
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LATTE: LATENT ATTENTION FOR LINEAR TIME
TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

The time complexity of the standard attention mechanism in transformers scales
quadratically with sequence length. We propose a probabilistic framework for
attention, enabling us to derive a novel low-rank linear re-parameterisation of both
bidirectional and causal cases, based on defining a latent variable model. Our
method can be seamlessly integrated as a drop-in replacement for the standard
attention mechanism. Additionally, this framework provides a natural extension for
combining local standard attention with our global linear attention. This approach
allows us to extend the context length of existing large pre-trained models with
only a few additional training steps. The resulting “Latte Transformer” achieves
performance comparable to standard attention and other state-of-the-art models,
while maintaining linear time and memory complexity, along with constant-time
next-token prediction during inference.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) are extensively used in sequence modelling, with widespread
applications in natural language processing (NLP) (Devlin et al., 2019; Radford et al., 2019; Touvron
et al., 2023), and computer vision (Khan et al., 2022; Dosovitskiy, 2020; Liu et al., 2021). The
transformer is based on an attention mechanism that compares each element of a sequence with every
other. This pairwise interaction gives state-of-the-art results on tasks such as language modelling but
it comes at the cost of quadratic time and (in standard implementations) quadratic space complexity.
While the quadratic space complexity can be reduced to linear in the sequence length by using
non-vectorised operations (Rabe & Staats, 2021), there is no method, with the same properties as the
standard attention, to reduce the quadratic time complexity, hindering the application of transformers
to very long sequences. Another disadvantage of standard attention is its slow inference for the next
token prediction, with time complexity scaling linearly with the length of the conditioning sequence
(context window), making it expensive for long sequences.

The attention mechanism takes an input sequence of token vectors x1, . . . , xT ; xs ∈ RD and
transforms this to a new sequence according to an input-dependent linear function:

x̃t =

T∑
s=1

atsvs (1)

where ats are the attention weights and vt = Wvxt is a linear transformation of the input xt. The
standard attention weights are defined using

ats =
exp

(
qT
t ks
)∑T

s=1 exp
(
qT
t ks
) (2)

where kt = Wkxt, qt = Wqxt and Wk,Wq,Wv are the key, query and value parameter matrices. In
equation 2, we omitted division by the constant factor

√
dk given by dimension of kt, for presentation

clarity. Since ats is a positive normalised quantity, we can interpret ats as the probability p(s|t) of
the token occurring at position s given the token occurring at position t. It is customary to stack the
inputs as row vectors and form the T ×D matrix X = vcat

(
xT
1, . . . , x

T
T

)
. Similarly, by writing the

keys and queries into row-vector stacked matrices, we can write the transformed input sequence in
matrix notation as

X̃ = Attention(Q,K, V) ≡ softmax
(
QKT

)
V (3)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

l1 l2

x1 x2 x3 x4

Figure 1: Token-token interaction diagram for non-causal attention of the p(s|t) matrix, see also
Lin et al. (2021). The time complexity of each algorithm is O(ED) where E is the number of
edges in each graph and D is the dimension of each x. (Left) Standard Attention computes all
pairwise similarities between the elements of the sequence. (Right) Latte computes only the pairwise
similarities between each element of the sequence and each latent state.

In the causal variant, we define x̃t =
∑t

s=1 atsvs and the normalisation in equation 2 is replaced
with

∑t
s=1 exp

(
kT
t qs
)

to ensure
∑t

s=1 ats = 1.

The quadratic cost of attention comes from the matrix multiplication of Q ∈ RT×D and KT ∈ RD×T

in equation 3. The softmax(·) function prevents us from leveraging the associativity of matrix
multiplication, resulting in operations involving the matrix A = softmax

(
QKT

)
∈ RT×T . To

address this and reduce the quadratic complexity, we use a probabilistic interpretation of attention
and introduce a latent variable re-parameterisation applicable to both bidirectional and causal cases.
Additionally, our framework combines this latent variable model with local sliding window attention,
enhancing performance while preserving linear complexity. We also demonstrate how this allows
us to extend the context length of a pre-trained large language model with only modest additional
compute.

2 LATTE ATTENTION

To overcome the quadratic complexity of standard attention we propose Latent Attention (Latte).
Instead of comparing the similarity between each token xs and xt, Latte compares how similar
each xs is with learnt latent tokens, see Figure 1. First, in Section 2.1 we consider a non-causal
model before presenting the causal approach in Section 2.2, which is needed for auto-regressive
models (Radford et al., 2019). We further show in Section 2.3 how to improve performance by
combining a local attention mechanism with global latent attention, which we call Latte Macchiato.

