark 2. In our proofs, we set β = ϵ0/2. Equation (16), Assumption 2 and the ϵ0-dependence
in Assumption 3 are technical requirements to ensure that with high probability, Î is one of a few
deterministic sets, avoiding the complicated dependence between Î and W . Empirically, Algorithm 1
works well even without these technical conditions. We conjecture that Assumption 2 as well as the
ϵ0-dependence in Assumption 3 can be removed. See Section 5 for further discussion.

As alluded to above, the intuition behind Algorithm 1 is that we aim to concentrate our efforts on
estimating the large entries of u⋆. Consider an entry of Y given by λ⋆u⋆i u

⋆
j +Wij . Intuitively,

locations corresponding to small entries of u⋆ produce small u⋆i u
⋆
j . These entries of Y have a small

signal to noise ratio compared to those arising from products of large entries of u⋆. If we knew
the locations of the large entries of u⋆, we could use them to obtain more accurate estimates of u⋆.
Essentially, both Algorithm 1 above and Algorithm 2 presented below consist of two parts: finding
the large locations, and using those locations to improve our initial spectral estimate of u⋆.
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Algorithm 1 assumes that the entrywise variance σ2 of W is known. Of course, in practice, this is
not the case, and we must estimate σ2. There are several well-established methods for this estimation
task. For example, when W is asymmetric, [36] introduces an estimator based on the median singular
value of Y . In our case, it suffices to estimate σ2 using a simple plug-in estimator

σ̂2 =
2

n(n+ 1)

∑
1≤i≤j≤n

(
Yij − M̂ij

)2
, (17)

where M̂ = λuu⊤ ∈ Rn×n. In general, if M⋆ has rank r, then we set M̂ = UΛU⊤, where Λ is
the leading r eigenvalues of Y (sorted by non-increasing magnitude) and U ∈ Rn×r contains the
corresponding r leading orthonormal eigenvectors as its columns. Lemma 3 controls the estimation
error of the plug-in estimator σ̂2 for a general rank-r signal matrix.

Lemma 3. Under the model given in Equation (1), let M⋆ = U⋆Λ⋆U⋆⊤ be a rank-r matrix with
r ≥ 1, where Λ⋆ = diag (λ⋆1, λ

⋆
2, . . . , λ

⋆
r) such that |λ⋆1| ≥ · · · ≥ |λ⋆r |. Suppose that Assumption 1

holds and that |λ⋆r | ≥ 20
√
νWn, then the estimator σ̂2 given in Equation (17) is such that with

probability at least 1−O(n−8),∣∣σ̂2 − σ2
∣∣ ≤ 400νW r

n
+

4νW
√
log n

cn
+

200νW r
√
log n

n3/2
(18)

where c > 0 is a universal constant.
Remark 3. We use the plug-in estimator σ̂ in the debiased estimator λ̂c in Equation (14) and to
construct û in Step 5 of Algorithm 1. Lemma 3 shows that this only introduces an extra log-factor to
the error bound, which does not affect the estimation error rate of either λ⋆ or u⋆.

Our main result, Theorem 1, controls the estimation error of Algorithm 1, as measured under ℓ∞.
Theorem 1. Under the model in Equation (1), suppose that Assumptions 1, 2, 3 and 4 hold. Then for
n sufficiently large, the estimate û ∈ Rn produced by Algorithm 1 satisfies

d∞ (û,u⋆) ≤
C
√
νW (log n)5/2

|λ⋆|

with probability at least 1−O(n−8 log n), where C > 0 is a universal constant.
Remark 4. Under Gaussian noise, in the regime |λ⋆| = Ω(σ

√
n log n), our upper bound is minimax

rate-optimal up to log-factors compared to the lower bound in Equation (9). In particular, the rate
obtained in Theorem 1 does not depend on the coherence parameter µ. A more careful analysis might
be able to remove some of the log-factors in Theorem 1, but we leave this matter for future work.

3 Rank-r matrix eigenspace estimation

To handle the more general case in which the signal matrix M⋆ is rank r, we propose Algorithm 2,
which yields an estimate of U⋆. This is achieved by estimating the r leading eigenvectors separately,
then combining them into an estimate Û ∈ Rn×r. We explore the empirical performance of
Algorithm 2 via simulation in Section 5.2 and leave its theoretical analysis to future work. Algorithm 2
requires the observed matrix Y and an estimate of the k-th leading eigenvalue λ⋆k of M⋆ as input.
Similar to the rank-one case, the top-r leading eigenvalues λ1, λ2, . . . , λr of Y are biased [47]. We
again use a debiased estimator λ̂k,c for k ∈ [r] as input to Algorithm 2, given by

λ̂k,c =
1

2

(
λk +

√
λ2k − 4nσ2

)
. (19)

Algorithm 2 is a natural extension of Algorithm 1. Essentially, it converts the problem of estimating
u⋆
k into an eigenvector estimation problem under a rank-one signal-plus-noise model given by

Y = λ⋆ku
⋆
ku

⋆⊤
k + (M⋆

−k +W ) = λ⋆ku
⋆
ku

⋆⊤
k +

(
M⋆ − λ⋆ku

⋆
ku

⋆⊤
k +W

)
,

where M⋆
−k = M⋆ − λ⋆ku

⋆
ku

⋆⊤
k . There are two differences between Algorithms 1 and 2. First, we

remove Equation (16) from Algorithm 1, as this is mainly a technical requirement (see Remark 2).
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More importantly, in Algorithm 2, we conjugate Y by a random orthogonal matrix H ∈ On.
The (r−1) leading eigenvectors of HM⋆

−kH
⊤ form a random subspace of Rn×(r−1), which

allows us to treat HM⋆
−kH

⊤ as a noise matrix. By way of illustration, consider the rank-2 case
with M⋆

−1 = λ⋆2u
⋆
2u

⋆⊤
2 . Hu⋆

2 behaves similarly to a random vector drawn uniformly from Sn−1.
Therefore, one would expect Hu⋆

2u
⋆⊤
2 H to behave similarly to a noise matrix n−1gg⊤, where

g ∼ N(0, In) (see Chapter 3 of [54]). As in the discussion after Lemma 2, we can find a set of
indices Iα0 such that the signal in the corresponding entries of Hu⋆

1 dominates the noise.

Algorithm 2 Coherent optimal eigenvector estimation algorithm

Input: Observed matrix Y ∈ Rn×n; k-th leading eigenvalue estimate λ̂k. If λ̂k<0, set Y=−Y .
Output: ûk ∈ Rn

1: Obtain the top-r eigenvectors Ũ of HY H⊤, where H∈On is Haar-distributed.
2: Set Q = diag

(
sgn

(
Ũ ·,k

))
and set Ỹ = QHY H⊤Q.

3: Pick an α0 ∈ A such that for Î :=
{
i : |Ũi,k| ≥ α0

}
, |Î| ≥ 1/α2

0 log
2 n.

4: Set Ŝ =
(∑

j,ℓ∈Î Ỹjℓ

)1/2
and set v̂j =

∑
ℓ∈Î Ỹjℓ

/(
Ŝ

√
λ̂k

)
for j ∈ [n].

5: Let U = H⊤Ũ . For j ∈ [n], set ûk,j =

Uk,j if |Uk,j | ≤
(
σ
/
|λ̂k|

)
log n(

H⊤Qv̂
)
j

otherwise.

As mentioned above, our experiments in Section 5.2 indicate that Algorithm 2 performs well. A
proof of its performance, however, is more complicated than Theorem 1. The main difficulty arises
from the fact that in Algorithm 2, we conjugate by a random orthogonal transformation. This ensures
that when considering the large entries of one signal eigenvector, the other signal eigenvectors are
ignorable. Unfortunately, this random orthogonal transformation breaks Assumption 2 and introduces
complicated dependency structure, requiring a more careful analysis that we leave for future work.

4 Estimation lower bounds under ℓ2,∞ distance

Theorem 1 demonstrates that for a rank-one signal, dependence of the estimation rate on µ can
be removed when |λ⋆| = Ω(σ

√
n log n). In this regime, our result matches the lower bound in

Equation (9) up to log-factors, making this the minimax lower bound under Assumption 2. As
discussed in Remark 2, we expect Assumption 2 can be removed via a more careful analysis,
rendering the lower bound in Equation (9) optimal under |λ⋆| = Ω(σ

√
n log n). On the other hand,

as discussed in Section 1.2, the lower bound in Equation (9) is sub-optimal in the regime where
|λ⋆| = O(σ

√
n). In what follows, we aim to improve upon Equation (9) by deriving metric entropy

bounds [54] for rank-r singular subspaces under the ℓ2,∞ distance when |λ⋆| = O(σ
√
n).

Recall that for a semi-metric ρ defined on a set K, we may define the δ-packing number M(K, ρ, δ) of
K under ρ (see Chapter 15 in [56]). The packing δ-entropy, logM(K, ρ, δ), captures the complexity
of the space K, and a lower bound on the δ-entropy can be translated into a lower bound on the
minimax estimation error rate. For a given r ∈ [n] and 1 ≤ µ ≤ n/r, we consider the parameter set

K(n, r,
√
µr/n) =

{
U ∈ Rn×r : U⊤U = Ir, ∥U∥2,∞ ≤

√
rµ

n

}
. (20)

Below, we write Kr,µ for K(n, r,
√
µr/n). Lemma 4 lower bounds logM(Kr,µ, d2,∞, δ). We focus

on the range r/n ≲ δ2 ≲ µr/n, as the lower bound in Equation (9) shows that δ2 ≪ r/n is not
achievable when |λ⋆| = O(σ

√
n) and δ2 ≫ µr/n is achieved by the trivial all-zeros estimate.

Lemma 4. Suppose that n/µ ≥ max{4, r} and µ ≥ 12 log(12n), and let δ > 0 be such that
c20r

8e2n
≤ δ2 ≤ c20µr

96e2n log (12n/µ)
, (21)

where c0 > 0 is a universal constant. Then when n is sufficiently large,

logM (Kr,µ, d2,∞, δ) ≳
r2

δ2
(22)
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Remark 5. Lemma 4 applies when log n ≲ µ ≲ n/r. A more careful analysis might relax the lower
bound, but when µ ≲ log n, any U ∈ Kr,µ is nearly incoherent and Equation (9) is nearly optimal.
An upper bound matching Lemma 4 up to log-factors can be found in the appendix.

Lemma 4 implies an improved lower bound compared to Equation (9). Consider the parameter space

Ω(λ⋆, µ, r) = {(Λ⋆,U⋆) : Λ⋆ = λ⋆Ir,U
⋆ ∈ Kr,µ} .

Using the Yang-Barron method [59], we obtain a lower bound for eigenspace estimation in the rank-r
signal-plus-noise model for |λ⋆| = O(σ

√
n). A detailed proof can be found in the appendix.

Theorem 2. Under Assumption 1 and the conditions of Lemma 4, for any 0 < λ⋆ ≤ (6
√
C0)

−1σ
√
n,

where C0 > 0 is a universal constant related to covering numbers of Grassmann manifolds, there is
a universal constant c > 0 such that for all sufficiently large n,

inf
Û∈Rn×r

sup
(Λ⋆,U⋆)∈Ω(λ⋆,µ,r)

EΛ⋆,U⋆d2,∞

(
Û ,U⋆

)
≥ c

(
σ
√
r

λ⋆
∧
√

µr

n log(n/µ)

)
.

Remark 6. Theorem 2 removes the upper limit
√
r/n from Equation (9), suggesting that µ only

comes to bear when λ⋆ ≤ σ
√
n. This regime is not well studied, as the BBP transition [8] implies

that spectral methods fail, but other algorithms might achieve our lower bound. For example, signal
detection is possible if structure is present [6]. Unfortunately, any such algorithm is likely to be
computationally expensive, given the general belief that no polynomial-time algorithm can succeed
when λ⋆ ≤ σ

√
n [39, 9]. We leave further exploration of this small-λ⋆ regime to future work.

Remark 7. The parameter space Ω(λ⋆, µ, r) considered in Theorem 2 contains only signal matrices
with condition number κ = 1. In recent work, the authors have established lower bounds akin
to Theorem 2 that show the role of condition number. A full accounting of the interplay between
condition number and coherence is a promising area for future work.

5 Numerical experiments

We turn to a brief experimental exploration of our theoretical results. All experiments were run in a
distributed environment on commodity hardware without GPUs. In total, the experiments reported
below used 3425 compute-hours. Mean memory usage was 3.5 GB, with a maximum of 11 GB.

5.1 Simulations for rank-one eigenspace estimation

We begin with the rank-one setting considered in Algorithm 1, in which we observe

Y = M⋆ +W = λ⋆u⋆u⋆⊤ +W ,

and wish to recover u⋆ ∈ Sn−1. We take λ⋆ =
√
n log n in all experiments, matching the rate in

Remark 1. We consider three distributions for the entries of W : Gaussian, Laplacian and Rademacher,
all scaled to have variance σ2 = 1. We consider two approaches to generating u⋆. In either case, we
set a random entry of u⋆ to be a ∈ {0.3, 0.55, 0.8}, then generate the remaining entries by either

1. drawing uniformly from
√
1− a2Sn−2, or

2. drawing uniformly from {±1}n−1 then normalizing these to have ℓ2 norm
√
1− a2.

In both cases, ∥u⋆∥∞=a and µ=a2n with high probability. We take a=Θ(1), since in finite samples,
Cn−1/2 log n (which is nearly incoherent) is hard to discern from a constant (e.g., when n=20000,
4n−1/2log n ≈ 0.28, nearly matching a=0.3). Having generated Y = M⋆ +W , we estimate u⋆

using both the spectral estimate u and Algorithm 1 and measure their estimation error under d∞. We
report the mean of 20 independent trials for each combination of problem size n, magnitude a and
methods for generating u⋆ and W . We vary n from 100 to 15100 in increments of 1000.

When running Algorithm 1, we use the debiased estimate λ̂c from Equation (14). This requires an
estimate of σ, for which we use the plug-in estimator in Equation (17). We set β = 0, eliminating
Equation (16). Similar to Algorithm 2, we conjugate Y by a random orthogonal matrix H ∈ On.
We expect the top eigenvector ũ of HY H⊤ to be approximately uniformly distributed on Sn−1, as
it is close to Hu⋆ (see Theorem 2.1 in [44]). Thus, the median of the absolute values of ũ should
be Θ(n−1/2). Instead of selecting α0 according to Equation (15), we set α0 to be this median. The
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Figure 1: Estimation error measured in d∞ as a function of dimension n, by the leading eigenvector
(blue) and Algorithm 1 (orange), for ∥u⋆∥∞ equal to 0.8, 0.55 and 0.3 (dotted, dashed and solid
lines, respectively). We consider u⋆ generated from the Bernoulli (top row) and Haar (bottom row)
schemes, and we consider Gaussian (left), Rademacher (middle) and Laplacian (right) noise.

requirement in Equation (15) is then fulfilled, since there are roughly n/2 entries larger than the
median. After obtaining û from Algorithm 1, we return H⊤û as our estimate of u⋆. We note that
this random rotation further serves to illustrate that Assumption 2 is merely a technical requirement:
after a random rotation, with high probability, Hu⋆ does not satisfy Assumption 2.

Figure 1 compares the accuracy in estimating u⋆ using the leading eigenvector of Y (blue) and
Algorithm 1 (orange) under the three noise settings and two generating procedures for u⋆. Shaded
bands indicate 95% bootstrap confidence intervals (CIs). Across settings, Algorithm 1 recovers u⋆

with a much smaller estimation error under d∞ compared to the naïve spectral estimate, especially
when ∥u⋆∥∞ (i.e., the coherence µ) is large. The spectral method degrades noticeably as coherence
increases, while Algorithm 1 has far less dependence on µ. Indeed, under Gaussian noise (the first
column of Figure 1), it has no visible dependence on µ. Under Rademacher noise (middle column of
Figure 1), the dependence of Algorithm 1 on µ appears slightly reversed from that of the spectral
estimator. Under Laplacian noise (right column of Figure 1), there seems to be a slight dependence
on µ. Further examination in the appendix suggests that this is due to estimating the entries other
than the largest element of u⋆, and is likely asymptotically smaller than the rate in Theorem 1.

5.2 Simulations for rank-r eigenvector estimation

For the rank-r setting, we have a signal matrix with eigenvalues |λ⋆1| ≥ . . . ≥ |λ⋆r |. We observe

Y = M⋆ +W = U⋆Λ⋆U⋆ +W ,

where Λ⋆ = diag(λ⋆1, . . . , λ
⋆
r), and we wish to recover U⋆ ∈ Rn×r. We take σ = 1 and λ⋆r =√

n log n. Recovering each column of U⋆ separately requires an eigengap, defined for k ∈ [r] as
∆k := |λ⋆k − λ⋆k+1| and ∆0 = ∞. Typically, the estimation error of the k-th eigenvector has a
O(min{∆k,∆k−1}−1) dependence on the eigengaps [57]. Here, we set ∆k = 0.5

√
n log n, so

λ⋆k = 0.5(r − k + 2)
√
n log n for all k ∈ [r]. As in the rank-one case, we generate entries of W

from Gaussian, Laplacian and Rademacher distributions, all scaled to have unit variance. The true
eigenvectors U⋆ are generated by repeating the following procedure for k ∈ [r]:

1. Randomly select an element of v ∈ Rn and set it to be a ∈ {0.3, 0.55, 0.8}.
2. Generate the rest of v by drawing uniformly from

√
1− a2Sn−2.

