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Abstract001

Large language models, mostly trained on high-002
resource programming languages, but perform003
sub-optimally for low-resource ones. This004
study investigates the impact of tokenizer adap-005
tation methods on improving code generation006
for LRPLs. We evaluate popular StarCoder 2007
and DeepSeek-Coder model adapted to Elixir008
and Racket using methods such as Fast Vocab-009
ulary Transfer (FVT), FOCUS, and Zero-shot010
Tokenizer Transfer (ZeTT). Our experiments011
reveal that ZeTT outperforms other methods,012
achieving significant improvements in handling013
syntax, program logic, and data types for LR-014
PLs. However, we also highlight performance015
declines in non-target languages like Python016
after tokenizer adaptation. The study approves017
the positive impact of tokenizer adaptation in018
enhancing LRPL code generation and suggest019
directions for future research, including token020
embeddings improvement.021

1 Introduction022

Previous studies showed that large language mod-023

els trained on source code (Code LLMs) ex-024

cel at generating code (Zheng et al., 2023) in025

high-resource programming languages (HRPLs)026

(Lozhkov et al., 2024; Cassano et al., 2024; Chen027

et al., 2022) from docstrings. However, Code028

LLMs demonstrate suboptimal code generation per-029

formance on low-resource programming languages030

(LRPLs) (Cassano et al., 2024, 2022; Chai et al.,031

2024; Yan et al., 2023). This disparity in perfor-032

mance puts LRPLs at a potential risk of becoming033

extinct without adequate support from LLMs, be-034

cause programmers often use LLMs to accelerate035

their work. Previous work attempted to address this036

issue via continued training (Cassano et al., 2024,037

2022), but the performance gap of Code LLMs on038

LRPLs could also be caused by an ineffective tok-039

enization by underfit Code LLM tokenizers. This040

study provides a comprehensive evaluation of the041

code generation capabilities of the Code LLMs 042

adapted to LRPLs using various tokenizer adapta- 043

tion methods. We highlight the challenges of the 044

LRPL code generation improvement with tokenizer 045

adaptation methods. Based on the experimental re- 046

sults, we also demonstrate that better performance 047

on LRPL code generation could be achieved with 048

Zero-shot Tokenizer Transfer (ZeTT) (Minixhofer 049

et al., 2024) method. 050

Thus, the study makes the following contribu- 051

tions: 052

1. Evaluates code generation performance of 053

popular open-source Code LLMs on LRPLs 054

and an HRPL. 055

2. Adapts Code LLMs to LRPLs using various 056

tokenizer adaptation methods. 057

3. Compares code generation performance of 058

original Code LLMs and their adaptations on 059

LRPLs. 060

2 Related Works 061

2.1 Continued Training 062

In their work, (Cassano et al., 2024) rightly ob- 063

served that Code LLMs demonstrate suboptimal 064

performance on LRPLs such as Julia, Lua, OCaml, 065

R, and Racket due to the lack of training source 066

code written in these languages. To address this 067

problem, they composed semi-synthetic training 068

data by using an LLM to translate Python code to 069

LRPL code. The authors also proposed another ap- 070

proach to obtain LRPL code in their previous study 071

(Cassano et al., 2022), which involves translation 072

using a set of compilers. However, this approach 073

was used only to create a code generation bench- 074

mark comprising 18 LRPLs. 075

2.2 Tokenizer Adaptation 076

Tokenizer adaptation involves changing the tok- 077

enizer of the model to a new tokenizer that con- 078
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Tokenizer Name Vocab. Size New Tokens Keywords
Racket Elixir

StarCoder 2 49 152 - 26% 70%
StarCoder 2 Racket 53 340 4 188 +9% 31% +5% 74% +4%
StarCoder 2 Elixir 52 202 3 050 +6% 27% +1% 82% +12%
DeepSeek-Coder 32 022 - 22% 64%
DeepSeek-Coder Racket 39 883 7 861 +25% 31% +9% 74% +10%
DeepSeek-Coder Elixir 38 981 6 959 +21% 25% +3% 82% +18%

Table 1: Statistics of the original and adapted tokenizers. The original tokenizers are highlighted in bold. The
vocabulary expansion percentage and the keywords increase percentage are highlighted in green.

