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Abstract

Large language models, mostly trained on high-
resource programming languages, but perform
sub-optimally for low-resource ones. This
study investigates the impact of tokenizer adap-
tation methods on improving code generation
for LRPLs. We evaluate popular StarCoder 2
and DeepSeek-Coder model adapted to Elixir
and Racket using methods such as Fast Vocab-
ulary Transfer (FVT), FOCUS, and Zero-shot
Tokenizer Transfer (ZeTT). Our experiments
reveal that ZeTT outperforms other methods,
achieving significant improvements in handling
syntax, program logic, and data types for LR-
PLs. However, we also highlight performance
declines in non-target languages like Python
after tokenizer adaptation. The study approves
the positive impact of tokenizer adaptation in
enhancing LRPL code generation and suggest
directions for future research, including token
embeddings improvement.

1 Introduction

Previous studies showed that large language mod-
els trained on source code (Code LLMs) ex-
cel at generating code (Zheng et al., 2023) in
high-resource programming languages (HRPLs)
(Lozhkov et al., 2024; Cassano et al., 2024; Chen
et al., 2022) from docstrings. However, Code
LLMs demonstrate suboptimal code generation per-
formance on low-resource programming languages
(LRPLs) (Cassano et al., 2024, 2022; Chai et al.,
2024; Yan et al., 2023). This disparity in perfor-
mance puts LRPLs at a potential risk of becoming
extinct without adequate support from LLMs, be-
cause programmers often use LLMs to accelerate
their work. Previous work attempted to address this
issue via continued training (Cassano et al., 2024,
2022), but the performance gap of Code LLMs on
LRPLs could also be caused by an ineffective tok-
enization by underfit Code LLM tokenizers. This
study provides a comprehensive evaluation of the

code generation capabilities of the Code LLMs
adapted to LRPLs using various tokenizer adapta-
tion methods. We highlight the challenges of the
LRPL code generation improvement with tokenizer
adaptation methods. Based on the experimental re-
sults, we also demonstrate that better performance
on LRPL code generation could be achieved with
Zero-shot Tokenizer Transfer (ZeTT) (Minixhofer
et al., 2024) method.

Thus, the study makes the following contribu-
tions:

1. Evaluates code generation performance of
popular open-source Code LLMs on LRPLs
and an HRPL.

2. Adapts Code LLMs to LRPLSs using various
tokenizer adaptation methods.

3. Compares code generation performance of
original Code LL.Ms and their adaptations on
LRPLs.

2 Related Works

2.1 Continued Training

In their work, (Cassano et al., 2024) rightly ob-
served that Code LLMs demonstrate suboptimal
performance on LRPLs such as Julia, Lua, OCaml,
R, and Racket due to the lack of training source
code written in these languages. To address this
problem, they composed semi-synthetic training
data by using an LLM to translate Python code to
LRPL code. The authors also proposed another ap-
proach to obtain LRPL code in their previous study
(Cassano et al., 2022), which involves translation
using a set of compilers. However, this approach
was used only to create a code generation bench-
mark comprising 18 LRPLs.

2.2 Tokenizer Adaptation

Tokenizer adaptation involves changing the tok-
enizer of the model to a new tokenizer that con-



Tokenizer Name Vocab. Size

New Tokens Keywords

Racket Elixir
StarCoder 2 49 152 - 26% 70%
StarCoder 2 Racket 53340 4188 +9% 31% +5% T4% +4%
StarCoder 2 Elixir 52202 3050 +6% 27% +1% 82% +12%
DeepSeek-Coder 32022 - 22% 64%
DeepSeek-Coder Racket 39 883 7861 +25% 31% +9% 74% +10%
DeepSeek-Coder Elixir 38 981 6959 +21% 25% +3% 82% +18%

Table 1: Statistics of the original and adapted tokenizers. The original tokenizers are highlighted in bold. The
vocabulary expansion percentage and the keywords increase percentage are highlighted in green.

tains more tokens from the target language to cre-
ate a better representation of the language (Csaki
et al., 2023). (Mosin et al., 2023) proposed a sim-
ple tokenizer adaptation approach that reuses the
embeddings of the original model. The implemen-
tation of this approach was optimized by (Gee et al.,
2024) in their Fast Vocabulary Transfer (FVT) ap-
proach. FOCUS (Dobler and De Melo, 2023) has
recently overcome the performance of WECHSEL
(Minixhofer et al., 2021) and RAMEN (Tran, 2020)
on multilingual XNLI (Conneau et al., 2018) and
QuAD (Moller et al., 2021) tasks, making an ad-
vancement in tokenizer adaptation. The authors
of Zero-shot Tokenizer Transfer (ZeTT) (Minix-
hofer et al., 2024) proposed to train a Transformer
(Vaswani et al., 2017) encoder as a hypernetwork
to produce embeddings for the tokens of the new
tokenizer. Currently, this is a state-of-the-art tok-
enizer adaptation method that overcomes the previ-
ous cutting-edge methods FOCUS and OFA (Liu
et al., 2023) on natural language and code tasks.