3. Set u⋆
k =

(
In −U⋆

·,1:(k−1)U
⋆⊤
·,1:(k−1)

)
v, normalize u⋆

k to have unit ℓ2 norm, and set

U⋆
·,k = u⋆

k. If k = 1, then we take U⋆
·,1:(k−1)U

⋆⊤
·,1:(k−1) to be the zero matrix.

Under this procedure, each u⋆
k has coherence approximately a2n. Since the large entries of the u⋆

k

are unlikely to appear in the same rows, U⋆ also has coherence a2n. We take r = 2 here.
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Figure 2: Estimation error under d∞ as a function of size n, by the k-th eigenvector (blue/purple)
and the estimator in Algorithm 2 (orange/red) for ∥u⋆∥∞ equal to 0.8 (dotted lines), 0.55 (dashed
lines) or 0.3 (solid lines) with Gaussian (left), Rademacher (center) or Laplacian (right) noise.

Having generated Y=M⋆+W , we obtain estimates via the naïve spectral method and Algorithm 2.
and measure their estimation error under d∞. We vary n from 100 to 15100 in increments of 1000
and report the mean of 20 independent trials for each combination of n, a and noise distribution.
The results are summarized in Figure 2, showing the error for u⋆

k, k ∈ {1, 2} using the spectral
estimate (blue/purple) and Algorithm 2 (orange/red), under Gaussian (left), Rademacher (middle)
and Laplacian (right) noise. Shaded bands indicate 95% bootstrap CIs. In all settings, Algorithm 2
improves markedly on the spectral estimator. Algorithm 2 shows no visible dependence on µ under
Gaussian noise. Under Rademacher noise, its µ-dependence is the reverse of the spectral estimator.
Under Laplacian noise, it shows slight dependence on µ, which we again expect to be asymptotically
smaller than the rate in Theorem 1. In the appendix, we consider r=3 and measure error under d2,∞,
and we again find that Algorithm 2 outperforms spectral estimators and is far less sensitive to µ.

5.3 Comparison with other methods

To the best of our knowledge, we are the first paper to consider the task of non-spectral entrywise
eigenvector estimation. The nearest obvious competing method might be based on approximate
message passing (AMP; see [34] for an overview). Such a comparison is included in the appendix,
where our experiments indicate that while AMP performs well in recovering the signal eigenvectors as
measured by ℓ2 error, our method as specified in Algorithms 1 and 2 perform better under entrywise
and ℓ2,∞ error. Experimental details and further discussion can be found in the appendix.

6 Discussion, limitations and conclusion

We have presented new methods for eigenvector estimation in signal-plus-noise matrix models
and new lower bounds for estimation rates in these models. The entrywise estimation error of our
method has no dependence on the coherence µ for rank-one signal matrices, and achieves the optimal
estimation rate up to log-factors. Simulations show that our method tolerates non-Gaussian noise and
its extension to rank-r signal matrices has little dependence on µ. One limitation of our method is
that it assumes homoscedastic noise. Future work will aim to relax this assumption and the technical
condition in Assumption 2. In the rank-r case, Algorithm 2 estimates each eigenvector separately,
requiring an eigengap. Future work will avoid this by simultaneously or iteratively estimating multiple
eigenvectors. We note in closing that inequitable social impacts from abuse or misuse of models and
methods are common, but we see no particular such impacts in the present work.
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A Proof of Lemma 1

Proof. Let θ = limn→∞(σ
√
n)−1λ⋆. For any u⋆ ∈ Sn−1, by the Baik-Ben Arous-Péché (BBP)

phase transition ([8]; see also Theorem 2 in [38]), the top eigenvector u of Y obeys

⟨u,u⋆⟩2 a.s.−−→
{
1− θ−2 if θ > 1

0 if θ ⩽ 1
. (23)

Let s = ⌈n/µ⌉, and consider

u⋆ =

(
1√
s
1⊤
s ,0

⊤
n−s

)⊤

∈ Rn. (24)

Without loss of generality, we assume that d∞(u,u⋆) = ∥u− u⋆∥∞, since otherwise we can repeat
the following argument with −u instead of u. We have

d∞(u,u⋆) ≥ max
i∈[s]

|ui − u⋆i | ≥
1√
s

(
s∑

i=1

|ui − u⋆i |
2

)1/2

. (25)

Expanding the term inside the square root,
s∑

i=1

|ui − u⋆i |
2
=

s∑
i=1

u2i +

s∑
i=1

u⋆2i − 2

s∑
i=1

u⋆i ui =

s∑
i=1

u2i + 1− 2⟨u⋆,u⟩, (26)

where the last equality follows from the construction of u⋆ in Equation (24). By the Cauchy-Schwarz
inequality, we have

s∑
i=1

u2i ≥ 1

s

(
s∑

i=1

ui

)2

=

(
s∑

i=1

1√
s
ui

)2

= ⟨u⋆,u⟩2, (27)

where the last equality follows from the construction of u⋆ in Equation (24). Plugging Equation (27)
into Equation (26), we obtain

s∑
i=1

|ui − u⋆i |
2 ≥ ⟨u⋆,u⟩2 + 1− 2⟨u⋆,u⟩ =

(
1− ⟨u⋆,u⟩

)2
.

When θ > 1, applying Equation (23) yields that

lim inf
n→∞

s∑
i=1

|ui − u⋆i |
2 ≥ lim inf

n→∞
(1− ⟨u⋆,u⟩)2 =

(
1−

√
1− 1

θ2

)2

(28)

holds almost surely. Again using the fact that θ > 1, we have

1−
√
1− 1

θ2
=

(
1 +

√
1− 1

θ2

)−1 [
1−

(
1− 1

θ2

)]
≥ 1

2θ2
. (29)

Combining Equations (25), (28) and (29), it holds almost surely that

lim inf
n→∞

d∞(u,u⋆) ≥ lim inf
n→∞

1√
s

(
|ui − u⋆i |

2
)1/2

≥ lim
n→∞

1

2θ2
· 1√

1 + n/µ
,

where the last inequality follows from s = ⌈n/µ⌉. Since µ ≤ n, it follows that

lim inf
n→∞

d∞(u,u⋆) ≥ lim
n→∞

1

2θ2
·
√

µ

µ+ n
≥ lim

n→∞

1

2
√
2 θ2

·
√
µ

n

almost surely. By the definition of θ, we have

lim inf
n→∞

d∞(u,u⋆) ≥ lim
n→∞

σ2n

2
√
2|λ⋆|2

√
µ

n
= lim

n→∞

σ2√nµ
2
√
2|λ⋆|2

,

completing the proof.
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B Proof of Lemma 2

Proof. The upper bound

|{i : |vi| ≥ α0}| ≤
1

α2
0

follows trivially from the fact that ∥v∥2 = 1.

To prove the lower bound, we consider the disjoint intervals

Iℓ =


[
log−1/2 n, 1

]
if ℓ = 0[

log−(ℓ+1)/2 n, log−ℓ/2 n
)

if ℓ ∈ {1, 2, . . . , ⌈L⌉ − 2}[
log−L/2 n, log−(⌈L⌉−1)/2 n

)
if ℓ = ⌈L⌉ − 1.

(30)

Recall the definition of L from Equation (11),

L =
log(2n)

log log n
.

Rearranging terms, we have

−L
2
log log n = −1

2
log(2n).

Exponentiating both sides of the above display,

log−L/2 n =
1√
2n
.

Noting that by Equation (30),

⌈L⌉−1⋃
ℓ=0

Iℓ =
[
log−L/2 n, 1

]
=

[
1√
2n
, 1

]
,

for any i ∈ [n] such that |vi| /∈ ∪⌈L⌉−1
ℓ=0 Iℓ, we have

|vi| < log−L/2 n =
1√
2n
,

and therefore, summing over all i ∈ [n] such that |vi| /∈
⋃⌈L⌉−1

ℓ=0 Iℓ yields that∑
i:|vi|/∈

⋃⌈L⌉−1
ℓ=0 Iℓ

v2i <
∑

i:|vi|/∈
⋃⌈L⌉−1

ℓ=0 Iℓ

1

2n
≤ n · 1

2n
=

1

2
. (31)

Let xℓ = |{i : |vi| ∈ Iℓ}| for all ℓ ∈ {0, 1, . . . , ⌈L⌉ − 1}. We have∑
i:|vi|∈Iℓ

v2i ≤ xℓ max
i:|vi|∈Iℓ

v2i ≤ xℓ

logℓ n
,

where the last inequality follows from the definition of Iℓ in Equation (30). Summing over all
ℓ ∈ {0, 1, . . . , ⌈L⌉ − 1} on both sides , we have

⌈L⌉−1∑
ℓ=0

xℓ

logℓ n
≥

∑
i:|vi|∈

⋃⌈L⌉−1
ℓ=0 Iℓ

v2i = 1−
∑

i:|vi|/∈
⋃⌈L⌉−1

ℓ=0 Iℓ

v2i >
1

2
,

where the last inequality follows from Equation (31). The above further implies that

⌈L⌉ · max
ℓ∈{0,1,··· ,⌈L⌉−1}

{
xℓ

logℓ n

}
≥

⌈L⌉−1∑
ℓ=0

xℓ

logℓ n
>

1

2
.
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Hence, rearranging, there exists an ℓ0 ∈ {0, 1, · · · , ⌈L⌉ − 1} such that

xℓ0 >
logℓ0 n

2⌈L⌉
> logℓ0−1 n =

logℓ0+1 n

log2 n
,

where the second inequality holds for suitably large n by the definition of L given in Equation (11).

Finally, note that for all i ∈ [n] such that |vi| ∈ Iℓ0 , we have |vi| ≥ log−(ℓ0+1)/2 n by the definition
of Iℓ0 in Equation (30). Taking

α0 =

{
log−(ℓ0+1)/2 n if ℓ0 ∈ {0, 1, · · · , ⌈L⌉ − 2}
log−L/2 n if ℓ0 = ⌈L⌉ − 1

yields that

|{i : |vi| ≥ α0}| ≥ xℓ0 >
1

α2
0 log

2 n
.

We complete the proof by noting that α0 is in A, where A is defined in Equation (10).

C Proof of Lemma 3

Proof. Expanding the right hand side of Equation (17), we have

σ̂2 =
2

n(n+ 1)

∑
1≤i≤j≤n

(
M⋆

ij − M̂ij +Wij

)2
=

2

n(n+ 1)

∑
1≤i≤j≤n

(
M⋆

ij − M̂ij

)2
+

2

n(n+ 1)

∑
1≤i≤j≤n

W 2
ij

+
4

n(n+ 1)

∑
1≤i≤j≤n

Wij

(
M⋆

ij − M̂ij

)
.

Subtracting σ2 on both sides and applying the triangle inequality, we have

∣∣σ̂2 − σ2
∣∣ ≤ 2

n(n+ 1)

∑
1≤i≤j≤n

(
M⋆

ij − M̂ij

)2
+

∣∣∣∣∣∣ 2

n(n+ 1)

∑
1≤i≤j≤n

W 2
ij − σ2

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 4

n(n+ 1)

∑
1≤i≤j≤n

Wij

(
M⋆

ij − M̂ij

)∣∣∣∣∣∣
≤ 2

n(n+ 1)

∥∥∥M⋆ − M̂
∥∥∥2
F
+

∣∣∣∣∣∣ 2

n(n+ 1)

∑
1≤i≤j≤n

W 2
ij − σ2

∣∣∣∣∣∣
+

∣∣∣∣ 2

n(n+ 1)
trW

(
M⋆ − M̂

)∣∣∣∣+ 2

n(n+ 1)

∣∣∣∣∣
n∑

i=1

Wii

(
M⋆

ii − M̂ii

)∣∣∣∣∣ .

(32)

We proceed to bound each term in the last inequality of Equation (32) separately.

For the first term in Equation (32), by an argument analogous to that of Equation (3.15) in [27],

2

n(n+ 1)

∥∥∥M̂ −M⋆
∥∥∥2
F
≤ 8r

n(n+ 1)
∥W ∥2 .

By standard matrix concentration inequalities [53, 54], with probability at least 1−O(n−8),

∥W ∥ ≤ 5
√
νWn log n. (33)

Combining the above two displays, we obtain an analogue of Equation (3.16) in [27], namely that
with probability at least 1−O(n−8),

2

n(n+ 1)

∥∥∥M̂ −M⋆
∥∥∥2
F
≤ 200νW r

n+ 1
. (34)
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For the second term in Equation (32), applying standard concentation inequalities for subexponential
random variables (see, e.g., Chapter 2 in [54]),

P

∣∣∣∣∣∣
∑

1≤i≤j≤n

(
W 2

ij − σ2
)∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

{
−c2 min

{
2t2

n(n+ 1)ν2W
,
t

νW

}}
,

where c > 0 is an absolute constant. Taking t = 2νW
√
n(n+ 1) log n/c and dividing through by

n(n+ 1)/2, it holds with probability at least 1−O(n−8) that∣∣∣∣∣∣ 2

n(n+ 1)

∑
1≤i≤j≤n

W 2
ij − σ2

∣∣∣∣∣∣ ≤ 4νW
√
log n

cn
. (35)

For the third term in Equation (32), using the matrix Hölder inequality (see Corollary IV.2.6 in [15]),
we have ∣∣∣trW (

M⋆ − M̂
)∣∣∣ ≤ ∥W ∥∥M⋆ − M̂∥∗,

where ∥ · ∥∗ denotes the nuclear norm, defined to be the sum of the singular values. Using the fact
that M⋆ − M̂ has at most rank 2r, we have∣∣∣trW (

M⋆ − M̂
)∣∣∣ ≤ 2r∥W ∥∥M⋆ − M̂∥.

Applying Equation (33) and following an argument analogous to that in Equations (3.12) and (3.15)
in [27], we have that with probability at least 1−O(n−8),

∥W ∥ ≤ 5
√
νWn and ∥M⋆ − M̂∥ ≤ 10

√
νWn.

It follows that with probability at least 1−O(n−8),

2

n(n+ 1)

∣∣∣trW (
M⋆ − M̂

)∣∣∣ ≤ 200νW r

n+ 1
. (36)

For the fourth term in Equation (32), we have∣∣∣∣∣
n∑

i=1

Wii

(
M⋆

ii − M̂ii

)∣∣∣∣∣ ≤ max
i∈[n]

{|Wii|} ∥M̂ −M⋆∥∗.

2

n(n+ 1)

∣∣∣∣∣
n∑

i=1

Wii

(
M⋆

ii − M̂ii

)∣∣∣∣∣ ≤ 200νW r
√
log n

n3/2
. (37)

Applying Equations (34), (35), (36) and (37) to Equation (32), with probability at least 1−O(n−8),

|σ̂2 − σ2| ≤ 400νW r

n
+

4νW
√
log n

cn
+

200νW r
√
log n

n3/2
,

as we set out to show.

D Proof of Theorem 1

Without loss of generality, we derive our results under the assumption that

d∞ (u,u⋆) = ∥u− u⋆∥∞.

Otherwise, we can replace u with −u and obtain the same results. We remind the reader that we use
c and C to denote constants with respect to n, whose precise value might change from line to line. To
prove Theorem 1, we first state and prove a few technical lemmas.
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D.1 Technical lemmas

Lemma 5. If |λ⋆| ≥ 80
√
νWn, then under Assumption 1, it holds with probability at least 1−O(n−8)

that for all ℓ ∈ [n],

min {|uℓ − u⋆ℓ | , |uℓ + u⋆ℓ |} ≤
80

√
νW log n+ 120

√
νWn|u⋆ℓ |

|λ⋆|
. (38)

Proof. We largely follow the proof of Theorem 4.1 in [27], albeit with a slightly more careful
analysis. In particular, we note that the proof of Theorem 4.1 in [27] is written for the case where
W has Gaussian entries. It is straightforward to extend this argument to subgaussian entries by
applying standard subgaussian concentration inequalities and truncation arguments [54, 56], in
essence replacing all appearances of σ2 in their results with the subgaussian parameter (i.e., “variance
proxy”) νW . Here, we only sketch out a few key points and refer the reader to Section 4.1.4 of [27]
for a full argument. For each ℓ ∈ [n], we construct a leave-one-out copy Y (ℓ) as

Y (ℓ) = λ⋆u⋆u⋆⊤ +W (ℓ),

where

W
(ℓ)
ij =

{
Wij , if ℓ ̸∈ {i, j}
0 otherwise.

For each ℓ ∈ [n], let λ(ℓ) and u(ℓ) denote, respectively, the largest-magnitude eigenvalue of Y (ℓ) and
its corresponding eigenvector. Without loss of generality, flipping signs if necessary, we assume that

d∞ (u,u⋆) = ∥u− u⋆∥∞.

