
Surrogate Modeling for the Design of Optimal Lattice
Structures using Tensor Completion

Anonymous Author(s)
Affiliation
Address
email

Abstract

When designing new materials, it is often necessary to design a material with1

specific desired properties. Unfortunately, as new design variables are added, the2

search space grows exponentially, which makes synthesizing and validating the3

properties of each material very impractical and time-consuming. In this work,4

we focus on the design of optimal lattice structures with regard to mechanical5

performance. Computational approaches, including the use of machine learning6

(ML) methods, have shown improved success in accelerating materials design.7

However, these ML methods are still lacking in scenarios when training data (i.e.8

experimentally validated materials) come from a non-uniformly random sampling9

across the design space. For example, an experimentalist might synthesize and vali-10

date certain materials more frequently because of convenience. For this reason, we11

suggest the use of tensor completion as a surrogate model to accelerate the design12

of materials in these atypical supervised learning scenarios. In our experiments, we13

show that tensor completion is superior to classic ML methods such as Gaussian14

Process and XGBoost with biased sampling of the search space, with around 5%15

increased R2. Furthermore, tensor completion still gives comparable performance16

with a uniformly random sampling of the entire search space.17

1 Introduction18

Efficiently designing new materials with optimal properties can be a significant challenge due to19

the explosive number of combinations as new design variables are introduced. When searching20

for new materials with particular material property values, it can be very expensive to exhaustively21

generate these combinations of materials. For this reason, there is growing interest in being able to22

predict these material property values, without having to first produce the material. Computational23

methods have shown great promise for inferring material property values, allowing material scientists24

to quickly find materials with optimal properties. This includes the use of Density Functional Theory25

(DFT) [8, 22, 19, 15], machine learning (ML) [3, 6, 9, 10, 13, 16, 23, 25], or both [20]. In this work,26

we focus on designing optimal lattice structures, with regards to mechanical performance [6, 7].27

Unfortunately, these ML methods still underachieve in scenarios where the training data does not28

come from a uniformly random sample of the entire search space. This scenario may arise in29

practice when an experimentalist might synthesize and validate certain materials of the design space30

more than others, due to convenience. In order to overcome this, we abstract away the various31

components of material design and instead model them as instances of tensor completion. Here,32

each design parameter to be optimized corresponds to an individual mode of our tensor, so we can33

leverage tensor completion algorithms to predict the entirety of the search space. In our experiments,34

tensor completion methods provide nearly state-of-the-art performance in typical supervised learning35

scenarios. Furthermore, we simulate an experimentalist performing experiments to serve as training36
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data by unevenly sampling across design variables. In these scenarios, tensor completion gives better37

results than other baseline ML methods, including Gaussian Process [24], XGBoost [5], and some38

ensembles of multiple methods. Of these baseline methods, Gaussian Process performed the best in39

our experiments so we show results compared against this.40

2 Methods41

In this section we give a detailed description on the methods used in this work, including our pipeline42

for surrogate modeling with tensor completion, its training, and the dataset used for evaluation.43

2.1 Tensor Completion for Surrogate Modeling44

Figure 1: We present various material design problems as instances of tensor completion, in order to
abstract away the various design components and use tensor methods to infer the entire search space.

In Figure 1, we show the complete surrogate modeling pipeline we are proposing. After experimen-45

tally determining the performance for various material structures, we can convert those observations46

to entries of a tensor and use tensor completion to infer the performance of the remainder of the47

design search space.48

2.1.1 Tensors & Tensor Decomposition49

Tensors are a general term for multidimensional arrays. In other words, a 1st order tensor is just50

a vector, and a 2nd order tensor is a matrix. In this work, we will be looking at higher order51

tensors, denoted X . Tensor decomposition is a general term for expressing a tensor as several52

smaller factors, and is an extension of matrix factorization to multidimensional datasets. A common53

form of tensor decomposition is the Canonical Polyadic Decomposition (CPD) [12, 21]. CPD54

expresses a tensor as a sum of rank-one tensors. A rank R CPD decomposition of a third-order tensor55