tains more tokens from the target language to cre-079

ate a better representation of the language (Csaki080

et al., 2023). (Mosin et al., 2023) proposed a sim-081

ple tokenizer adaptation approach that reuses the082

embeddings of the original model. The implemen-083

tation of this approach was optimized by (Gee et al.,084

2024) in their Fast Vocabulary Transfer (FVT) ap-085

proach. FOCUS (Dobler and De Melo, 2023) has086

recently overcome the performance of WECHSEL087

(Minixhofer et al., 2021) and RAMEN (Tran, 2020)088

on multilingual XNLI (Conneau et al., 2018) and089

QuAD (Möller et al., 2021) tasks, making an ad-090

vancement in tokenizer adaptation. The authors091

of Zero-shot Tokenizer Transfer (ZeTT) (Minix-092

hofer et al., 2024) proposed to train a Transformer093

(Vaswani et al., 2017) encoder as a hypernetwork094

to produce embeddings for the tokens of the new095

tokenizer. Currently, this is a state-of-the-art tok-096

enizer adaptation method that overcomes the previ-097

ous cutting-edge methods FOCUS and OFA (Liu098

et al., 2023) on natural language and code tasks.099

3 Experimental Setup100

3.1 Motivation for Tokenizer Adaptation101

It was previously demonstrated that a model with a102

tokenizer containing more target language tokens103

has improved text understanding and produces a104

text with higher quality (Mosin et al., 2023; Gee105

et al., 2024; Dobler and De Melo, 2023; Minixhofer106

et al., 2024). This may be a premise that tokenizer107

adaptation could boost the quality of LRPL code108

generation for Code LLMs since the structures of109

code and natural language are similar (Allamanis110

et al., 2018). The similarity is also approved by the111

fact that models originally developed for natural112

language were effective for source code (Hindle113

et al., 2016).114

3.2 Programming Languages 115

To assess the effect of tokenizer adaptation on the 116

quality of generated LRPL code, we consider Elixir 117

and Racket LRPLs. The motivation for the choice 118

is provided in Appendix A. It also makes sense 119

to check whether the adapted models retain their 120

capabilities of generating code in HRPLs. Thus, 121

we considered Python programming language as 122

an HRPL since it is a popular and widely used PL 123

according to the Stack Overflow survey1. This is 124

approved by the Stack 2 statistics: Python is in the 125

top-10 of PLs by the number of bytes in the dataset. 126

3.3 Code LLMs (Baselines) 127

Tokenizer adaptation experiments are performed on 128

StarCoder 2 (Lozhkov et al., 2024) with 3 billion 129

parameters and DeepSeek-Coder (Guo et al., 2024) 130

with 1.3 billion parameters. Appendix B contains 131

the discussion of the model choice. 132

3.4 Training Data 133

There is an obvious lack of publicly available and 134

high-quality datasets with the code written in LR- 135

PLs. Due to this natural reason, the trainings of 136

tokenizers and models are performed on the data 137

from the Stack 2 (Lozhkov et al., 2024) dataset2. 138

It contains the subsets containing code for the se- 139

lected LRPLs with 227 thousand Racket source 140

code files and 1.8 million Elixir source code files. 141

3.5 Adaptation to LRPLs 142

3.5.1 Fine-tuning 143

To check whether tokenizer adaptation provides 144

an improvement, we fine-tuned the models on the 145

1https://survey.stackoverflow.co/2024/
technology

2The dataset contains the code whose licenses are
considered permissive by the authors. List of li-
cense identifiers: https://huggingface.co/datasets/
bigcode/the-stack-v2/blob/main/license_stats.csv
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Model Name Adaptation to Racket Adaptation to Elixir
Racket Elixir Python Racket Elixir Python

starcoder2-3b 8 20 24 8 20 24
+ FT 30 4 12 0 28 8
+ FVT 28 2 10 0 30 0
+ FOCUS 24 0 6 0 28 0
deepseek-coder-1.3b-base 12 38 30 12 38 30
+ FT 26 24 30 8 28 28
+ FVT 18 16 22 10 26 22
+ FOCUS 24 0 6 0 28 0
+ ZeTT Adapted Tokenizer 28 16 18 18 32 28
+ ZeTT Original Tokenizer 26 20 22 10 30 22

Table 2: Pass@1 (%) values on McEval benchmark for the original models and the adapted models using various
tokenizer adaptation methods. The names of the adaptation methods are provided after the "+" sign. "FT"
abbreviation stands for the fine-tuned model. Note that the StarCoder 2 model does not have a ZeTT-adapted version
since HF Transformers does not support conversion of this model to a Flax model.