By Equation (4.20) in [27], with probability at least 1−O
(
n−8

)
we have∣∣∣u(ℓ)ℓ − u⋆ℓ

∣∣∣ ≤ 20
√
νWn

|λ⋆|
|u⋆ℓ |. (39)

By Equation (4.15) in [27], we have

∥∥∥u− u(ℓ)
∥∥∥
2
≤

4
∥∥∥(Y − Y (ℓ)

)
u(ℓ)

∥∥∥
2

|λ⋆|
.

Following the argument just after Equation (4.18) in [27], replacing the Gaussian concentration
inequalities with subgaussian concentration inequalities, one can show that∥∥∥(Y − Y (ℓ)

)
u(ℓ)

∥∥∥
2
≤ 5
√
νW log n+ 5

√
νWn |uℓ|+ 5

√
νWn

∥∥∥u− u(ℓ)
∥∥∥
2
,

with probability at least 1−O
(
n−8

)
. Combining the above two displays and rearranging slightly,(

1−
5
√
νWn

|λ⋆|

)
∥u− u(ℓ)∥2 ≤

5
√
νW log n+ 5

√
νWn |uℓ|

|λ⋆|
.

Since λ⋆ ≥ 40
√
νWn by assumption, it follows that

∥u− u(ℓ)∥2 ≤
40

√
νW log n+ 40

√
νWn |uℓ|

|λ⋆|
. (40)

Combining the triangle inequality with the trivial upper bound ∥u − u(ℓ)∥∞ ≤ ∥u − u(ℓ)∥2, we
have for any ℓ ∈ [n],

|uℓ − u⋆ℓ | ≤
∣∣∣u⋆ℓ − u

(ℓ)
ℓ

∣∣∣+ ∥∥∥u− u(ℓ)
∥∥∥
2
.

Applying Equations (39) and (40), it holds with probability at least 1−O(n−8) that

|uℓ − u⋆ℓ | ≤
20
√
νWn

|λ⋆|
|u⋆ℓ |+

40
√
νW log n+ 40

√
νWn |uℓ|

|λ⋆|

≤
20
√
νWn

|λ⋆|
|u⋆ℓ |+

40
√
νW log n+ 40

√
νWn|u⋆ℓ |+ 40

√
νWn |uℓ − u⋆ℓ |

|λ⋆|
,
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where the second inequality follows from the triangle inequality. After rearranging terms and using
the fact that |λ⋆| ≥ 80

√
νWn, we obtain the desired bound

|uℓ − u⋆ℓ | ≤
80

√
νW log n+ 120

√
νWn|u⋆ℓ |

|λ⋆|
,

for all ℓ ∈ [n], completing the proof.

Lemma 6, which controls the behavior of the index set Î in Algorithm 1, follows from an application
of Lemma 5.

Lemma 6. Under the model in Equation (1) with M⋆ = λ⋆u⋆u⋆⊤, suppose that Assumption 1 holds
and Assumption 3 holds with constant C1 > 2400/ϵ0, where ϵ0 ∈ (0, 1) is fixed. For α ∈ A, define

Îα = {i : |ui| ≥ α} ,

where u is the leading eigenvector of Y , as in Step 1 of Algorithm 1. For all sufficiently large n, the
following all hold with probability at least 1−O(n−8 log n):

{i : |u⋆i | ≥ (1 + ϵ0/2)α} ⊆ Îα ⊆ {i : |u⋆i | ≥ (1− ϵ0/2)α}, (41)

{i : (1− ϵ0/2)α < |ui| < (1 + ϵ0/2)α} ⊆ {i : (1− ϵ0)α < |u⋆i | < (1 + ϵ0)α} , (42)

{i : |u⋆i | ≥ α} ⊆ {i : |ui| > (1− ϵ0/2)α} (43)

and
{i : |ui| ≥ (1 + ϵ0/2)α} ⊆ {i : |u⋆i | ≥ α} . (44)

Proof. Fix α ∈ A. For any i ∈ Îα, we have |ui| ≥ α by definition. We have

P

⋃
i∈Îα

{
|u⋆i | < α−

80
√
νW log n+ 120

√
νWn|u⋆i |

|λ⋆|

}
≤ P

⋃
i∈Îα

{
|u⋆i | < |ui| −

80
√
νW log n+ 120

√
νWn|u⋆i |

|λ⋆|

}
≤ P

 ⋃
i∈[n]

{
|u⋆i | < |ui| −

80
√
νW log n+ 120

√
νWn|u⋆i |

|λ⋆|

} ≤ O(n−8).

(45)

where the first inequality follows from the fact that |ui| ≥ α for i ∈ Îα, the second inequality
follows from set inclusion, and the last inequality follows from combining the triangle inequality
with Lemma 5. If

|u⋆i | ≥ α−
80

√
νW log n+ 120

√
νWn|u⋆i |

|λ⋆|
(46)

and we take C1 > 2400/ϵ0 in Assumption 3, then we have

|u⋆i | ≥ α− 80ϵ0
√
νW log n

2400
√
νWn log n

−
120ϵ0

√
νWn

2400
√
νWn log n

|u⋆i | ≥ α− ϵ0
30

√
1

n
− ϵ0

20
√
log n

|u⋆i |.

Since α ≥
√
1/2n, after rearranging terms,

|u⋆i | ≥
(
1 +

ϵ0

20
√
log n

)−1
(
α− ϵ0

30

√
1

n

)
≥
(
1 +

ϵ0

20
√
log n

)−1 (
1− ϵ0

15

)
α

> (1− ϵ0/2)α,

(47)
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where the last inequality holds for all i ∈ [n] satisfying Equation (46) (i.e., all i ∈ Îα) when n is
sufficiently large. Thus, we conclude that, applying a union bound followed by Equation (45),

P
(
Îα⊆ {i : |u⋆i | ≥ (1−ϵ0/2)α}

)
= P

⋂
i∈Îα

{|u⋆i | ≥ (1− ϵ0/2)α}


≥ 1−P

⋃
i∈Îα

{
|u⋆i |<α−

80
√
νW log n+120

√
νWn|u⋆i |

|λ⋆|

}
≥ 1−O(n−8).

(48)

Following a similar argument, we can show that Equation (44) holds with probability at least
1−O(n−8), and that, also with probability at least 1−O(n−8),

{i : (1− ϵ0/2)α < |ui|} ⊆ {i : (1− ϵ0)α < |u⋆i |} . (49)

On the other hand, combining the triangle inequality with the bound in Equation (38) in Lemma 5, it
holds with probability at least 1−O(n−8) that for all i ∈ [n] satisfying |u⋆i | ≥ (1 + ϵ0/2)α,

|ui| ≥ |u⋆i | − |ui − u⋆i | ≥
(
1 +

ϵ0
2

)
α− ϵ0

30
√
n
− ϵ0(1 + ϵ0/2)α

20
√
log n

> α,

where the last inequality holds when n is sufficiently large. It follows that

P
(
Îα ⊇ {i : |u⋆i | ≥ (1 + ϵ0/2)α}

)
= P

 ⋂
i∈{i:|u⋆

i |≥(1+ϵ0/2)α}

{|ui| ≥ α}


≥ 1−O(n−8).

(50)

Following the same argument, we have that Equation (43) holds with probability at least 1−O(n−8)
and that

{i : |u⋆i | ≥ (1 + ϵ0)α} ⊆ {i : |ui| ≥ (1 + ϵ0/2)α} (51)

also with probability at least 1−O(n−8).

Combining Equation (48) and Equation (50) yields that Equation (41) holds with probability at least
1 − O(n−8). Similarly, combining Equations (49) and (51) implies that Equation (42) holds with
probability at least 1−O(n−8). A union bound over all α ∈ A yields that Equations (41), (42) (43)
and (44) hold simultaneously for all α ∈ A with probability at least 1−O(|A|n−8). Recalling from
Equation (10) that |A| = O(log n) completes the proof.

The results in Lemma 6 lead to Lemma 7.

Lemma 7. Consider the model in Equation (1) with M⋆ = λ⋆u⋆u⋆⊤ and suppose that Assump-
tions 1, 2 and 3 hold. For each α ∈ A, let

Iα := {i : |u⋆i | ≥ α} (52)

and define the set
A0 = {α ∈ A : |Iα| ≥ (α2 log2 n)−1}, (53)

where A is as defined in Equation (10). Let Î be the set constructed in Step 2 of Algorithm 1 with
β = ϵ0/2. With probability at least 1−O(n−8 log n), there exists an α ∈ A0 such that Î = Iα.

Proof. We first show that with probability at least 1 − O(n−8 log n), for any α ∈ A satisfying
Equations (15) and (16), we have α ∈ A0 and Îα = Iα, where Îα is as defined in Lemma 6. We then
prove that there exists at least one α ∈ A0 ⊆ A such that both Equations (15) and (16) hold. Having
established this, the value α̂ ∈ A chosen in Step 2 of Algorithm 1, which satisfies Equations (15) and
(16) by definition, must be an element of A0 ⊆ A. Since Î = Îα̂ by definition, we must have Î = Iα̂
with probability at least 1−O(n−8 log n), which will complete the proof.
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Suppose that α ∈ A satisfies Equations (15) and (16). Trivially, by the definition of A0 in Equa-
tion (53), Equation (15) implies that α ∈ A0. By Lemma 6, with probability at least 1−O(n−8 log n),
Equations (43) and (44) hold for all elements of A. Thus, in particular,

{i : |ui| ≥ (1 + ϵ0/2)α̂} ⊆ {i : |u⋆i | ≥ α̂} ⊆ {i : |ui| > (1− ϵ0/2)α̂} .
By Equation (16) and the choice β = ϵ0/2 in Algorithm 1,

Îα = {i : |ui| > (1− ϵ0/2)α} = {i : |ui| ≥ (1 + ϵ0/2)α} ,
from which it follows that Îα = Iα with probability at least 1−O(n−8 log n).

We now establish the existence of at least one α ∈ A0 ⊆ A satisfying Equations (15) and (16). By
Assumption 2, for sufficiently large n, there exists α ∈ A such that Equation (12) holds, from which
α ∈ A0 immediately. Also by Assumption 2, there are no i ∈ [n] for which

(1− ϵ0)α ≤ |u⋆i | ≤ (1 + ϵ0)α.

By Lemma 6, Equation (41) holds with probability at least 1 − O(n−8 log n) for all elements of
A0 ⊆ A, and thus Îα = Iα. Therefore, we have |Îα| = |Iα| ≥ (α2 log2 n)−1, where the lower-
bound follows from Equation (12). As a result, any such α guaranteed by Assumption 2 satisfies
Equation (15).

By Equation (42) in Lemma 6 and the fact that α satisfies Assumption 2, with probability at least
1−O(n−8 log n) we have

{i : (1− ϵ0/2)α < |ui| < (1 + ϵ0/2)α} = ∅.
Thus, with β = ϵ0/2, this particular α also satisfies Equation (16) and we conclude that with
probability at least 1−O(n−8 log n), there exists at least one α ∈ A0 such that both Equations (15)
and (16) hold.

Our argument above ensures that with probability at least 1 − O(n−8 log n), there exists α ∈ A0

satisfying Equations (15) and (16). Thus, α̂ ∈ A0 as constructed in Step 2 exists, and our argument
above ensures that Î as constructed in Step 2 satisfies Î = Îα̂ = Iα̂, completing the proof.

Lemma 8. Under Assumptions 1 and 3, with probability at least 1−O(n−8) it holds for all i ∈ [n]
that

|u⋆i | ≥
1

24
√
n

implies sgn (ui) = sgn (u⋆i ) .

Proof of Lemma 8. Let i ∈ [n] and suppose that |u⋆i | ≥ 1/24
√
n with u⋆i ≥ 0. The case for u⋆i < 0

follows by an analogous argument and details are omitted. By Equation (38) in Lemma 5, it holds
with probability at least 1−O(n−8) that for all i ∈ [n] such that u⋆i ≥ 0,

ui ≥ u⋆i − |ui − u⋆i | ≥
(
1−

120
√
νWn

|λ⋆|

)
u⋆i −

80
√
νW log n

|λ⋆|
.

By Assumption 3, it follows that when |λ⋆| ≥ 2400
√
νWn

ui ≥
19

20
u⋆i −

80
√
νW log n

|λ⋆|
.

Since u⋆i ≥ 1/24
√
n by assumption, it follows that when |λ⋆| ≥ 2400

√
νWn, we have

u⋆i ≥ 100
√
νW log n

|λ⋆|
,

from which we have ui > 0 and therefore sgn (ui) = sgn (u⋆i ).

Lemma 9. Fix α ∈ A and s ∈ {±1}n. For a random noise matrix W ∈ Rn×n satisfying
Assumption 1, it holds with probability at least 1−O(n−8) that∣∣∣∣∣∣

∑
j,k∈Iα

sjskWjk

∣∣∣∣∣∣ ≤ C|Iα|
√
νW log n (54)

and

max
j∈[n]

∣∣∣∣∣∑
k∈Iα

sjskWjk

∣∣∣∣∣ ≤ C
√
|Iα|νW log n. (55)
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Proof. Since s ∈ {±1}n is fixed and the entries of W are symmetric about zero, we assume without
loss of generality that s is a vector of all 1’s. By standard concentration inequalities [54], we have
that for any t > 0,

P

∣∣∣∣∣∣
∑

j,k∈Iα

Wjk

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

(
−t2

2|Iα|2νW

)
.

Setting t = C|Iα|
√
νW log n for suitably-chosen C > 0, Equation (54) holds with probability at

least 1 − O(n−8). Similarly, by standard subgaussian concentration inequalities [54] and a union
bound over j ∈ [n], it holds for all t > 0 that

P

(
max
j∈[n]

∣∣∣∣∣∑
k∈Iα

Wjk

∣∣∣∣∣ > t

)
≤ 2n exp

(
−t2

2|Iα|νW

)
.

Taking t2 = C|Iα|νW log n for C > 0 chosen suitably large, Equation (55) holds with probability at
least 1−O(n−8), completing the proof.

D.2 Proof of Theorem 1

Proof. In this proof, we control the estimation error of û under d∞. There are two types of entries
of û, as stated in Step 5 of Algorithm 1. One type is derived from v̂ constructed in Step 4 of
Algorithm 1, and corresponds to large entries of u⋆. The other type is given by the top eigenvector u
of Y , corresponding to small entries of u⋆. We handle these two types of entries separately. In Part
I of the proof, we control the estimation error corresponding to the first type of entries, derived from
v̂. In Part II of the proof, we control the estimation error corresponding to the second type of entries,
derived from u. Combining these two parts, we obtain a high probability bound for the estimation
error d∞(û,u⋆).

Part I. Estimation error related to v̂.

We define the event E1 according to

E1 = {|λ̂− λ⋆| ≤ C2
√
νW log5/2 n}. (56)

On event E1, if λ⋆ > 0, then by the triangle inequality, we have

λ̂ ≥ λ⋆ −
∣∣∣λ⋆ − λ̂

∣∣∣ ≥ λ⋆ − C2
√
νW log5/2 n > 0, (57)

where the second inequality holds for all sufficiently large n by Assumption 3. Similarly, for all
sufficiently large n we have λ̂ < 0 if λ⋆ < 0. In other words, for all sufficiently large n, we have

sgn
(
λ̂
)
= sgn (λ⋆)

on event E1. Hence, Step 1 in Algorithm 1 guarantees that we work with the original Y when λ⋆ > 0,
or with −Y when λ⋆ < 0. In either case, the algorithm proceeds with a signal matrix that has a
positive leading eigenvalue on E1. Without loss of generality, we assume that λ⋆ > 0.

On event E1, we have ∣∣∣∣λ⋆
λ̂

− 1

∣∣∣∣ ≤ C2
√
νW (log n)5/2

λ⋆ − |λ⋆ − λ̂|
≤
C
√
νW (log n)5/2

λ⋆
. (58)

where the second inequality holds for all sufficiently large n by Assumption 3. Similarly, for n
sufficiently large, following Equation (58), event E1 also implies

1/2 ≤ |λ⋆/λ̂| ≤ 2. (59)

Recalling the set A0 from Equation (53) and Iα from Equation (52) above, for each α ∈ A0, define
the events E2,α and E3,α according to

E2,α := {Î = Iα}, (60)
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where Î is as constructed in Step 2 of Algorithm 1, and

E3,α := {Qkk = sgn (u⋆k) for all k ∈ Iα, and Qkk = 1 for all k ∈ Icα}. (61)

Define s ∈ {±1}n according to

sk :=

{
sgn (u⋆k) if k ∈ Iα,

1 otherwise,
(62)

and for each α ∈ A0, define the event E4,α as

E4,α =


∣∣∣∣∣∣
∑

j,k∈Iα

sjskWjk

∣∣∣∣∣∣ ≤ C|Iα|
√
νW log n

 . (63)

For Ŝ given in Step 4 of Algorithm 1, plugging in Ỹ = QY Q and expanding, it follows that on the
event E2,α ∩ E3,α,

Ŝ2 =
∑
j,k∈Î

QjjQkkYjk = λ⋆

(∑
k∈Iα

|u⋆k|

)2

+
∑

j,k∈Iα

sjskWjk. (64)

On the event E2,α ∩ E3,α ∩ E4,α, we can lower-bound this right-hand side, obtaining

Ŝ2 ≥ λ⋆

(∑
k∈Iα

|u⋆k|

)2

− C|Iα|
√
νW log n ≥ λ⋆|Iα|2α2 − C|Iα|

√
νW log n, (65)

where the first inequality follows from the fact that event E4,α holds and the second inequality follows
from the definition of Iα in Equation (52). Using Equation (53) and the fact that α ∈ A0, we may
further bound this by

Ŝ2 ≥ |Iα|
log2 n

(
λ⋆ − C

√
νW log5/2 n

)
> 0,

where the second inequality holds under Assumption 3 when n is sufficiently large. Thus, on the
event E2,α ∩ E3,α ∩ E4,α, we have

∑
j,k∈Î Ỹjk > 0 and thus Ŝ is well-defined (i.e., it is the square

root of a positive number).