2.1 NON-CAUSAL (BIDIRECTIONAL) LATTE

For a sequence of tokens x1, . . . , xT , attention, equation 1, transforms a token xt to

x̃t =

T∑
s=1

p(s|t)vs (4)

in which information from the past, present and future tokens is used to define x̃t. To remove
the quadratic dependence of attention on the sequence length, we introduce a latent variable l that
conditionally renders attention for token position s independent of token position t:

Definition 1 (Bidirectional Latte). Let l be a latent variable with L possible states. Under the
independence assumption s ⊥⊥ t|l, attention becomes:

x̃t =

T∑
s=1

L∑
l=1

p(s, l|t)vs =
L∑

l=1

p(l|t)
T∑

s=1

p(s|l)vs (5)

Analogous to standard attention we define

p(l|t) = ex
T
tw

q
l∑L

j=1 e
xT
tw

q
j

, p(s|l) = ex
T
sw

k
l∑T

s=1 e
xT
sw

k
l

(6)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

x1 x2 x3 x4

x̃1 x̃2 x̃3 x̃4

α1 α2 α3 α4

ṽ1 ṽ2 ṽ3 ṽ4

Figure 2: Causal Latte can be written as a recur-
sion in which the variables αt = [αt,1, . . . , αt,L] and
ṽt = [ṽt,1, . . . , ṽt,L] contain all the information re-
quired to form the transformed output x̃t. This recurrent
formulation makes a bridge between state-space style
recurrent attention approaches and classical attention.

We call wq
l the lth query vector and wk

l is the lth key vector – these are learnable parameters of
the model. The queries, keys and values are packed into matrices Q = XWq, K = XWk and
V = XWv . Analogous to equation 2, we then define Latte attention as

Latte(Q,K, V) ≡ softmaxL(Q)︸ ︷︷ ︸
T×L

softmaxT (K)
T︸ ︷︷ ︸

L×T

V︸︷︷︸
T×D

(7)

where softmaxL(·) denotes normalisation over the number of latent states and softmaxT (·) denotes
normalisation over the temporal dimension. Latte therefore can also be seen as a rank L parameter-
isation of the attention matrix. It is important to recognise that we do not aim to approximate the
standard attention approach – we rather define a new parameterisation for attention. In our method, it
is not meaningful to compute distances between a latent state and a token position, hence we cannot
directly use relative positional encodings1. To break token position invariance we introduce a new
type of relative encoding, VAPOR (Value Acting POsitional Rotations) in Appendix B.4.

2.2 CAUSAL LATTE

Causal attention can be written as x̃t =
∑t

s=1 p(s|t)vs, where the distribution p(s|t) is defined by
causal attention such that

∑t
s=1 p(s|t) = 1.

Definition 2 (Causal Latte). Using a latent variable l with L states, we parameterise causal Latte as:

p(s|t) =
L∑

l=1

p(s|l, t)p(l|t), p(l|t) = ex
T
tw

q
l∑L

j=1 e
xT
tw

q
j

, p(s|l, t) = ex
T
sw

k
l∑t

s=1 e
xT
sw

k
l

(8)

The dependence on t in p(s|l, t) is due to the causal normalisation up to time t. However, this does
not imply quadratic time complexity. To see this we define the normalisation terms

βt ≡
L∑

j=1

ex
T
tw

q
j , αt,l ≡

t∑
s=1

ex
T
sw

k
l (9)

and write the new representation as

x̃t =

L∑
l=1

p(l|t)
t∑

s=1

p(s|l, t)vs =
L∑

l=1

ex
T
tw

q
l

βtαt,l

t∑
s=1

ex
T
sw

k
l vs =

L∑
l=1

γt,lṽt,l (10)

where

γt,l ≡
ex

T
tw

q
l

βtαt,l
, ṽt,l ≡

t∑
s=1

ex
T
sw

k
l vs (11)

Causal Latte is therefore also a rank L parameterisation of the attention matrix (see Section 3).
Furthermore, since ṽt,l and αt,l are cumulative sums we can use the recursions

αt,l = αt−1,l + ex
T
tw

k
l , ṽt,l = ṽt−1,l + ex

T
tw

k
l vt (12)

1Additive absolute positional encodings can be used as per normal in Latte provided they are applied to the
tokens xt, x̃t, not the latent tokens.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

From equation 12 it immediately follows that we can calculate x̃t+1 (i.e. infer the future token)
directly from αt,l, βt, ṽt,l, whereas standard attention requires the full sequence x1, . . . , xt. In this
sense, Causal Latte is a recurrent model, similar in essence to Recurrent Neural Networks (RNNs)
and state space models (SSMs) (Gu et al., 2021; Smith et al., 2022; Fu et al., 2023), see Figure 2. A
numerically stable implementation of the recursion is given in Appendix B.3. Next token inference in
Causal Latte requires O(LD) memory, compared to O(TD) in standard attention. Similarly, the time
complexity is O(LD), compared to O(TD) in standard attention. Next token inference is therefore
significantly faster than standard attention, assuming L ≪ T . For training we can calculate all terms
x̃1, . . . , x̃T in total time O(TLD) and total space O(TL+ LD). This is compared to O(T 2D) time
and O(TD) space complexity for standard attention (Rabe & Staats, 2021). Table 9 in Section B.2
summarises the complexity compared to other efficient attention approaches, see Section 3.

2.3 LATTE MACCHIATO

Whilst Latte uses latent states to represent global concepts and share long-range information across a
sequence, it may not account for local information as effectively as standard attention since it lacks
elementwise comparisons. Therefore combining linear attention with standard attention is natural
and has been explored in works such as Hua et al. (2022); De et al. (2024). Different to prior models
in our work we combine local and global context by a simple extension of our latent variable model.