X ∈ RI×J×K would be expressed as: X ≈
∑R

r=1(ar ◦ br ◦ cr), where ◦ denotes outer product,56

ar ∈ RI ,br ∈ RJ , and cr ∈ RK .57

Tensor decomposition is a powerful tool, not only for data compression but also for analyzing58

multidimensional datasets. For example, the smaller tensor factors are commonly used for pattern59

discovery in these multidimensional datasets, and further more for tensor completion. Tensor60

completion is the process of filling in the missing values of a tensor.61

2.1.2 Tensor Completion Training62

We illustrate the training of our tensor completion models in Figure 2. We first randomly initialize63

the factor matrices to generate an initial (random) reconstruction of the full tensor. Then we use64

error of the observed tensor values and the associated predictions to iteratively get a more accurate65

reconstruction of the full tensor. For our error function, we use Mean Absolute Error (MAE) =66
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Figure 2: Here we visualize the training process, where we iteratively update our factor matrices to
produce a better tensor reconstruction. The gray regions in the factor matrices and predicted tensor
correspond to predicted values for which we do not have the ground truth during training.

1
n

∑n
i=1 |yi − ŷi|. To optimize the parameters (factor matrices) with regards to this error term, we67

use the Adam optimizer [11].68

2.1.3 Tensor Completion Models69

There are several classes of tensor completion methods. There are classical methods such as CPD70

[12] and TuckER [4], and there are more advanced neural tensor completion methods such as NeAT71

[2] or CoSTCo [14], which leverage the use of neural networks in addition to tensor decomposition.72

For our experiments, we use CPD-S (a CPD-based method that imposes smoothness constraints on73

some of the tensor factors) [1, 17], NeAT [2], and an ensemble tensor completion method to aggregate74

the results of multiple tensor completion algorithms. For our results, we only display an ensemble of75

CPD-S with different ranks, and a NeAT model as it showed the best performance on this dataset.76

2.2 Baseline Comparisons77

In this work, we compare our tensor completion methods against Gaussian Process, XGBoost, Multi-78

Layer Perceptrons (MLPs), and using an ensemble of several ML methods. Due to limited space, we79

only show the results for Gaussian Process, as it showed the best results of the baseline comparisons80

on this dataset.81

2.3 Dataset Description82

To verify the utility of using tensor completion as a surrogate model for lattice structure design, we83

use the dataset from Gongora et al. [6] with various lattice structures’ design components and the84

corresponding mechanical performance. Mechanical performance is characterized using the Young’s85

modulus (E) values and the ratio between E and the design’s mass m (Ẽ). These are essential86

mechanical properties to describe the elastic behavior of a structure under an applied force [6].87

3 Experiments88

In this section, we experimentally validate our method in a variety of settings, with uniformly random89

and biased random sampling of the trainset, with varying training sizes.90

3.1 Tensor Completion Performance91

From Figure 3 we see that tensor completion gives good results in typical supervised learning tasks92

(i.e. uniform random sampling). However, in this scenario, we can achieve better results with less93

data using a Gaussian Process.94
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(a) Parity Plot for Testing Values (b) Efficiency Analysis

Figure 3: In (a) we display a parity plot for predicting E and Ẽ simultaneously. We use 100 train and
170 test values. In (b) we display the R2 for a uniform random sampling of different training sizes.
We show the mean and standard deviation on the test set, using 5 iterations for each train size.

3.2 Biased Sampling95

Here we observe the performance of surrogate modeling when the training data is not uniformly96

randomly sampled throughout the search space. We sample a different number of training values97

for each value of a design variable. The goal here is to simulate an experimentalist who might have98

conducted more experiments in a specific region of the search space, rather than uniformly sampling99

throughout the entire search space. This is useful if a certain region of the search space is cheaper or100

more convenient (e.g. with regards to time or money) to experimentally validate than others.101

(a) Example of biased sampling (b) R2 value for biased sampling experiments

Figure 4: In (a) we visualize how the search space might be sampled in a biased manner. In (b), we
conduct experiments for a biased-random sampling of the search space. We show the average and
standard deviation of the R2 for 5 iterations. Going from experiment 1 to 10, we decrease the bias in
sampling by making the range smaller. Details on the generation of number of training samples and
exact number of training samples for each value are discussed in the appendix section in Table 1.