3 Experimental Setup

3.1 Motivation for Tokenizer Adaptation

It was previously demonstrated that a model with a
tokenizer containing more target language tokens
has improved text understanding and produces a
text with higher quality (Mosin et al., 2023; Gee
et al., 2024; Dobler and De Melo, 2023; Minixhofer
et al., 2024). This may be a premise that tokenizer
adaptation could boost the quality of LRPL code
generation for Code LLMs since the structures of
code and natural language are similar (Allamanis
et al., 2018). The similarity is also approved by the
fact that models originally developed for natural
language were effective for source code (Hindle
etal., 2016).

3.2 Programming Languages

To assess the effect of tokenizer adaptation on the
quality of generated LRPL code, we consider Elixir
and Racket LRPLs. The motivation for the choice
is provided in Appendix A. It also makes sense
to check whether the adapted models retain their
capabilities of generating code in HRPLs. Thus,
we considered Python programming language as
an HRPL since it is a popular and widely used PL
according to the Stack Overflow survey'. This is
approved by the Stack 2 statistics: Python is in the
top-10 of PLs by the number of bytes in the dataset.

3.3 Code LLMs (Baselines)

Tokenizer adaptation experiments are performed on
StarCoder 2 (Lozhkov et al., 2024) with 3 billion
parameters and DeepSeek-Coder (Guo et al., 2024)
with 1.3 billion parameters. Appendix B contains
the discussion of the model choice.

3.4 Training Data

There is an obvious lack of publicly available and
high-quality datasets with the code written in LR-
PLs. Due to this natural reason, the trainings of
tokenizers and models are performed on the data
from the Stack 2 (Lozhkov et al., 2024) dataset®.
It contains the subsets containing code for the se-
lected LRPLs with 227 thousand Racket source
code files and 1.8 million Elixir source code files.

3.5 Adaptation to LRPLs

3.5.1 Fine-tuning

To check whether tokenizer adaptation provides
an improvement, we fine-tuned the models on the

1https://survey.stackover1°10w.co/2®24/
technology

’The dataset contains the code whose licenses are
considered permissive by the authors. List of li-
cense identifiers: https://huggingface.co/datasets/
bigcode/the-stack-v2/blob/main/license_stats.csv
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Model Name Adaptation to Racket Adaptation to Elixir
Racket  Elixir Python Racket Elixir Python
starcoder2-3b 8 20 24 8 20 24
+FT 30 4 12 0 28 8
+FVT 28 2 10 0 30 0
+ FOCUS 24 0 6 0 28 0
deepseek-coder-1.3b-base 12 38 30 12 38 30
+FT 26 24 30 8 28 28
+FVT 18 16 22 10 26 22
+ FOCUS 24 0 6 0 28 0
+ ZeTT Adapted Tokenizer 28 16 18 18 32 28
+ ZeTT Original Tokenizer 26 20 22 10 30 22

Table 2: Pass@1 (%) values on McEval benchmark for the original models and the adapted models using various
tokenizer adaptation methods. The names of the adaptation methods are provided after the "+" sign. "FT"
abbreviation stands for the fine-tuned model. Note that the StarCoder 2 model does not have a ZeTT-adapted version
since HF Transformers does not support conversion of this model to a Flax model.

LRPLs to check whether tokenizer adaptation in-
deed provides an improvement. StarCoder 2 and
DeepSeek-Coder were both fine-tuned on the LRPL
source code taken from the Stack 2 dataset. Even
though Racket and Elixir are subsets of the Stack
2 differ in size, we trained the models on the same
amount of source code files. Appendix D provides
the fine-tuning details.

3.5.2 Tokenizer Adaptation

In this study, we adapted the models using several
tokenizer adaptation methods:

1. Fast Vocabulary Transfer (FVT) (Gee et al.,
2024)

2. FOCUS (Dobler and De Melo, 2023)

3. Zero-shot Tokenizer Transfer (ZeTT) (Minix-
hofer et al., 2024)

The details of the methods are provided in Ap-
pendix E, Appendix F, and Appendix G. Note that
the embeddings initialization, involved in tokenizer
adaptation, was performed for both the input and
output embeddings. After the initialization, the
model with the adapted tokenizer is fine-tuned on
the LRPL source code according to Appendix D.

