
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALPHA DISCOVERY VIA GRAMMAR-GUIDED LEARN-
ING AND SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Automatically discovering formulaic alpha factors is a central problem in quanti-
tative finance. Existing methods often ignore syntactic and semantic constraints,
relying on exhaustive search over an unbounded and unstructured space that lim-
its performance and interpretability. We present AlphaCFG, the first framework
for defining and discovering alpha factors that are syntactically valid, financially
interpretable, and computationally efficient. In this framework, we first define
an alpha-oriented Context-Free Grammar (CFG) to construct a tree-structured,
size-controlled search space of human-interpretable alpha expressions, enabling
grammar-tailored search and learning. We then formulate the search of high-
performance alphas in this space as a very large, tree-structured linguistic Markov
Decision Process (TSL-MDP), where each leaf state is an alpha expression with
its information coefficient as reward. To efficiently navigate the TSL-MDP, we de-
velop syntax-similarity-based representation learning to estimate alpha expression
performance (value network) and grammar production rule probabilities (policy
network), and integrate it into a grammar-aware Monte Carlo Tree Search. Ex-
periments on China and US stock markets’ datasets show that AlphaCFG outper-
forms state-of-the-art baselines in both search efficiency and trading profitability.
AlphaCFG also provides an easy-to-use approach for refining and improving ex-
isting formulaic alpha factors.

1 INTRODUCTION

1.1 ALPHA DISCOVERY

In quantitative finance, alpha factors are critical for addressing several key challenges, particularly
in asset management, quantitative trading, and investment strategy development. They are functions
that map the features (e.g., trading volume, highest price, lowest price, etc.) of a stock over a period
of trading days to a prediction of its future return. Alpha discovery is the systematic process of
identifying new functions that can predict investment returns based on historical data.

Alpha discovery methods can be broadly classified into three categories. First, heuristic or expert-
driven methods were mainly based on domain knowledge, such as value factors (e.g., price-to-
earnings Ratio (Fama & French, 1992)) and momentum factors (e.g., total return of past 12 months
(Carhart, 1997)). While these handcrafted alpha factors help extract expected return signals, they
rely on limited heuristics and lack a sustainable discovery framework. Moreover, widespread use of
these simple alphas in the investment market leads to rapid arbitrage, reducing predictive accuracy
over time. Second, data-driven learning methods include statistical approaches (e.g., regression
(Panwar et al., 2021)), supervised learning (e.g., tree-based ensembles (Almaafi et al., 2023)), as
well as unsupervised learning (Babu et al., 2012) and reinforcement learning (Lee, 2001). These
methods enable the discovery of complex, nonlinear patterns in financial data. However, a key
challenge is their black-box nature, which often leads to poor explainability and an increased risk of
overfitting in the discovered alphas. Third, formulaic alpha methods (Kakushadze, 2016) emphasize
human-readable alphas. Formulaic alpha factors are explicit mathematical expressions that map
raw financial inputs—such as price and volume—into scalar values. These formulaic expressions
are typically composed using a predefined set of operators and functions (e.g., ranks, differences,
moving averages). While the concept is not new, it has recently regained attention due to its potential
to yield interpretable and transparent alphas.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our work lies at the intersection of the second and third categories, aiming at the automatic discovery
of explainable alphas. This task can be seen as symbolic regression (Makke & Chawla, 2024),
which aims at discovering explicit mathematical expressions that optimally fit the data, overcoming
the uninterpretability of black-box models. Early approaches such as genetic programming (GP)
(Zhang et al., 2020) optimize the information coefficient by evolving expression trees, but suffer
from exponential search growth and local optima. More recently, AlphaGen (Yu et al., 2023) applies
reinforcement learning to iteratively generate factors and combine them into composite pools, while
AlphaQCM (Zhu & Zhu, 2025) extends this idea with distributed RL to improve scalability.

Existing methods for the automatic discovery of formulaic alphas face fundamental challenges.

(1) Automated discovery of formulaic alphas essentially involves searching for mathematical lan-
guages, where a linguistic framework could enhance the search. However, such a framework is
lacking in the literature. Without formal linguistic guidance, current methods must exhaustively
explore a vast combinatorial, even infinite space of sequences, relying on informal syntactic checks
for factor validity. This results in limited accuracy, low performance and computation inefficiency.

(2) Different mathematical sequences can represent semantically equivalent expressions, yet current
methods use linear networks to encode sequence that redundantly includes such variants. Conse-
quently, existing methods spend effort on seemingly distinct sequences that encode the same mean-
ing, greatly reducing efficiency.

1.2 OUR WORK

We propose AlphaCFG, the first grammar–based framework for automated alpha discovery. By
combining Context-Free Grammar (CFG) (Chomsky & Schützenberger, 1963) with Monte Carlo
Tree Search (MCTS) (Chaslot, 2010) under syntax-aware representation learning, AlphaCFG pro-
vides a principled system for generating, validating, and interpreting high-performance alphas.

(1) Grammar-Constrained Alpha Factors. We introduce α-CFG-Sem-k, a formal language that
integrates CFG with domain knowledge of alphas. It recursively generates expressions that are
structurally valid and financially meaningful, with two built-in mechanisms: (i) length constraints
to bound the search space, and (ii) expression-tree pruning to eliminate syntactically different but
semantically equivalent factors. This resolves core difficulties of alpha mining—invalid structures,
semantic redundancy, and unbounded exploration.

(2) Structured Characterization of Alpha Space. Based on α-CFG-Sem-k, we formulate alpha dis-
covery as a Tree-Structured Linguistic MDP (TSL-MDP), where each leaf state is a candidate ex-
pression and rewards are defined by information coefficient (IC). TSL-MDP provides a characteri-
zation of the grammar-guided, interpretable, and scalable search space, that enables efficient search
and learning algorithm design.

(3) Reinforcing MCTS with Syntax-Representation Learning. To solve the above TSL-MDP, we de-
sign a grammar-aware MCTS augmented with structure-aware neural representations. A grammar-
guided Upper Confidence Bound algorithm (Auer et al., 2002) drives edge selection, while a Tree-
LSTM (Tai et al., 2015) encodes each state into features shared by two networks: a value network
that learns from trading data to evaluate states, and a policy network that guides searching. MCTS
iteratively updates with these evaluations, yielding stronger policies and more effective alpha dis-
covery.

The objective of AlphaCFG is to establish a general and flexible “linguistic theory + machine learn-
ing” framework for generating formulaic alpha factors. It is not restricted to high-performing trad-
ing strategy. It can be applied to other tasks such as risk modelling, portfolio construction, and
asset pricing. Users can utilize their domain knowledge to set the operators and loss functions in
AlphaCFG. However, to showcase the advantage of AlphaCFG, we empirically evaluate it trading
performance on CSI 300 and S&P 500 stocks. Using returns, IC, Sharpe ratio, and maximum draw-
down, we confirm the superior profitability of the discovered factors via AlphaCFG. Detailed results
also show that refinement of CFG yields faster convergence and higher-quality factors. We also
conduct separate ablation studies to verify the importance of grammar design for factor generation
and the effectiveness of syntax-representation learning. Moreover, starting from partial states, our
method effectively strengthens predictive performance of existing factors.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PROBLEM FORMULATION

Consider a market with n stocks over T trading days. For each day t ∈ {1, 2, . . . , T}, stock i

has a feature matrix xt,i ∈ Rm×τ ′
, consisting of m raw features (e.g., opening/closing prices)

over the current and previous τ ′ − 1 days. An alpha factor f maps the feature tensor X =

[xt,1,xt,2, . . . ,xt,n] ∈ Rn×m×τ ′
to a vector y = f(X) ∈ Rn (shown in Figure 1a). The alpha

value for stock i on day t is yt,i = f(xt,i). Formulaic factors (shown in Figure 1b) are just factors
constructed by operators (Table 5) along with predefined constants (Table 4) and features (Table 3).
These symbols come from a set of operators and operands (Yang et al., 2020) commonly used in the
field of formulaic factors.

(a) Illustration of alpha factor. (b)

Figure 1: (a) Illustration of alpha factor. (b) An example of formulaic factor: The factor
Sum(Sub(vwap, 1), 2d) computes the sum of the most recent two days of VWAP values after
subtracting 1 from each. To obtain the factor value on Wednesday, the operator first evaluates
Sub(vwap, 1) for Tuesday and Wednesday and then aggregates them: (2 − 1) + (3 − 1) = 3.
This output serves as the alpha signal, the predicted return for Wednesday which is subsequently
used in downstream stock-selection or portfolio-construction procedures.

The primary objective of an alpha factor f is to predict future stock returns. The standard metric
for assessing factor quality is IC, defined as the cross-sectional correlation between factor values
and subsequent realized returns (Grinold & Kahn, 2000). The τ -day realized return of stock i ob-
served on day t is r

(τ)
t,i =

Closet+τ,i

Closet,i
− 1, where Closet,i denotes the closing price of stock i on

day t. Let the cross-sectional factor vector and the realized return vector of n stocks on day t be
yt =

(
yt,1, . . . , yt,n

)
and r

(τ)
t =

(
r
(τ)
t,1 , . . . , r

(τ)
t,n

)
, respectively. Then, the daily IC is the Pearson

correlation coefficient between the factor values and the realized returns:

ICt(yt, r
(τ)
t) =

∑n
i=1(yt,i − ȳt)(r

(τ)
t,i − r

(τ)
t)√∑n

i=1(yt,i − ȳt)2
√∑n

i=1(r
(τ)
t,i − r

(τ)
t)2

, (1)

where ȳt =
1
n

∑n
i=1 yt,i and r

(τ)
t = 1

n

∑n
i=1 r

(τ)
t,i .