From Figure 4 we observe that tensor completion methods are better in handling a biased sampling in102

the training set, and less prone to overfitting to the observed values. This makes tensor completion103

very useful for a wider variety of real-world scenarios than standard supervised learning techniques.104

4 Conclusion105

In this work, we cast the design of optimal lattice structures with respect to mechanical performance106

as an example of a tensor completion problem. In this way, we are able to handle both typical107

(uniformly random sampling) and atypical (biased sampling) supervised learning problems in order108

to accelerate the design of optimal lattice structures. For these reasons, tensor completion could be a109

promising surrogate model to accelerate the search for optimal lattice structures with exponentially110

increasing design space.111
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[4] Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor factorization for122

knowledge graph completion. In Empirical Methods in Natural Language Processing, 2019.123

[5] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of124

the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages125

785–794, 2016.126

[6] Aldair E Gongora, Caleb Friedman, Deirdre K Newton, Timothy D Yee, Zachary Doorenbos,127

Brian Giera, Eric B Duoss, Thomas Y-J Han, Kyle Sullivan, and Jennifer N Rodriguez. Acceler-128

ating the design of lattice structures using machine learning. Scientific Reports, 14(1):13703,129

2024.130

[7] Aldair E Gongora, Siddharth Mysore, Beichen Li, Wan Shou, Wojciech Matusik, Elise F131

Morgan, Keith A Brown, and Emily Whiting. Designing composites with target effective young’s132

modulus using reinforcement learning. In Proceedings of the 6th annual ACM symposium on133

computational fabrication, pages 1–11, 2021.134

[8] Jürgen Hafner, Christopher Wolverton, and Gerbrand Ceder. Toward computational materials135

design: the impact of density functional theory on materials research. MRS bulletin, 31(9):659–136

668, 2006.137

[9] Yousof Haghshenas, Wei Ping Wong, Vidhyasaharan Sethu, Rose Amal, Priyank Vijaya Kumar,138

and Wey Yang Teoh. Full prediction of band potentials in semiconductor materials. Materials139

Today Physics, 46:101519, 2024.140

[10] Jeffrey Hu, David Liu, Nihang Fu, and Rongzhi Dong. Realistic material property prediction141

using domain adaptation based machine learning. Digital Discovery, 3(2):300–312, 2024.142

[11] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint143

arXiv:1412.6980, 2014.144

[12] T.G. Kolda and B.W. Bader. Tensor decompositions and applications. SIAM review, 51(3),145

2009.146

[13] Qin Li, Nihang Fu, Sadman Sadeed Omee, and Jianjun Hu. Md-hit: Machine learning for147

material property prediction with dataset redundancy control. npj Computational Materials,148

10(1):245, 2024.149

[14] Hanpeng Liu, Yaguang Li, Michael Tsang, and Yan Liu. Costco: A neural tensor completion150

model for sparse tensors. In Proceedings of the 25th ACM SIGKDD International Conference151

on Knowledge Discovery & Data Mining, pages 324–334, 2019.152

[15] Priyanka Makkar and Narendra Nath Ghosh. A review on the use of dft for the prediction of the153

properties of nanomaterials. RSC advances, 11(45):27897–27924, 2021.154

[16] Shaan Pakala, Dawon Ahn, and Evangelos Papalexakis. Tensor completion for surrogate155

modeling of material property prediction. arXiv preprint arXiv:2501.18137, 2025.156

5



[17] Shaan Pakala, Bryce Graw, Dawon Ahn, Tam Dinh, Mehnaz Tabassum Mahin, Vassilis Tsotras,157

Jia Chen, and Evangelos E. Papalexakis. Automating data science pipelines with tensor158

completion. In 2024 IEEE International Conference on Big Data (BigData), pages 1075–1084,159

2024.160

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,161

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,162

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine163

Learning Research, 12:2825–2830, 2011.164

[19] Gabriel R Schleder, Antonio CM Padilha, Carlos Mera Acosta, Marcio Costa, and Adalberto165

Fazzio. From dft to machine learning: recent approaches to materials science–a review. Journal166

of Physics: Materials, 2(3):032001, 2019.167

[20] Atsuto Seko, Tomoya Maekawa, Koji Tsuda, and Isao Tanaka. Machine learning with systematic168

density-functional theory calculations: Application to melting temperatures of single-and binary-169

component solids. Physical Review B, 89(5):054303, 2014.170

[21] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E Papalex-171

akis, and Christos Faloutsos. Tensor decomposition for signal processing and machine learning.172