3.6 Adapted Tokenizers

We adapted tokenizers to LRPLs using vocabulary
expansion: tokens of an auxiliary tokenizer trained
on LRPL code are added to the model tokenizer.
In our experiments, we trained auxiliary tokeniz-
ers with a vocabulary size of 30% of the model
tokenizer’s vocabulary size. However, the actual

amount of added tokens will be lower since model
and auxiliary tokenizers often have overlapping to-
kens. The adapted tokenizers are summarized in
Table 1. More details are presented in Appendix C.

3.7 Code Generation Benchmarks

We assessed the quality of code generation on sev-
eral benchmarks.:

1. MultiPL-E (Cassano et al., 2022)

2. McEval (Chai et al., 2024)

Detailed descriptions of the benchmarks are pro-
vided in Appendix H.

4 Evaluation Results and Discussion

4.1 Effect of Vocabulary Expansion on
Tokenization

The results of analysis of the adapted tokenizers
in Appendix C demonstrate that tokenizers now
use new, larger tokens when tokenizing code in
the target LRPL. In the case of DeepSeek-Coder,
there is a statistically significant (< 5%) decrease
in the mean tokens per text (MTPT) and the mean
bytes per token (MBPT). However, in the case of
StarCoder, the situation is controversial since the
decrease in MTPT happens to be not statistically
significant. The reason for that could be the fact
that the tokenizer vocabulary of StarCoder 2 was
expanded by less than 10%, which could be insuffi-
cient. Despite that, the tokenizers consistently use
50-60% of the added tokens. These added tokens
are indeed significant for the target LRPLs since



they add up to 9% of Racket keywords and up to
18% of Elixir keywords.

4.2 Comparison of Tokenizer Adaptation
Methods on Target LRPLs

The results of the evaluation of original and adapted
models on the MultiPL-E benchmark are presented
in Appendix I. Evaluation results on the McEval
benchmark may be seen in Table 2. These evalua-
tion results are used to compare tokenizer adapta-
tion methods.

4.2.1 Racket

FVT and FOCUS improve the performance of the
base models, but do not achieve the performance of
the fine-tuned model. ZeTT versions demonstrate
promising results, often overcoming the fine-tuned
model on HumanEval (15.99%) and McEval (28%)
benchmarks.

4.2.2 Elixir

As in the Racket case, FVT and FOCUS often fail
to achieve the code generation abilities of the fine-
tuned model. At the same time, ZeTT-variants,
especially with adapted tokenizer, are highly ef-
fective for Elixir. ZeTT with adapted tokenizer
achieves 17.79% on HumanEval and 22.36% on
MBPP, outperforming FT. ZeTT with the original
tokenizer leads in MBPP (24.66%).

4.3 Performance of Adapted Models on
Non-target PLs

Python performance consistently declines in almost
all cases, except for a single case during McEval
evaluation. Most Racket-adapted models show re-
duced Elixir performance on McEval. However,
there are cases when fine-tuning DeepSeek-Coder
on Racket improves the model performance on
Elixir MultiPL-E tasks from 4.11% up to 17.68%,
which could be the sign of cross-lingual transfer-
ability. A similar severe decline may be observed
in Racket performance of Elixir-adapted models.
These facts could be the signs of catastrophic for-
getting (French, 1999; Muennighoff et al., 2022;
Vu et al., 2022).

4.4 Vocabulary Expansion Importance in
ZeTT

To check the effect of vocabulary expansion in
ZeTT adaptations, we performed experiments with
both ZeTT-adapted models featuring original and
adapted tokenizers. The experimental results

demonstrate that even though the ZeTT-adapted
model with the adapted tokenizer often shows bet-
ter performance, the model with the original tok-
enizer has a comparable performance as well. This
may indicate that the quality of token embeddings,
their semantic content, could be no less impactful
than the token length. Cross-lingual knowledge,
provided by CodeBERT, may enrich the token em-
beddings with valuable cross-lingual knowledge.
Thus, improvement of LRPL tokens’ embeddings
with cross-lingual knowledge could be a promising
future work.