Definition 3 (Latte Macchiato). Let l = 0 be a special latent state allocated to standard attention.
We define Latte Macchiato as a weighted mixture of standard attention and Causal Latte:

x̃t = p(l = 0|t)
t∑

s=1

p0(s|t)vs +
L∑

l=1

p(l|t)
t∑

s=1

p(s|l, t)vs (13)

Here p0(s|t) ≡ p(s|l = 0, t) represents standard attention; in practice to retain computational
tractability we use sliding window attention with a window size w:

p0(s|t) =

{
eq

T
tks∑t

s=t−w eq
T
tks

t− w ≤ s ≤ t

0 otherwise
(14)

where we now define p(l|t) to ensure normalisation over all L+ 1 states, l = 0, . . . , L.

2.4 EXTENSIONS

In Definition 3 of Latte Macchiato, the quantity p(l|t) depends solely on the token xt, while p(s|l, t)
is based only on xs from the entire sequence. To encourage the latent states to capture temporal
dependencies across multiple sub-words, we use a 1D convolution of size K to compute these
probabilities:

yt =

K∑
i=0

wc
ixt−i, p(l|t) = ey

T
tw

q
l∑L

j=1 e
yT
tw

q
j

, p(s|l, t) = ey
T
sw

k
l∑t

s=1 e
yT
sw

k
l

(15)

We observed that performance improves with larger convolution sizes K prompting us to also extend
yt to depend on all previous tokens using a linear recurrent neural network. For our experiments, we
used the recurrent gated linear unit (RGLRU) layer introduced by De et al. (2024) which, compared
to a convolution, is also input dependent. See Figure 3 for an overview of the architecture. Note that
both the convolution and recurrent layers break positional invariance, thereby eliminating the need
for VAPOR positional encodings in these extensions.

3 RELATED WORK

The literature surrounding efficient attention is extensive, but can be broadly classified into six
overlapping classes (Tay et al., 2022): Downsampling Jaegle et al. (2021), Random Patterns (Zaheer
et al., 2020), Learnable Patterns Wang et al. (2022); Kitaev et al. (2019), Sparse Transformers (Ainslie
et al., 2020; Beltagy et al., 2020), Recurrence (Dai et al., 2019) and Low-Rank (Wang et al., 2020;

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

RMSNorm

RMSNorm

Temporal Mixing
Block

State Mixing Block

Linear Linear

GeLU

Linear

RG-LRULinear

Linear Linear

SWA Latte

VQK

Input:X

Weighted Sum

Figure 3: One layer in the architecture of Latte Macchiato (Latte-RGLRU-SWA++).

Katharopoulos et al., 2020). Other papers focus on linear-attention and use special hardware optimi-
sations Qin et al. (2024b); Sun et al. (2024). Here we provide an overview of the most related work
on addressing attention in transformers. See also Lin et al. (2021).

Efficient Transformer. Shen et al. (2021) proposed an equivalent bidirectional model to equation 7
but did not explore the latent variable interpretation that allows for a natural extension to the important
case of casual attention. Our method also easily integrates with standard local attention models.
Furthermore, they experiment with vision tasks, while our work focuses on language problems.

Luna. Linear Unified Nested Attention (Ma et al., 2021) performs attention between T input tokens
and a sequence of L latent tokens. For the bidirectional case, Luna uses nested attention

Y = softmax(Q︸︷︷︸
L×D

KT︸︷︷︸
D×T

) V︸︷︷︸
T×D

, X̃ = softmax(Q
′︸︷︷︸

T×D

K
′T︸︷︷︸

D×L

) V
′︸︷︷︸

L×D

(16)

where Q = WqP , K = WkX , V = WvX , Q
′
= W

′

qX , K
′
= W

′

kY , V
′
= W

′

vY and P is a
model parameter representing the sequence of L latent tokens. This differs substantially from our
formulation in equation 7. For causal attention one needs to modify the approach such that for each
token xt the latent states only interact with x≤t. The Luna causal layer can be written as:

x̃t =
1

t

L∑
l=1

Bt,l

t∑
s=1

Al,sxs (17)

Whilst this matrix factorisation looks similar to causal Latte equation 10, Bt,l and Al,s are param-
eterised differently. For A, Luna uses softplus (Glorot et al., 2011) and elu (Clevert et al., 2015)
non-linearities and B depends on A:

A = ζelu
(
PXT

)
+ 1 ∈ RL×T Bt,: ∝ exp

(
xT
t

1

t

t∑
s=1

xsA
T
:,s

)
∈ RT×L (18)

In equation 18, each Bt is normalized by summing over the L latent states. While Luna shares a
similar motivation to Latte in terms of leveraging latent states, its implementation differs substantially.
Additionally, their model does not incorporate local standard attention.