To evaluate the performance of factor f over T days, we consider IC(f) = 1
T

∑T
t=1 ICt

(
yt, r

(τ)
t

)
,

the average daily IC as the IC of factor f , where higher IC(f) indicates stronger predictive power
of factor f . Then, the task of alpha discovery is to find a factor with as high an IC as possible.

It is worth mentioning that finding a single high-IC formulaic factor is difficult, but combining
multiple factors linearly is more effective: it eases the search, improves prediction, and preserves in-
terpretability. Following Alphagen (Yu et al., 2023), we optimize the IC of such linear combinations
(the factor pool) by this approach (see Algorithm 1 in Appendix B.1).

3 LANGUAGE CHARACTERIZATION OF INTERPRETABLE ALPHAS

The number of potential formulaic alphas grows combinatorially with expression length, making
brute-force search highly inefficient. Moreover, many alpha candidates are either syntactically in-
valid or semantically nonsensical, hindering effective and interpretable alpha discovery. To address
these challenges, we use Context-Free Grammar (CFG) (Hopcroft & Ullman, 1979) to formally
characterize the alpha-factor search space.
Definition 1 (CFG). A context-free grammar G is a tuple G = (N , T , P, S), where N is a finite
set of nonterminal symbols; T is a finite set of terminal symbols, withN∩T = ∅; P ⊆ N×(N∪T)∗

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

is a set of production rules, each written in the form Γ→ β where Γ ∈ N , β ∈ (N ∪ T)∗; S ∈ N
is the start symbol, from which the derivation of expressions begins.

To construct a formula, from the start symbol, a CFG recursively applies the production rules Γ→ β
to replace the leftmost nonterminal symbol Γ with a sequence β ∈ (N ∪ T)∗ (leftmost derivation
(Hopcroft & Ullman, 1979)), until only terminal symbols remain. Unlike Reverse Polish Notation
(RPN) (Krtolica & Stanimirović, 2004), CFG (1) guarantees syntactic validity, (2) supports semantic
constraints, (3) enables explicit control of expression length via derivation depth, and (4) provides
a hierarchical structure mapping to abstract syntax trees. These ensure interpretability and make
efficient search possible.

Σ∗
LsynLsemL≤k

sem

Figure 2: Different spaces for alphas. Σ∗: expressions with all possible combinations of symbols;
Lsyn: syntactically valid alphas; Lsem: semantically valid alphas; L≤K

sem: semantically valid length
≤ K alphas.

3.1 SYNTACTICALLY VALID ALPHA GENERATOR

To achieve syntactic validity, we require generated alpha expressions to satisfy two conditions: (i)
the structure is well-formed, enforced by a prefix notation and a recursive nonterminal-expansion
scheme; and (ii) the operator-operand arity is consistent, ensuring that each operator receives exactly
the required number of operands. Thus we adopt the following form:

Expr→ Op(Expr, . . .) | TermSyb, (2)

where Expr ∈ N denotes a recursively constructible nonterminal class of expressions, Op ∈ T
denotes the prefix-notaion operators, and TermSyb ∈ T denotes the features and constants.

Structure. In terms of the structure, Formula (2) enforces that all alpha factors must adopt the prefix-
notation style, where each operator Op precedes its operands (i.e., symbols in the parenthesis). This
formation allows Expr to be recursively expanded through nested applications of Op (i.e., Expr
inside the parentheses), while also permitting termination of the recursive process by substituting
features or constants (i.e., terminal symbols that do not lead to further nesting), thereby completing
the construction of the expression. Taken together, prefix notation, recursive expansion, and ter-
mination eliminate any ambiguity in the order of operations, allow complex and informative alpha
expressions to be constructed from a small set of primitives, naturally map the alpha expressions to
tree structures, which allow further tree-based search algorithms and machine learning methods.

Arity. As alpha factors are constructed in quantitative trading setting, we instantiate Op by operator
families with fixed arity, including unary (UnaryOp), binary operators (BinaryOp), rolling operators
(RollingOp), paired rolling (PairedRollingOp), and nullary operators with zero operand for constants
and features (TermSyb). The corresponding production patterns are as Formula (3):

Expr → UnaryOp(Expr) | BinaryOp(Expr,Expr) | RollingOp(Expr,Expr)

| PairedRollingOp(Expr,Expr,Expr) | TermSyb
(3)

In the Appendix, Table 5 enumerates all operator symbols used in alpha factors together with their
corresponding arity categories. Table 4 and Table 3 list all constants and features. Building on the
structural and arity rules introduced above, we now provide the formal definition of α-CFG-Syn.
Definition 2 (α-CFG-Syn). The context-free grammar for alpha factor expressions is a tuple G =
(N , T , P, S), where: N is a set of nonterminal symbols; T is a set of terminal symbols, which
includes: all operators listed in Table 5, and a fixed set of constants listed in Table 4, and a set of
features listed in Table 3; P is a set of production rules in the forms illustrated in Formula (3), where
the ‘XxOp’ symbols are replaced with specific symbols in Table 5; S ∈ N is the start symbol, a
uniquely designated nonterminal symbol Expr from which the derivation of strings begins.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 FINANCE SEMANTICALLY-INTERPRETABLE ALPHA GENERATOR

While α-CFG-Syn guarantees syntactic validity, it does not ensure semantic soundness in quantita-
tive trading. Many syntactically valid expressions still violate financial logic. We therefore extend
Definition 2 with domain-informed semantic constraints: (1) Rolling Window: the last operand of
RollingOp and PairedRollingOp must be an integer constant (fixed window size). (2) Constant Nest-
ing: pure constant–operator expressions (e.g., Add(0.1, 0.2)) are excluded as trivial. (3) Numerical
Stability: operators like Log require domain-restricted inputs to avoid undefined values. (4) Rolling
Operand: PairedRollingOp must take two time-series features; constants are disallowed since they
lack variation. To encode these rules, we introduce three nonterminals: Num for rolling window
sizes, Constant for numerical values, and Feature for stock-derived variables.

Definition 3 (α-CFG-Sem). The context-free grammar for generating semantic alpha factor expres-
sions is defined as G = (N , T , P, S).
1. N = {Expr,Constant,Num} is the set of nonterminal symbols.

2. T is the set of terminal symbols, containing all operators (see Table 5), all features (see Table 3),
and all the predefined constant (see Table 4).

3. P is the set of production rules that distinguishes the type of operands. (The productions use type
operators as placeholders for specific operators to illustrate their production rules. The mapping
between specific types and operators is shown in Table 5. 1)

Expr → Feature | UnaryOp(Expr)
| BinaryOp(Expr,Expr) | BinaryOp(Expr,Constant) | BinaryOp Asym(Constant,Expr)

| RollingOp(Expr,Num) | PairedRollingOp(Expr,Expr,Num)

Num → 20 | . . . Constant → −0.01 | . . .

4. S = Expr is the start symbol, from which the derivation begins.

Although α-CFG-Sem enforces syntactic and semantic validity, its recursive rules may still produce
unbounded expressions and an intractable search space. To control this, we introduce a k-bounded
constraint (Jin et al., 2018), which maintains a counter k and caps it at K. Each production rule
contributes an increment ∆k to the length of the expression (see Table 6), and a rule is applied only if
k+∆k ≤ K. This guarantees bounded expansions, yielding grammar α-CFG-Sem-K (Algorithm 2).

3.3 CHARACTERIZING THE SPACE STRUCTURE OF α-CFG-SEM-k

Figure 3: The alpha search space is as a huge tree. ASR is the zoomed round-box.

The set of all grammar-generated alphas forms a formal alpha language. The CFG-based syntactic,
semantic, and length-bounded variants of languages, i.e., Lsyn, Lsem, and L≤K

sem , are nested as shown
in Figure 2. Each language layer defines a progressively reduced search space for alpha factors.
α-CFG-Sem-k makes it possible to explicitly characterize the structure of these search spaces. We
provide a more rigorous complexity analysis in Appendix D.

1Symbols in Table 5, Table 3, Table 4 and Table 5 are not limited and can be extended by adding any
additional operators, features, or constants relevant to the specific domain or task.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 4 (Search Space Structure). Given a grammar α-CFG-Syn, α-CFG-Sem, or α-CFG-Sem-
k, the search space of all possible alpha factors can be represented as a large tree: the root is the start
symbol; each edge is a production step; intermediate nodes denote partially derived expressions; and
leaf nodes are fully derived alpha factors.

Alpha discovery requires searching formulas in the infinite space Σ∗, whose unstructured nature
makes efficient exploration infeasible. We reformulate it as the preorder language L≤k

sem correspond-
ing to α-CFG-Sem-k, which forms a natural tree-structured space—reducing discovery to finding
high-quality nodes within a large tree. Figure 3 illustrates this space: each round-box node is an
expression with an Abstract Syntax Representation (ASR)2, where grey nodes are nonterminals, col-
ored nodes are terminals, and edges denote operations. Expansions via production rules capture the
recursive process of α-CFG-Sem-k, ensuring interpretability and tree-based search.

4 α-CFG-SEM-k GUIDED SEARCH FOR HIGH-QUALITY ALPHA FACTORS

4.1 TREE-STRUCTURED LINGUISTIC MARKOV DECISION PROCESS

With Definition 4, alpha discovery reduces to: (1) finding a high-quality path from the root to a leaf
(i.e., generating a complete alpha), or (2) expanding an intermediate node (e.g., a partially-masked
existing factor) into a stronger expression. In the tree-structured search space, each leaf is labeled
with the information coefficient (IC) of the resulting alpha, computed from historical market data
(Figure 3, Algorithm 1). This reward can be backpropagated to ancestors, making each node a state
with value and each edge an action. Thus, the α-CFG–guided generation process naturally defines
a Markov Decision Process, which we term the Tree-Structured Linguistic MDP (TSL-MDP).