LRPLs to check whether tokenizer adaptation in-146

deed provides an improvement. StarCoder 2 and147

DeepSeek-Coder were both fine-tuned on the LRPL148

source code taken from the Stack 2 dataset. Even149

though Racket and Elixir are subsets of the Stack150

2 differ in size, we trained the models on the same151

amount of source code files. Appendix D provides152

the fine-tuning details.153

3.5.2 Tokenizer Adaptation154

In this study, we adapted the models using several155

tokenizer adaptation methods:156

1. Fast Vocabulary Transfer (FVT) (Gee et al.,157

2024)158

2. FOCUS (Dobler and De Melo, 2023)159

3. Zero-shot Tokenizer Transfer (ZeTT) (Minix-160

hofer et al., 2024)161

The details of the methods are provided in Ap-162

pendix E, Appendix F, and Appendix G. Note that163

the embeddings initialization, involved in tokenizer164

adaptation, was performed for both the input and165

output embeddings. After the initialization, the166

model with the adapted tokenizer is fine-tuned on167

the LRPL source code according to Appendix D.168

3.6 Adapted Tokenizers169

We adapted tokenizers to LRPLs using vocabulary170

expansion: tokens of an auxiliary tokenizer trained171

on LRPL code are added to the model tokenizer.172

In our experiments, we trained auxiliary tokeniz-173

ers with a vocabulary size of 30% of the model174

tokenizer’s vocabulary size. However, the actual175

amount of added tokens will be lower since model 176

and auxiliary tokenizers often have overlapping to- 177

kens. The adapted tokenizers are summarized in 178

Table 1. More details are presented in Appendix C. 179

3.7 Code Generation Benchmarks 180

We assessed the quality of code generation on sev- 181

eral benchmarks.: 182

1. MultiPL-E (Cassano et al., 2022) 183

2. McEval (Chai et al., 2024) 184

Detailed descriptions of the benchmarks are pro- 185

vided in Appendix H. 186

4 Evaluation Results and Discussion 187

4.1 Effect of Vocabulary Expansion on 188

Tokenization 189

The results of analysis of the adapted tokenizers 190

in Appendix C demonstrate that tokenizers now 191

use new, larger tokens when tokenizing code in 192

the target LRPL. In the case of DeepSeek-Coder, 193

there is a statistically significant (≤ 5%) decrease 194

in the mean tokens per text (MTPT) and the mean 195

bytes per token (MBPT). However, in the case of 196

StarCoder, the situation is controversial since the 197

decrease in MTPT happens to be not statistically 198

significant. The reason for that could be the fact 199

that the tokenizer vocabulary of StarCoder 2 was 200

expanded by less than 10%, which could be insuffi- 201

cient. Despite that, the tokenizers consistently use 202

50-60% of the added tokens. These added tokens 203

are indeed significant for the target LRPLs since 204
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they add up to 9% of Racket keywords and up to205