Recent Work. Recent studies have investigated state-based models for mixing tokens within a
sequence. Although inspired by first-order differential equations, these models can also be viewed
as linear recurrent neural networks (Gu et al., 2021; Smith et al., 2022). Gated sequence models
like Mamba (Gu & Dao, 2023) improve the performance of these models on text by introducing
input-dependent weights in the recurrence. In contrast, other approaches combine local attention
mechanisms with recurrent layers (Ma et al., 2023; De et al., 2024; Zuo et al., 2022). Our method
aligns more closely with the latter class of models, but differs in how we integrate local attention
with global linear context. Furthermore, using our Latte-Macchiato method we can easily extend the
context size of a large pre-trained model in linear time.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Iterative improvement of Latte
language modelling. SWA: Sliding Win-
dow Attention.

Model Params. PPL ↓
Latte 111M 21.88
Latte++ 140M 21.56

Latte-Conv++ 140M 20.26
Latte-Conv-SWA++ 153M 18.52

Latte-RGLRU++ 139M 19.99
Latte-RGLRU-SWA++ 153M 17.64
Transformer++ 151M 17.19

Table 2: Comparison of Latte-Macch with other
linear-scaling models on language modelling.
SWA: Sliding Window Attention

Model Params. PPL ↓
Mega Ma et al. (2023) 153M 23.75
Retnet Sun et al. (2023) 197M 21.59
H3 Fu et al. (2023) 125M 21.0
RWKV Peng et al. (2023a) 153M 18.97
Griffin De et al. (2024) 139M 18.83
RGLRU-SWA++ (our) 141M 18.25
Mamba Gu & Dao (2023) 149M 17.70
GLA Yang et al. (2024) 206M 19.10
Ligth.Att Qin et al. (2024a) 166M 23.67

Latte-RGLRU-SWA++ 153M 17.64

4 EXPERIMENTS

We implement Latte using Jax (Bradbury et al., 2018), which enables efficient handling of the
recurrence operation equation 12 via the scan operator2. In Section 4.1, we analyse how each Latte
component improves the model, followed by a comparison with state-of-the-art (SOTA) models.
Section 4.2 covers Latte’s runtime, and Section 4.3 provides an analysis of its latent states and
sequence extrapolation properties. Section 4.4 presents results on LRA data, while Section 4.5
discusses the benefits of using large pre-trained models with Latte Macchiato.

4.1 LANGUAGE MODELLING

We use OpenWebText (Gokaslan & Cohen, 2019) data to train small models on the next-token
prediction task. To ensure a fair comparison, we train all models in this section under the same
settings for 8 billion tokens. For a complete overview of data pre-processing and hyperparameters,
see Appendix A.1 and Table 6.

Base model. Table 1 compares perplexity (PPL) across architectures. The first model (Latte) uses
Latte layers for temporal mixing, as in Definition 2, with VAPOR positional encodings (Appendix B.4).
The rest of the architecture follows the standard transformer (Vaswani et al., 2017). In the second
model, we replace layer normalisation with RMSNorm (Zhang & Sennrich, 2019) and the feedforward
network with a Gated Linear Unit (GLU) (Dauphin et al., 2017), referring to this version as ”++”
(e.g., Transformer++, Latte++). The change results in a marginal performance improvement.

Convolution and sliding window attention. We enhance Latte++ with a short convolution layer
(K = 3), as detailed in Section 2.4, yielding significant performance gains with minimal parameter
increase. Next, we add a sliding window attention (SWA) of 128 tokens to create Latte-Macchiato,
which increases parameters but delivers a substantial performance boost. For the SWA we use ROPE
positional encodings (Su et al., 2024).

Recurrent layer and sliding window attention. Replacing the 1D convolution with a Recurrent
Gated Linear Unit (RGLRU) further improves performance and slightly reduces parameters. Finally,
adding SWA with ROPE positional encoding to Latte-RGLRU++ results in our best model, combining
a 128-token SWA window and global Latte attention for significant gains.

Comparison to state-of-the-art models. We further compare our model with other linear-time
(“efficient”) models in Table 2. To show that not only SWA and RGLRU, but also the Latte
components contribute to reducing perplexity, we introduce a competing model (RGLRU-SWA++).
This model removes the Latte components, constructing the queries and keys for sliding window
attention using the normalized outputs of the RGLRU layer: Y = RGLRU(X), Z = RMSNorm(Y),
Q = WqZ, K = ZWk, and V = XWv. This approach is conceptually similar to that of the Mega

2PyTorch would require a custom CUDA kernel, as for loops are inefficient even when compiled.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

model (Ma et al., 2023). Our model achieves the best performance, despite a slight increase in the
number of parameters. Although it is difficult to match parameter counts across all models, we kept
the number of layers, hidden units, and feed-forward dimensions consistent. Additionally, Griffin’s
window attention size was set to 128 to align with Latte-Macchiato. All other hyperparameters are
detailed in Table 6.

These results show that combining standard sliding window attention with global latent tokens (Latte-
Macchiato) is competitive with SOTA in language modelling. Another important fact of Latte is that
it can build global sequence information directly on top of a pre-trained language model, allowing a
pre-trained model to be applied to much longer contexts, see also Section 4.5.