We now show that Ŝ is close to its population target. Rearranging the terms in Equation (64), we
have that on the event E2,α ∩ E3,α ∩ E4,α,∣∣∣∣∣∣Ŝ2 − λ⋆

(∑
k∈Iα

|u⋆k|

)2
∣∣∣∣∣∣ ≤ C|Iα|

√
νW log n. (66)

Dividing both sides by Ŝ +
√
λ⋆
∑

k∈Iα
|u⋆k|, when the event E2,α ∩ E3,α ∩ E4,α holds, we have∣∣∣∣∣Ŝ −

√
λ⋆
∑
k∈Iα

|u⋆k|

∣∣∣∣∣ ≤ C|Iα|
√
νW log n(

Ŝ +
√
λ⋆
∑

k∈Iα
|u⋆k|

) ≤ C|Iα|
√
νW log n√

λ⋆
∑

k∈Iα
|u⋆k|

≤ C
√
νW log n√
λ⋆α

, (67)

where the second inequality follows from the fact that Ŝ > 0 and the last inequality follows from the
definition of Iα in Equation (52). Dividing by

√
λ⋆
∑

k∈Iα
|u⋆k| on both sides (note that this quantity

is positive by definition of Iα and the fact that α ∈ A0), it follows that on the event E2,α∩E3,α∩E4,α,∣∣∣∣∣ Ŝ√
λ⋆
∑

k∈Iα
|u⋆k|

− 1

∣∣∣∣∣ ≤ C
√
νW log n

λ⋆α
∑

k∈Iα
|u⋆k|

≤ C
√
νW log n

λ⋆|Iα|α2
≤
C
√
νW (log n)5/2

λ⋆
, (68)

where the second inequality follows from the definition of Iα in Equation (52) and the last inequality
follows from Equation (53).
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We move on to Step 4 of Algorithm 1, from which we recall, for ease of reference, that

v̂j =

∑
k∈Î Ỹjk√
λ̂Ŝ

for j ∈ [n]. (69)

Note that by Equation (57), the square root of λ̂ is well-defined on E1. Rearranging the definition of
v̂j in Equation (69), plugging in Ỹ = QY Q and expanding, we have for j ∈ [n],

v̂jŜ√
λ⋆

=

√
λ⋆

λ̂
Qjju

⋆
j

∑
k∈Î

Qkku
⋆
k +

∑
k∈Î QjjQkkWjk√

λ̂λ⋆
.

Rearranging terms and adding v̂j
∑

k∈Î Qkku
⋆
k to both sides, we have for any j ∈ [n]

(
v̂j −Qjju

⋆
j

)∑
k∈Î

Qkku
⋆
k = v̂j

∑
k∈Î

Qkku
⋆
k − Ŝ√

λ⋆


+

(√
λ⋆

λ̂
− 1

)
Qjju

⋆
j

∑
k∈Î

Qkku
⋆
k +

∑
k∈Î QjjQkkWjk√

λ̂λ⋆
.

Dividing by
∑

k∈Î Qkku
⋆
k on both sides, again noting that this quantity is positive on the event

E2,α ∩ E3,α,

v̂j−Qjju
⋆
j = v̂j

(
1− Ŝ√

λ⋆
∑

k∈Î Qkku⋆k

)
+

(√
λ⋆

λ̂
− 1

)
Qjju

⋆
j +

∑
k∈Î QjjQkkWjk√
λ̂λ⋆

∑
k∈Î Qkku⋆k

. (70)

Taking absolute values in Equation (70) and applying the triangle inequality,

∣∣v̂j −Qjju
⋆
j

∣∣ ≤ |v̂j |

∣∣∣∣∣1− Ŝ√
λ⋆
∑

k∈Î Qkku⋆k

∣∣∣∣∣+
∣∣∣∣∣
√
λ⋆

λ̂
− 1

∣∣∣∣∣ ∣∣Qjju
⋆
j

∣∣+
∣∣∣∣∣∣
∑

k∈Î QjjQkkWjk√
λ̂λ⋆

∑
k∈Î Qkku⋆k

∣∣∣∣∣∣ .
Trivially, |Qjju

⋆
j | ≤ 1. Further, on the event E2,α ∩ E3,α, we have Î = Iα and Qjj = sgn

(
u⋆j
)
= sj

for all j ∈ Iα. Thus, we may write

∣∣v̂j −Qjju
⋆
j

∣∣ ≤ |v̂j |

∣∣∣∣∣1− Ŝ√
λ⋆
∑

k∈Iα
|u⋆k|

∣∣∣∣∣+
∣∣∣∣∣
√
λ⋆

λ̂
− 1

∣∣∣∣∣+
∣∣∣∣∣
∑

k∈Iα
sjskWjk

λ⋆
∑

k∈Iα
|u⋆k|

∣∣∣∣∣
√
λ⋆

λ̂
. (71)

On the event E1, applying Equations (58) and (59) yields that∣∣∣∣∣
√
λ⋆

λ̂
− 1

∣∣∣∣∣ =
∣∣∣λ⋆

λ̂
− 1
∣∣∣√

λ⋆

λ̂
+ 1

≤
C
√
νW log5/2 n

λ⋆
. (72)

Applying this bound in Equation (71), on the event E1 ∩ E2,α ∩ E3,α, we have

∣∣v̂j −Qjju
⋆
j

∣∣ ≤ |v̂j |

∣∣∣∣∣1− Ŝ√
λ⋆
∑

k∈Iα
|u⋆k|

∣∣∣∣∣+ C
√
νW log5/2 n

λ⋆
+

∣∣∣∣∣
∑

k∈Iα
sjskWjk

λ⋆
∑

k∈Iα
|u⋆k|

∣∣∣∣∣
√
λ⋆

λ̂
.

We remind the reader that in the proof, constant C may change its precise value from line to line.
Another application of Equation (72) and using Assumption 3 yields∣∣v̂j −Qjju

⋆
j

∣∣ ≤ |v̂j |

∣∣∣∣∣1− Ŝ√
λ⋆
∑

k∈Iα
|u⋆k|

∣∣∣∣∣+ C
√
νW log5/2 n

λ⋆
+ C

∣∣∣∣∣
∑

k∈Iα
sjskWjk

λ⋆
∑

k∈Iα
|u⋆k|

∣∣∣∣∣ .
On the event E1 ∩ E2,α ∩ E3,α ∩ E4,α, Equation (68) holds and we have

∣∣v̂j −Qjju
⋆
j

∣∣ ≤ |v̂j |
C
√
νW log5/2 n

λ⋆
+
C
√
νW log5/2 n

λ⋆
+ C

∣∣∣∣∣
∑

k∈Iα
sjskWjk

λ⋆
∑

k∈Iα
|u⋆k|

∣∣∣∣∣ . (73)
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Define the event

E5,α =

{
max
j∈[n]

∣∣∣∣∣∑
k∈Iα

sjskWjk

∣∣∣∣∣ ≤ C
√

|Iα|νW log n

}
. (74)

Under the event E1 ∩ E2,α ∩ E3,α ∩ E4,α ∩ E5,α, we can further bound Equation (73) by∣∣v̂j −Qjju
⋆
j

∣∣ ≤ |v̂j |
C
√
νW log5/2 n

λ⋆
+
C
√
νW log5/2 n

λ⋆
+
C
√

|Iα|νW log n

λ⋆|Iα|α
.

Applying the definition of A0 in Equation (53), on the event E1 ∩ E2,α ∩ E3,α ∩ E4,α ∩ E5,α, it holds
for all j ∈ [n] that ∣∣v̂j −Qjju

⋆
j

∣∣ ≤ |v̂j |
C
√
νW log5/2 n

λ⋆
+
C
√
νW log5/2 n

λ⋆
. (75)

Applying the triangle inequality and using the fact that |Qjju
⋆
j | ≤ 1 by definition,

(|v̂j |+ 1)
C
√
νW log5/2 n

λ⋆
≤ |v̂j −Qjju

⋆
j |
C
√
νW log5/2 n

λ⋆
+
(
|Qjju

⋆
j |+ 1

) C√νW log5/2 n

λ⋆

≤ |v̂j −Qjju
⋆
j |
C
√
νW log5/2 n

λ⋆
+
C
√
νW log5/2 n

λ⋆
.

Applying this bound to Equation (75),∣∣v̂j −Qjju
⋆
j

∣∣ ≤ |v̂j −Qjju
⋆
j |
C
√
νW (log n)5/2

λ⋆
+
C
√
νW (log n)5/2

λ⋆
.

Rearranging the terms, under Assumption 3 for n sufficiently large and when the event E1 ∩ E2,α ∩
E3,α ∩ E4,α ∩ E5,α holds, we have for all j ∈ [n],∣∣v̂j −Qjju

⋆
j

∣∣ ≤ C
√
νW (log n)5/2

λ⋆
. (76)

Recall from Step 5 of Algorithm 1 that we set ûj = Qjj v̂j for all j ∈ [n] such that |uj | > (σ/λ̂) log n.
For any such j, on the event E1 ∩ E2,α ∩ E3,α ∩ E4,α ∩ E5,α, Equation (76) holds, and we have

|ûj − u⋆j | = |Qjj v̂j −Q2
jju

⋆
j | = |Qjj ||v̂j −Qjju

⋆
j | ≤

C
√
νW log5/2 n

λ⋆
. (77)

Consider the event

E =

{
∥Qv̂ − u⋆∥∞ ≤

C
√
νW log5/2 n

λ⋆

}
.

Recalling the events E1, E2,α, E3,α, E4,α and E5,α defined in Equations (56) (60) (61) (63) and (74),
respectively, we have

P (E) ≥ P

(
E ∩ E1 ∩

( ⋃
α∈A0

E2,α ∩ E3,α ∩ E4,α ∩ E5,α

))

= P

( ⋃
α∈A0

E1 ∩ E2,α ∩ E3,α ∩ E4,α ∩ E5,α

)
,

(78)

where the last equality holds because for any α ∈ A0, the event E is implied by the event E1 ∩ E2,α ∩
E3,α ∩ E4,α ∩ E5,α, which is a fact established in the proof of Equations (76) and (77).

Since by the definition in Equation (60), {E2,α}α∈A0 are disjoint, it follows from Equation (78) that

P (E) ≥
∑
α∈A0

P (E1 ∩ E2,α ∩ E3,α ∩ E4,α ∩ E5,α)

=
∑
α∈A0

[P (E1 ∩ E2,α)− P (E1 ∩ E2,α ∩ (E3,α ∩ E4,α ∩ E5,α)c)] .
(79)
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By the union bound and basic set inclusions,

P (E1 ∩ E2,α ∩ (E3,α ∩ E4,α ∩ E5,α)c) = P
[
E1 ∩ E2,α ∩

(
Ec
3,α ∪ Ec

4,α ∪ E5,α)c
)]

≤ P
(
E1 ∩ E2,α ∩ Ec

3,α

)
+ P

(
E1 ∩ E2,α ∩ Ec

4,α

)
+ P

(
E1 ∩ E2,α ∩ Ec

5,α

)
≤ P

(
E2,α ∩ Ec

3,α

)
+ P

(
Ec
4,α

)
+ P

(
Ec
5,α

)
.

Applying this bound in Equation (79),

P (E) ≥
∑
α∈A0

[
P (E1 ∩ E2,α)−

(
P(E2,α ∩ Ec

3,α) + P(Ec
4,α) + P(Ec

5,α)
)]

(80)

The terms P(Ec
4,α) and P(Ec

5,α) are bounded in Lemma 9 as

P(Ec
4,α) + P(Ec

5,α) ≤ O(n−8). (81)

For the term P(E2,α ∩ Ec
3,α), we have

P(E2,α ∩ Ec
3,α) = P

 ⋃
k∈Iα

{
Qkk ̸= sgn (u⋆k) , Î = Iα

}
∪
⋃

k∈Ic
α

{
Qkk ̸= 1, Î = Iα

} .

By Step 3 in Algorithm 1, we must have⋃
k∈Ic

α

{
Qkk ̸= 1, Î = Iα

}
=
⋃
k∈Îc

{
Qkk ̸= 1, Î = Iα

}
= ∅.

It follows that

P(E2,α ∩ Ec
3,α) = P

( ⋃
k∈Iα

{
sgn (uk) ̸= sgn (u⋆k) , Î = Iα

})

≤ P

( ⋃
k∈Iα

{sgn (uk) ̸= sgn (u⋆k)}

)
.

(82)

For any k ∈ Iα, by the construction of A in Equation (10), we must have |u⋆k| ≥ α ≥ 1/
√
2n. Thus,

by Lemma 8, we can further bound Equation (82) as

P(E2,α ∩ Ec
3,α) ≤ O(n−8). (83)

Applying Equations (81) and (83) to Equation (80), we have

P(E) ≥
∑
α∈A0

P (E1 ∩ E2,α)−O(|A0|n−8)

= 1− P

(
Ec
1 ∪

( ⋂
α∈A0

Ec
2,α

))
−O(|A0|n−8)

≥ 1− P(Ec
1)− P

( ⋂
α∈A0

{
Î ̸= Iα

})
−O(|A0|n−8).

Under Assumption 4, we have P(Ec
1) ≤ O(n−8 log n), and it follows that

P(E) ≥ 1−O(n−8 log n)− P

( ⋂
α∈A0

{
Î ̸= Iα

})
−O(|A0|n−8).

Applying Lemma 7 to the right hand side yields that

P(E) ≥ 1−O(n−8 log n)−O(n−8)−O(|A0|n−8) ≥ 1−O(n−8 log n),

where the last inequality follows from the fact that |A0| ≤ |A| and |A| = O(log n) by Equation (10).
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At this stage, we have shown that with probability at least 1−O(n−8 log n),

∥Qv̂ − u⋆∥∞ ≤
C
√
νW log5/2 n

λ⋆
. (84)

Part II. Estimation error related to u.

Note that Step 5 in Algorithm 1 further refines v̂ to adjust the estimates of small entries of u⋆. In the
remainder of the proof, we show that this refinement does not affect our bound in Equation (84). By
Lemma 5, it holds with probability at least 1−O(n−8) that for all j ∈ [n],

|uj − u⋆j | ≤
80
√
νW log n+ 120

√
νWn

∣∣u⋆j ∣∣
λ⋆

≤ 80
√
νW log n

λ⋆
+

120
√
νWn

λ⋆
(
|uj |+

∣∣uj − u⋆j
∣∣) ,

where the second line follows from the triangle inequality. Rearranging terms and noting that
λ⋆ > 240

√
νWn log n under Assumption 3, we have that with probability at least 1 − O(n−8), it

holds for all j ∈ [n] that

|uj − u⋆j | ≤
1

1− 120
√
νWn/λ⋆

(
80

√
νW log n

λ⋆
+

120
√
νWn

λ⋆
|uj |
)

≤ 160
√
νW log n

λ⋆
+

|uj |√
log n

.

That is, defining the event

E6 =

n⋂
j=1

{
|uj − u⋆j | ≤

160
√
νW log n

λ⋆
+

|uj |√
log n

}
, (85)

we have
P(Ec

6) ≤ O(n−8). (86)

Note that by Equation (58) and Assumption 3, when E1 holds, we have |λ⋆/λ̂| ≤ 2 for sufficiently
large n. It follows that when E1 holds, for all j ∈ [n] such that |uj | ≤ (

√
νW /λ̂) log n, we have

|uj | =
√
νW log n

λ⋆
· λ

⋆

λ̂
≤

2
√
νW log n

λ⋆
, (87)

where the inequality follows from Equation (58). Define the set Ĵ = {j : |uj | ≤ (
√
νW /λ̂) log n}.

We have

P

⋃
j∈Ĵ

{
|uj − u⋆j | >

162
√
νW log n

λ⋆

}
≤ P

⋃
j∈Ĵ

{
|uj − u⋆j | >

162
√
νW log n

λ⋆

}
∩ E1

+ P(Ec
1)

≤ P

⋃
j∈Ĵ

{
|uj − u⋆j | >

160
√
νW log n

λ⋆
+

|uj |√
log n

}
∩ E1

+O(n−8),

where the second inequality follows from Equation (87) and Assumption 4. Recalling the definition
of E6 in Equation (85) and using the fact that Ĵ ⊆ [n], we have that the set in the last inequality of
the above display is a subset of Ec

6 . Following the above bound and basic set inclusions, we have

P

⋃
j∈Ĵ

{
|uj − u⋆j | >

162
√
νW log n

λ⋆

} ≤ P(Ec
6) +O(n−8) ≤ O(n−8).