18% of Elixir keywords.206

4.2 Comparison of Tokenizer Adaptation207

Methods on Target LRPLs208

The results of the evaluation of original and adapted209

models on the MultiPL-E benchmark are presented210

in Appendix I. Evaluation results on the McEval211

benchmark may be seen in Table 2. These evalua-212

tion results are used to compare tokenizer adapta-213

tion methods.214

4.2.1 Racket215

FVT and FOCUS improve the performance of the216

base models, but do not achieve the performance of217

the fine-tuned model. ZeTT versions demonstrate218

promising results, often overcoming the fine-tuned219

model on HumanEval (15.99%) and McEval (28%)220

benchmarks.221

4.2.2 Elixir222

As in the Racket case, FVT and FOCUS often fail223

to achieve the code generation abilities of the fine-224

tuned model. At the same time, ZeTT-variants,225

especially with adapted tokenizer, are highly ef-226

fective for Elixir. ZeTT with adapted tokenizer227

achieves 17.79% on HumanEval and 22.36% on228

MBPP, outperforming FT. ZeTT with the original229

tokenizer leads in MBPP (24.66%).230

4.3 Performance of Adapted Models on231

Non-target PLs232

Python performance consistently declines in almost233

all cases, except for a single case during McEval234

evaluation. Most Racket-adapted models show re-235

duced Elixir performance on McEval. However,236

there are cases when fine-tuning DeepSeek-Coder237

on Racket improves the model performance on238

Elixir MultiPL-E tasks from 4.11% up to 17.68%,239

which could be the sign of cross-lingual transfer-240

ability. A similar severe decline may be observed241

in Racket performance of Elixir-adapted models.242

These facts could be the signs of catastrophic for-243

getting (French, 1999; Muennighoff et al., 2022;244

Vu et al., 2022).245

4.4 Vocabulary Expansion Importance in246

ZeTT247

To check the effect of vocabulary expansion in248

ZeTT adaptations, we performed experiments with249

both ZeTT-adapted models featuring original and250

adapted tokenizers. The experimental results251

demonstrate that even though the ZeTT-adapted 252

model with the adapted tokenizer often shows bet- 253

ter performance, the model with the original tok- 254

enizer has a comparable performance as well. This 255

may indicate that the quality of token embeddings, 256

their semantic content, could be no less impactful 257

than the token length. Cross-lingual knowledge, 258

provided by CodeBERT, may enrich the token em- 259

beddings with valuable cross-lingual knowledge. 260

Thus, improvement of LRPL tokens’ embeddings 261

with cross-lingual knowledge could be a promising 262

future work. 263

4.5 ZeTT Improvements in Target LRPLs 264

Compared to the fine-tuned models, ZeTT models 265

obtain the following improvements. For Elixir, the 266

ZeTT model works correctly with function argu- 267

ment passing, array manipulation, recursive logic, 268

indices handling, operators, and data types. For 269

Racket, the issues related to recursive functions, 270

base cases, built-in and helper functions are re- 271

solved. 272

5 Limitations 273

Despite that the study provides valuable insights 274

into the improvement of code generation abilities 275

of Code LLM in LRPLs, the study has several limi- 276

tations that could potentially influence the conclu- 277

sions. First, it considers only 2 LRPLs and a sin- 278

gle LRPL. Second, we used relatively small Code 279

LLMs of 1-3 billion parameters in the experiments. 280

Third, we noticed that tokenizer adaptation meth- 281

ods are sensitive to how the embeddings are trained 282

after initialization. 283

6 Conclusion 284

The study provides a comprehensive evaluation of 285

code generation capabilities in low-resource pro- 286

gramming languages (LRPLs), revealing the subop- 287

timal performance of current popular Code LLMs 288

without tokenizer adaptation. Among the tested 289

tokenizer adaptation methods, ZeTT is the most 290

effective approach that outperforms FVT and FO- 291

CUS in handling syntax, program logic, operators, 292

and data types. The findings highlight the critical 293

role of tokenizers and token embeddings in LRPL 294

code generation. The obtained results could be 295

helpful in further research of Code LLMs’ perfor- 296

mance in LRPL code generation. 297
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A Choice of LRPLs449