4.2 EMPIRICAL RUNTIME EFFICIENCY

We compare the runtime of a forward pass for both the convolutional (Latte-Conv-SWA++) and
recurrent (Latte-RGLRU-SWA++) variants of Latte Macchiato against standard attention mechanisms
across different sequence lengths and model sizes. To ensure a fair comparison, we use the same
hyper-parameters and adjust the batch size with sequence length to maintain a constant number of
tokens. As illustrated in Figure 4, both versions of Latte Macchiato outperform standard attention in
terms of speed. Given the performance improvements of Latte-RGLRU-SWA++ over Latte-Conv-
SWA++ for only a modest time increase, the recurrent approach seems generally preferable to the
convolution approach, presumably since longer-range information is taken into account. While our
work has concentrated on reducing the theoretical time and memory complexity of attention, future
optimisation at the kernel level could further enhance practical runtime performance.

4K 8K 16K 32K

Sequence Length

0

500

1000

1500

2000

2500

Fo
rw

ar
d

Pa
ss

Ti
m

e
(m

s)

Latte-Conv-SWA++
Latte-RGLRU-SWA++
Standard Causal Attention

(a) Model Size: 400M

4K 8K 16K 32K

Sequence Length

0

1000

2000

3000

4000

Fo
rw

ar
d

Pa
ss

Ti
m

e
(m

s)

Latte-Conv-SWA++
Latte-RGLRU-SWA++
Standard Causal Attention

(b) Model size: 2.6B

Figure 4: Runtime in milliseconds (ms) for forward passes at different sequence lengths and model
sizes. Measurements are repeated for 100 runs, and the plot displays the standard deviation. While
the standard deviations for Latte-RGLRU-SWA++ are included, they are too small to be visible.

4.3 LATENT STATE ANALYSIS

Impact of the state size. Firstly, we look at the performance of Latte-RGLRU++ as we increase
the number of latent states L. Note that we do not use Latte-RGLRU-SWA++ (Latte Macchiato) in
order to eliminate any confounding factor introduced by local attention; we set the number of heads
to 1 for the same reason. Models are trained on 0.6 billion tokens with sequences of length 1024
from OpenWebText data. The same pre-processing is followed as in Section 4.1. In Figure 5a we
see that increasing L improves the performance; nevertheless there is a point at which the added
computational cost of using more latent states is no longer justified by the marginal performance
gains. As expected, standard causal attention on the full context performs better.

Latte-Macchiato vs. Sequence Truncation. For long sequences where standard attention’s quadratic
complexity is too expensive, we compare the common sequence truncation approach to our linear
Latte-Macchiato layer (Latte-RGLRU-SWA++). Latte-Macchiato uses a 128-token sliding window
on the full sequence. Figure 5b shows Latte-Macchiato outperforming standard attention on truncated
sequences. We maintain a consistent number of training tokens across sequence lengths by adjusting
batch sizes for standard causal attention. Both methods use 128 latent states and identical hyperpa-
rameters, see Table 6 for more details. We use BookCorpus dataset (Zhu et al., 2015) because it has
longer raw sequences than OpenWebText, thus making global information more relevant.

Sequence Extrapolation. Considering that long sequences improve perplexity, we also examine
the model’s ability to extrapolate to sequences longer than those seen during training. Specifically,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 32 64 128 256 512 1024

L

30.0

32.5

35.0

37.5

40.0

42.5

E
va

lP
PL

Latte-RGLRU++
Standard Causal Attention

(a)

128 256 512 1024

Sequence Length

18.5

19.0

19.5

20.0

20.5

21.0

E
va

lP
PL

Standard Causal Attention
Latte-RGLRU-SWA++

(b)

Figure 5: (a) The effect of latent state size on test perplexity for 1024-token sequences in Latte-
RGLRU++. Compared with standard causal attention. (b) The impact of increasing sequence length
on the performance of standard causal attention. Compared with RGLRU-SWA++ using 128 long
sliding window and trained on 1024 sequence length.

we train on 5K-token sequences from the BookCorpus dataset and evaluate on sequences up to 16K
tokens. A comprehensive overview of the training hyperparameters is provided in Table 6. As shown
in Figure 6, our model successfully extrapolates to longer sequences, whereas the performance of
standard causal attention degrades as the sequence length increases. Notably, Latte-RGLRU-SWA++
also achieves performance comparable to standard attention on sequences seen during training. We
use YARN (Peng et al., 2023b) relative positional encoding for standard attention and ROPE for
sliding window attention in Latte. YARN is used because it helps transformers extrapolate.

0 2000 4000 6000 8000 10000 12000 14000 16000

Tokens

12.5

15.0

17.5

20.0

22.5

25.0

E
va

lP
PL

Latte-RGLRU-SWA++
Yarn Standard Causal Attention

Figure 6: Sequence Length Extrapolation for Attention and Latte-Macch. Both models were trained
on sequences of length 5K which are extrapolated to 16K during testing.

Latent Collapse. A common issue with latent variable models is latent collapse, where only a small
subset of latent states is used. As demonstrated in Figure 7, Latte does not exhibit latent collapse,
even in the absence of dropout. The figure also highlights that local attention and Latte attention
are effectively used, with the probability mass distributed across various latent states. The plots are
generated from various heads and layers of the Latte-RGLRU-SWA++ model, as detailed in Table 2.
We provide plots for all layers and heads in Figure 14.