Combining this with Equation (84) and recalling the definition of û in Step 5, we have that with
probability at least 1−O(n−8),

d∞(û,u⋆) ≤
C
√
νW log5/2 n

λ⋆
,

as we set out to show.
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E A new estimator for λ⋆

Consider Ỹ and Ŝ as constructed in Steps 3 and 4, respectively, of Algorithm 1. We can estimate λ⋆
by

λ̂ =

∑n
j=1

(∑
k∈Î Ỹjk

)2
− |Î|nσ2

Ŝ2
. (88)

Proposition 1 controls the estimation error of λ̂ given in Equation (88).
Proposition 1. Under the model in Equation (1), suppose that Assumptions 1, 2 and 3 hold and
consider the eigenvalue estimate λ̂ as defined in Equation (88). For n sufficiently large, we have∣∣∣λ̂− λ⋆

∣∣∣ ≲ √
νW log5/2 n

with probability at least 1−O(n−8 log n).

E.1 Technical lemmas for Proposition 1

Our proof of Proposition 1, which appears in Section E.2 below, makes use of two technical lemmas,
which we establish first.
Lemma 10. Let W ∈ Rn×n be a random matrix satisfying Assumption 1. For a fixed s ∈ {±1}n,
for any α ∈ A0, with probability at least 1−O(n−8),∣∣∣∣∣∣

n∑
j=1

(∑
k∈Iα

skWjk

)2

− n|Iα|σ2

∣∣∣∣∣∣ ≤ CνW |Iα|
√
n log n. (89)

Proof. Since s ∈ {±1}n is fixed and the entries of W are symmetric about zero, without loss of
generality, we assume that s is a vector of all 1’s. Reindexing if necessary, we assume without loss of
generality that Iα = [K], where K = |Iα| > 0. We have K > 0 since α ∈ A0 and by the definition
of A0 in Equation (53), |Iα| ≥

(
α2 log2 n

)−1
> 0 . It follows that

n∑
j=1

(∑
k∈Iα

Wjk

)2

− n|Iα|σ2 =

n∑
j=1

K∑
k=1

W 2
jk − nKσ2 + 2

n∑
j=1

∑
1≤k<ℓ≤K

WjkWjℓ

= γ1 + γ2 + γ3,

(90)

where

γ1 :=
n∑

j=K+1

K∑
k=1

W 2
jk +

K∑
k=1

W 2
kk + 2

∑
1≤j<k≤K

W 2
jk − nKσ2,

γ2 := 2

n∑
j=K+1

∑
1≤k<ℓ≤K

WjkWjℓ and

γ3 :=

K∑
j=1

∑
1≤k ̸=ℓ≤K

WjkWjℓ.

We will bound these three quantities separately.

We begin by bounding γ1 in Equation (90). For ease of notation, define N = K(n−K/2 + 1/2).
γ1 is a sum of N independent sub-exponential random variables. By Equation (2.18) in [56], for any
t ∈ (0, 2),

P
(
|γ1|
N

≥ νW t

)
≤ 2e−Nt2/32.

Taking t = 16
√
N−1 log n yields that for all suitably large n, with probability at least 1−O(n−8),

|γ1| ≤ 16νW
√
N log n ≤ 16νW

√
Kn log n, (91)
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where the second inequality follows from the trivial bound N ≤ Kn.

Turning to γ2 in Equation (90), define

A = 1K1⊤
K − IK ∈ RK×K ,

where 1K ∈ RK is a vector of all 1’s and IK is the K ×K identity matrix. It follows that

γ2 =

n∑
j=K+1

∑
1≤k ̸=ℓ≤K

WjkWjℓ =

n∑
j=K+1

∑
1≤k,ℓ≤K

WjkAkℓWjℓ.

By the Hanson-Wright inequality (see Theorem 6.2.1 in [54]), for t ≥ 0, we have

P

∣∣∣∣∣∣
n∑

j=K+1

∑
1≤k,ℓ≤K

WjkAkℓWjℓ

∣∣∣∣∣∣ ≥ t


≤ 2 exp

{
−cmin

(
t2

(n−K)ν2W ∥A∥2F
,

t√
n−KνW ∥A∥F

)}
,

where c > 0 is a universal constant. We note that ∥A∥F ≤ K2 by construction. Taking t =
(8νW /c)K

√
n−K log n, with probability at least 1−O(n−8) we have

|γ2| =

∣∣∣∣∣∣
n∑

j=K+1

∑
1≤k,ℓ≤K

WjkAkℓWjℓ

∣∣∣∣∣∣ ≤ 8νW
c
K
√
n−K log n. (92)

Finally, to bound γ3 in Equation (90), we define

w = vech([Wij ]1≤i,j≤K) ∈ RK(K+1)/2,

where vech(·) is the half-vectorization operator that vectorizes the upper triangular part (including
the diagonal) of a given matrix.

We identify the elements of w with the elements of

JK = {(i1, i2) : 1 ≤ i1 ≤ i2 ≤ K} ,

that is, pairs (i1, i2) satisfying 1 ≤ i1 ≤ i2 ≤ K. We note that γ3 is a sum of products of the form
w(i1,i2)w(j1,j2) such that (i1, i2), (j1, j2) ∈ JK and one element of (i1, i2) agrees with one element
of (j1, j2), while the others disagree. For (i1, i2) ∈ JK with i1 < i2, there are 2(K − 1) other pairs
(j1, j2) ∈ JK satisfying this requirement, while for (i1, i2) ∈ JK with i1 = i2, there are (K − 1)
other elements of JK satisfying the requirement. In total, there are K2(K − 1) such pairs, which
agrees with the number of terms in γ3. We define matrix B ∈ RK(K+1)/2×K(K+1)/2 by identifying
its rows and columns with elements of JK and setting

B(i1,i2),(j1,j2) = max {δi1j1(1− δi2j2), δi1j2(1− δi2j1), δi2j1(1− δi1j2), δi2j2(1− δi1j2)}

for (i1, i2), (j1, j2) ∈ JK , where

δij =

{
1 if i = j,

0 otherwise.

There are K2(K − 1) entries in B that are equal to 1, while all others are equal to zero. Thus, we
have ∥B∥F = K

√
K − 1 ≤ K3/2. By construction, one can verify that

w⊤Bw =
∑

(i1,i2)∈J

∑
(j1,j2)∈J

w(i1,i2)B(i1,i2),(j1,j2)w(j1,j2) =

K∑
j=1

∑
1≤k ̸=ℓ≤K

WjkWjℓ = γ3.

Again, by the Hanson-Wright inequality, for every t ≥ 0, we have

P
(∣∣w⊤Bw

∣∣ ≥ t
)
≤ 2 exp

{
−cmin

(
t2

ν2W ∥B∥2F
,

t

νW ∥B∥F

)}
,
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where c > 0 is a universal constant. Taking t = (8νW /c)∥B∥F log n yields that with probability at
least 1−O(n−8),

|γ3| =
∣∣w⊤Bw

∣∣ ≤ 8νW
c

∥B∥F log n ≤ 8νW
c
K3/2 log n, (93)

where the second inequality follows from our bound on ∥B∥F.

Finally, plugging the bounds in Equations (91) (92) and (93) into Equation (90), we have that with
probability at least 1−O(n−8), Equation (89) holds, as we set out to show.

Lemma 11. Under Assumption 1, for any fixed s ∈ {±1}n and any fixed u⋆ ∈ Sn−1, for any α ∈ A,
it holds with probability at least 1−O(n−8) that∣∣∣∣∣∣

∑
k∈Iα

n∑
j=1

u⋆jskWjk

∣∣∣∣∣∣ ≤ 4
√
2νW |Iα| log n.

Proof. Since s ∈ {±1}n is fixed and the entries of W are symmetric about zero, without loss of
generality, we assume that s is a vector of all 1’s. Reindexing if necessary, we again assume that
Iα = [K] without loss of generality, where K = |Iα|. Rearranging sums, we have

K∑
k=1

n∑
j=1

u⋆jskWjk =

K∑
k=1

n∑
j=1

u⋆jWjk

=

K∑
j=1

K∑
k=j+1

(u⋆j + u⋆k)Wjk +

K∑
j=1

u⋆jWjj +

K∑
k=1

n∑
j=K+1

u⋆jWjk.

By standard subgaussian concentration inequalities [54, 56], using the fact that u⋆ is unit-norm,

P

∣∣∣∣∣∣
K∑

k=1

n∑
j=1

u⋆jskWjk

∣∣∣∣∣∣ ≥ 4
√
νW 2K log n

 ≤ O(n−8),

completing the proof.

E.2 Proof of Proposition 1

Proof. Similar to the proof of Theorem 1, we assume that λ⋆ > 0 without loss of generality. Recalling
the quantity Ŝ as defined in Step 4 of Algorithm 1 and the fact that Ŝ > 0 from Equation (65), we
define

RÎ =

√
λ⋆
(∑

k∈Î Qkku
⋆
k

)
Ŝ

, (94)

where we recall that Î is the set given in Step 2 of Algorithm 1 and Q ∈ Rn×n is a diagonal matrix
given in Step 3 of Algorithm 1.

Plugging in Ỹ = QY Q and expanding the right hand side of Equation (88), we have

λ̂ =
1

Ŝ2

 n∑
j=1

λ⋆Qjju
⋆
j

∑
k∈Î

Qkku
⋆
k +

∑
k∈Î

QjjQkkWjk

2
− n|Î|σ2

Ŝ2

=
1

Ŝ2

n∑
j=1

(λ⋆u⋆j )
2

∑
k∈Î

Qkku
⋆
k

2

+
1

Ŝ2

n∑
j=1

∑
k∈Î

QkkWjk

2

+
2λ⋆

Ŝ2

n∑
j=1

u⋆j ∑
k∈Î

Qkku
⋆
k

∑
ℓ∈Î

QℓℓWjℓ

− n|Î|σ2

Ŝ2
.
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Applying the definition of RÎ in Equation (94) and rearranging terms,

λ̂ = λ⋆R2
Î
+R2

Î

∑n
j=1

(∑
k∈Î QkkWjk

)2 − n|Î|σ2(√
λ⋆
∑

k∈Î Qkku⋆k

)2 + 2R2
Î

n∑
j=1

u⋆j

∑
k∈Î QkkWjk∑
k∈Î Qkku⋆k

. (95)

To control the term RÎ in Equation (95), we proceed to bound a related term Rα for all α ∈ A0,
defined as

Rα =

√
λ⋆
(∑

k∈Iα
|u⋆k|

)
Ŝ

.

We recall the events E2,α, E3,α and E4,α for all α ∈ A0 as defined in Equations (60), (61) and (63)
in the proof of Theorem 1. For any α ∈ A0, to control the term Rα, we divide Ŝ on both sides of
Equation (67) stated in the proof of Theorem 1. It follows from Equation (67) that

|Rα − 1| =

∣∣∣∣∣
√
λ⋆
∑

k∈Iα
|u⋆k|

Ŝ
− 1

∣∣∣∣∣ ≤ C
√
νW log n

α
√
λ⋆Ŝ

holds on the event E2,α ∩ E3,α ∩ E4,α. Following the previous bound, on the event E2,α ∩ E3,α ∩ E4,α,
we have that

|Rα − 1| ≤ C
√
νW log n

α
√
λ⋆Ŝ

≤ C
√
νW log n

αλ⋆
(∑

k∈Iα
|u⋆k|

)
− α

√
λ⋆
∣∣∣Ŝ −

√
λ⋆
∑

k∈Iα
|u⋆k|

∣∣∣
≤ C

√
νW log n

λ⋆|Iα|α2 − C
√
νW log n

≤
C
√
νW log5/2 n

λ⋆ − C
√
νW log5/2 n

,

where the second inequality holds by the triangle inequality, the third inequality follows from
Equations (66) and (52), the last inequality holds by Equation (53). We remind the reader that we
allow constant C to change its precise value from line to line in the proof. Under Assumption 3, it
follows from the previous bound that for n sufficiently large, we have on the event E2,α ∩ E3,α ∩ E4,α
that

|Rα − 1| ≤
C
√
νW log5/2 n

λ⋆
. (96)

By Equation (96) and Assumption 3, for n sufficiently large, we have

1/2 ≤ Rα ≤ 2 (97)

on the event E2,α ∩ E3,α ∩ E4,α.

Recall s ∈ {±1}n as defined in Equation (62). On the event E2,α ∩ E3,α ∩ E4,α, we find that, using
Equation (95) to substitute for λ̂ and applying the triangle inequality,

∣∣∣λ̂− λ⋆
∣∣∣ ≤ λ⋆

∣∣R2
α − 1

∣∣+R2
α

∣∣∣∑n
j=1

(∑
k∈Iα

skWjk

)2 − n|Iα|σ2
∣∣∣(√

λ⋆
∑

k∈Iα
|u⋆k|

)2
+ 2R2

α

∣∣∣∣∣∣
n∑

j=1

u⋆j

∑
k∈Iα

skWjk∑
k∈Iα

|u⋆k|

∣∣∣∣∣∣ ,
where we substitute RÎ by Rα using the fact that on E2,α, we have Î = Iα. Continuing from the
previous bound, it follows from Equation (96) that

∣∣∣λ̂− λ⋆
∣∣∣ ≤ λ⋆ ·

C
√
νW log5/2 n

λ⋆
· |Rα + 1|+R2

α

∣∣∣∑n
j=1

(∑
k∈Iα

skWjk

)2 − n|Iα|σ2
∣∣∣(√

λ⋆
∑

k∈Iα
|u⋆k|

)2
+ 2R2

α

∣∣∣∣∣∣
n∑

j=1

u⋆j

∑
k∈Iα

skWjk∑
k∈Iα

|u⋆k|

∣∣∣∣∣∣ .
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Applying Equation (97) to Rα in the above display, we have∣∣∣λ̂− λ⋆
∣∣∣ ≤ C

√
νW log5/2 n+

C
∣∣∣∑n

j=1

(∑
k∈Iα

skWjk

)2 − n|Iα|σ2
∣∣∣(√

λ⋆
∑

k∈Iα
|u⋆k|

)2
+ C

∣∣∣∣∣
∑

k∈Iα

∑n
j=1 u

⋆
jskWjk∑

k∈Iα
|u⋆k|

∣∣∣∣∣ .
(98)

For all α ∈ A0, define the events

G1,α =


∣∣∣∣∣∣

n∑
j=1

(∑
k∈Iα

skWjk

)2

− n|Iα|σ2

∣∣∣∣∣∣ ≤ CνW |Iα|
√
n log n

 and

G2,α =


∣∣∣∣∣∣
∑
k∈Iα

n∑
j=1

u⋆jskWjk

∣∣∣∣∣∣ ≤ 4
√

2νW |Iα| log n

 .

(99)

On the event E2,α ∩ E3,α ∩ E4,α ∩ G1,α ∩ G2,α, we can further bound Equation (98) according to∣∣∣λ̂− λ⋆
∣∣∣ ≤ C

√
νW log5/2 n+

CνW |Iα|
√
n log n(√

λ⋆
∑

k∈Iα
|u⋆k|

)2 +
C
√
νW |Iα| log n∑
k∈Iα

|u⋆k|
,

following the definition of G1,α and G2,α in Equation (99). By the definition of Iα in Equation (52),
it follows that∣∣∣λ̂− λ⋆

∣∣∣ ≤ C
√
νW log5/2 n+

CνW |Iα|
√
n log n

λ⋆|Iα|2α2
+
C
√
νW |Iα| log n
|Iα|α

holds on the event E2,α ∩ E3,α ∩ E4,α ∩ G1,α ∩ G2,α. Applying Equation (53) to lower bound |Iα|,
we have∣∣∣λ̂− λ⋆

∣∣∣ ≤ C
√
νW log5/2 n+

CνW
√
n log3 n

λ⋆
+ C

√
νW log3/2 n ≤ C

√
νW log5/2 n, (100)

holds on the event E2,α∩E3,α∩E4,α∩G1,α∩G2,α, where the last inequality holds under Assumption 3
when n is sufficiently large.

Consider the event
G =

{∣∣∣λ̂− λ⋆
∣∣∣ ≤ C

√
νW log5/2 n

}
.

By the proof leading to Equation (100), we have for all α ∈ A0,
E2,α ∩ E3,α ∩ E4,α ∩ G1,α ∩ G2,α ⊆ G.

It follows that

P(G) ≥ P

( ⋃
α∈A0

E2,α ∩ E3,α ∩ E4,α ∩ G1,α ∩ G2,α

)
=
∑
α∈A0

P (E2,α ∩ E3,α ∩ E4,α ∩ G1,α ∩ G2,α) ,

where the first inequality follows from set inclusion and the last equality follows from the fact that
{E2,α}α∈A0

are disjoint events according to Equation (60). By basic set inclusions, it follows that

P(G) ≥
∑
α∈A0

P(E2,α)− P(E2,α ∩ Ec
3,α)− P(Ec

4,α)−
2∑

j=1

P(Gc
j,α)

 .