The choice of LRPLs on the distribution of source450

code bytes over PLs in the deduplicated Stack 2451

dataset3. We considered programming languages452

that overcome the 99% quantile to be low-resource.453

In total, according to our approach, 512 languages454

are considered low-resource, which is 82% of the455

3https://huggingface.co/datasets/bigcode/
the-stack-v2-dedup

languages presented in the dataset. Elixir and 456

Racket PLs were chosen for experiments since 457

they are presented in both code generation bench- 458

marks, MultiPL-E (Cassano et al., 2022) and McE- 459

val (Chai et al., 2024). 460

B Choice of Code LLMs 461

Tokenizer adaptation experiments are performed on 462

StarCoder 2 (Lozhkov et al., 2024) with 3 billion 463

parameters and DeepSeek-Coder (Guo et al., 2024) 464

with 1.3 billion parameters. These are the modern 465

and popular open-source Code LLMs having the 466

smallest amount of parameters to save computa- 467

tional resources and time when performing experi- 468

ments. Even though these models have the smallest 469

number of parameters, they are good enough to 470

generate working code in various PLs. Adapting 471

the tokenizer of the two different Code LLMs is 472

useful to determine whether the approach is gen- 473

eralizable over model architectures. Additionally, 474

these models are comparable since they have a rel- 475

atively close number of parameters. The models do 476

not differ much in their complexity and, therefore, 477

in their abilities. One may correctly notice that 478

Starcoder 2 has more than 2 times many parame- 479

ters as DeepSeek, so their abilities should differ 480

significantly. However, those are the smallest mod- 481

els that are maximally close to each other in terms 482

of a number of parameters. 483

C Adapted Tokenizers 484

The summary of the adapted tokenizers is provided 485

in Table 1. We define keywords as the special 486

words reserved by a programming language. The 487

list of keywords was collected from the grammars 488

of the Visual Studio Code4 language servers for 489

Racket5 and Elixir6. In total, we collected 122 490

keywords for Racket and 50 keywords for Elixir. 491

The keywords percentage for the tokenizers is the 492

ratio of the keywords present in the tokenizers’ 493

vocabulary over the total number of keywords. 494

To check whether vocabulary expansion makes a 495

difference in tokenization, we calculated the mean 496

number of tokens per text (Table 7) and the mean 497

number of bytes per token (Table 7). Vocabulary 498

usage (Table 6) was calculated to check how many 499

of the added tokens are used in total. 500

4https://code.visualstudio.com/
5https://github.com/Eugleo/magic-racket/
6https://github.com/timmhirsens/vscode-elixir
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D Fine-tuning Parameters501

Fine-tuning is the step that follows after the em-502

beddings initialization in each tokenizer adaptation503

method. To provide a fair comparison, we per-504

formed fine-tuning with the same training param-505

eters for each method. The fine-tuning was per-506

formed using TRL7 SFTTrainer on 224000 code507

samples with the following training parameters:508

• Maximal Gradient Norm: 1509

• Batch Size: 4510

• Warmup Ratio: 0.25511

• Training Epochs: 1512

• Learning Rate: 5e-5513

• Scheduler: cosine514

• Weight Decay: 1515

E FVT Adaptation Details516

The approach proposes to initialize the embeddings517

for the new tokens using the embeddings of the518

original model. To do that, the new token is split519

into the constituent tokens using the original tok-520

enizer of the model. Next, the embeddings of the521

constituent tokens are averaged to obtain a single522

average embedding:523

Enew(ti) =
1

|Ta(ti)|
∑

tj∈Ta(ti)