4.4 BIDIRECTIONAL TASKS

Long-Range Arena (LRA) (Tay et al., 2021) is a collection of classification benchmark designed to
evaluate the long-range capabilities of models, with context lengths ranging from 2K to 16K tokens
(see Appendix A.2). All models used in these experiments are bidirectional. Since Latte shares more
similarities with transformer architectures, we primarily compare it against transformer baselines.
However, it is important to note that state-based models currently represent the state-of-the-art on
LRA tasks (Gu et al., 2021; Smith et al., 2022).

Our initial model, Latte, implements the bidirectional formulation introduced in Definition 1 and
employs absolute positional encodings. As shown in Table 3, this model performs comparably
to the best transformer-based competitors, but it does not reach the performance levels of time-
invariant state space models. However, when we incorporate the recurrent linear layer, performance
improves significantly for the discrete tasks in the benchmark, although the image datasets continue

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

(a) Layer 1, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

(b) Layer 3, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

(c) Layer 4, Head 1

Figure 7: Latte Macchiato. Plots of p(l|t) for different layers and heads across a sequence of
25 tokens and l = 0, . . . , 16. State 0 corresponds to using standard causal windowed attention,
whereas states higher than zero correspond to global latent tokens. Brighter means higher probability.
Hyperparameters are provided in Table 6.

Table 3: Classification accuracies for LRA dataset. We report the best test score (higher is better).
All Latte versions are bidirectional.

Model ListOps Text Retrieval Image Pathfinder

Bid. Attention 36.37 64.27 57.46 42.44 71.40
Linformer 35.70 53.94 52.27 38.56 76.34
Performer 18.01 65.40 53.82 42.77 77.05
Longformer 35.63 62.85 56.89 42.22 69.71
Reformer 37.27 56.10 53.40 38.07 68.50
BigBird 36.05 64.02 59.29 40.83 74.87
Linear Transformer 16.13 65.90 53.09 42.34 75.30
Luna Bid. L = 128 38.01 65.74 79.55 47.47 78.89
Mega-Chunk 58.76 90.19 90.97 85.80 94.41
S5 62.15 89.31 91.40 88.00 95.33

Latte 40.18 64.51 73.39 47.55 75.61
Latte-RGLRU++ 56.7 83.85 81.07 57.61 72.13
Latte-RGLRU-SWA++ 61.39 85.8 87.67 70.19 73.69

to lag behind. This is a common trend, where even state space models like Mamba, which excel
in discrete tasks such as language modelling, perform poorly on continuous data3. Performance
on discrete tasks is further enhanced by using bidirectional sliding window in Latte-Macchiato
(Latte-RGLRU-SWA++). The full set of hyperparameters is provided in Table 8.

4.5 EXTENDING A PRE-TRAINED MODEL

Training large models from scratch is computationally expensive, even when the sequence mixing
layer (e.g., attention) has linear time and memory complexity. Recent work has demonstrated
preliminary success in distilling pre-trained quadratic self-attention layers into sub-quadratic layers,
such as Mamba (Bick et al., 2024). However, unlike Latte, these architectures (Gu & Dao, 2023)
significantly differ from the attention mechanisms used in standard transformers, making knowledge
distillation from pre-trained transformers more complex. Other research has modified relative
embeddings in standard attention to enable sequence extrapolation, but the computational cost
remains quadratic (Sun et al., 2022). We use Latte-Macchiato with SWA weights taken from a pre-
trained large model and show that training only the Latte-specific weights for 1.6B tokens is sufficient.

3As discussed by the authors of Mamba in github.com/state-spaces/mamba/issues/282

9

https://github.com/state-spaces/mamba/issues/282

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

This approach enables us to achieve desirable properties, such as global context and effective sequence
length extrapolation, by bootstrapping from a pre-trained open-source large language model.

In our experiments, we use a pre-trained 2.6B Gemma model (Gemma-Team, 2024) and replace the
standard attention layer with a Latte-Macchiato layer of 128 long sliding window attention. The
model is trained on the SlimPajama dataset (Soboleva et al., 2023), for a single day on four 80GB
A100 GPUs, see Table 7 for more details. In Table 4, we evaluate both the original Gemma model
and our modified version, Gemma Macchiato, on the validation set as well as other publicly available
corpora4. First, on sequences of length 4K, which match the training length, we find that our model’s
results are comparable to or even exceed those of the original model. When extending the sequence
length to 8K and 16K tokens, our model significantly outperforms Gemma, demonstrating that
excellent context extrapolation capabilities are acquired with minimal additional training steps.

Table 4: PPL ↓ on the validation set for 4K, 8K and 16K sequences. Gemma-Macchiato is initialised
from Gemma and pre-trained on Slim-Pajama. Unlike Gemma-Macchiato, Gemma fails to generalise
to longer sequences.