Applying Lemma 9, Equations (83), Lemma 10 and Lemma 11 to the above display yields that

P(G) ≥
∑
α∈A0

P(E2,α)−O(|A0|n−8) = 1− P

( ⋂
α∈A0

{
Î ̸= Iα

})
−O(|A0|n−8).

Applying Lemma 7 and using the fact that |A0| ≤ |A| and |A| = O(log n) by its definition in
Equation (10), we have

P(G) ≥ 1−O(n−8)−O(|A0|n−8) ≥ 1−O(n−8 log n),

completing the proof.
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F Proofs for lower bounds of metric entropy under d2,∞

To prove Lemma 4, we first state a few technical lemmas.

F.1 Technical Lemmas

For a semi-metric ρ defined over a set K, we let N (K, ρ, δ) denote the δ-covering number of K
under ρ (see Chapter 15 in [56]). The collection of all linear subspaces of fixed dimension r of the
Euclidean space Rn forms the Grassmann manifold Gn,r, also termed the Grassmannian. For points
on the Grassmannian, we adopt the projector perspective [13]: a subspace U ∈ Gn,r is identified
with the (unique) orthogonal projector P ∈ Rn×n onto U , which in turn is uniquely represented
by P = UUT , where U ∈ Rn×r whose columns form an orthonormal basis of U . For any matrix
A ∈ Rm×n with singular values denoted by σi(A) for 1 ≤ i ≤ min{m,n}, the Schatten-q norm
∥ · ∥Sq

is defined for any 1 ≤ q ≤ ∞

∥A∥Sq
:=

min{m,n}∑
i=1

σq
i (A)

1/q

.

For a pair of subspaces U1,U2 ∈ Gn,r identified with projectors P 1 = U1U
⊤
1 ,P 2 = U2U

⊤
2 ∈

Rn×n, respectively, we consider the distance dSq (·, ·) induced by the Schatten-q norm

dSq (U1,U2) := ∥P 1 − P 2∥Sq = ∥U1U
⊤
1 −U2U

⊤
2 ∥Sq . (101)

Lemma 12 controls the covering number of Gn,r under dSq
.

Lemma 12 ([46] Proposition 8). For any integer 1 ≤ r ≤ n such that 2r ≤ n, any q such that
1 ≤ q ≤ ∞ and any δ > 0, we have(c0

δ

)r(n−r)

≤ N (Gn,r, dSq
, δr1/q) ≤

(
C0

δ

)r(n−r)

where c0, C0 > 0 are universal constants, dSq
is the distance defined in Equation (101) induced by

the Schatten-q norm.

Let Vn,r := {U ∈ Rn×r : U⊤U = Ir} be the n× r Stiefel manifold [16]. The distance dSq (·, ·)
can also be viewed as a distance defined on Vn,r. For a pair of orthogonal matrices U1,U2 ∈ Vn,r,
we let

dSq
(U1,U2) := ∥U1U

⊤
1 −U2U

⊤
2 ∥Sq

.

When q = 2, the Schatten-q norm coincides with the Frobenius norm, and we have

dS2
(U1,U2) =

∥∥∥U1U
⊤
1 −U2U

⊤
2

∥∥∥
F
.

Define a distance dF over Vn,r as

dF(U1,U2) := min
Γ∈Or

∥U1 −U2Γ∥F. (102)

Lemma 13 controls the covering number of Vn,r under dF, which follows immediately from Lemma
12.
Lemma 13. For any integer 1 ≤ r ≤ n/2 and for every δ > 0, we have(

c0
√
r

δ

)r(n−r)

≤ N (Vn,r, dF, δ) ≤

(
C0

√
2r

δ

)r(n−r)

,

where c0, C0 > 0 are universal constants and dF is the

Proof of Lemma 13. We identify each element U of Vn,r with the element UU⊤ in Gn,r and apply
Lemma 12 to Vn,r under dF. By the fact that (see Lemma 2.6 in [27])

1√
2

∥∥∥U1U
⊤
1 −U2U

⊤
2

∥∥∥
F
≤ dF(U1,U2) ≤

∥∥∥U1U
⊤
1 −U2U

⊤
2

∥∥∥
F
,
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we have

N (Vn,r, dS2
, δ) ≤ N (Vn,r, dF, δ) ≤ N

(
Vn,r, dS2

,
δ√
2

)
and it follows from Lemma 12 that(

c0
√
r

δ

)r(n−r)

≤ N (Vs,r, dF, δ) ≤

(
C0

√
2r

δ

)r(n−r)

,

completing the proof.

For any s ≥ r, Lemma 14 relates the packing number of any subset K ⊆ Vs,r to its Haar measure
and the covering number of Vs,r. Recall that the Haar measure on Vs,r is the invariant measure under
both left- and right-orthogonal transformation [29]. In other words, for any subset K ⊆ Vs,r and
orthogonal matrices Γ1 ∈ Os and Γ2 ∈ Or, we have

ξH (Γ1 ·K) = ξH (K) and ξH (K · Γ2) = ξH (K) ,

where
Γ1 ·K := {Γ1U : U ∈ K} and K · Γ2 := {UΓ2 : U ∈ K} .

For any norm |||·||| defined over a set K, we also use the notation M(K, |||·|||, δ) and N (K, |||·|||, δ)
to denote the δ-packing number and δ-covering number of K under the distance induced by |||·|||,
respectively. With the above setup, we state Lemma 14 below.
Lemma 14. For 1 ≤ r ≤ s, let ξH denote the Haar measure on Vs,r. For 1 ≤ r ≤ s and any
K ⊆ Vs,r such that ξH(K) ≥ γ > 0, for any unitarily invariant norm |||·||| on Rs×r, we have

M
(
K, |||·|||, δ

2

)
≥ γN (Vs,r, |||·|||, δ) , (103)

and

M
(
K, |||·|||, δ

2

)
≤ N

(
Vs,r, |||·|||,

δ

8

)
. (104)

Proof of Lemma 14. The bound in Equation (104) follows from the fact that K ⊆ Vs,r, and (see
Exercise 4.2.10 in [54]),

M
(
K, |||·|||, δ

2

)
≤ N

(
K, |||·|||, δ

4

)
≤ N

(
Vs,r, |||·|||,

δ

8

)
.

To establish the bound in Equation (103), suppose that Vs,r has a δ-packing set P = {U (i)}Mi=1
under |||·|||, then

M⋃
i=1

B
(
U (i), |||·|||, δ

2

)
⊆ Vs,r

where

B
(
U (i), |||·|||, δ

2

)
:=
{
U ∈ Vs,r :

∣∣∣∣∣∣∣∣∣U −U (i)
∣∣∣∣∣∣∣∣∣ ≤ δ/2

}
.

Since P is a δ-packing set, the sets B
(
U (i), |||·|||, δ/2

)
for i = 1, 2, . . . ,M are disjoint and we have

M∑
i=1

ξH

(
B
(
U (i), |||·|||, δ

2

))
= ξH

(
M⋃
i=1

B
(
U (i), |||·|||, δ

2

))
≤ ξH(Vs,r) = 1. (105)

For any U , Ũ ∈ Vs,r, there exists Γ ∈ Os such that ΓU = Ũ . Since |||·||| is invariant under Os, we
have

Γ · B
(
U , |||·|||, δ

2

)
= B

(
ΓU , |||·|||, δ

2

)
= B

(
Ũ , |||·|||, δ

2

)
.

Since ξH is invariant under left-orthogonal transformation, it follows that

ξH

(
B
(
U , |||·|||, δ

2

))
= ξH

(
Γ · B

(
U , |||·|||, δ

2

))
= ξH

(
B
(
Ũ , |||·|||, δ

2

))
.
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Therefore, all |||·|||-balls with the same radius have the same Haar measure, which does not depend
on the particular choice of U due to the invariance properties of |||·||| and ξH . We denote the Haar
measure of a |||·|||-balls with radius δ/2 as

ψ(δ/2) := ξH

(
B
(
U , |||·|||, δ

2

))
.

It then follows from Equation (105) that

Mψ(δ/2) =

M∑
i=1

ξH

(
B
(
U (i), |||·|||, δ

2

))
≤ 1,

from which we conclude that M ≤ 1/ψ(δ/2). Taking the maximal such δ-packing set yields that

M (Vs,r, |||·|||, δ) ≤
1

ψ(δ/2)
.

Recall that K is a subset of Vs,r and ξH(K) ≥ γ. Suppose that CK = {V (i)}Ni=1 is a δ/2-covering
set of K under |||·|||, then

K ⊆
N⋃
i=1

B
(
V (i), |||·|||, δ

2

)
and by the subadditivity of measures,

N∑
i=1

ξH

(
B
(
V (i), |||·|||, δ

2

))
≥ ξH

(
N⋃
i=1

B
(
V (i), |||·|||, δ

2

))
≥ ξH(K) ≥ γ.

Thus, it follows that
Nψ(δ/2) ≥ γ =⇒ N ≥ γM (Vs,r, |||·|||, δ) .

Taking the maximal δ/2-covering set yields that

N
(
K, |||·|||, δ

2

)
≥ γM (Vs,r, |||·|||, δ) .

Finally, by Lemma 4.2.8 in [54], we have

M
(
K, |||·|||, δ

2

)
≥ N

(
K, |||·|||, δ

2

)
.

and
M (Vs,r, |||·|||, δ) ≥ N (Vs,r, |||·|||, δ)

Combining the three displays above yields Equation (103), completing the proof.

Lemma 15 controls the Haar measure of K(s, r,
√
µr/n). We remind the reader that K(s, r,

√
µr/n)

is defined in Equation (20).
Lemma 15. For n/µ ≥ max{4, r} and s ≥ (12n/µ) log(12n/µ) we have

ξH(K(s, r,
√
µr/n)) ≥ 1

2
.

Proof of Lemma 15. Define the set

L
(
s, r,

√
µ

n

)
=

{
U ∈ Vs,r : ∥U∥∞ ≥

√
µ

n

}
,

where ∥U∥∞ denotes the entrywise ℓ∞ norm (i.e., ∥U∥∞ := maxi,j |Ui,j |). In what follows, we
omit the parameters and abbreviate L(s, r,

√
µ/n) to L. Noting that for any U ∈ Lc, we have

∥U∥∞ ≤
√
µ/n, which implies that ∥U∥2,∞ ≤

√
µr/n. Therefore, Lc ⊆ K(s, r,

√
µr/n) and

ξH

(
K(s, r,

√
µr/n)

)
≥ 1− ξH (L) . (106)
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Since

L =

r⋃
i=1

{
U ∈ Vs,r : ∥U ·,i∥∞ ≥

√
µ

n

}
,

it follows that

ξH (L) ≤ r ξH

({
U ∈ Vs,r : ∥U ·,1∥∞ ≥

√
µ

n

})
.

Since U is distributed according to the Haar measure on Vs,r, the column U ·,1 ∈ Rs is uniformly
distribution on Ss−1. As a result, we have

ξH

({
U ∈ Vs,r : ∥U ·,1∥∞ ≥

√
µ

n

})
= P

(
∥g∥∞
∥g∥2

≥
√
µ

n

)
,

where g ∼ N(0, Is) (see Lemma 10.1 in [44]). Combining the above two displays,

ξH (L) ≤ r P
(
∥g∥∞
∥g∥2

≥
√
µ

n

)
. (107)

We introduce two events

E0,1 :=

{
∥g∥22 ≥ 3n

µ
log s

}
and E0,2 :=

{
∥g∥∞ ≤

√
3 log s

}
.

By Lemma 10.2 in [44], we have for all t > 0

P
(
∥g∥22 ≤ s− 2

√
st
)
≤ exp (−t) .

Taking t = 2 log s yields that

P
(
∥g∥22 ≤ s− 2

√
2s log s

)
≤ 1

s2
.

When n ≥ 4µ and s ≥ (12n/µ) log (12n/µ), one can verify that

s− 2
√
2s log s ≥ s/2 ≥ 3n

µ
log s.

Thus, it follows that

P(Ec
0,1) ≤ P

(
∥g∥22 ≤ s− 2

√
2s log s

)
≤ 1

s2
. (108)

By standard Gaussian concentration inequalities and the union bound, we have

P
(
Ec
0,2

)
= P

(
∥g∥∞ ≥

√
3 log s

)
≤ 2s exp (−3 log s) =

2

s2
. (109)

On the event E0,1 ∩ E0,2, one has

∥g∥∞
∥g∥2

≤
√
3 log s√

3n log s/µ
=

√
µ

n
.

Combining Equations (108) and Equations (109), it follows that

P
(
∥g∥∞
∥g∥2

≥
√
µ

n

)
≤ P

(
Ec
0,1 ∪ Ec

0,2

)
≤ 3

s2
.

Applying this bound to Equation (107), we obtain

ξH(L) ≤ rP
(
∥g∥∞
∥g∥2

≥
√
µ

n

)
≤ 3r

s2
. (110)

By the assumption that n/µ ≥ max{4, r}, for any r ≥ 1 we have

s ≥ (12n/µ) log(12n/µ) > 12r >
√
6r.

Combining the above bound with Equation (110), we have

ξH(L) ≤ 1

2
.

Finally, applying this upper bound to Equation (106), we have

ξH(K(s, r,
√
µr/n)) ≥ 1− ξH(L) ≥ 1

2
,

as desired.
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F.2 Proof of Lemma 4

Proof. Set s =
⌈
c20r/8e

2δ2
⌉
. Under our upper bound assumption on δ in Equation (21) and

n/µ ≥ max{4, r}, we have

s ≥ c20r

8e2
· 96e

2n log(12n/µ)

c20µr
= (12n/µ) log (12n/µ) > 12r, (111)

so that we always have

s ≥ max

{
12n

µ
log

(
12n

µ

)
,
c20r

8e2δ2

}
. (112)

Note that owing to our assumptions that µ ≥ 12 log(12n) and δ2 ≥ c20r/8e
2n, we have s ≤ n.

Consider the subset

Ks(n, r,
√
µr/n) := {U ∈ Kr,µ : U i,· = 0, for s+ 1 ≤ i ≤ n} ,

which is a subset related (but different) to K(s, r,
√
µr/n) previously considered in Lemma 15. Our

lower bound relies on the key observation that

M(Kr,µ, d2,∞, δ) ≥ M(Ks(n, r,
√
µr/n), d2,∞, 2δ) ≥ M(Ks(n, r,

√
µr/n), dF, 2

√
sδ), (113)

where the first inequality follows from Exercise 4.2.10 in [54], and the second inequality follows
from the fact that for any U1,U2 ∈ Ks(n, r,

√
µr/n), we have

d2,∞(U1,U2) ≥
1√
s
dF(U1,U2).

Starting from Equation (113), we proceed to obtain a
√
sδ-packing for Ks(n, r,

√
µr/n) under dF.

Since any U ∈ Ks(n, r,
√
µr/n) can be uniquely identified with an element in K(s, r,

√
µr/n) by

restricting it to its first s rows. By the assumption that n/µ ≥ max{4, r} and the lower bound on s in
Equation (111), we verify that the conditions of Lemma 15 are all satisfied. Thus, following directly
from the lower bound of ξH(K(s, r,

√
µr/n)) in Lemma 15 and Lemma 14, we have

M
(
Ks(n, r,

√
µr/n), dF, 2

√
sδ
)
≥ 1

2
N
(
Vs,r, dF, 4

√
sδ
)
.

Applying the lower bound in Lemma 13 to the right hand side of the above bound, we have

M
(
Ks(n, r,

√
µr/n), dF, 2

√
sδ
)
≥ 1

2

(
c0
√
r

4
√
sδ

)r(s−r)

. (114)

Under our upper bound assumption on δ in Equation (21) and n/µ ≥ max{4, r},

c20r

384e2δ2
≥ c20r

384e2
· 96e

2n log(12n/µ)

c20µr
=

n

4µ
log(12n/µ) ≥ 1,

from our choice of s, it follows that

s ≤ c20r

8e2δ2
+ 1 ≤ c20r

8e2δ2
+

c20r

384e2δ2
≤ c20r

7e2δ2
,

which implies
√
sδ ≤ (

√
7e)−1c0

√
r. Thus, it follows from Equation (114) that

M
(
Ks(n, r,

√
µr/n), dF, 2

√
sδ
)
≥ 1

2

(√
7e

4

)r(s−r)

≥ 1

2

(√
7e

4

) rs
2

,

where the last inequality follows from Equation (111). Noting that
√
7e/4 ≥

√
e, we have

M
(
Ks(n, r,

√
µr/n), dF, 2

√
sδ
)
≥ 1

2
exp

(rs
4

)
Applying Equation (113) followed by Equation (112), we obtain

M (Kr,µ, d2,∞, δ) ≥ M
(
Ks(n, r,

√
µr/n), dF, 2

√
sδ
)

≥ 1

2
exp

(
max

{
3nr

µ
log

(
12n

µ

)
,
c20r

2

32e2δ2

})
≥ 1

2
exp

(
c20r

2

32e2δ2

)
.

