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Abstract

When designing new materials, it is often necessary to design a material with
specific desired properties. Unfortunately, as new design variables are added, the
search space grows exponentially, which makes synthesizing and validating the
properties of each material very impractical and time-consuming. In this work,
we focus on the design of optimal lattice structures with regard to mechanical
performance. Computational approaches, including the use of machine learning
(ML) methods, have shown improved success in accelerating materials design.
However, these ML methods are still lacking in scenarios when training data (i.e.
experimentally validated materials) come from a non-uniformly random sampling
across the design space. For example, an experimentalist might synthesize and vali-
date certain materials more frequently because of convenience. For this reason, we
suggest the use of tensor completion as a surrogate model to accelerate the design
of materials in these atypical supervised learning scenarios. In our experiments, we
show that tensor completion is superior to classic ML methods such as Gaussian
Process and XGBoost with biased sampling of the search space, with around 5%
increased R2. Furthermore, tensor completion still gives comparable performance
with a uniformly random sampling of the entire search space.

1 Introduction

Efficiently designing new materials with optimal properties can be a significant challenge due to
the explosive number of combinations as new design variables are introduced. When searching
for new materials with particular material property values, it can be very expensive to exhaustively
generate these combinations of materials. For this reason, there is growing interest in being able to
predict these material property values, without having to first produce the material. Computational
methods have shown great promise for inferring material property values, allowing material scientists
to quickly find materials with optimal properties. This includes the use of Density Functional Theory
(DFT) [8, 122} [19L [15], machine learning (ML) [3} 16} 9} [10L 13} [16} 23} [25], or both [20]. In this work,
we focus on designing optimal lattice structures, with regards to mechanical performance [6 [7]].

Unfortunately, these ML methods still underachieve in scenarios where the training data does not
come from a uniformly random sample of the entire search space. This scenario may arise in
practice when an experimentalist might synthesize and validate certain materials of the design space
more than others, due to convenience. In order to overcome this, we abstract away the various
components of material design and instead model them as instances of tensor completion. Here,
each design parameter to be optimized corresponds to an individual mode of our tensor, so we can
leverage tensor completion algorithms to predict the entirety of the search space. In our experiments,
tensor completion methods provide nearly state-of-the-art performance in typical supervised learning
scenarios. Furthermore, we simulate an experimentalist performing experiments to serve as training
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data by unevenly sampling across design variables. In these scenarios, tensor completion gives better
results than other baseline ML methods, including Gaussian Process [24], XGBoost [S]], and some
ensembles of multiple methods. Of these baseline methods, Gaussian Process performed the best in
our experiments so we show results compared against this.

2 Methods

In this section we give a detailed description on the methods used in this work, including our pipeline
for surrogate modeling with tensor completion, its training, and the dataset used for evaluation.

2.1 Tensor Completion for Surrogate Modeling

Experimentally
determine performance
of lattice structures
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Figure 1: We present various material design problems as instances of tensor completion, in order to
abstract away the various design components and use tensor methods to infer the entire search space.

In Figure[I] we show the complete surrogate modeling pipeline we are proposing. After experimen-
tally determining the performance for various material structures, we can convert those observations
to entries of a tensor and use tensor completion to infer the performance of the remainder of the
design search space.

2.1.1 Tensors & Tensor Decomposition

Tensors are a general term for multidimensional arrays. In other words, a 1st order tensor is just
a vector, and a 2nd order tensor is a matrix. In this work, we will be looking at higher order
tensors, denoted 2". Tensor decomposition is a general term for expressing a tensor as several
smaller factors, and is an extension of matrix factorization to multidimensional datasets. A common
form of tensor decomposition is the Canonical Polyadic Decomposition (CPD) [12} 21]]. CPD
expresses a tensor as a sum of rank-one tensors. A rank R CPD decomposition of a third-order tensor

2 € RI7*K would be expressed as: 2 ~ 31 (a, o b, oc,), where o denotes outer product,
a, € R',b, € R/, and ¢, € RE.

Tensor decomposition is a powerful tool, not only for data compression but also for analyzing
multidimensional datasets. For example, the smaller tensor factors are commonly used for pattern
discovery in these multidimensional datasets, and further more for tensor completion. Tensor
completion is the process of filling in the missing values of a tensor.

2.1.2 Tensor Completion Training

We illustrate the training of our tensor completion models in Figure 2] We first randomly initialize
the factor matrices to generate an initial (random) reconstruction of the full tensor. Then we use
error of the observed tensor values and the associated predictions to iteratively get a more accurate
reconstruction of the full tensor. For our error function, we use Mean Absolute Error (MAE) =
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Figure 2: Here we visualize the training process, where we iteratively update our factor matrices to
produce a better tensor reconstruction. The gray regions in the factor matrices and predicted tensor
correspond to predicted values for which we do not have the ground truth during training.