IEEE Signal Processing Magazine, 2016.173

[22] Pragya Verma and Donald G Truhlar. Status and challenges of density functional theory. Trends174

in Chemistry, 2(4):302–318, 2020.175

[23] Yuhao Wang, Yefan Tian, Tanner Kirk, Omar Laris, Joseph H Ross Jr, Ronald D Noebe,176

Vladimir Keylin, and Raymundo Arróyave. Accelerated design of fe-based soft magnetic177

materials using machine learning and stochastic optimization. Acta Materialia, 194:144–155,178

2020.179

[24] Christopher Williams and Carl Rasmussen. Gaussian processes for regression. Advances in180

neural information processing systems, 8, 1995.181

[25] Ya Zhuo, Aria Mansouri Tehrani, and Jakoah Brgoch. Predicting the band gaps of inorganic182

solids by machine learning. The journal of physical chemistry letters, 9(7):1668–1673, 2018.183

A Appendix184

A.1 Limitations185

The main limitation of this work is considering typical supervised learning scenarios, when the186

training data comes from a uniformly random sampling of the entire data or search space. In our187

experiments, we see that a Gaussian Process exhibits superior performance in these scenarios.188

A.2 Experimental Details189

All code used for experiments can be found at https://anonymous.4open.science/190

r/Surrogate-Modeling-for-the-Design-of-Optimal-Lattice-Structures-using-191

Tensor-Completion-36BF. However, we cannot release the dataset due to the dataset owner’s192

institutional regulations. More dataset details can be found on the original paper [6].193

A.2.1 Hardware194

Experiments were fairly lightweight to run. They all were conducted using a MacBook Air 2020195

laptop with an Apple M1 chip (8GB).196
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A.2.2 ML Models197

For our experiments, we used an ensemble tensor completion method consisting of a NeAT Rank198

24 & 32, CPD Ranks 1, 2, & 4, and CPD-S Ranks 1, 2, & 4. Each model was trained using Adam199

optimizer [11] with a learning rate and weight decay of 0.01, using MAE as the objective function. A200

random forest regression using 100 trees was used to aggregate the results of the tensor models.201

For our baseline methods, we tried a variety of XGBoost, MLPs, and Gaussian Process models using202

Scikit-Learn [18]. The best of the baselines (and only one shown in the experiments due to space203

constraints) was a Gaussian Process with kernel = ConstantKernel(1.0, (1e-3, 1e3)) × RBF(1.0, (1e-2,204

1e2)) + WhiteKernel(1e-3, (1e-5, 1e1)) using Scikit-Learn’s Gaussian Process kernel functions, and205

an alpha value = 0.01. These were determined empirically by comparing the performance of various206

hyperparameter values.207

A.2.3 Section 3.2 Biased Sampling details208

Experiment Gyroid Schwarz Diamond Lidinoid Split P Range
1 40 21 7 6 3 [3, 40]
2 14 21 5 5 40 [5, 40]
3 8 23 7 15 40 [7, 40]
4 9 24 12 19 40 [9, 40]
5 11 21 16 40 25 [11, 40]
6 14 13 40 22 35 [13, 40]
7 36 15 28 40 16 [15, 40]
8 40 17 21 28 37 [17, 40]
9 30 35 29 19 40 [19, 40]
10 34 40 32 39 21 [21, 40]

Table 1: Number of training samples used for each experiment in Figure 4. Each unit cell geometry
type (i.e. tensor slice) has 54 total values (54 values × 5 slices = 270 total values in search space).
For each experiment, the number of training samples for each unit cell geometry type comes from an
exponential distribution with scale = 1. This was to create a high disparity in the number of samples
for each value. We then converted this exponential distribution to be in the range [l, 40], where
l = 3 + 2× enum (enum is the current experiment number), and then rounded to the nearest integer
value. This was to iteratively decrease the bias in sampling, by making the range of values smaller
(i.e. increasing the lower bound l) as we go from experiment 1 to experiment 10. We start with
experiment 1 from an exponential distribution on the range [3, 40], and we end with experiment 10
on the range [21, 40].
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NeurIPS Paper Checklist209