4.5 ZeTT Improvements in Target LRPLs

Compared to the fine-tuned models, ZeTT models
obtain the following improvements. For Elixir, the
ZeTT model works correctly with function argu-
ment passing, array manipulation, recursive logic,
indices handling, operators, and data types. For
Racket, the issues related to recursive functions,
base cases, built-in and helper functions are re-
solved.

5 Limitations

Despite that the study provides valuable insights
into the improvement of code generation abilities
of Code LLM in LRPLs, the study has several limi-
tations that could potentially influence the conclu-
sions. First, it considers only 2 LRPLs and a sin-
gle LRPL. Second, we used relatively small Code
LLMs of 1-3 billion parameters in the experiments.
Third, we noticed that tokenizer adaptation meth-
ods are sensitive to how the embeddings are trained
after initialization.

6 Conclusion

The study provides a comprehensive evaluation of
code generation capabilities in low-resource pro-
gramming languages (LRPLs), revealing the subop-
timal performance of current popular Code LLMs
without tokenizer adaptation. Among the tested
tokenizer adaptation methods, ZeTT is the most
effective approach that outperforms FVT and FO-
CUS in handling syntax, program logic, operators,
and data types. The findings highlight the critical
role of tokenizers and token embeddings in LRPL
code generation. The obtained results could be
helpful in further research of Code LLMs’ perfor-
mance in LRPL code generation.
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A Choice of LRPLs

The choice of LRPLs on the distribution of source
code bytes over PLs in the deduplicated Stack 2
dataset’. We considered programming languages
that overcome the 99% quantile to be low-resource.
In total, according to our approach, 512 languages
are considered low-resource, which is 82% of the

3https://huggingface.co/datasets/bigcode/
the-stack-v2-dedup

languages presented in the dataset. Elixir and
Racket PLs were chosen for experiments since
they are presented in both code generation bench-
marks, MultiPL-E (Cassano et al., 2022) and McE-
val (Chai et al., 2024).

B Choice of Code LLMs

Tokenizer adaptation experiments are performed on
StarCoder 2 (Lozhkov et al., 2024) with 3 billion
parameters and DeepSeek-Coder (Guo et al., 2024)
with 1.3 billion parameters. These are the modern
and popular open-source Code LLMs having the
smallest amount of parameters to save computa-
tional resources and time when performing experi-
ments. Even though these models have the smallest
number of parameters, they are good enough to
generate working code in various PLs. Adapting
the tokenizer of the two different Code LLMs is
useful to determine whether the approach is gen-
eralizable over model architectures. Additionally,
these models are comparable since they have a rel-
atively close number of parameters. The models do
not differ much in their complexity and, therefore,
in their abilities. One may correctly notice that
Starcoder 2 has more than 2 times many parame-
ters as DeepSeek, so their abilities should differ
significantly. However, those are the smallest mod-
els that are maximally close to each other in terms
of a number of parameters.

C Adapted Tokenizers

The summary of the adapted tokenizers is provided
in Table 1. We define keywords as the special
words reserved by a programming language. The
list of keywords was collected from the grammars
of the Visual Studio Code* language servers for
Racket® and Elixir®. In total, we collected 122
keywords for Racket and 50 keywords for Elixir.
The keywords percentage for the tokenizers is the
ratio of the keywords present in the tokenizers’
vocabulary over the total number of keywords.

To check whether vocabulary expansion makes a
difference in tokenization, we calculated the mean
number of tokens per text (Table 7) and the mean
number of bytes per token (Table 7). Vocabulary
usage (Table 6) was calculated to check how many
of the added tokens are used in total.

4https: //code.visualstudio.com/
5https: //github.com/Eugleo/magic-racket/
®https://github.com/timmhirsens/vscode-elixir
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D Fine-tuning Parameters

Fine-tuning is the step that follows after the em-
beddings initialization in each tokenizer adaptation
method. To provide a fair comparison, we per-
formed fine-tuning with the same training param-
eters for each method. The fine-tuning was per-
formed using TRL? SFTTrainer on 224000 code
samples with the following training parameters:

* Maximal Gradient Norm: 1
* Batch Size: 4
e Warmup Ratio: 0.25
* Training Epochs: 1
* Learning Rate: 5e-5
* Scheduler: cosine
* Weight Decay: 1
E FVT Adaptation Details

The approach proposes to initialize the embeddings
for the new tokens using the embeddings of the
original model. To do that, the new token is split
into the constituent tokens using the original tok-
enizer of the model. Next, the embeddings of the
constituent tokens are averaged to obtain a single
average embedding:

Enew<ti>=7£ti), S Balt) ()

t5€Ta(ts)

where Fiew, Folg - embeddings of the adapted and
original model correspondingly; ¢;,t; - added to-
ken and constituent token respectively; 7, - orig-
inal tokenizer. Note that with this approach, the
embeddings of the old tokens are preserved.