% Sy — G | TQ optimize the parameters (factor matrices) with regards to this error term, we
use the Adam optimizer [11].

2.1.3 Tensor Completion Models

There are several classes of tensor completion methods. There are classical methods such as CPD
[12] and TuckER [4]], and there are more advanced neural tensor completion methods such as NeAT
[2] or CoSTCo [[14]], which leverage the use of neural networks in addition to tensor decomposition.

For our experiments, we use CPD-S (a CPD-based method that imposes smoothness constraints on
some of the tensor factors) [1,[17], NeAT [2], and an ensemble tensor completion method to aggregate
the results of multiple tensor completion algorithms. For our results, we only display an ensemble of
CPD-S with different ranks, and a Ne AT model as it showed the best performance on this dataset.

2.2 Baseline Comparisons

In this work, we compare our tensor completion methods against Gaussian Process, XGBoost, Multi-
Layer Perceptrons (MLPs), and using an ensemble of several ML methods. Due to limited space, we
only show the results for Gaussian Process, as it showed the best results of the baseline comparisons
on this dataset.

2.3 Dataset Description

To verify the utility of using tensor completion as a surrogate model for lattice structure design, we
use the dataset from Gongora et al. [6] with various lattice structures’ design components and the
corresponding mechanical performance. Mechanical performance is characterized using the Young’s
modulus (E) values and the ratio between E and the design’s mass m (E). These are essential
mechanical properties to describe the elastic behavior of a structure under an applied force [6].

3 Experiments

In this section, we experimentally validate our method in a variety of settings, with uniformly random
and biased random sampling of the trainset, with varying training sizes.

3.1 Tensor Completion Performance

From Figure [3| we see that tensor completion gives good results in typical supervised learning tasks
(i.e. uniform random sampling). However, in this scenario, we can achieve better results with less
data using a Gaussian Process.
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Figure 3: In (a) we display a parity plot for predicting E and E simultaneously. We use 100 train and
170 test values. In (b) we display the R? for a uniform random sampling of different training sizes.
We show the mean and standard deviation on the test set, using 5 iterations for each train size.

3.2 Biased Sampling

Here we observe the performance of surrogate modeling when the training data is not uniformly
randomly sampled throughout the search space. We sample a different number of training values
for each value of a design variable. The goal here is to simulate an experimentalist who might have
conducted more experiments in a specific region of the search space, rather than uniformly sampling
throughout the entire search space. This is useful if a certain region of the search space is cheaper or
more convenient (e.g. with regards to time or money) to experimentally validate than others.

B Gaussian Process N Tensor Completlon
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(a) Example of biased sampling (b) R? value for biased sampling experiments

Figure 4: In (a) we visualize how the search space might be sampled in a biased manner. In (b), we
conduct experiments for a biased-random sampling of the search space. We show the average and
standard deviation of the R? for 5 iterations. Going from experiment 1 to 10, we decrease the bias in
sampling by making the range smaller. Details on the generation of number of training samples and
exact number of training samples for each value are discussed in the appendix section in Tablem

From Figure [d we observe that tensor completion methods are better in handling a biased sampling in
the training set, and less prone to overfitting to the observed values. This makes tensor completion
very useful for a wider variety of real-world scenarios than standard supervised learning techniques.

4 Conclusion

In this work, we cast the design of optimal lattice structures with respect to mechanical performance
as an example of a tensor completion problem. In this way, we are able to handle both typical
(uniformly random sampling) and atypical (biased sampling) supervised learning problems in order
to accelerate the design of optimal lattice structures. For these reasons, tensor completion could be a
promising surrogate model to accelerate the search for optimal lattice structures with exponentially
increasing design space.
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A Appendix

A.1 Limitations

The main limitation of this work is considering typical supervised learning scenarios, when the
training data comes from a uniformly random sampling of the entire data or search space. In our
experiments, we see that a Gaussian Process exhibits superior performance in these scenarios.

A.2 Experimental Details

All code used for experiments can be found at https://anonymous . 4open . science/
r/Surrogate - Modeling- for-the-Design- of - Optimal - Lattice- Structures-using-
Tensor-Completion-36BF. However, we cannot release the dataset due to the dataset owner’s
institutional regulations. More dataset details can be found on the original paper [6].