1. Claims210

Question: Do the main claims made in the abstract and introduction accurately reflect the211

paper’s contributions and scope?212

Answer: [Yes]213

Justification: We state that our tensor methods are nearly (not better than) state-of-the-art214

in standard supervised learning scenarios, where we train on a uniformly random sample215

of the entire data. We do suggest that tensor methods could offer improvement in biased216

sampling scenarios, which may represent an actual experimentalists’ training data, and we217

conduct experiments in Section 3.2 to demonstrate this.218

Guidelines:219

• The answer NA means that the abstract and introduction do not include the claims220

made in the paper.221

• The abstract and/or introduction should clearly state the claims made, including the222

contributions made in the paper and important assumptions and limitations. A No or223

NA answer to this question will not be perceived well by the reviewers.224

• The claims made should match theoretical and experimental results, and reflect how225

much the results can be expected to generalize to other settings.226

• It is fine to include aspirational goals as motivation as long as it is clear that these goals227

are not attained by the paper.228

2. Limitations229

Question: Does the paper discuss the limitations of the work performed by the authors?230

Answer: [Yes]231

Justification: We are transparent in the fact that standard supervised learning models (e.g.232

Gaussian Process) may outperform tensor models in “regular” supervised learning problems,233

with a uniform random sampling of the search space.234

Guidelines:235

• The answer NA means that the paper has no limitation while the answer No means that236

the paper has limitations, but those are not discussed in the paper.237

• The authors are encouraged to create a separate "Limitations" section in their paper.238

• The paper should point out any strong assumptions and how robust the results are to239

violations of these assumptions (e.g., independence assumptions, noiseless settings,240

model well-specification, asymptotic approximations only holding locally). The authors241

should reflect on how these assumptions might be violated in practice and what the242

implications would be.243

• The authors should reflect on the scope of the claims made, e.g., if the approach was244

only tested on a few datasets or with a few runs. In general, empirical results often245

depend on implicit assumptions, which should be articulated.246

• The authors should reflect on the factors that influence the performance of the approach.247

For example, a facial recognition algorithm may perform poorly when image resolution248

is low or images are taken in low lighting. Or a speech-to-text system might not be249

used reliably to provide closed captions for online lectures because it fails to handle250

technical jargon.251

• The authors should discuss the computational efficiency of the proposed algorithms252

and how they scale with dataset size.253

• If applicable, the authors should discuss possible limitations of their approach to254

address problems of privacy and fairness.255

• While the authors might fear that complete honesty about limitations might be used by256

reviewers as grounds for rejection, a worse outcome might be that reviewers discover257

limitations that aren’t acknowledged in the paper. The authors should use their best258

judgment and recognize that individual actions in favor of transparency play an impor-259

tant role in developing norms that preserve the integrity of the community. Reviewers260

will be specifically instructed to not penalize honesty concerning limitations.261
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3. Theory assumptions and proofs262

Question: For each theoretical result, does the paper provide the full set of assumptions and263

a complete (and correct) proof?264

Answer: [NA]265

Justification: We do not have any theoretical results, we just discuss empirical results which266

we conduct experiments to justify.267

Guidelines:268

• The answer NA means that the paper does not include theoretical results.269

• All the theorems, formulas, and proofs in the paper should be numbered and cross-270

referenced.271

• All assumptions should be clearly stated or referenced in the statement of any theorems.272

• The proofs can either appear in the main paper or the supplemental material, but if273

they appear in the supplemental material, the authors are encouraged to provide a short274

proof sketch to provide intuition.275

• Inversely, any informal proof provided in the core of the paper should be complemented276

by formal proofs provided in appendix or supplemental material.277

• Theorems and Lemmas that the proof relies upon should be properly referenced.278

4. Experimental result reproducibility279

Question: Does the paper fully disclose all the information needed to reproduce the main ex-280

perimental results of the paper to the extent that it affects the main claims and/or conclusions281

of the paper (regardless of whether the code and data are provided or not)?282

Answer: [No]283

Justification: Justification: We give all code required to reproduce the results; however, due284

to the original dataset owner’s institutional regulations, we are not allowed to release the285

dataset. Further details on the dataset can be found in the original paper [6].286