Definition 5 (TSL-MDP). The alpha discovery process governed by α-CFG-Sem-k can be captured
by a Tree-Structured Linguistic Markov Decision Process, denoted by TSL-MDP = ⟨S,A, P,R, γ⟩,
where S is the set of partial or complete alpha expressions (states) s, each represented by an Abstract
Syntax Representation (Definition 6); A is the set of production rules from α-CFG-Sem-k defined
in Definitions 2 and 3; P (s′ | s, a) applies production rule a ∈ A to partial alpha expression
s, replacing the leftmost nonterminal symbol and yielding expanded alpha expression s′; R(s, a)
assigns reward only when a produces a complete alpha expression.

Definition 6 (Abstract Syntax Representation (ASR)). An ASR of an alpha expression is a rooted,
ordered tree (shown in zoomed round-boxes in Figure 3) where each node is labeled with an operator
(Table 5) and has as many children as required by its arity. Edges represent the application of
the parent operator to its child, while leaves are labeled with either a feature (Table 3), a constant
(Table 4), or, in partial derivations, a nonterminal symbol.

4.2 REINFORCEMENT LEARNING FRAMEWORK

The TSL-MDP is vast, but it is also tree-structured. While classical MCTS can exploit the tree
structure, its efficiency breaks down at this linguistic scale. To overcome this, we embed MCTS
into a reinforcement learning framework: two neural networks approximate the α-CFG production
policy and the value of expressions, while a Tree-LSTM encodes the structure of alpha factor. This
combination allows MCTS to be guided by learned representations, enabling recursive knowledge
acquisition and efficient policy learning over the TSL-MDP (illustrated in Figure 9).

In our RL formulation, the environment is the TSL-MDP, where real-world rewards from market
data appear only at leaf nodes. Starting from the initial state (the start symbol of α-CFG), we
iteratively construct j = J MCTS and corresponding policies. For instance, at j = 0, we first
perform i = I rounds of MCTS construction, each consisting of selection, expansion, evaluation,
and backpropagation guided by three neural networks. This constructed MCTS has a policy. Then
we sample an action from this policy and use it as the action at the root, and move to a new node.
Then, at j = 1, this new node becomes the root while its siblings and their subtrees are discarded.
From this new tree, we run the second i = I rounds of network-guided MCTS construction as above,
update the policy, and sample the next action. The process repeats until a complete alpha expression

2Following formal language theory (Hopcroft & Ullman, 1979), each expression is a small tree; to distin-
guish it from the overall search tree, we call it an ASR.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

is generated. Its reward defines a trajectory, and by collecting many such trajectories, we train the
policy and value networks via reinforcment learning (see Algorithm 4 for the pseudocode).

4.3 GRAMMAR-AWARE MONTE CARLO TREE SEARCH

Inside the RL framework, for any new root j, assume at time step i, the MCTS agent Mi has covered
a subtree of TSL-MDP. Then it executes the following components (see Figure 4 and Appendix B.3
for details).

Figure 4: The procedure of grammar-aware MCTS, where value and policy networks are used.

Selection. From the root j, the MCTS agent Mi repeatedly applies an α-CFG production rule to the
leftmost nonterminal until reaching a frontier node which has not yet been included in Mi. Because
TSL-MDP has irregular branching, i.e., varying production rules and shrinking options near the
bottom, we adopt a PUCT-style rule (Silver et al., 2017):

a∗ = argmax
a

(
Q(s, a) + cpuct

√
b
bref

P (s, a)

√∑
b N(s,b)

1+N(s,a)

)
. (4)

Expansion and Evaluation. We introduce a Tree-LSTM–based value network V (s) and policy
network P (s, a). The selected node is evaluated using the value network V (s). At the frontier node,
all the valid production rules are applied, and its valid child nodes are attached. The production rule
distribution follows policy P (s), which is the output of policy network.

Backpropagation. The evaluation result V (s) is backpropagated along the selection path, updating
Q(s, a) and visit counts N(s, a). Iterating these steps allow agent Mi cover more and more nodes
in the TSL-MDP (Algorithm 3).

4.4 SYNTAX REPRESENTATION LEARNING

Neural Network Design. The main challenge in TSL-MDP is its vast state space: we must evaluate
both partial/complete alpha expressions and policies for expanding them. Since each state has an
ASR (Definition 6), we employ syntax-aware representation learning that directly encodes structure
and semantics, avoiding costly full simulations in classic MCTS. Moreover, due to the symmetry of
some operators (operands are exchangeable), there are large scale of isomorphic factor expressions
(defined in Definition 7) in TSL-MDP. Syntax-aware representation learning is suitable for address-
ing these redundancies because it directly encodes the ASR rather than linear sequence. Specifically,
we use a Tree-LSTM (Tai et al., 2015) with a policy head and a value head (details in Appendix E).

Figure 5: ASR-based representation learning scheme for grammar-aware MCTS.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

As shown in Figure 5, the Tree-LSTM recursively aggregates information, producing a fixed-
dimensional state vector for each ASR. Then this vector is fed into two networks: (1) the policy
network, which outputs probabilities over valid production rules to guide expansion; and (2) the
value network, which outputs a scalar for direct use in MCTS evaluation.

Train the Networks. We jointly train the policy and value networks using Tree-LSTM represen-
tations of TSL-MDP states. In the first round, both networks are randomly initialized: the value
network guides MCTS evaluation, and the policy network guides MCTS expansion. Based on these,
a full MCTS is constructed, providing an initial alpha generation policy. This policy is then used
(i) back to train the policy network and (ii) to sample complete alpha expressions, whose IC values
(from market data) supervise the value network. In subsequent rounds, the updated networks guide
new MCTS constructions, and the process repeats until enough alphas have been sampled.

Since the final objective is the composite factor ICF (Appendix B.1), generating expressions struc-
turally similar to existing ones reduces pool diversity and weakens performance. To mitigate this,
we introduce a normalized structural similarity measure sim(·, ·), computed via maximum common
subtree matching (Sager et al., 2006) between the ASR fj of sj and any existing ft ∈ F . This
similarity penalizes states whose grammar features overlap with F , giving the value target.

z(sj) =
(
1−max(0,max

ft∈F
sim(ft, fj))

)
· ICF . (5)

Training uses triplets
(
sj , π(a|sj), z(sj)

)
from each CFG step, where sj is the Tree-LSTM represen-

tation of j-th root, π(a|sj) is the MCTS policy distribution, and z(sj) the value target. Parameters
θ are optimized via the value loss (z(sj)− V (sj))

2, the policy loss −
∑

a π(a|sj) logP (a|sj), and
an ℓ2 regularization term c|θ|2. After each round, the updated networks are redeployed, forming an
iterative search–train–search cycle that progressively improves both efficiency and factor quality.

5 EXPERIMENTS

The detailed experiment setting is shown in Appendix (H.1 Data, H.2 Comparison Methods, H.3
Evaluation Metrics). The experimental parameters are provided in G for reproduction. The factor
example and the interpretability analysis of generated factors are shown in H.5

Comparison of Various Generation Approaches We compared three CFG levels with RPN on
CSI 300 and S&P 500 training data to assess how language constraints (Figure 2) affect factor
generation. With a pool size of 10 and max length 5, Figure 6 shows training IC across epochs.
CFG-S, CFG-SS, and CFG-SSL correspond to Lsyn, Lsem, and L≤k

sem, respectively. Results confirm
our analysis (Section 3.3): smaller grammar-defined spaces yield faster convergence and higher-
quality factors. Notably, RPN converges to a level close to CFG-SS but more slowly, indicating
partial semantic validity yet weaker effectiveness than CFG-SS, highlighting the superiority of our
approach.

0 50 100 150 200
Epoch

0.04

0.06

0.08

Tr
ai

n
IC

CSI 300

0 50 100 150 200
Epoch

0.04

0.06

0.08

Tr
ai

n
IC

S&P 500

RPN
CFG-SSL
CFG-SS
CFG-S

Figure 6: Comparison of training curves of generation methods.

Comparison of Different Network Architectures We conducted comparative experiments under
different network architectures (Transformer, LSTM, CNN) while keeping other conditions con-
stant. With a pool size of 10 and max length 5, Figure 7 shows training IC across epochs. Results
demonstrate the effectiveness and superiority of syntax representation learning. Tree-LSTM not
only extracts the structural and semantic information of expressions but also reduces redundancy
caused by isomorphic forms (Definition 7).

Comparison of Multiple Alpha Factor Generation Methods Under the optimized parameters
from the validation dataset experiments (see details in Appendix H.4), we compared our MCTS-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Epoch

0.07

0.08

0.09

Tr
ai

n
IC

CSI 300

0 50 100 150 200
Epoch

0.06

0.07

0.08

Tr
ai

n
IC

S&P 500

Tree-LSTM
Transformer
LSTM
CNN

Figure 7: Comparison of training curves of different network architectures.

Table 1: Evaluation metrics comparison of different methods (5 random seeds).