Eold(tj) (1)524

where Enew, Eold - embeddings of the adapted and525

original model correspondingly; ti, tj - added to-526

ken and constituent token respectively; Ta - orig-527

inal tokenizer. Note that with this approach, the528

embeddings of the old tokens are preserved.529

F FOCUS Adaptation Details530

The method firstly trains fastText (Bojanowski531

et al., 2017) embeddings for all the tokens of the532

new tokenizer. Then, each new token gets an em-533

bedding initialized with the weighted average of534

the model embeddings of all the old tokens.535

Enew(ti) =
1

|VTa |
∑

tj∈VTa

wtjEold(tj) (2)536

7https://huggingface.co/docs/trl/en/index

where VTa - vocabulary of the original tokenizer; 537

wtj - weight of a token. The weights are deter- 538

mined by the cosine similarity between the fast- 539

Text embedding of the target token and the fastText 540

embedding of an old token. Irrelevant embeddings 541

are excluded from the averaging using sparsemax 542

(Martins and Astudillo, 2016) 543

In our experiments, we used the implementation8 544

of the method provided by the method’s authors. 545

The fastText embeddings were trained with the de- 546

fault training parameters, provided in the FOCUS 547

implementation. 548

G ZeTT Adaptation Details 549

The method approaches embedding initialization 550

in a conceptually new way: it uses a Transformer 551

Encoder (Vaswani et al., 2017) hypernetwork Hθ : 552

Tb → ϕb, to predict the embeddings ϕb of the to- 553

kens in the vocabulary of the adapted tokenizer Tb. 554

During the training, the hypernetwork should first 555

pass the MIMIC-style (Pinter et al., 2017) warmup 556

stage. After that, the hypernetwork parameters θ 557

are trained on the following loss: 558

Lfinal
θ = Lθ(Tb, Hθ(Tb), ψ) + α · Laux

θ (3) 559

where Lθ is a CLM (Jurafsky, 2000) objective, ψ 560

are the language model (non-embedding) parame- 561

ters, and α is a weight of the auxiliary loss that is 562

defined as 563

Laux
θ =

∑
t ∥Hθ[VTb [t]]− ϕa[VTa [t]]∥2

|VTa ∩ VTb |
(4) 564

where t ∈ |Va ∩ Vb|. Meanwhile, the language 565

model parameters ψ are not trained during the hy- 566

pernetwork training. 567

In our experiments, we used the implementa- 568

tion9 of the method authors to train a CodeBERT 569

(Feng et al., 2020) hypernetwork with the following 570

training parameters: 571

• loss: clm 572

• n_embd: 2048 573

• n_token_subsample: 8192 574

• identity_n_subsample: 8192 575

• identity_steps: 14000 576

8https://github.com/konstantinjdobler/focus
9https://github.com/bminixhofer/zett
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• warmup_steps: [14000, 15000]577

• steps: 56000578

• learning_rate: [3e-4, 6e-5]579

• max_grad_norm: 0.1580

• hn_surface_maxlen: 7581

• weight_decay: 0.01582

• train_batch_size: 2583

• hn_hidden_size: 2048584

• hn_intermediate_size: 4096585

• lexical_loss_weight: 32586

H Code Generation Benchmarks587

MultiPL-E (Cassano et al., 2022). The benchmark588

includes the tasks from HumanEval (Chen et al.,589

2021) and MBPP (Austin et al., 2021) datasets590

translated to other PLs. Due to the large amount of591

experiments, we only evaluated pass@1 metric for592

50 samples per task with 0.2 temperature on both593

datasets.594

McEval (Chai et al., 2024). The benchmark595

provides a set of custom-curated tasks. It contains596

50 tasks and tests for each PL from the vast set.597

The benchmarks only evaluate pass@1 over a set598

of tasks since it requires the models to greedily599

generate the code.600

I MultiPL-E Evaluation Results601

The original and adapted models are evaluated on602

both datasets of the MultiPL-E benchmark: Hu-603

manEval and MBPP. Table 3 presents pass@1 met-604

rics for models adapted to Racket, while Table 4605

shows the metrics for Elixir-adapted models.606
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Model Name HumanEval MBPP
Racket Elixir Python Racket Elixir Python

starcoder2-3b 8.21 9.28 30.43 14.72 6.87 41.98
+ FT 15.25 0.00 16.43 22.88 0.00 12.85
+ FVT 13.42 0.00 15.71 23.89 0.04 11.64
+ FOCUS 13.66 0.30 11.88 24.28 0.48 6.84
deepseek-coder-1.3b-base 9.75 15.01 31.77 17.69 4.11 43.36
+ FT 14.15 16.07 29.20 23.45 17.68 41.86
+ FVT 10.14 12.15 25.32 10.34 12.32 36.41
+ FOCUS 9.98 0.00 0.00 10.50 0.85 3.47
+ ZeTT Adapted Tokenizer 14.73 8.26 28.33 22.18 8.09 36.75
+ ZeTT Original Tokenizer 15.99 9.06 26.84 21.98 12.30 40.01

Table 3: Pass@1 (%) values on MultiPL-E benchmark for the original models and the models adapted to Racket
using various tokenizer adaptation methods. The names of the adaptation methods are provided after the "+" sign.
"FT" abbreviation stands for the fine-tuned model. Note that the StarCoder 2 model does not have a ZeTT-adapted
version since HF Transformers does not support converting this model to a Flax model.