Guidelines:287

• The answer NA means that the paper does not include experiments.288

• If the paper includes experiments, a No answer to this question will not be perceived289

well by the reviewers: Making the paper reproducible is important, regardless of290

whether the code and data are provided or not.291

• If the contribution is a dataset and/or model, the authors should describe the steps taken292

to make their results reproducible or verifiable.293

• Depending on the contribution, reproducibility can be accomplished in various ways.294

For example, if the contribution is a novel architecture, describing the architecture fully295

might suffice, or if the contribution is a specific model and empirical evaluation, it may296

be necessary to either make it possible for others to replicate the model with the same297

dataset, or provide access to the model. In general. releasing code and data is often298

one good way to accomplish this, but reproducibility can also be provided via detailed299

instructions for how to replicate the results, access to a hosted model (e.g., in the case300

of a large language model), releasing of a model checkpoint, or other means that are301

appropriate to the research performed.302

• While NeurIPS does not require releasing code, the conference does require all submis-303

sions to provide some reasonable avenue for reproducibility, which may depend on the304

nature of the contribution. For example305

(a) If the contribution is primarily a new algorithm, the paper should make it clear how306

to reproduce that algorithm.307

(b) If the contribution is primarily a new model architecture, the paper should describe308

the architecture clearly and fully.309

(c) If the contribution is a new model (e.g., a large language model), then there should310

either be a way to access this model for reproducing the results or a way to reproduce311

the model (e.g., with an open-source dataset or instructions for how to construct312

the dataset).313
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(d) We recognize that reproducibility may be tricky in some cases, in which case314

authors are welcome to describe the particular way they provide for reproducibility.315

In the case of closed-source models, it may be that access to the model is limited in316

some way (e.g., to registered users), but it should be possible for other researchers317

to have some path to reproducing or verifying the results.318

5. Open access to data and code319

Question: Does the paper provide open access to the data and code, with sufficient instruc-320

tions to faithfully reproduce the main experimental results, as described in supplemental321

material?322

Answer: [No]323

Justification: Justification: We give all code required to reproduce the results; however, due324

to the original dataset owner’s institutional regulations, we are not allowed to release the325

dataset. Further details on the dataset can be found in the original paper [6].326

Guidelines:327

• The answer NA means that paper does not include experiments requiring code.328

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/329

public/guides/CodeSubmissionPolicy) for more details.330

• While we encourage the release of code and data, we understand that this might not be331

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not332

including code, unless this is central to the contribution (e.g., for a new open-source333

benchmark).334

• The instructions should contain the exact command and environment needed to run to335

reproduce the results. See the NeurIPS code and data submission guidelines (https:336

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.337

• The authors should provide instructions on data access and preparation, including how338

to access the raw data, preprocessed data, intermediate data, and generated data, etc.339

• The authors should provide scripts to reproduce all experimental results for the new340

proposed method and baselines. If only a subset of experiments are reproducible, they341

should state which ones are omitted from the script and why.342

• At submission time, to preserve anonymity, the authors should release anonymized343

versions (if applicable).344

• Providing as much information as possible in supplemental material (appended to the345

paper) is recommended, but including URLs to data and code is permitted.346

6. Experimental setting/details347

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-348

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the349

results?350

Answer: [Yes]351

Justification: We discuss all training details for the experiments (further details in the352

appendix section).353

Guidelines:354

• The answer NA means that the paper does not include experiments.355

• The experimental setting should be presented in the core of the paper to a level of detail356

that is necessary to appreciate the results and make sense of them.357

• The full details can be provided either with the code, in appendix, or as supplemental358

material.359

7. Experiment statistical significance360

Question: Does the paper report error bars suitably and correctly defined or other appropriate361

information about the statistical significance of the experiments?362

Answer: [Yes]363

Justification: For each experiment (and sub-experiment), we perform 5 iterations and display364

both the mean and error bars (standard deviation) of the 5 iterations.365
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Guidelines:366

• The answer NA means that the paper does not include experiments.367

• The authors should answer "Yes" if the results are accompanied by error bars, confi-368

dence intervals, or statistical significance tests, at least for the experiments that support369

the main claims of the paper.370

• The factors of variability that the error bars are capturing should be clearly stated (for371

example, train/test split, initialization, random drawing of some parameter, or overall372
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