A.2.1 Hardware

Experiments were fairly lightweight to run. They all were conducted using a MacBook Air 2020
laptop with an Apple M1 chip (8GB).
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A.2.2 ML Models

For our experiments, we used an ensemble tensor completion method consisting of a NeAT Rank
24 & 32, CPD Ranks 1, 2, & 4, and CPD-S Ranks 1, 2, & 4. Each model was trained using Adam
optimizer [11] with a learning rate and weight decay of 0.01, using MAE as the objective function. A
random forest regression using 100 trees was used to aggregate the results of the tensor models.

For our baseline methods, we tried a variety of XGBoost, MLPs, and Gaussian Process models using
Scikit-Learn [18]. The best of the baselines (and only one shown in the experiments due to space
constraints) was a Gaussian Process with kernel = ConstantKernel(1.0, (1e-3, 1e3)) x RBF(1.0, (le-2,
1e2)) + WhiteKernel(le-3, (1e-5, lel)) using Scikit-Learn’s Gaussian Process kernel functions, and
an alpha value = 0.01. These were determined empirically by comparing the performance of various
hyperparameter values.

A.2.3 Section 3.2 Biased Sampling details

Experiment | Gyroid Schwarz Diamond Lidinoid SplitP  Range
1 40 21 7 6 3 [3, 40]
2 14 21 5 5 40 [5, 40]
3 8 23 7 15 40 [7, 40]
4 9 24 12 19 40 [9, 40]
5 11 21 16 40 25 [11,40]
6 14 13 40 22 35 [13,40]
7 36 15 28 40 16 [15, 40]
8 40 17 21 28 37 [17,40]
9 30 35 29 19 40 [19, 40]
10 34 40 32 39 21 [21, 40]

Table 1: Number of training samples used for each experiment in Figure[4] Each unit cell geometry
type (i.e. tensor slice) has 54 total values (54 values x 5 slices = 270 total values in search space).
For each experiment, the number of training samples for each unit cell geometry type comes from an
exponential distribution with scale = 1. This was to create a high disparity in the number of samples
for each value. We then converted this exponential distribution to be in the range [/, 40], where
l =342 X epym (enum 1s the current experiment number), and then rounded to the nearest integer
value. This was to iteratively decrease the bias in sampling, by making the range of values smaller
(i.e. increasing the lower bound /) as we go from experiment 1 to experiment 10. We start with
experiment 1 from an exponential distribution on the range [3, 40], and we end with experiment 10
on the range [21, 40].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state that our tensor methods are nearly (not better than) state-of-the-art
in standard supervised learning scenarios, where we train on a uniformly random sample
of the entire data. We do suggest that tensor methods could offer improvement in biased
sampling scenarios, which may represent an actual experimentalists’ training data, and we
conduct experiments in Section 3.2 to demonstrate this.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We are transparent in the fact that standard supervised learning models (e.g.
Gaussian Process) may outperform tensor models in “regular” supervised learning problems,
with a uniform random sampling of the search space.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not have any theoretical results, we just discuss empirical results which
we conduct experiments to justify.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:

Justification: Justification: We give all code required to reproduce the results; however, due
to the original dataset owner’s institutional regulations, we are not allowed to release the
dataset. Further details on the dataset can be found in the original paper [6].

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Justification: We give all code required to reproduce the results; however, due
to the original dataset owner’s institutional regulations, we are not allowed to release the
dataset. Further details on the dataset can be found in the original paper [6].

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
¢ The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discuss all training details for the experiments (further details in the
appendix section).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For each experiment (and sub-experiment), we perform 5 iterations and display
both the mean and error bars (standard deviation) of the 5 iterations.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We cover this in the appendix section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the code of ethics. We do not use any human research
subjects, provide any code/software that could inflict any harm, and we are as transparent as
possible with the experiments and results in this work.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11.

12.

Answer: [Yes]

Justification: We discuss how using tensor methods to navigate the search space may be
beneficial to experimentalists who conduct experiments in a biased manner. This may limit
the required costs of generating a uniformly random sample of the entire search space and
allow a more convenient navigation of the search space.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risk, we are just suggesting a tool that may be useful
for experimentalists to accelerate the search of an exponentially large search space for
developing optimal materials.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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14.

15.

Justification: We use the dataset from the work of Gongora et al. [6] and discuss this in the
dataset description. Besdies this, the code used was either developed by the authors of this
work, or properly cited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released in this work.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or research with human subjects was conducted in this
work.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

13


paperswithcode.com/datasets

521
522
523
524

525

526

527

528

529

530
531
532

533
534
535

536

538

539
540
541
542

543

544

545

546
547
548
549

16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No research with human subjects was conducted in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used to develop any core methods.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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