CSI300

Method Rank IC IC Rank ICIR ICIR Sharpe Max Drawdown

XGBoost 0.0288 (0.0000) 0.0326 (0.0000) 0.2895 (0.0000) 0.2818 (0.0000) 0.2853 (0.0000) -0.2777 (0.0000)
LightGBM 0.0539 (0.0029) 0.0296 (0.0014) 0.3963 (0.0247) 0.2649 (0.0395) 0.2680 (0.0666) -0.3271 (0.0177)
LSTM 0.0128 (0.0260) 0.0127 (0.0136) 0.0896 (0.2064) 0.1041 (0.1060) 0.1268 (0.0425) -0.3542 (0.0240)
TCN 0.0303 (0.0236) 0.0085 (0.0133) 0.2726 (0.1855) 0.0871 (0.1557) 0.0908 (0.0754) -0.2988 (0.0191)
ALSTM 0.0138 (0.0076) 0.0105 (0.0067) 0.1194 (0.0540) 0.0950 (0.0550) 0.1372 (0.1113) -0.3475 (0.0501)
Transformer 0.0423 (0.0133) 0.0248 (0.0132) 0.3759 (0.0697) 0.2457 (0.0971) 0.1699 (0.1105) -0.3365 (0.0377)
gplearn 0.0706 (0.0119) 0.0440 (0.0139) 0.4695 (0.1164) 0.3478 (0.1397) 0.2062 (0.2346) -0.3854 (0.0324)
AlphaQCM 0.0811 (0.0046) 0.0525 (0.0048) 0.5334 (0.0296) 0.3874 (0.0121) 0.4363 (0.0610) -0.3605 (0.0339)
RPN+PPO(AlphaGen) 0.0837 (0.0070) 0.0477 (0.0086) 0.5724 (0.0343) 0.3531 (0.0574) 0.4978 (0.1478) -0.3497 (0.0423)

Ablation Studies
RPN+MCTS 0.0710 (0.0031) 0.0500 (0.0026) 0.5577 (0.0292) 0.4285 (0.0293) 0.5639 (0.1050) -0.3201 (0.0613)
CFG-S+MCTS 0.0745 (0.0052) 0.0487 (0.0036) 0.5125 (0.0467) 0.3974 (0.0367) 0.4852 (0.1320) -0.3475 (0.0414)
CFG-SS+MCTS 0.0770 (0.0044) 0.0512 (0.0015) 0.5593 (0.0340) 0.4369 (0.0301) 0.5801 (0.1169) -0.3039 (0.0206)

CFG-SSL+MCTS(AlphaCFG) 0.0865 (0.0060) 0.0577 (0.0029) 0.6036 (0.0537) 0.4505 (0.0249) 0.6459 (0.0612) -0.2963 (0.0289)

S&P500

Method Rank IC IC Rank ICIR ICIR Sharpe Max Drawdown

XGBoost 0.0140 (0.0000) 0.0104 (0.0000) 0.1535 (0.0000) 0.1456 (0.0000) 0.5883 (0.0000) -0.2543 (0.0000)
LightGBM 0.0078 (0.0021) 0.0220 (0.0032) 0.0860 (0.0269) 0.2072 (0.0229) 0.5852 (0.0547) -0.2047 (0.0128)
LSTM 0.0131 (0.0077) 0.0219 (0.0040) 0.1157 (0.0786) 0.1847 (0.0419) 0.5601 (0.0546) -0.2345 (0.0142)
TCN 0.0198 (0.0040) 0.0166 (0.0020) 0.1358 (0.0190) 0.1340 (0.0133) 0.4973 (0.0271) -0.2396 (0.0175)
ALSTM 0.0202 (0.0028) 0.0268 (0.0039) 0.1569 (0.0344) 0.1993 (0.0391) 0.4441 (0.0397) -0.2418 (0.0109)
Transformer 0.0106 (0.0049) 0.0185 (0.0036) 0.0828 (0.0433) 0.1806 (0.0361) 0.5979 (0.1163) -0.2512 (0.0070)
gplearn 0.0130 (0.0122) 0.0322 (0.0110) 0.0812 (0.0643) 0.1877 (0.0437) 0.8241 (0.1814) -0.2456 (0.0434)
AlphaQCM 0.0178 (0.0055) 0.0384 (0.0056) 0.1149 (0.0381) 0.2527 (0.0336) 1.0566 (0.0756) -0.2105 (0.0273)
RPN+PPO(AlphaGen) 0.0149 (0.0055) 0.0342 (0.0050) 0.1045 (0.0364) 0.2420 (0.0296) 0.8271 (0.1421) -0.2559 (0.0242)

Ablation Studies
RPN+MCTS 0.0309 (0.0054) 0.0385 (0.0031) 0.2447 (0.0234) 0.3308 (0.0344) 0.7992 (0.0854) -0.1957 (0.0140)
CFG-S+MCTS 0.0111 (0.0017) 0.0272 (0.0047) 0.0913 (0.0087)) 0.2335 (0.0356) 0.8046 (0.0322) -0.2286 (0.0186)
CFG-SS+MCTS 0.0265 (0.0011) 0.0413 (0.0030) 0.2075 (0.0108) 0.3360 (0.0162) 0.8315 (0.0855) -0.2243 (0.0225)

CFG-SSL+MCTS(AlphaCFG) 0.0354(0.0026) 0.04573 (0.0034) 0.2958(0.0154) 0.4099 (0.0230) 0.8473 (0.0483) -0.1942 (0.0126)

based methods (CFG-S, CFG-SS, CFG-SSL and RPN) against existing factor mining methods or
prediction models (formulaic: Alphagen, AlphaQCM, GPlearn; ML-based: XGBoost, LightGBM,
LSTM, ALSTM, TCN, Transformer). The experiments were conducted separately on the CSI 300
index and the S&P 500 constituents testing data for correlation metrics and backtesting metrics.
Notably, the backtesting metrics are obtained based on a single top-k/drop-n strategy to conduct
simulated trading based on real stock data (detailed at Appendix H.3). The evaluation metrics results
are shown in Table 1. In order to demonstrate the trading performance, we calculated the cumulative
returns for different methods and obtained Figure 8.

Our method performed the best in all correlation metrics which are directly related to the optimiza-
tion target IC. Ablation experiments also demonstrated the irreplaceable role of three constraints:
syntax, semantic and limited-length. Furthermore, the formulaic factor mining methods generally
outperformed the machine learning methods that directly predict stocks in correlation metrics, which
proves the potential value of this type of method in quantitative trading.

Although our method does not directly optimize for any one of the backtest metrics, our method
still achieves a significant advantage in the MaxDD and Sharpe. What’s more, compared with other
methods, our method achieves the highest profit.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2021-01 2021-07 2022-01 2022-07 2023-01 2023-07 2024-01 2024-07 2025-01
Date

-20%

0%

20%

40%

60%

Cu
m

ul
at

iv
e

Re
tu

rn

(a) CSI 300

2021-01 2021-07 2022-01 2022-07 2023-01 2023-07 2024-01 2024-07 2025-01
Date

-20%

0%

20%

40%

60%

80%

100%

120%

Cu
m

ul
at

iv
e

Re
tu

rn

XGBoost
LightGBM
LSTM
ALSTM
TCN
Transformer

GP
Alphagen
AlphaQCM
Index
ours

(b) S&P 500

Figure 8: Cumulative return comparison in simulated trading (the Index in the two figures represents
the CSI 300 Index and the S&P 500 Index, respectively)

Improving traditional alpha factors In addition to directly mining composite factors, our CFG-
SSL+MCTS framework can also refine and strengthen existing classic interpretable factors: We
selected a set of factors that have become ineffective but retain financial theoretical interpretabil-
ity from the Guotai Junan 191 Factor Library (Team, 2017) and the Alpha101 Factor Library
(Kakushadze, 2016). Specifically, factors from the Guotai Junan 191 library were improved us-
ing the CSI 300 dataset, while those from the Alpha101 library were improved using the S&P 500
dataset. By masking some operators and operands while preserving the left-side structure not ex-
ceeding half of the original factor length, we improved these classic factors with the single-factor
reward as the optimization objective (blue path in Figure 3). As shown in Table 2, our framework
effectively enhances the predictive strength of many classic factors—the absolute IC values are con-
sistently improved on the test sets.

Table 2: Refinement Results: Test Set IC Before and After Applying AlphaCFG.

GTJA191
Original: open/Ref(close,1)-1 0.00185
Improved: open/0.1-Cov(volume,high,20) 0.04279

Original: Mean(close,6)-close 0.00482
Improved: Mean(Cov(vwap,volume,20)/(-0.01),20)/0.05 0.04262

Original: close-Ref(close,5) 0.00495
Improved: close-Greater(-0.1,Cov(volume,|vwap|,30)) 0.03872

Alpha101
Original: -Corr(open,volume,10) 0.00271
Improved: Corr(open,Log(|open|),40)·CSRank(high) 0.02934

Original: -Rank(CSRank(low),9) 0.01031
Improved: Rank(CSRank(CSRank(Sign(vwap))),30)·CSRank(high) 0.02944

Original: Pow(high· low,0.5)-vwap) 0.00112
Improved: Pow(CSRank(|open|)·open,CSRank(close))-vwap 0.03126

6 CONCLUSION

CFG is a foundational grammar in computer science and linguistics. Our automated AlphaCFG
captures alpha factors’ syntactic validity and financial interpretability, provides a recursive syntax-
tree structure for alphas, and enables designing a framework integrating reinforcement learning and
neural MCTS. Future work might incorporate richer semantic constraints to further enhance the
interpretability of generated factors, and use diversified optimization objectives such as turnover
and risk-adjusted return beyond IC alone.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Ayman Almaafi, Saleh Bajaba, and Faisal Alnori. Stock price prediction using arima versus xgboost
models: the case of the largest telecommunication company in the middle east. International
Journal of Information Technology, 15(4):1813–1818, 2023.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

M Suresh Babu, N Geethanjali, and B Satyanarayana. Clustering approach to stock market predic-
tion. International Journal of Advanced Networking and Applications, 3(4):1281, 2012.

Hum Nath Bhandari, Binod Rimal, Nawa Raj Pokhrel, Ramchandra Rimal, Keshab R Dahal, and
Rajendra KC Khatri. Predicting stock market index using lstm. Machine Learning with Applica-
tions, 9:100320, 2022.

Konstantinos-Leonidas Bisdoulis. Assets forecasting with feature engineering and transformation
methods for lightgbm. arXiv preprint arXiv:2501.07580, 2024.

Mark M Carhart. On persistence in mutual fund performance. The Journal of Finance, 52(1):57–82,
1997.