F FOCUS Adaptation Details

The method firstly trains fastText (Bojanowski
et al., 2017) embeddings for all the tokens of the
new tokenizer. Then, each new token gets an em-
bedding initialized with the weighted average of
the model embeddings of all the old tokens.

1

Enew(ti) = |V7’ |

Z w; Boa(t;)  (2)

t;eVT,

"https://huggingface.co/docs/trl/en/index

where V7. - vocabulary of the original tokenizer;
wy; - weight of a token. The weights are deter-
mined by the cosine similarity between the fast-
Text embedding of the target token and the fastText
embedding of an old token. Irrelevant embeddings
are excluded from the averaging using sparsemax
(Martins and Astudillo, 2016)

In our experiments, we used the implementation®
of the method provided by the method’s authors.
The fastText embeddings were trained with the de-
fault training parameters, provided in the FOCUS
implementation.

G ZeTT Adaptation Details

The method approaches embedding initialization
in a conceptually new way: it uses a Transformer
Encoder (Vaswani et al., 2017) hypernetwork Hy :
Ty — ¢, to predict the embeddings ¢, of the to-
kens in the vocabulary of the adapted tokenizer 7.
During the training, the hypernetwork should first
pass the MIMIC-style (Pinter et al., 2017) warmup
stage. After that, the hypernetwork parameters 6
are trained on the following loss:

L5 = Lo(Ty, Ho(Tp), %) + - L3 (3)

where Ly is a CLM (Jurafsky, 2000) objective, 1)
are the language model (non-embedding) parame-

ters, and « is a weight of the auxiliary loss that is
defined as

> [ Ho[Vr[t)] — da[V7 [H]]]2
V1. N V7|

aux __
Lg™ =

“)

where t € |V, NV,|. Meanwhile, the language
model parameters v are not trained during the hy-
pernetwork training.

In our experiments, we used the implementa-
tion? of the method authors to train a CodeBERT
(Feng et al., 2020) hypernetwork with the following
training parameters:

* loss: clm

* n_embd: 2048

e n_token_subsample: 8192

e identity_n_subsample: 8192

e identity_steps: 14000

8https://github.com/konstantinjdobler/focus
*https://github.com/bminixhofer/zett


https://huggingface.co/docs/trl/en/index
https://github.com/konstantinjdobler/focus
https://github.com/bminixhofer/zett

e warmup_steps: [14000, 15000]
e steps: 56000

e learning_rate: [3e-4, 6e-5]

e max_grad_norm: 0.1

* hn_surface_maxlen: 7

e weight_decay: 0.01

e train_batch_size: 2

* hn_hidden_size: 2048

* hn_intermediate_size: 4096
e lexical_loss_weight: 32

H Code Generation Benchmarks

MultiPL-E (Cassano et al., 2022). The benchmark
includes the tasks from HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) datasets
translated to other PLs. Due to the large amount of
experiments, we only evaluated pass@ 1 metric for
50 samples per task with 0.2 temperature on both
datasets.

McEval (Chai et al., 2024). The benchmark
provides a set of custom-curated tasks. It contains
50 tasks and tests for each PL from the vast set.
The benchmarks only evaluate pass@1 over a set
of tasks since it requires the models to greedily
generate the code.

I MultiPL-E Evaluation Results

The original and adapted models are evaluated on
both datasets of the MultiPL-E benchmark: Hu-
manEval and MBPP. Table 3 presents pass@1 met-
rics for models adapted to Racket, while Table 4
shows the metrics for Elixir-adapted models.



HumanEval MBPP

Model Name Racket  Elixir Python Racket Elixir Python
starcoder2-3b 821 928 3043 1472 6.87 41.98
+FT 15.25 0.00 1643 2288 0.00 12.85
+FVT 13.42 0.00 1571 2389 0.04 11.64
+ FOCUS 1366 030 11.88 2428 048 6.84
deepseek-coder-1.3b-base 9.75 1501 3177 17.69 4.11 43.36
+FT 14.15 16.07 2920 2345 17.68 41.86
+FVT 10.14 12.15 2532 1034 1232 3641
+ FOCUS 9.98  0.00 0.00 10.50 0.85 3.47

+ ZeTT Adapted Tokenizer 1473 826 2833 22.18 8.09 36.75
+ ZeTT Original Tokenizer 1599  9.06  26.84 2198 1230  40.01

Table 3: Pass@1 (%) values on MultiPL-E benchmark for the original models and the models adapted to Racket
using various tokenizer adaptation methods. The names of the adaptation methods are provided after the "+" sign.
"FT" abbreviation stands for the fine-tuned model. Note that the StarCoder 2 model does not have a ZeTT-adapted
version since HF Transformers does not support converting this model to a Flax model.