Model Name HumanEval MBPP
Racket Elixir Python Racket Elixir Python

starcoder2-3b 8.21 9.28 30.43 14.72 6.87 41.98
+ FT 0.00 16.10 4.26 1.25 10.47 0.19
+ FVT 0.60 15.22 2.77 0.47 8.85 0.02
+ FOCUS 0.05 15.84 2.44 0.13 8.27 0.00
deepseek-coder-1.3b-base 9.75 15.01 31.77 17.69 4.11 43.36
+ FT 8.56 16.68 25.73 15.98 6.70 25.73
+ FVT 5.03 12.93 18.70 9.77 16.59 27.64
+ FOCUS 0.73 12.76 0.00 1.00 10.33 0.58
+ ZeTT Adapted Tokenizer 5.96 17.79 24.74 8.39 22.36 4.94
+ ZeTT Original Tokenizer 6.32 16.58 24.00 10.17 24.66 16.98

Table 4: Pass@1 (%) values on MultiPL-E benchmark for the original models and the models adapted to Elixir
using various tokenizer adaptation methods. The names of the adaptation methods are provided after the "+" sign.
"FT" abbreviation stands for the fine-tuned model. Note that the StarCoder 2 model does not have a ZeTT-adapted
version since HF Transformers does not support conversion of this model to a Flax model

Tokenizer Name Racket Elixir
Mean Std p-value Mean Std p-value

StarCoder 2 918 1350 - 557 903 -
StarCoder 2 Racket 900 1320 0.3349 557 902 1.0000
StarCoder 2 Elixir 918 1349 1.0000 545 885 0.3426
DeepSeek-Coder 1044 1497 - 655 1031 -
DeepSeek-Coder Racket 987 1412 0.0056 647 1020 0.5812
DeepSeek-Coder Elixir 1027 1473 0.4183 617 970 0.0073

Table 5: Mean tokens per text (MTPT) for the original and adapted tokenizers calculated for 10 000 samples. The
original tokenizers are highlighted in bold. P-values of the two-tailed t-test between MTPTs of the original and
adapted tokenizers are indicated in the dedicated column. Statistically significant differences (p-value < 5%) are
highlighted in green, while the others are highlighted in red.
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Tokenizer Name
Racket Elixir

Used Unused Used Unused
Total Added Total Added Total Added Total Added

StarCoder 2 91 - 9 - 95 - 5 -
StarCoder 2 Racket 89 64 11 36 92 64 8 36
StarCoder 2 Elixir 88 41 12 59 93 41 7 59
DeepSeek-Coder 93 - 7 - 93 - 7 -
DeepSeek Racket 86 59 14 41 86 59 14 41
DeepSeek Elixir 86 53 14 47 88 53 12 47

Table 6: Vocabulary usage (%) by the original and adapted tokenizers. The original tokenizers are highlighted in
bold. "Used" group of columns indicates the percentage of all added tokens used in the tokenization of a training
dataset. "Unused" group of columns is similar to the "Used" group, but indicates tokens that were not used in
tokenization.

Tokenizer Name Racket Elixir
Mean Std p-value Mean Std p-value

StarCoder 2 2.8861 5.2765 - 3.9213 3.6107 -
StarCoder 2 Racket 2.9331 5.6742 0.0140 3.9251 3.6258 0.3525
StarCoder 2 Elixir 2.8876 5.2781 1.0000 4.0061 3.6760 0.0001
DeepSeek-Coder 2.6686 4.4462 - 3.3679 3.2266 -
DeepSeek-Coder Racket 2.7986 4.8579 0.0001 3.4116 3.2680 0.0001
DeepSeek-Coder Elixir 2.7082 4.4792 0.0026 3.5727 3.3596 0.0001

Table 7: Mean bytes per token (MBPT) for the original and adapted tokenized calculated over training datasets. The
original tokenizers are highlighted in bold. P-values of the two-tailed t-test between MBPTs of the original and
adapted tokenizers are indicated in the dedicated column. Statistically significant differences (p-value < 5%) are
highlighted in green, while the others are highlighted in red.
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