Guillaume M.J.-B. Chaslot. Monte-carlo tree search. Proceedings of the 2010 International Con-
ference on Computers and Games, pp. 1–10, 2010.

N. Chomsky and M.P. Schützenberger. The algebraic theory of context-free languages. In P. Braffort
and D. Hirschberg (eds.), Computer Programming and Formal Systems, pp. 118–161. Elsevier,
1963.

Wei Dai, Yuan An, and Wen Long. Price change prediction of ultra high frequency financial data
based on temporal convolutional network. Procedia Computer Science, 199:1177–1183, 2022.

Eugene F Fama and Kenneth R French. The cross-section of expected stock returns. The Journal of
Finance, 47(2):427–465, 1992.

Richard C Grinold and Ronald N Kahn. Active portfolio management. 2000.

John E. Hopcroft and Jeffrey D. Ullman. Automata Theory, Languages, and Computation. Addison-
Wesley, 1979.

Lifeng Jin, Finale Doshi-Velez, Timothy Miller, William Schuler, and Lane Schwartz. Unsupervised
grammar induction with depth-bounded pcfg. Transactions of the Association for Computational
Linguistics, 6:211–224, 2018.

Zura Kakushadze. 101 formulaic alphas. Wilmott, (84):72–81, 2016.

Predrag V. Krtolica and Predrag S. Stanimirović. Reverse polish notation method. International
Journal of Computer Mathematics, 81(3):273–284, 2004.

Jae Won Lee. Stock price prediction using reinforcement learning. In ISIE 2001. 2001 IEEE Inter-
national Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570), volume 1, pp.
690–695. IEEE, 2001.

Nour Makke and Sanjay Chawla. Interpretable scientific discovery with symbolic regression: a
review. Artificial Intelligence Review, 57(1):2, 2024.

Leila Mozaffari and Jianhua Zhang. Predictive modeling of stock prices using transformer model.
In Proceedings of the 2024 9th International Conference on Machine Learning Technologies, pp.
41–48, 2024.

Bhawna Panwar, Gaurav Dhuriya, Prashant Johri, Sudeept Singh Yadav, and Nitin Gaur. Stock
market prediction using linear regression and svm. In 2021 international conference on advance
computing and innovative technologies in engineering (ICACITE), pp. 629–631. IEEE, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell. A
dual-stage attention-based recurrent neural network for time series prediction. arXiv preprint
arXiv:1704.02971, 2017.

Tobias Sager, Harald C. Gall, Martin Pinzger, and Abraham Bernstein. Detecting similar java classes
using tree algorithms. In Proceedings of the 2006 ACM Symposium on Applied Computing, pp.
654–661, 2006.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Guotai Junan Securities Financial Engineering Team. Multi-factor stock selection system based
on short-period price–volume features (quantitative topic no.93). Technical report, Guotai Junan
Securities, June 2017. Report introducing 191 short-period alpha factors.

Jujie Wang, Qian Cheng, and Ying Dong. An xgboost-based multivariate deep learning framework
for stock index futures price forecasting. Kybernetes, 52(10):4158–4177, 2023.

Xiao Yang, Weiqing Liu, Dong Zhou, Jiang Bian, and Tie-Yan Liu. Qlib: An ai-oriented quantitative
investment platform. arXiv preprint arXiv:2009.11189, 2020.

Shuo Yu, Hongyan Xue, Xiang Ao, Feiyang Pan, Jia He, Dandan Tu, and Qing He. Generating
synergistic formulaic alpha collections via reinforcement learning. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’23), pp. 5476–
5486, aug 2023.

Tianping Zhang, Yuanqi Li, Yifei Jin, and Jian Li. Autoalpha: an efficient hierarchical evolutionary
algorithm for mining alpha factors in quantitative investment, 2020.

Zhoufan Zhu and Ke Zhu. Alphaqcm: Alpha discovery in finance with distributional reinforcement
learning. In Forty-second International Conference on Machine Learning, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TABLES

Table 3: Stock Feature Variables

Feature Description
open Opening price
high Highest price
low Lowest price
close Closing price
volume Trading volume
vwap Volume Weighted Average Price (VWAP)

Table 4: Constant Parameters

Nonterminal Values
Constant −0.1, −0.05, −0.01, 0.01, 0.05, 0.1
Num 20, 30, 40

Table 5: Formulaic Alpha Factor Operators in Our Framework (the BinaryOp in Formula (3) does
not distinguish whether it is symmetric)

Operator Type Description
Abs(x) Unary Absolute value, |x|.
Sign(x) Unary Returns the sign of x: 1 for positive, -1 for negative, 0

for zero.
Log(x) Unary Natural logarithm, log(x).
Add(x, y) Binary Addition, x+ y.
Mul(x, y) Binary Multiplication, x · y.
Greater(x, y) Binary Returns the larger of two values: max(x, y).
Less(x, y) Binary Returns the smaller of two values: min(x, y).
Div(x, y) Binary-Asym Division, x/y.
Pow(x, y) Binary-Asym Exponentiation, xy .
Sub(x, y) Binary-Asym Subtraction, x− y.
CSRank(x) Rolling Cross-sectional ranking (normalizes the rank of x across

all stocks on the same day).
Rank(x, t) Rolling Time-series ranking of x over the past t days.
WMA(x, t) Rolling Weighted moving average with weights decaying over

time.
EMA(x, t) Rolling Exponential moving average with recursive smoothing.
Ref(x, t) Rolling Value of x from t days ago.
Mean(x, t) Rolling Mean of x over the past t days, 1

t

∑t−1
i=0 x−i.

Sum(x, t) Rolling Sum of x over the past t days,
∑t−1

i=0 x−i.
Std(x, t) Rolling Standard deviation of x over the past t days.
Var(x, t) Rolling Variance of x over the past t days.
Skew(x, t) Rolling Skewness (measure of asymmetry) of x over the past t

days.
Kurt(x, t) Rolling Kurtosis (measure of tail thickness) of x over the past t

days.
Max(x, t) Rolling Maximum value of x over the past t days.
Min(x, t) Rolling Minimum value of x over the past t days.
Med(x, t) Rolling Median of x over the past t days.
Mad(x, t) Rolling Mean absolute deviation, 1

t

∑t−1
i=0|x−i − x̄|.

Delta(x, t) Rolling Difference, x− Ref(x, t).
Cov(x, y, t) PairedRolling Covariance between x and y over the past t days.
Corr(x, y, t) PairedRolling Pearson correlation coefficient between x and y over the

past t days.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Length increments ∆k for each production rule.

Production Rules ∆k

Expr → Feature 0
Num → 20 . . . 0
Constant → −0.01 . . . 0
Expr → UnaryOp(Expr) 1
Expr → BinaryOp(Expr,Expr) 2
Expr → BinaryOp(Expr,Constant) 2
Expr → BinaryOp Asym(Constant,Expr) 2
Expr → RollingOp(Expr,Num) 2
Expr → PairedRollingOp(Expr,Expr,Num) 3

B ALGORITHMS

B.1 LINEAR COMBINATION ALPHA FACTOR ALGORITHM

The linear combination factor model is defined as

c(X;F,w) =

n∑
j=1

wjfj(X) = y, (6)

where F = {f1, . . . , fn} denotes the set of factors, w = {w1, . . . , wn} are the weights of factors in
linear combination , X represents the input stock feature data, and y is the combined output. The
optimization is conducted by minimizing the loss function

L(w) =
1

T

T∑
t=1

∥yt − rt∥2 (7)

where rt is the actual stock return, and yt is the alpha value of linear combination factor.

Algorithm 1 Incremental Combination Model Optimization

Require: Alpha set F = {f1, · · · , fn}, weights w = {w1, · · · , wn}, new alpha fnew
Ensure: Optimal alpha subset F ∗ = {f ′

1, · · · , f ′
n}, optimal weights w∗ = {w′

1, · · · , w′
n}, ICF

1: F ← F ∪ {fnew}; w ← w ∥ rand()
2: for i← 1 to num gradient steps do
3: Calculate L(w) according to Eq. (7)
4: w ← GradientDescent(L(w))
5: end for
6: p← argmini |wi|
7: F ← F \ {fp}; w ← w \ {wp}
8: Compute the combination IC: ICF ← IC(F,w)
9: return F,w, ICF

B.2 LENGTH CONTROL OF SEMANTIC INTERPRETABLE ALPHA FACTOR GENERATOR

Following the intuition of grammar-constrained generation (Jin et al., 2018), we introduce a k-
bounded constraint to explicitly limit expression length. The mechanism maintains a counter k for
the partial length of the expression and enforces a maximum threshold K. Each production rule
has a predefined increment ∆k, representing its contribution to the expression length(see Table 6
for details). A rule is applied only if k + ∆k ≤ K, thereby guaranteeing that each expansion step
remains within the feasible bound. By integrating this length-aware constraint into the derivation
procedure, we obtain a bounded variant of α-CFG-Sem, denoted as α-CFG-Sem-K. The procedure
is described in Algorithm 2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 α-CFG-Sem-k

Require: Grammar G = (N , T , P, S),; max length K; rule increments ∆k : Γ→ β
Ensure: Prefix expression tree T

1: T ← single-node tree with root S
2: k ← 0
3: while T contains a nonterminal node do
4: u← first nonterminal node in pre-order traverse
5: A ← {l ∈ P applicable to u and k +∆k(l) ≤ K}
6: choose l : Γ→ β from A
7: replace node u with children realizing α
8: k ← k +∆k(l)
9: end while

10: Return T

B.3 ALGORITHM OF FOUR STAGES OF MCTS

Algorithm 3 Grammar-aware MCTS with Branch-adapted PUCT

Require: Root state sroot, policy-value network θ, iteration count I
Ensure: Improved policy π(a|sroot)

1: for i = 1 to I do
2: s← sroot
3: Initialize empty list of traversed edges E ← []

4: while s is not fully expanded do
5: b← number of valid actions from s

6: a∗ ← argmaxa

[
Q(s, a) + cpuct ·

√
b

bref
· P (s, a) ·

√∑
b N(s,b)

1+N(s,a)

]
▷ Selection

7: Append (s, a∗) to E
8: s← apply(s, a∗)
9: end while

10: sL ← s
11: (P (sL, ·), V (sL))← fθ(sL) ▷ Expansion and Evaluation
12: Expand sL with P (sL, ·)
13: for all (s, a) ∈ E do
14: N(s, a)← N(s, a) + 1 ▷ Backpropagation
15: Q(s, a) = 1

N(s,a)

∑
s′|s,a→s′ V (s′)

16: end for
17: end for
18: π(a | sroot) = N(sroot,a)

1/T∑
b∈A(sroot)

N(sroot,b)1/T

19: Return π(a|sroot)

Assume that at a certain iteration i, our MCTS has already explored a portion of the TSL-MDP,
denoted by an agent Mi. This agent corresponds to a subtree of the large TSL-MDP, sharing the
same root, and Mi has obtained policy for this partial subtree. For example, at simulation Mi, the
subtree agent Mi shown on the left in Figure 4 has already been explored. This subtree starts as
only a root when i = 0, and is intended to expand toward the full TSL-MDP tree as i increases,
eventually reaching iteration i = I .