Model Name HumanEval MBPP

Racket  Elixir Python Racket Elixir Python
starcoder2-3b 821 928 3043 1472 6.87 41.98
+FT 0.00 16.10 4.26 1.25 10.47 0.19
+FVT 0.60 15.22 2.77 047  8.85 0.02
+ FOCUS 0.05 15.84 2.44 0.13  8.27 0.00
deepseek-coder-1.3b-base 9.75 15.01 31.77 17.69 4.11 43.36
+FT 856 1668 2573 1598 6.70 25.73
+FVT 5.03 12.93 18.70 9.77 16.59  27.64
+ FOCUS 0.73 12.76 0.00 1.00 10.33 0.58

+ ZeTT Adapted Tokenizer 596 17.79 24.74 8.39 22.36 4.94
+ ZeTT Original Tokenizer 6.32 16.58 24.00 10.17 24.66 16.98

Table 4: Pass@1 (%) values on MultiPL-E benchmark for the original models and the models adapted to Elixir
using various tokenizer adaptation methods. The names of the adaptation methods are provided after the "+" sign.
"FT" abbreviation stands for the fine-tuned model. Note that the StarCoder 2 model does not have a ZeTT-adapted
version since HF Transformers does not support conversion of this model to a Flax model

Racket Elixir

Tokenizer Name Mean  Std p-value Mean  Std p-value

StarCoder 2 918 1350 - 557 903 -
StarCoder 2 Racket 900 1320 0.3349 557 902  1.0000
StarCoder 2 Elixir 918 1349 1.0000 545 885 0.3426
DeepSeek-Coder 1044 1497 655 1031

DeepSeek-Coder Racket 987 1412 0.0056 647 1020 0.5812
DeepSeek-Coder Elixir 1027 1473 0.4183 617 970 0.0073

Table 5: Mean tokens per text (MTPT) for the original and adapted tokenizers calculated for 10 000 samples. The
original tokenizers are highlighted in bold. P-values of the two-tailed t-test between MTPTs of the original and
adapted tokenizers are indicated in the dedicated column. Statistically significant differences (p-value < 5%) are
highlighted in green, while the others are highlighted in red.



Racket Elixir

Tokenizer Name Used Unused Used Unused
Total Added Total Added Total Added Total Added
StarCoder 2 91 - 9 - 95 - 5 -
StarCoder 2 Racket 89 64 11 36 92 64 8 36
StarCoder 2 Elixir 88 41 12 59 93 41 7 59
DeepSeek-Coder 93 - 7 - 93 - 7 -
DeepSeek Racket 86 59 14 41 86 59 14 41
DeepSeek Elixir 86 53 14 47 88 53 12 47

Table 6: Vocabulary usage (%) by the original and adapted tokenizers. The original tokenizers are highlighted in
bold. "Used" group of columns indicates the percentage of all added tokens used in the tokenization of a training
dataset. "Unused" group of columns is similar to the "Used" group, but indicates tokens that were not used in
tokenization.

Tokenizer Name Racket Elixir

Mean Std  p-value  Mean Std  p-value
StarCoder 2 2.8861 5.2765 - 39213 3.6107 -
StarCoder 2 Racket 2.9331 5.6742 0.0140 3.9251 3.6258 0.3525
StarCoder 2 Elixir 2.8876 52781 1.0000 4.0061 3.6760 0.0001
DeepSeek-Coder 2.6686 4.4462 - 33679 3.2266 -

DeepSeek-Coder Racket 2.7986 4.8579 0.0001 3.4116 3.2680 0.0001
DeepSeek-Coder Elixir ~ 2.7082 4.4792  0.0026 3.5727 3.3596  0.0001

Table 7: Mean bytes per token (MBPT) for the original and adapted tokenized calculated over training datasets. The
original tokenizers are highlighted in bold. P-values of the two-tailed t-test between MBPTs of the original and
adapted tokenizers are indicated in the dedicated column. Statistically significant differences (p-value < 5%) are
highlighted in green, while the others are highlighted in red.
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