(115)

Taking the logarithm on both sides of the above display yields Equation (22).
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G Upper bounds of metric entropy under d2,∞

To provide a complete picture, Lemma 16 establishes an upper bound on the packing δ-entropy
of Kr,µ under d2,∞ that matches the lower bound in Lemma 4 up to log-factors when δ satisfies
Equation (21).
Lemma 16. Assume that n ≥ µr for r ∈ [n] and µ > 0. For all n sufficiently large and any√
4/(n− 1) < δ <

√
µr/n, we have

logM (Kr,µ, d2,∞, δ) ≲
r2

δ2
log n. (116)

Proof of Lemma 16. We obtain an upper bound of M(Kr,µ, d2,∞, δ) by finding an upper bound of
N (Kr,µ, d2,∞, δ). Since for any U1 and U2 ∈ Rn×r,

d2,∞ (U1,U2) ≤ ∥U1 −U2∥2,∞,

we have
N (Kr,µ, d2,∞, δ) ≤ N (Kr,µ, ∥ · ∥2,∞, δ) . (117)

Thus, it suffices to obtain an upper bound for N (Kr,µ, ∥ · ∥2,∞, δ) instead. Let

T :=
{
u ≥ 0 : u ∈

√
rSn−1, ∥u∥∞ ≤ 1

}
. (118)

For any U ∈ Kr,µ, noting that
√
µr/n ≤ 1, we define a mapping h : Kr,µ → T given by

h(U) := (∥U1,·∥2, ∥U2,·∥2, · · · , ∥Un,·∥2)⊤.

Indeed, h(U) ∈ T since by definition, we have h(U) ≥ 0, ∥h(U)∥2 =
√
r and ∥h(U)∥∞ ≤ 1.

We pause to give a roadmap of our proof. Recall that for a set K, its exterior δ-covering is a δ-covering,
except that the exterior δ-covering allows elements not in K to form the covering (see Exercise 4.2.9
in [54]). To obtain N (Kr,µ, ∥ · ∥2,∞, δ), we will explicitly construct an exterior δ-covering of Kr,µ

under ∥ · ∥2,∞. To do so, we proceed in three steps. In the first step, we construct an exterior
δ-covering C of T under ∥ · ∥∞. In the second step, we divide the set Kr,µ into separate subsets
{Uv}v∈T via the mapping h : Kr,µ → T. In this way, each element v in T is associated with a
subset Uv ⊆ Kr,µ. For every v ∈ C (the exterior (δ/2)-covering set of T), we construct an exterior
(δ/2)-covering Cv of Uv under ∥ · ∥2,∞. In the last step, we take the union of Cv over v ∈ C to form
a set CK, and show this set is an exterior δ-covering set for Kr,µ under ∥ · ∥2,∞. Finally, we control
the cardinality of CK to obtain an upper bound of N (Kr,µ, ∥ · ∥2,∞, δ), which in turn will yield our
desired upper bound on M(Kr,µ, d2,∞, δ).

Step 1. Construct an exterior (δ/2)-covering set of T under ∥ · ∥∞.

Recall that T is given in Equation (118). Let s = ⌈4/δ2⌉. Under the assumption that δ >√
4/(n− 1), we have s ≤ n. We consider the nonnegative integer solutions to the indetermi-

nate equation
z1 + z2 + · · ·+ zn = rs, ∥z∥∞ ≤ s+ 1 (119)

and let

C :=

{√
1

s
(
√
z1, · · · ,

√
zn) : z is a solution of Equation (119)

}
. (120)

By Lemma 17, we have C forms an exterior δ/2-covering set of T under ∥ · ∥∞. Since without the
constraint ∥z∥∞ ≤ s+ 1, Equation (119) has

(
n+rs−1

rs

)
solutions, we have

|C | ≤
(
n+ rs− 1

rs

)
≤
(
e(n+ rs)

rs

)rs

=

(
e(n+ r

⌈
4/δ2

⌉
)

r ⌈4/δ2⌉

)r⌈4/δ2⌉
. (121)

Step 2. Construct an exterior (δ/2)-covering set of Uv under ∥ · ∥2,∞.

For a given v ∈ C , consider the subset

Uv := {U ∈ Kr,µ : h(U) = v} , (122)
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our next step is to construct an exterior (δ/2)-covering set under ∥ · ∥2,∞ for Uv . For every i ∈ [n],
consider a (δ/2)-covering set Cvi of viSr−1 under the ℓ2 norm. By Corollary 4.2.13 in [54],

|Cvi | ≤
(
6vi
δ

)r

for all i ∈ [n]. (123)

Consider the set

Cv :=
{
Θ ∈ Rn×r : Θ = (θ1,θ2, . . . ,θn)

⊤,θi ∈ Cvi for i ∈ [n]
}
. (124)

We claim that Cv is an exterior (δ/2)-covering set for Uv under ∥ · ∥2,∞. To see this, note that for
any U ∈ Uv and any i ∈ [n], since U⊤

i,· ∈ viSr−1 and Cvi is a (δ/2)-covering of viSr−1 under the
ℓ2 norm, there exists a θi ∈ Cvi such that∥∥∥θi −U⊤

i,·

∥∥∥
2
≤ δ

2
, for all i ∈ [n].

Let Θ = (θ1,θ2, . . . ,θn)
⊤ ∈ Cv . It follows that

∥Θ−U∥2,∞ = max
i∈[n]

≤
∥∥∥θi −U⊤

i,·

∥∥∥
2
≤ δ

2
.

Since v ∈ C , from Equation (119), we have

∥v∥0 ≤ rs (125)

as any solution z to Equation (119) has at most rs nonzero entries. By Equations (119) and (120),
we also have

∥v∥∞ ≤
√
s+ 1√
s

≤ 2. (126)

By Equations (123) and (124),

|Cv| ≤
n∏

i=1

(
6vi
δ

)r

=
∏

i:vi>0

(
6vi
δ

)r

≤
(
12

δ

)sr2

.

where the last inequality follows from Equations (125) and (126). By the choice of s = ⌈4/δ2⌉, we
have

|Cv| ≤
(
12

δ

)r2⌈4/δ2⌉
. (127)

Step 3. Construct an exterior δ-covering set for Kr,µ under ∥ · ∥2,∞.

Consider the set
CK :=

⋃
v∈C

Cv, (128)

we claim that this set forms an exterior δ-covering set for Kr,µ under ∥ · ∥2,∞.

For any U ∈ Kr,µ, since C is an exterior (δ/2)-covering of T under ∥ · ∥∞, we can find v ∈ C such
that ∥h(U)− v∥∞ ≤ δ/2. Consider a matrix Ũ ∈ Rn×r with rows given by

Ũ i,· =

{
viU i,·/hi(U) if hi(U) > 0,

θ⊤
i if hi(U) = 0,

for all i ∈ [n], where θi is an arbitrary element of Cvi . Recall the definition of Uv from Equation (122).
By construction, Ũ ∈ Uv , which implies that there exists Θ ∈ Cv ⊆ CK such that∥∥∥Θ− Ũ

∥∥∥
2,∞

≤ δ

2
,

where we use the fact that Cv defined in Equation (124) is an exterior (δ/2)-covering of Uv. For
i ∈ [n] such that hi(U) > 0, we have∥∥∥Ũ i,· −U i,·

∥∥∥
2
=

∣∣∣∣ vi
hi(U)

− 1

∣∣∣∣ ∥U i,·∥2 = |vi − hi(U)| ≤ δ

2
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and for i ∈ [n] such that hi(U) = 0, we have∥∥∥Ũ i,· −U i,·

∥∥∥
2
= ∥θi∥2 = vi = |vi − hi(U)| ≤ δ

2
.

Combining the above two displays, it follows that∥∥∥Ũ −U
∥∥∥
2,∞

= max
i∈[n]

∥∥∥Ũ i,· −U i,·

∥∥∥
2
≤ δ

2
.

Thus, we have found Θ ∈ CK such that

∥Θ−U∥2,∞ ≤ ∥Θ− Ũ∥2,∞ + ∥Ũ −U∥2,∞ ≤ δ,

and it follows that CK is an exterior δ-covering set for Kr,µ under ∥ · ∥2,∞.

Step 4. An upper bound on M(Kr,µ, ∥ · ∥2,∞, δ).
Recalling the definition of CK from Equation (128), Equations (121) and (127) imply that

|CK| ≤
∑
v∈C

|Cv| ≤

(
e
(
n+ r

⌈
4/δ2

⌉)
r ⌈4/δ2⌉

)r⌈4/δ2⌉
·
(
12

δ

)r2⌈4/δ2⌉
.

Using this bound and the fact that CK is an exterior δ-covering set for Kr,µ under ∥ · ∥2,∞, Exercise
4.2.9 in [54] implies that

N (Kr,µ, ∥ · ∥2,∞, 2δ) ≤ |CK| ≤

(
e
(
n+ r

⌈
4/δ2

⌉)
r ⌈4/δ2⌉

)r⌈4/δ2⌉(
12

δ

)r2⌈4/δ2⌉

≤
(
enδ2

4r
+ e

) 4r
δ2

+r (
12

δ

) 4r2

δ2
+r2

.

Combining this with with Equation (117) and Lemma 4.2.8 in [54], we conclude that

M (Kr,µ, d2,∞, δ) ≤ N (Kr,µ, d2,∞, δ/2) ≤
(
enδ2

64r
+ e

) 64r
δ2

+r (
48

δ

) 64r2

δ2
+r2

. (129)

Taking the logarithm on both sides of Equation (129), we have

logM (Kr,µ, d2,∞, δ) ≤ r

(
64 + δ2

δ2

)
log

(
enδ2

64r
+ e

)
+ r2

(
64 + δ2

δ2

)
log

(
48

δ

)
≤ 65r

δ2
log
(eµ
64

+ e
)
+

65r2

δ2
log

(
48

δ

)
where the last inequality follows from δ <

√
µr/n ≤ 1. Under the assumption that δ >

√
4/n and

µr ≤ n, the right hand side of the above display can be further written as

logM (Kr,µ, d2,∞, δ) ≤
65r

δ2
log
(en
64

+ e
)
+

65r2

δ2
log
(
24
√
n
)
,

yields Equation (116) for all n sufficiently large, completing the proof.

Recall the definition of T in Equation (118) and C defined in Equation (120), we have Lemma 17.

Lemma 17. Let the set T ⊆
√
rSn−1 be as defined in Equation (118), and let h be an arbitrary

element in T. Then there exists v ∈ C such that

∥h− v∥∞ ≤ 1√
s
≤ δ

2
, (130)

where δ is given in Lemma 16 and s =
⌈
4/δ2

⌉
.
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Proof. The inequality 1/
√
s ≤ δ/2 in Equation (130) follows directly from s =

⌈
4/δ2

⌉
. To construct

a v ∈ C satisfying Equation (130), we first construct a ζ ∈ Rn and then make a slight modification
to ζ to obtain v.

To construct ζ, we set ζ21 to be either
⌊
h21s
⌋
/s or

⌈
h21s
⌉
/s, and follow the recursive procedure to

obtain an entrywise positive ζ ≥ 0:

ζ2i =

{⌊
h2i s
⌋
/s if

∑i−1
j=1 h

2
j −

∑i−1
j=1 ζ

2
j < 0,⌈

h2i s
⌉
/s if

∑i−1
j=1 h

2
j −

∑i−1
j=1 ζ

2
j ≥ 0

(131)

for 2 ≤ i ≤ n. The construction given in Equation (131) guarantees that

∥h− ζ∥∞ ≤ max
i∈[n]

{
hi −

√
⌊h2i s⌋ /s,

√
⌈h2i s⌉ /s− hi

}
≤ 1√

s
, (132)

where the last inequality follows from the fact that
√
a−

√
b ≤

√
a− b for any a ≥ b > 0. Now we

show that following the procedure in Equation (131), we have∣∣∣∣∣
k∑

i=1

ζ2i −
k∑

i=1

h2i

∣∣∣∣∣ ≤ 1

s
, (133)

for all k ∈ [n]. We prove the above bound by induction on k ∈ [n]. When k = 1, we trivially have∣∣ζ21 − h21
∣∣ ≤ 1

s
.

For the inductive step, suppose that for k > 1, we have∣∣∣∣∣
k−1∑
i=1

h2i −
k−1∑
i=1

ζ2i

∣∣∣∣∣ ≤ 1

s
.

By definition in Equation (131), if

0 ≤
k−1∑
i=1

h2i −
k−1∑
i=1

ζ2i ≤ 1

s
, (134)

then

−1

s
≤

k−1∑
i=1

h2i −
k−1∑
i=1

ζ2i + h2k −
⌈
h2ks
⌉

s
≤ 1

s
.

Thus, ζ2k =
⌈
h2ks
⌉
/s satisfies ∣∣∣∣∣

k∑
i=1

h2i −
k∑

i=1

ζ2i

∣∣∣∣∣ ≤ 1

s
.

If, contrary to Equation (134), we have

−1

s
≤

k−1∑
i=1

h2i −
k−1∑
i=1

ζ2i < 0,

then

−1

s
≤

k−1∑
i=1

h2i −
k−1∑
i=1

ζ2i + h2k −
⌊
h2ks
⌋

s
≤ 1

s
,

and thus ζ2k =
⌊
h2ks
⌋
/s again satisfies∣∣∣∣∣

k∑
i=1

h2i −
k∑

i=1

ζ2i

∣∣∣∣∣ ≤ 1

s
.

Therefore, Equation (133) holds for all k ∈ [n]. Taking k = n in Equation (133) and by the fact that
∥h∥2 = r, we obtain that ∣∣s∥ζ∥22 − sr

∣∣ ≤ 1. (135)
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Following Equation (131), we also have that sζ2i is an integer for every i ∈ [n]. Combined with
Equation (135), we have a stronger statement that

(s∥ζ∥22 − sr) ∈ {−1, 0, 1}.

If (s∥ζ∥22 − sr) = 0, setting v = ζ already guarantees that ∥v∥22 = r and ∥v − h∥∞ ≤ 1/
√
s.

Otherwise, if (s∥ζ∥22 − sr) = −1, then by Equation (131), there must be an i0 ∈ [n] such that

sζ2i0 = ⌊h2i0s⌋ < h2i0s < ⌈h2i0s⌉ = ⌊h2i0s⌋+ 1.

Setting

vi =

{√
ζ2i0 + 1/s =

√
⌈h2i0s⌉/s, if i = i0

ζi, otherwise

guarantees that ∥v∥22 = r and

∥v − h∥∞ = max

{
max
i ̸=i0

|ζi − hi|,
∣∣∣√⌈h2i0s⌉/s− hi0

∣∣∣} ≤ 1√
s
,

where the last inequality follows from Equation (132). Similarly, if (s∥ζ∥22 − sr) = 1, then we can
alter one element of ζ to obtain v, such that ∥v∥22 = r and ∥v − h∥∞ ≤ 1/

√
s.

Since svi2 are integers for all i ∈ [n], s∥v∥22 = sr, and the fact that

s∥v∥2∞ ≤ max
i∈[n]

⌈h2i s⌉ ≤ s+ 1,

where the last inequality follows from ∥h∥∞ ≤ 1 for all h ∈ T, we see that v ∈ C .

H Proof of Theorem 2

In this section, we use the Yang-Barron method [59] along with a Fano lower bound (see Proposition
15.12 and Lemma 15.21 in [56]) to prove the minimax lower bound for eigenspace estimation stated
in Theorem 2. We follow the notation used in [56]. Given a class of distributions P , we let θ denote a
functional on the space P , that is, a mapping from a distribution P to a parameter θ(P) taking values
in some space Ω. We let ρ : Ω× Ω → [0,∞) be a semi-metric. Proposition 2 states the Fano lower
bound (Proposition 15.12 in [56]).
Proposition 2 (Fano lower bound). Let {θ1, θ2, . . . , θM} ⊆ Ω be a 2δ-separated set under the ρ semi-
metric, and suppose that J is uniformly distributed over the index set [M ], and (Z | J = j) ∼ Pθj .
Then for any increasing function Φ : [0,∞) → [0,∞), the minimax risk is lower bounded as

inf
θ̂

sup
P∈P

EP Φ
(
ρ
(
θ̂, θ(P)

))
≥ Φ(δ)

(
1− I(Z; J) + log 2

logM

)
,

where the infimum is over all estimators θ̂ and I(Z; J) is the mutual information between Z and J .

The Yang-Barron method gives an upper bound for the mutual information I(Z; J).
Lemma 18 (Yang-Barron method [59]). Let NKL(ε;P) denote the ε-covering number of P in the
square-root KL-divergence. Then the mutual information is upper bounded as

I(Z; J) ≤ inf
ε>0

logNKL(ε;P) + ε2.