Selection. First, within Mi, starting from root of the subtree, the MCTS agent repeatedly selects an
α-CFG production rule at each incomplete alpha expression (each round-box node), and replaces its
leftmost nonterminal symbol (the dark black arrows in Figure 4), which goes to a new incomplete
alpha expression (a child round-box node). This repeats until it reaches a “frontier” alpha expression
that has a child not yet included in Mi (e.g., node (1) in Figure 4).

The TSL-MDP has two key features: (1) different nonterminal symbols have different numbers of
production rules, and (2) the number of valid production rules decreases sharply near the bottom of

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

the search tree due to the length control in B.2. To address this, we adopt a production rule selection
function analogous to PUCT (Silver et al., 2017).

a∗ = argmax
a

(
Q(s, a) + cpuct ·

√
b
bref
· P (s, a) ·

√∑
b N(s, b)

1 +N(s, a)

)
, (8)

Here, Q(s, a) is the value of selecting production rule a for formula s, and P (s, a) is the probability
of selecting a under s. b is the number of branches at the current depth, and bref is the branch
balance constant (defined by the maximum number of branches) Eq. (8) balances irregular branching
through the adaptive term

√
b/bref: smaller branching factors emphasize exploitation, while larger

ones promote broader exploration.

Expansion. After finding such a frontier alpha expression node, the MCTS agent will execute a
certain production rule on it, generating a new alpha expression which has not yet been covered
by Mi (e.g., round-box node (2) in Figure 4), and also attaching all the corresponding possible
production rules to this new alpha expression (e.g., the two arrows attached to node (2)). The
probabilities for executing available production rules for expression s follow the distribution P (s).

Evaluation. Since the newly expanded alpha expression is at the head of the current agent Mt and
remains incomplete, the existing policy cannot assess its quality. Thus, MCTS requires a method
to evaluate it. Given the vastness of the TSL-MDP, traditional simulation-based evaluation is infea-
sible. Moreover, as shown in Definition 6, the expressions at any state in TSL-MDP are small tree
structures (i.e., the small trees inside each round-box in Figure 4). Therefore, in the next section, we
design a Tree-LSTM–based representation learning method to construct a value network for V (s),
as well as a policy network P (s, a) over any expression.

Backpropagation. The result V (s) of evaluation is backpropagate from the path of selection (the
path directed by black arrow in the third tree of Figure 4). Mean value of each eadge in the path is
updated by V (s) and visit count N(s, a) of each eadge in the path increases by one.

The MCTS agent Mi executes the above procedures at each iteration i (Algorithm 3 shows the
procedure of MCTS search.). Since one node is expanded at each step, the MCTS agent Mi will
eventually cover enough nodes and edges of the TSL-MDP. The resulting search assigns a basic
value to every node and obtain a basic policy for the TSL-MDP, which two can be used to further
optimize the policy.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C REINFORCEMENT LEARNING FRAMEWORK

We present pseudo-code of MCTS combined with reinforcement learning method (Algorithm 4).
This is a reinforcement learning-based factor mining method designed to automatically discover a
combination of factors from stock market data that can effectively predict stock returns. Specifically,
the algorithm initializes a set of factors, their corresponding weights, and a policy-value network. In
the process of obtaining data through reinforcement learning, it employs a MCTS policy to generate
actions for each state, thereby constructing a multi-step factor generation path. The final state of the
path is parsed into a computable alpha expression, evaluated using the ICF as the reward signal.
The reward is given along with the optimization of the factor combination F . The actual value for
each step along the path, denoted as zt is computed based on ICF and the similarity between the
newly generated factor and existing ones, following the formulation in Equation (5) in Section 4.4.

After generating multi-step factor paths in each iteration, the policy and value networks are trained
using the collected path data (sj , π(a|sj), zj) stored in a replay buffer, where sj is the state vector
encoded by TreeLSTM, π(a|sj) is the policy from MCTS, and zt is shown above. After training, the
networks are redeployed to guide a new round of search. Through iterative training and exploration,
the IC of the learned factor combination is progressively improved. The algorithm outputs the final
optimized factor combination set along with its corresponding weights when the IC shows no more
significant improvement.

Algorithm 4 Alpha Mining via reinforcement learning

Require: Stock trend dataset Y = {yt}
Ensure: Optimal alpha subset F ∗ = {f ′

1, . . . , f
′
k}, optimal weights w∗ = {w′

1, . . . , w
′
k}

1: Initialize F and w
2: Initialize policy-value network θ and replay buffer D
3: for each epoch do
4: for each factor path search do
5: E ← []
6: for j = 0 to J do
7: Append st to E
8: sroot ← sj
9: π(a|sj)← π(a|sroot) ▷ π(a | sroot) is obtained based on Algorithm 3

10: aj ∼ π(a | sj)
11: sj+1 ← [sj , aj]
12: end for
13: fj ← parse(sK−1) ▷ parse the ASR into a computable alpha expression
14: Reward ICF is obtained using Algorithm 1 by inputting fnew, F ∗ and w∗

15: for j = 0 to J do
16: z(sj) = (1−max (0,maxft∈F sim(ft, fj))) · ICF
17: D ← D ∪ {(sj , π(a|sj), zj)}
18: end for
19: end for
20: for each gradient step do
21: Use batch B ⊂ D to do gradient descent
22: Lθ = (z(st)− Vθ(st))

2 −
∑

a π(a | st) logPθ(a | st) + c∥θ∥2
23: θe+1 = θe − η · ∇θL(θe)
24: end for
25: end for
26: return F ∗, w∗

The overall workflow of this algorithm is illustrated in Figure 9 in the following page, while a
specific illustration of its MCTS component Algorithm 3 is in Figure 4, and the illustration of its
neural network part is in Figure 5.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 9: The overall framework of AlphaCFG.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D SEARCH SPACE COMPLEXITY

To compare the sizes of expression search spaces under different generation methods, we study three
methods from a combinatorial perspective: (i) a purely exponential baseline (arbitrary combination
of all symbols corresponding to Σ∗); (ii) α-CFG-Syn (corresponding to Lsyn); (iii) α-CFG-Sem
(corresponding to Lsyn). All three methods share the same parameter sets (operator types, number
of features, constants, etc.), but progressively impose stricter constraints, resulting in smaller search
spaces.

We set the following notation: the size of the unary operator set is |U |, the size of the binary operator
set is |B|, the size of the asymmetric binary operator set is |Basym|, the size of the rolling operator set
is |R|, the size of the paired rolling operator set is |Rpair|, the number of features is |F|, the number
of constant parameters is |C|, and the number of rolling-window parameters is |N |.

D.1 UNSTRUCTURED SPACE Σ∗

The method of arbitrary symbol combination (referred to) takes one symbol equally at each step
from all available symbols. Let the total number of symbols be:

r = |F|+ |C|+ |N |+ |U |+ |B|+ |Basym|+ |R|+ |Rpair|.

Then the number of sequences of length n is rn = rn, and the cumulative size is
∑

i≤n ri = Θ(rn).

D.2 SYNTACTICALLY LEGAL SPACE Lsyn

We introduce syntax constraints to ensure that generated expressions are all syntactically valid. We
consider the grammar α-CFG-Syn:

Expr→ UnaryOp(E) | BinaryOp(E,E) | RollingOp(E,E) | PairedRollingOp(E,E,E) | TermSyb.

Let hn be the number of valid expressions of length n. The terminal set size is: T = |F|+ |C|+ |N |.
Define operator cardinalities: U = |U |, Q = |B|+ |Basym|, R = |R|, P = |Rpair|, respectively(The
meanings of the notations are as shown in D).

The recurrence formula is: h1 = T, and for n ≥ 2:

hn = Uhn−1 + (Q+R)

n−2∑
i=1

hi hn−1−i + P
∑

i+j+k=n−1
i,j,k≥1

hihjhk.

The subsequent derivation of an explicit form from this recurrence becomes rather cumbersome.
Since the technical steps mirror the usual treatment of general cubic functional equations, we omit
the full derivation here.

D.3 SEMANTICALLY LEGAL SPACE Lsem

α-CFG-Sem introduces more constraints on constants, argument types, and rolling windows:

Expr→ Feature | UnaryOp(Expr)
| BinaryOp(Expr,Expr) | BinaryOp(Expr,Constant)
| BinaryOp Asym(Constant,Expr) | RollingOp(Expr,Num)

| PairedRollingOp(Expr,Expr,Num),

Num→ 20 | · · · , Constant→ −0.01 | · · ·

Let fn denotes the number of valid expressions of length n.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The recurrence formula becomes

fn = |U | fn−1 (unary)

+ |B|
n−2∑
i=1

fifn−1−i (binary)

+ |B| |C| fn−2 (binary + right constant)

+ |Basym| |C| fn−2 (asymmetric binary + left constant)

+ |R| |N | fn−2 (rolling)

+ |Rpair| |N |
n−3∑
i=1

fifn−2−i (paired rolling).

The recurrence formula is similar, and compared with α-CFG-Syn, recurrence of α-CFG-Sem in-
cludes more convolution terms and more realistic constraints, providing a more accurate operator
usage. In the following, we present the overall analysis.

Because the expression length is unbounded, the search spaces of all three generation methods are
infinite. Therefore, the comparison does not concern the total size of each space, but rather the size
of the finite subspace consisting of expressions whose length is at most n.

For each grammar, the production rules yield a recurrence for the number of expressions of exact
length n) (rn, hn, fn), and accumulating these values from 1 to n gives the size of the corresponding
truncated subspace. By computing these cumulative counts and plotting their growth as functions of
n, we can directly compare how quickly the reachable portions of the three search spaces expand.

D.4 EMPIRICAL VERIFICATION

Based on the recurrence formulas, We compute the cumulative counts of {rn}, {hn}, and {fn} for
n = 1 ∼N , and plot their growth curves to visualize differences between the three methods (shown
in Figure 10). Since all three methods yield inherently infinite search spaces, we further design
α-CFG-Sem-K based on Algorithm 2, which can be seen as the red dotted line in Figure 10. The
results are consistent with the analysis in Figure 2, which further strengthens the superiority of our
approach in theory.

Figure 10 explains the core of the superiority of our method: By introducing constraints of syntax
and semantics, We get an infinite set containing only valid factors. In actual factor search tasks,
we cannot exhaust this space that exploring a finite subset is realistic. Therefore, We utilize the
recursive feature of CFG and further designed α-CFG-Sem-K capable of generating factors of only
a finite length. Ultimately, we reduced the complexity of the search space from an exponential level
to a constant level, making this task solvable.

0 10 20 30 40 50
Length

100

1022

1043

1065

C
ou

nt
s

K

Cumulative Count w.r.t. Expression Length (Log Scale)
*

syn

sem

Figure 10: Comparison of cumulative search space sizes of different grammar levels.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E DETAILS OF TREE-LSTM

Starting from ASR leaf nodes, the Tree-LSTM recursively aggregates child hidden and cell states
through gating (input, forget, output), combining them with the node’s input embedding. This
bottom-up process continues until the root, yielding a fixed-dimensional state vector that encodes
both the syntax and operator-specific dependencies of the entire expression. Thus, the Tree-LSTM
transforms variable-sized trees into single vectors while preserving structural and semantic informa-
tion.

In our α-CFG, operators are different: (i) symmetric operators, where order is irrelevant, and
(ii)asymmetrical (order-sensitive) operators, where order must be preserved. Tree-LSTM naturally
supports both cases through two variants: the N-ary Tree-LSTM, which uses position-sensitive pa-
rameters to encode child order, and the Child-Sum Tree-LSTM, which aggregates child states by
their mean to provide order-invariant representations. Based on these, we tailor aggregation strate-
gies: for symmetric binary operators (Expr→ BinaryOp(Expr,Expr)) we adopt Child-Sum to avoid
redundant encodings; for paired rolling operators (Expr → PairedRollingOp(Expr,Expr,Num)) we
first apply unordered aggregation to operands and then use N-ary encoding to incorporate the time-
window parameter; and for all other operators we employ standard N-ary encoding. Such operation
can address the problem of isomorphic redundancy of alpha factors defined in Definition 7.The re-
sulting tree embeddings are treated as input to be given into the policy and value heads to predict
next-rule probabilities and estimated state value.

E.1 N-ARY TREE-LSTM (POSITION-SENSITIVE)

Let node j have N children with hidden states h1, . . . ,hN , input xj , output hidden state hj and cell
state cj :

ij = σ

(
W (i)xj +

N∑
k=1

U
(i)
k hk + b(i)

)
fjk = σ

(
W (f)xj + U

(f)
k hk + b(f)

)
, k = 1, . . . , N

oj = σ

(
W (o)xj +

N∑
k=1

U
(o)
k hk + b(o)

)

uj = tanh

(
W (u)xj +

N∑
k=1

U
(u)
k hk + b(u)

)

cj = ij ⊙ uj +

N∑
k=1

fjk ⊙ ck

hj = oj ⊙ tanh(cj)

E.2 CHILD-SUM TREE-LSTM

Let node j have a set of children C(j) with hidden states hk, k ∈ C(j):

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

h̃j =
1

|C(j)|
∑

k∈C(j)

hk

ij = σ
(
W (i)xj + U (i)h̃j + b(i)

)
fjk = σ

(
W (f)xj + U (f)hk + b(f)

)
, k ∈ C(j)

oj = σ
(
W (o)xj + U (o)h̃j + b(o)

)
uj = tanh

(
W (u)xj + U (u)h̃j + b(u)

)
cj = ij ⊙ uj +

∑
k∈C(j)

fjk ⊙ ck

hj = oj ⊙ tanh(cj)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F CALCULATION OF TREE SIMILARITY

Definition 7 (Isomorphism of ASR(Tree)). ASR T1 and T2 are isomorphic only if:

1. The label of root nodes must be the same;

2. Recursively check each child node, the labels of the child nodes are equivalent: for asym-
metrical operations, the order of the subtrees must be preserved; for symmetrical operations
(Binary type operators in Table 5) or partially symmetrical operations (Corr, Cov, where
the order of the first two operands’ child nodes doesn’t matter), the order of the subtrees
doesn’t matter as long as the operands match;

3. Recursively check that all child nodes and their structures are isomorphic.

Given two alpha factor expresions(partial or completed), they correspond to two ASRs T1 and T2

which are also two trees. Let Sub(T) denote the set of all subtrees of T , where each subtree is
induced by a child of node in T along with all its descendant nodes (including the child node itself).
Let N(T) denote the total number of subtrees in T , recursively defined as:

N(T) = 1 +
∑

c∈Children(T)

N(c).

The normalized similarity between the two ASR is defined as:

sim(T1, T2) =

maxt1∈Sub(T1)
t2∈Sub(T2)

css(t1, t2)

max (N(T1), N(T2))
,

where the numerator represents the size of the largest isomorphic subtree shared by T1 and T2, i.e.,
the number of matching nodes in the largest common subtree. Tree isomorphism is defined formally
in Definition 7. If no such isomorphic subtree exists, then css(t1, t2) = 0.

The denominator max(N(T1), N(T2)) corresponds to the number of nodes in the larger of the
two trees, serving as an upper bound for the size of any common subtree. Intuitively, it reflects the
maximum number of matching nodes that could be achieved if one tree were a subtree of the other, or
if the two trees were structurally identical. As such, the denominator defines the maximum potential
scale of a common subtree, and serves to normalize the matching node count in the numerator. This
ensures that the resulting similarity score lies within the standardized range [0, 1], thereby facilitating
both quantitative analysis and intuitive comparison of structural similarity between expression trees.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G ALPHACFG FRAMEWORK PARAMETER SETTING FOR EXPERIMENT

G.1 MCTS PARAMETERS

• Exploration Parameter : The exploration-exploitation trade-off parameter in the UCT for-
mula is set to c = 1.

• MCTS Simulations : 64 simulations are performed per state.
• MCTS Parallelism: 8 parallel simulations are used to speed up the exploration.
• Eval Batch Size: 2 evaluations using network are carried out simultaneously each time.
• Branch balance coefficient: 40

G.2 NETWORK ARCHITECTURE

Feature Extractor (Tree-LSTM):

• Embedding Dimension: 128.
• Hidden Size: 128.
• Dropout Rate: 0.1.

Policy Network:

• Input: Features extracted by the feature extractor (Tree-LSTM).
• Hidden Layers:

– Layer 1: Fully connected layer with 128 input features and 64 output features.
– Layer 2: Fully connected layer with 64 input features and 128 output features (em-

bedding dimension).
• Activation Function: Softmax

Value Network:

• Input: Features extracted by the feature extractor (Tree-LSTM).
• Hidden Layers:

– Layer 1: Fully connected layer with the embedding dimension (128) as input and 64
output features.

– Layer 2: Fully connected layer with 64 input features and 64 output features.
• Activation Functions: ReLU activation functions applied to the hidden layers.
• Output: A fully connected layer with a single output value without activation function.

G.3 OPTIMIZER AND TRAINING PARAMETERS

• Optimizer: Adam optimizer with default settings
• Learning Rate: A learning rate of 10−4.
• Batch Size: 64.
• Number of factor trajectories in an iteration: 100(2*50).
• Training Iterations: 100 iterations.
• Batch Size for Training: 64.
• Replay Buffer Size: 20,000.
• Early Stopping Criteria: Early stopping based on validation performance, with a threshold

of 20% iterations without improvement.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H MORE RESULTS OF EXPERIMENT

We evaluate the proposed framework on both the China A-share and U.S. equity markets. Our ex-
periments are designed to: (1) demonstrate that the proposed context-free grammar provides practi-
cal advantages over linear generation methods (e.g., Reverse Polish Notation) for representing and
generating alpha factors; (2) validate that the syntax representation learning method using Tree-
LSTM to encode state outperforms linear network architectures; (3) evaluate the performance of the
grammar-aware discovery framework across multiple metrics in comparison with existing factor-
mining methods; (4) assess whether the alpha factors discovered by our model deliver superior
trading performance in realistic backtesting scenarios; and (5) examine how our model enhances the
performance of existing classical factors.