Proof of Theorem 2. To each (Λ⋆,U⋆) ∈ Ω(λ⋆, µ, r), we associate a probability distribution PΛ⋆,U⋆

on Rn×n with density given by

fΛ⋆,U⋆(W ) =
∏

1≤i≤j≤n

g

(
(W −U⋆Λ⋆U⋆⊤)ij

σ

)
,

where g(·) denotes the density of a standard normal. We define the class of distributions

P = {PΛ⋆,U⋆ : (Λ⋆,U⋆) ∈ Ω(λ⋆, µ, r)} .
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For µ1,µ2 ∈ Rn and a pair of normal distributions N(µ1, σ
2In) and N(µ2, σ

2In), their KL-
divergence is given by (see Example 15.13 in [56])

KL
(
N(µ1, σ

2In)
∥∥∥N(µ2, σ

2In)
)
=

1

2σ2
∥µ2 − µ1∥22.

It follows that for any PΛ⋆,U⋆
1
PΛ⋆,U⋆

2
∈ P ,

KL
(
PΛ⋆,U⋆

1

∥∥∥PΛ⋆,U⋆
2

)
≤ λ⋆2

2σ2

∥∥∥U⋆
1U

⋆⊤
1 −U⋆

2U
⋆⊤
2

∥∥∥2
F

and thus, taking square roots,√
KL(PΛ⋆,U⋆

1
∥PΛ⋆,U⋆

1
) ≤

√
2λ⋆

2σ

∥∥∥U⋆
1U

⋆⊤
1 −U⋆

2U
⋆⊤
2

∥∥∥
F
≤ λ⋆

σ
dF (U⋆

1,U
⋆
2) , (136)

where the second inequality holds from Lemma 2.6 in [27].

To apply the Yang-Barron method, we follow a two-step procedure (see Chapter 15 of [56]):

1. Pick the smallest ε such that ε2 ≥ logNKL(P, ε).

2. Choose the largest δ that we can find a δ-packing that satisfies the lower bound

logM(Kr,µ, d2,∞, δ) ≥ 4ε2 + 2 log 2.

Then it follows from Lemma 18 and Proposition 2 that the minimax risk is lower bounded by δ/2.

For the first step, noting that by Equation (136), a (σε/λ⋆)-covering set for Vn,r under dF yields an
ε-covering set for the

√
KL- divergence, we have

NKL(P, ε) ≤ N (Vn,r, dF, ε/λ
⋆) ≤

(
C0λ

⋆
√
2r

σε

)r(n−r)

,

where the last inequality follows from Lemma 13. Thus, in order to have ε2 ≥ logNKL(P, ε), it
suffices to have

ε2 ≥ r(n− r) log

(
C0λ

⋆
√
2r

σε

)
which holds if we set ε = C0λ

⋆
√
2r/σ. With this choice of ε, we then follow the second step of the

Yang-Barron method and pick a δ to satisfy

logM (Kµ,r, d2,∞, δ) ≥
8C0rλ

⋆2

σ2
+ 2 log 2. (137)

By Equation (115) in the proof of Lemma 4, we have

logM (Kr,µ, d2,∞, δ) ≥
c20r

2

32e2δ2
− log 2 (138)

for δ satisfying Eqaution (21). Combining Equations (137) and (138), our goal is to find a δ, such
that

c20r
2

32e2δ2
≥ 8C0rλ

⋆2

σ2
+ 3 log 2. (139)

We pick δ to be

δ =
c0σ

√
r

12eλ⋆
√
2C0

∧ c0
4e

√
µr

6n log(12n/µ)
. (140)

One can verify that δ satisfies Equation (21) under the assumption λ⋆ ≤ (6
√
C0)

−1σ
√
n. To see that

the δ given by Equation (140) satisfies Equation (139), we separate our discussion into two cases,
one for large λ⋆, and the other for small λ⋆. When

λ⋆ ≥ σ

√
n log(12n/µ)

3C0µ
(141)
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by Equation (140) we have

δ =
c0σ

√
r

12eλ⋆
√
2C0

(142)

and therefore, Equation (139) follows from

c20r
2

32e2δ2
=

9C0rλ
⋆2

σ2
≥ 8C0rλ

⋆2

σ2
+ 3 log 2,

where the first equality holds from Equation (142) and the last inequality follows from Equation (141)
for all n sufficiently large.

On the other hand, when

λ⋆ < σ

√
n log(12n/µ)

3C0µ
, (143)

by Equation (140) we have

δ =
c0
4e

√
µr

6n log(12n/µ)
, (144)

and therefore, Equation (139) follows from

c20r
2

32e2δ2
=

3rn log(12n/µ)

µ
≥ 8rn log(12n/µ)

µ
+ 3 log 2 ≥ 8C0rλ

⋆2

σ2
+ 3 log 2,

where the first equality follows from Equation (144), the next inequality holds for all n sufficiently
large, and the last inequality holds from Equation (143). Thus, we conclude that the choice of δ given
in Equation (140) satisfies Equation (139), completing the second step of the Yang-Barron method.

Finally, combining Proposition 2 and Lemma 18, we conclude that for a universal constant c > 0,

inf
Û

sup
(Λ⋆,U⋆)∈Ω(λ⋆,µ,r)

EΛ⋆,U⋆ d2,∞

(
Û ,U⋆

)
≥ δ

2
≥ c

(
σ
√
r

λ⋆
∧
√

µr

n log(n/µ)

)
,

completing the proof.

I Additional experiments

Here we collect additional experiments to complement our simulations in Section 5.

I.1 Additional numerical results on rank-one eigenvector estimation

We provide additional details for the experiments previously discussed in Section 5.1. Recall that we
observe

Y = M⋆ +W = λ⋆u⋆u⋆⊤ +W ,

and wish to recover u⋆ ∈ Sn−1. We refer the reader to Section 5.1 for the details of how λ⋆, u⋆ and
W are generated and how we run Algorithm 1.

In Section 5.1 we mentioned that under Laplacian noise, as shown in the third column of Figure 1,
the estimator û given by Algorithm 1 seems to have a slight dependence on the coherence parameter
µ. We give a close examination of the estimation error of the largest entry of u⋆ in Figure 3, with
shaded bands indicating 95% bootstrap confidence intervals. Figure 3 shows that the estimation error
of the largest entry of u⋆ for û is seen to be much smaller than 10−2, while in the third column of
Figures 1, the estimation error d∞(û,u⋆) is well above 10−2. This indicates that the dependence
on µ observed in the right-hand subplot of Figure 1 comes not from estimating the largest entry of
u⋆, but rather from estimating the other entries. In our experiment, the other entries are all nearly
incoherent (that is, they have a magnitude at most O(

√
log n/n)), whence their estimation errors are

expected to have no dependence on µ asymptotically. Thus, the slight dependence on µ exhibited
Figure 1 is most likely to be a small order dependence compared to the error rate stated in Theorem 1,
and should not affect the asymptotic error rate.
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Figure 3: Numerical error in recovering the largest entry of u⋆ as a function of matrix dimension n,
by the leading eigenvector (blue line) or the estimator given in Algorithm 1 (orange line) for three
different choices of ∥u⋆∥∞: 0.8 (dotted lines), 0.55 (dashed lines) and 0.3 (solid lines). The plot on
the left corresponds to u⋆ generated via the Bernoulli scheme, while the plot on the right corresponds
to the Haar scheme.

I.2 Additional numerical results on rank-r eigenvector estimation

We provide additional details for the experiments previously discussed in Section 5.2. Recall that we
observe

Y = M⋆ +W = U⋆Λ⋆U⋆⊤ +W ,

and wish to recover U⋆ ∈ Rn×r. In addition to the rank-2 setting discussed in Section 5.2, we
include experimental results for the case when M⋆ has rank 3. We also provide estimation error
under d2,∞ for our estimate Û in Algorithm 2 and the spectral estimate U , to complement our results
under d∞ reported in Section 5.2. The experiments follow the same setup outlined Section 5.2, and
we refer the readers there for details regarding running Algorithm 2 the generation of Λ⋆, U⋆ and
W .

We first provide more details as to how we obtain the estimation error under d2,∞. Normally, since

d2,∞(Û ,U⋆) = min
Γ∈Or

∥∥∥ÛΓ−U⋆
∥∥∥
2,∞

,

obtaining the d2,∞ estimation error requires finding an orthogonal matrix that minimizes a nonsmooth
function, which is hard to achieve. In our simulation, however, since we have sufficiently large
eigengaps between the eigenvalues, we know how each column of Û corresponds to the columns
of U⋆. Thus, we merely need to resolve the ambiguity in the sign of each column of Û , rather than
searching over all Γ ∈ Or. By assigning each column of Û the sign of the corresponding column in
U⋆, we resolve this ambiguity and can obtain the d2,∞ estimation error.

Figure 4 compares the empirical accuracy, measured by d2,∞, of estimating U⋆ via the r leading
eigenvectors U of Y (blue lines) and via Û produced by Algorithm 2 (orange lines). Shaded bands
are generated from point-wise 95% confidence intervals using bootstrap approximation. Similar to
the rank-one setting, Algorithm 2 recovers U⋆ with a much smaller estimation error under d2,∞
compared to the naïve spectral estimate, especially when the coherence µ is large. The figure also
shows that Algorithm 2 performs well under different noise distributions.

Figure 5 corresponds to M⋆ having rank-3. It compares the empirical accuracy, measured under
d∞, of estimating each u⋆

k, for k = 1, 2, 3 via the leading eigenvectors uk of Y (blue/purple lines)
and via ûk given by Algorithm 2 (orange/red lines). Shaded bands are generated from point-wise
95% confidence intervals using bootstrap approximation. As in the first plot of Figure 2, under
Gaussian noise, the estimation error of ûk shows little to no visible dependence on µ, and is much
smaller compared to the leading eigenvectors of Y . Under Rademacher noise, as in the second plot
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Figure 4: Error as measured in d2,∞ as a function of matrix dimension n, by spectral estimate
(blue) and the estimator in Algorithm 2 (orange) for three different choices of ∥U⋆∥∞: 0.8 (dotted
lines), 0.55 (dashed lines) and 0.3 (solid lines). Columns correspond to W being Gaussian (left),
Rademacher (center) and Laplacian (right). The rows correspond to the signal matrix having rank-2
(top) and rank-3 (bottom).

Figure 5: Error measured in d∞ as a function of matrix dimension n, for the three leading signal
eigenvectors u⋆

k, k = 1, 2, 3 (line width) by the spectral estimate (blue/purple) or the estimator given
in Algorithm 2 (orange/red) for three different choices of ∥u⋆∥∞: 0.8 (dotted lines), 0.55 (dashed
lines) and 0.3 (solid lines). The plots correspond to W being Gaussian (left), Rademacher (center)
and Laplacian (right).

of Figure 2, the dependence on µ again appears slightly reversed from that of the spectral estimator.
For Laplacian noise, as in the third plot of Figure 2, there again seems to be a slight dependence on µ.
For the same reason discussed in Sections 5.1 and 5.2, we expect such dependence to be of smaller
order than the rate in Theorem 1 and should not affect the asymptotic error rate.

I.3 Comparison with AMP-based eigenvector estimation

As mentioned in the main text, to the best of our knowledge, we are the first paper to consider the
problem of non-spectral entrywise eigenvector estimation. The nearest obvious method to serve as a
comparison point, if we were to insist upon one, would likely be one based on approximate message
passing (AMP; see [34]for an overview). AMP methods make no explicit coherence assumptions,
but the underlying mechanism essentially requires incoherence: inherent to AMP-based eigenvector
recovery methods is that the eigenvector is modeled as having its entries drawn i.i.d. according
to a common distribution. Specifically, AMP methods typically make a mean field assumption
whereby the empirical distribution of the entries of u⋆ converges in ℓ2 to some distribution π. Since
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Figure 6: Estimation error under d∞ as a function of size n, by approximate message passing (AMP;
green), the leading eigenvector (blue) and Algorithm 1 (orange) for

√
n∥u⋆∥∞ equal to 3n1/3 (solid

lines), 3n1/4 (dashed lines) or 3n1/5 (dotted lines) under Gaussian noise. Each data point is the mean
of 30 independent trials.

AMP-based methods are tailored to ℓ2-recovery, they are suboptimal for entrywise recovery problems:
small ℓ2 error does not necessary imply small entrywise error.

The unsuitability of typical AMP methods notwithstanding, we include here a comparison against
our Algorithm 1 for the sake of completeness. The experimental setup mirrors that of Figure 1, but
now includes estimation error for an AMP-based method, as well. We generate u⋆ according to the
following procedure: set a random entry of u⋆ to be a ∈ {3n1/3/

√
n, 3n1/4/

√
n, 3n1/5/

√
n}, then

generate the remaining entries by drawing uniformly from {±1}n−1 and normalizing these to have
ℓ2 norm

√
1− a2. This way, ∥u⋆∥∞ = a and the coherence is µ = a2n. We choose this setting to

ensure that the limiting prior distribution satisfies the assumptions required by AMP, and thus we can
apply the update procedures using Equations (22) (34) and the example after Equation (35) in [34].

Having generated Y = M⋆ +W , we estimate u⋆ using the spectral estimate u, the AMP method
and our method as described in Section 5 and measure the estimation error under d∞. We report the
mean of 30 independent trials for each combination of conditions (i.e., each combination of problem
size n and magnitude a). We vary the matrix size n from 3000 to 22000 in increments of 1000.

Figure 6 compares the entrywise estimation error of the AMP method (green), the leading eigenvector
of Y (blue) and our Algorithm 1 (orange). Across settings, Algorithm 1 recovers u⋆ with a much
smaller error under d∞ compared to the other two estimates, and shows an error rate with no visible
dependence on the coherence. Both the spectral method and the AMP-based method exhibit different
estimation error rates as the coherence increases. In particular, the AMP method performs much
worse due to the fact that it is a mean field approximation method and not well-suited for our setting.
Adapting AMP-based methods to target entrywise recovery rather than ℓ2 recovery, in hopes of
rectifying the poor performance exhibited in Figure 6, is a promising direction for future work.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: the abstract and introduction give overviews of our two main results: 1) a
new method for estimating the eigenvectors in signal-plus-noise matrix models and 2) a
new lower bound for eigenvector estimation in the small-eigenvalue regime. These results
are expanded upon (including a thorough discussion of assumptions and limitations) in
Sections 2, 3 4 and 6. Our experiments in Section 5 illustrate which of our assumptions can
likely be relaxed or removed entirely.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our main assumptions, the reasons for needing them, and their implications are
discussed in Sections 1 through 4. In particular, see Remarks 1, 2 and 6. Our experiments in
Section 5 explore which of our assumptions might be relaxed or removed. A broad, albeit
short, overview of limitations and areas for future work is also given in Section 6, titled
“Discussion, limitations and conclusion”. Computational costs and efficiency are addressed
just before Algorithm 1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our main technical assumptions, Assumptions 1, 2, 3 and 4 are prominently
laid out and explained in Sections 1 and 2. The necessity of these assumptions and the
potential to relax or remove them are discussed in those sections, as well as in Section 6. All
theorems and lemmas are stated with their necessary additional assumptions (e.g., growth
rates and relations between parameters), and all are numbered, cross-referenced and have
working hyperlinks. Full proofs are given in the supplementary materials. We have provided
thorough background and intuition surrounding these proofs, though proof sketches have
largely been removed due to space constraints. We are committed to including proof sketches
in a camera-ready version using the allotted extra page, should the reviewers request them.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Algorithms are described in the text, including details regarding how hyper-
parameters were selected and minor changes made to Algorithms 1 and 2 “as written” as
opposed to “as run on the cluster”.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: in addition to the algorithmic descriptions in Sections 2 and 3 and the details in
Section 5, we have included code for running all reported experiments in our supplemental
materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: the main such concern in this paper surrounds the selection of the parameters
α0 and β in Algorithm 1. Selection of these parameters is discussed at length in Remark 2
and in our description of the experiments in Section 5. We have also provided code that
reflects the discussion in the paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: all experiment plots include error bars denoting 95% bootstrap confidence
intervals. This is discussed in Section 5. It is clearly stated in the text that the randomness in
the error bars comes from independent repetitions of the same experimental setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This is addressed at the beginning of Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
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Justification: This paper concerns a theoretical question surrounding minimax estimation
rates. It involves neither human subjects nor sensitive data. Societal impacts, either positive
or negative, are of course possible (e.g., statistical methods and models are frequently abused
or used toward malicious ends), but our work creates no risks that warrant mitigation, to the
best of our knowledge. All experimental code uses only open source software tools.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper concerns a theoretical/methodological question regarding estimation
of eigenvectors from noisy matrices. Given the theoretical nature of this work, it is hard to
foresee direct social impacts, either positive or negative, from this work. Positive impacts
of eigenvector estimation methods (e.g., PCA, matrix denoising, etc) are ubiquitous (see,
for example, medical image processing, to name just one application area). These positive
impacts are alluded to in the introduction. Of course, the abuse or misuse of statistical
methods and models has frequently resulted in negative societal impacts and inequitable
outcomes for underrepresented groups. We acknowledge these possible negative outcomes,
albeit briefly, in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper concerns a theoretical question surrounding minimax estimation
rates and includes no models or data with risk of misuse, to the best of our knowledge.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: the experimental code, included in the supplementary materials, uses only
open source software tools.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the experimental code, included in the supplementary materials, uses only
open source software tools.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This paper involves neither crowdsourcing nor human subject research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper involves neither crowdsourcing nor human subject research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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