H.1 DATA

For the A-share market, we adopt the constituent stocks of the CSI 300 index, and for the U.S.
market, we use the constituent stocks of the S&P 500 index. The dataset is temporally partitioned
into three subsets: the training set (2010-01-01 to 2017-12-31), the validation set (2018-01-01 to
2019-12-31), and the testing set (2021-01-01 to 2024-12-31). To avoid distortions caused by ab-
normal market volatility and structural irregularities during the COVID-19 pandemic, data from
calendar year 2020 are excluded by design. Six raw stock-level features are used as model inputs:
{open, close, high, low, volume, vwap}. Formulaic alpha factors are constructed by applying
arithmetic operators to these base features under the grammar constraints described earlier. The pre-
diction target for factors is the 20-day forward return, computed using closing prices for both buying
and selling, i.e., R(20)

t = Ref(close,−20)
close − 1.

H.2 COMPARISON METHODS

We evaluate three variants of grammar-constrained factor discovery method: (i) CFG-S (generation
constrained solely by syntactic rules) (ii) CFG-SS (generation constrained by both syntactic and
semantic rules) (iii) CFG-SSL (generation further restricted by a length-bounding mechanism in
Algorithm 2). To further validate the grammar effectiveness, we also incorporate Reverse Polish
Notation (RPN). (Specifically for CFG-S, we constrain the rolling window size to be an integer
constant in α-CFG-Syn to facilitate smooth training.)

For a broader performance assessment of the entire framework, we compare our method against
two state-of-the-art factor mining baselines: AlphaGen (Yu et al., 2023) and AlphaQCM (Zhu &
Zhu, 2025). Both employ RPN, with AlphaGen using Proximal Policy Optimization (PPO) and
AlphaQCM using distributed reinforcement learning. Additionally, GPlearn (Zhang et al., 2020) is
included as a symbolic-regression baseline, which generates formula trees through genetic program-
ming. All of the above factor generation methods optimize the Information Coefficient (IC) of the
linear combination of factors.

To further validate our approach, we include several widely used machine learning models as ad-
ditional baselines: XGBoost (Wang et al., 2023), LightGBM (Bisdoulis, 2024), LSTM (Bhandari
et al., 2022), ALSTM (Qin et al., 2017), TCN (Dai et al., 2022), and Transformer (Mozaffari &
Zhang, 2024). The hyperparameters of these models are set according to the benchmark configu-
rations provided by Qlib (Yang et al., 2020). To mitigate the impact of randomness, all models are
trained and evaluated 5 times with different fixed random seeds.

H.3 EVALUATION METRICS

We evaluate factor effectiveness from two complementary perspectives: correlation metrics, includ-
ing IC, RankIC, ICIR, and RankICIR, capture the statistical relationship between factors and future
returns. Backtesting metrics, which are obtained by investment simulation using a top-k/drop-n
strategy (see the next paragraph for details), including MaxDD and Sharpe, assess the profitability
and risk characteristics of factors in simulated trading (see Table 7 for details).

Top-k/drop-n strategy is applied to simulate actual trading operations: for each trading day, we first
ranked stocks based on their factor prediction scores, then selected the top k stocks from the sorted

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

list. To balance return potential and trading costs, we adopted an equal-weight allocation approach
while limiting daily portfolio adjustments to a maximum of n stocks. In our experiment, we set
k = 60 and n = 5, ensuring sufficient portfolio diversification while controlling transaction costs.

Table 7 provides the specific calculation methods for all evaluation metrics.

Category Metric Name Abbrev. Formula Description
Correlation
Metrics

Information
Coefficient

IC IC = ρ(αi, Ri) Pearson correlation
between factor values αi

and future returns Ri.
Rank
Information
Coefficient

RankIC RankIC = ρ(r(αi), r(Ri)) Spearman correlation
after ranking; r(·) is the
rank function.

Information
Ratio

ICIR ICIR =
IC

σIC
Ratio of mean IC to its
volatility, measuring
prediction stability.

Rank
Information
Ratio

RankICIR RankICIR =
RankIC

σRankIC
Ratio of mean RankIC
to its volatility,
evaluating rank
correlation stability.

Backtesting
Metrics

Maximum
Drawdown

MaxDD MaxDD =

maxt
Pmax(0, t)− Pt

Pmax(0, t)

Largest peak-to-trough
decline in backtest; Pt is
NAV, Pmax(0, t) =
maxs≤t Ps.

Sharpe Ratio Sharpe Sharpe =
E[rp − rf]

σrp

×
√
N

Annualized excess
return per unit risk; rp:
daily return, rf :
risk-free rate, N : 252
(trading days).

Table 7: Summary of Evaluation Metrics

H.4 OPTIMIZATION OF COMBINED FACTOR PARAMETERS ON THE VALIDATION SET

To obtain the optimized combined factor parameters, we conducted experiments on the validation
set for two dimensions: Maximum Length of Individual Factors (Max Length) and Factor Pool
Size (Pool Size) (results shown in Figure 11). Specifically, we first fix the maximum length of
individual factors and then evaluate the valid IC for different pool sizes {1, 5, 10, 20, 30} to select
the optimal pool size. After selecting the optimal pool size under CFG-SSL, we fix it and then
explore different values of the maximum length of individual factors {5, 10, 15, 20, 25} to identify
the best configuration.

Finally, we obtain the best combined factor parameters:

CSI 300:

• RPN+MCTS: Max Length: 10; Pool Size: 20

• CFG+S: Max Length: 10; Pool Size: 20

• CFG+SS: Max Length: 10; Pool Size: 10

• CFG+SSL: Max Length: 10; Pool Size: 10

• RPN+PPO: Max Length: 20; Pool Size: 20

S&P 500:

• RPN+MCTS: Max Length: 20; Pool Size: 20

• CFG+S: Max Length: 10; Pool Size: 20

• CFG+SS: Max Length: 10; Pool Size: 20

• CFG+SSL: Max Length: 10; Pool Size: 20

• RPN+PPO: Max Length: 20; Pool Size: 20

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1 5 10 20 30
Pool Size

0.01

0.02

0.03

0.04

0.05

0.06

0.07

V
al

id
 IC

CSI300:Validation IC vs. Pool Size

1 5 10 20 30
Pool Size

V
al

id
 IC

S&P 500:Validation IC vs. Pool Size

5 10 15 20 25
Max Length

0.03

0.04

0.05

0.06

0.07
V

al
id

 IC
CSI300:Validation IC vs. Max Length

5 10 15 20 25
Max Length

V
al

id
 IC

S&P 500:Validation IC vs. Max Length

GP
RPN+PPO(alphagen)
CFG-SSL+MCTS
CFG-SS+MCTS
RPN+MCTS
CFG-S+MCTS

Figure 11: Valid IC of various generation approaches.

The optimization objective of the GP method using a combined model has little effect (the gener-
ated combined factors are highly similar), so only the single-factor IC is used as its optimization
objective.

H.5 CASE STUDY OF THE INTERPRETABILITY OF FORMULAIC FACTORS

Table 8 shows an example of alpha factors generated by our framework, tested on the CSI 300 index
constituents. The mined factors exhibit strong interpretability grounded in market microstructure
theory. For example, the factor Log(|Std((0.05-volume),40)|) measures the volatility of inverse trad-
ing volume over a 40-day window. This factor gauges the temporal variability of illiquidity, which
may signal market stress or substantial price impact. Another example, Cov(volume,vwap,40), cap-
tures the co-movement between trading volume and the volume-weighted average price in past 40
days. A high covariance indicates strong directional consensus, potentially reflecting persistent mo-
mentum or, conversely, price reversals.

Table 8: Top 10 Ranked Alphas and Their Weights

Alpha Expression Weight

1 Mean(Corr(Sum(open,40),(high-volume),20),20) -0.00889

2 volume -0.01278

3 Std(close,40) 0.01778

4 Pow(Med(Cov(high,low,30),30),0.1) 0.01411

5 Delta(Log(|Min(high,30)/0.01|),30) -0.01649

6 Cov((-0.1-Sum(close,40)),volume,20)+low -0.01649

7 0.01Greater(-0.1/Corr(high,close,30),volume) -0.00823

8 Log(|Std((0.05-volume),40)|) 0.01224

9 Greater(-0.01,Log(|Log(|low|)|)) -0.04616

10 Cov(volume,vwap,40) -0.01412

27

	Introduction
	Alpha discovery
	Our Work

	PROBLEM FORMULATION
	Language Characterization of Interpretable Alphas
	Syntactically Valid Alpha Generator
	Finance Semantically-Interpretable Alpha Generator
	Characterizing the Space Structure of -CFG-Sem-k

	-CFG-Sem-k Guided Search for High-Quality Alpha Factors
	Tree-Structured Linguistic Markov Decision Process
	Reinforcement Learning Framework
	Grammar-Aware Monte Carlo Tree Search
	Syntax Representation Learning

	Experiments
	Conclusion
	Tables
	Algorithms
	Linear combination alpha factor algorithm
	Length control of semantic interpretable alpha factor generator
	Algorithm of Four Stages of MCTS

	Reinforcement Learning Framework
	Search Space Complexity
	Unstructured Space *
	Syntactically Legal Space Lsyn
	Semantically Legal Space Lsem
	Empirical Verification

	Details of Tree-LSTM
	N-ary Tree-LSTM (Position-Sensitive)
	Child-Sum Tree-LSTM

	Calculation of Tree Similarity
	AlphaCFG Framework Parameter Setting for Experiment
	MCTS Parameters
	Network Architecture
	Optimizer and Training Parameters

	More Results of Experiment
	Data
	Comparison Methods
	Evaluation Metrics
	Optimization of Combined Factor Parameters on the Validation Set
	Case Study of the interpretability of formulaic factors