Gemma Gemma-Macchiato
Dataset 4K 8K 16K 4K 8K 16K

Slim-Pajama 10.97 36.35 294.18 10.14 9.99 10.27
Pile 7.42 19.26 243.54 7.27 6.98 7.04
OWT 10.75 38.36 252.74 10.76 10.72 10.99
Tiny-Stories 5.45 19.15 66.61 4.26 4.34 4.30

We also check the abilities of the distilled model on a standard natural language harness of multiple-
choice question-answering. Like the general trend of linear models, performance decreases especially
on tasks like MMLU Mercat et al. (2024); Zhang et al. (2024). However, our aim is not to outperform
standard attention, but to provide a linear global context extension method which is a better alternative
to sequence truncation, often when the quadratic cost of attention becomes a limitation.

Table 5: Common Few Shot learning benchmarks. The score is accuracy or normalized accuracy (↑).
We use a sliding window of size 128.

.
Model MMLU HellaSwag Lambada ARC-C ARC-E WinoG Piqa BoolQA

Gemma2 2B 53.0 73.03 69.8 53.4 80.2 71.4 79.1 73.61
Gemma-Mach 2B 46.8 73.11 68.29 52.9 76.9 70.6 78.7 71.48
Mamba (3B) 26.2 71.0 - 41.7 68.2 65.9 78.1 71.0
GLA (1.3B) - 49.8 46.9 26.6 57.2 53.9 71.8 -

5 CONCLUSION

We introduced a latent attention mechanism that scales linearly with sequence length and serves as
a drop-in replacement for standard attention. While previous approaches have explored low-rank
representations, to the best of our knowledge, none have interpreted these methods as a latent variable
model, from which a straightforward formulation for both bidirectional and causal variants can
be derived, giving SOTA results in language modelling. Furthermore, our framework extends this
approach by integrating local sliding window attention with global latent attention. This allows one
to now easily take a pre-trained large language model and considerably extend its usable context
length with only modest additional training and at minimal additional run-time cost.

Our initial focus has been on language modelling and long-range classification tasks and future work
will consider tasks such as question-answering and extensions to multimodal models.

4We use the version without copyrighted content huggingface.co/datasets/monology/pile-uncopyrighted

10

https://huggingface.co/datasets/monology/pile-uncopyrighted

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham,
Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. ETC: Encoding Long and Structured
Inputs in Transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and improving recall in efficient language models, 2023.
URL https://arxiv.org/abs/2312.04927.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The Long-Document Transformer.
arXiv preprint arXiv:2004.05150, 2020.

Aviv Bick, Kevin Y. Li, Eric P. Xing, J. Zico Kolter, and Albert Gu. Transformers to ssms: Distilling
quadratic knowledge to subquadratic models, 2024. URL https://arxiv.org/abs/2408.
10189.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: Composable Transformations of Python+NumPy Programs, 2018. URL
http://github.com/google/jax.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate Deep Network
Learning by Exponential Linear Units (Elus). arXiv preprint arXiv:1511.07289, 2015.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive Language Models beyond a Fixed-Length Context. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, 2019.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language Modeling with Gated
Convolutional Networks, 2017. URL https://arxiv.org/abs/1612.08083.

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Desjardins,
Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas, and Caglar
Gulcehre. Griffin: Mixing gated linear recurrences with local attention for efficient language
models, 2024. URL https://arxiv.org/abs/2402.19427.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019. doi: 10.18653/v1/N19-1423.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hun-
gry Hungry Hippos: Towards Language Modeling with State Space Models. In International
Conference on Learning Representations, 2023.

Gemma-Team. Gemma 2: Improving Open Language Models at a Practical Size, 2024. URL
https://arxiv.org/abs/2408.00118.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neural Networks. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
2011.

Aaron Gokaslan and Vanya Cohen. OpenWebText Corpus, 2019. URL http://Skylion007.
github.io/OpenWebTextCorpus.

11

https://arxiv.org/abs/2312.04927
https://arxiv.org/abs/2408.10189
https://arxiv.org/abs/2408.10189
http://github.com/google/jax
https://arxiv.org/abs/1612.08083
https://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2408.00118
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently Modeling Long Sequences with Structured
State Spaces. In International Conference on Learning Representations, 2021.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le. Transformer Quality in Linear Time, 2022.
URL https://arxiv.org/abs/2202.10447.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General Perception with Iterative Attention. In International Conference on Machine
Learning, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast Autoregressive Transformers with Linear Attention. In International Conference on
Machine Learning, 2020.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in Vision: A Survey. ACM Computing Surveys (CSUR), 2022.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The Efficient Transformer. In
International Conference on Learning Representations, 2019.

Alex Krizhevsky et al. Learning Multiple Layers of Features from Tiny Images. Master’s Thesis,
University of Toronto, 2009.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A Survey of Transformers, 2021. URL
https://arxiv.org/abs/2106.04554.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke Zettle-
moyer. Luna: Linear Unified Nested Attention. Advances in Neural Information Processing
Systems, 2021.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: Moving Average Equipped Gated Attention. In The Eleventh
International Conference on Learning Representations, 2023.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning Word Vectors for Sentiment Analysis. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, 2011.

Jean Mercat, Igor Vasiljevic, Sedrick Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and Thomas
Kollar. Linearizing Large Language Models, 2024. URL https://arxiv.org/abs/2405.
06640.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou,
Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau,
Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Bolun
Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng
Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs for the Transformer
Era, 2023a. URL https://arxiv.org/abs/2305.13048.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient Context Win-
dow Extension of Large Language Models, 2023b. URL https://arxiv.org/abs/2309.
00071.

Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. Lightning Attention-
2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models, 2024a.
URL https://arxiv.org/abs/2401.04658.

12

https://arxiv.org/abs/2202.10447
https://arxiv.org/abs/2106.04554
https://arxiv.org/abs/2405.06640
https://arxiv.org/abs/2405.06640
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2309.00071
https://arxiv.org/abs/2309.00071
https://arxiv.org/abs/2401.04658

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. Various Lengths,
Constant Speed: Efficient Language Modeling with Lightning Attention, 2024b. URL https:
//arxiv.org/abs/2405.17381.

Markus N Rabe and Charles Staats. Self-attention Does Not Need O(n2) Memory. arXiv preprint
arXiv:2112.05682, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
Models are Unsupervised Multitask Learners. OpenAI blog, 2019.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient Attention:
Attention with Linear Complexities. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2021.

Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified State Space Layers for
Sequence Modeling. In International Conference on Learning Representations, 2022.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel
Hestness, and Nolan Dey. SlimPajama: A 627B Token Cleaned and
Deduplicated Version of RedPajama. https://cerebras.ai/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
Transformer with Rotary Position Embedding. Neurocomputing, 2024.

Weigao Sun, Zhen Qin, Dong Li, Xuyang Shen, Yu Qiao, and Yiran Zhong. Linear Attention
Sequence Parallelism, 2024. URL https://arxiv.org/abs/2404.02882.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaudhary,
Xia Song, and Furu Wei. A Length-Extrapolatable Transformer, 2022. URL https://arxiv.
org/abs/2212.10554.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive Network: A Successor to Transformer for Large Language Models, 2023.
URL https://arxiv.org/abs/2307.08621.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. Long Range Arena: A Benchmark for Efficient
Transformers. In International Conference on Learning Representations, 2021.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient Transformers: A Survey. ACM
Comput. Surv., 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
Efficient Foundation Language Models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. Advances In Neural Information
Processing Systems, 2017.

Ningning Wang, Guobing Gan, Peng Zhang, Shuai Zhang, Junqiu Wei, Qun Liu, and Xin Jiang.
ClusterFormer: Neural Clustering Attention for Efficient and Effective Transformer. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics, 2022.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-Attention
with Linear Complexity. arXiv preprint arXiv:2006.04768, 2020.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated Linear Attention
Transformers with Hardware-Efficient Training, 2024. URL https://arxiv.org/abs/
2312.06635.

13

https://arxiv.org/abs/2405.17381
https://arxiv.org/abs/2405.17381
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2404.02882
https://arxiv.org/abs/2212.10554
https://arxiv.org/abs/2212.10554
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2312.06635

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big Bird: Transformers for
Longer Sequences. Advances In Neural Information Processing Systems, 2020.

Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization, 2019. URL https:
//arxiv.org/abs/1910.07467.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The Hedgehog and the
Porcupine: Expressive Linear Attentions with Softmax Mimicry, 2024. URL https://arxiv.
org/abs/2402.04347.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching
Movies and Reading Books. In The IEEE International Conference on Computer Vision (ICCV),
December 2015.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Denis Charles, Eren Manavoglu, Tuo Zhao, and Jianfeng
Gao. Efficient Long Sequence Modeling via State Space Augmented Transformer, 2022. URL
https://arxiv.org/abs/2212.08136.

A EXPERIMENTAL DETAILS

This section describes in detail the datasets and hyperparameters used for our language modelling
and classification experiments.

A.1 LANGUAGE MODELLING

OpenWebText (Gokaslan & Cohen, 2019) is an open-source version of the corpus used to train
GPT (Radford et al., 2019) and consists of 41 GB of data extracted from 8,013,769 documents. We
tokenize the corpus using a pre-trained Byte Pair Encoding (BPE) tokenizer with a vocabulary of
50,267 tokens. We also ensure that sequences are consistently of length 1024 by concatenating
consecutive tokenized examples until this length is reached. This eliminates the need for padding,
ensuring that it is not a confounding factor and results in a more efficient computation.

A.1.1 HYPERPARAMETERS

In this section, we describe the hyper-parameters used in all of the language modelling experiments.
Where the hyper-parameter is missing, it means that we vary it in the experiment and its value is clear
from the corresponding section in the paper.

A.2 LRA DATASET

This section displays the hyperparameters employed in the bidirectional experiments and provides a
brief description of the synthetic datasets utilized in the LRA corpus. A more comprehensive account
can be found in the original paper (Tay et al., 2021).

In the experiments, one layer consists of a standard transformer block where the transformation
operation that gives x̃t is Latte or Standard Attention. For positional encoding, we use the classic
transformer sinusoidal embeddings. This convention holds for both bidirectional and unidirectional
problems. A complete implementation can be found in our code repository: “dummy url”.

A.2.1 LISTOPS

The dataset contains sequences up to length 2048 of numbers from 0 to 9 and four operators: MAX,
MEAN, MEDIAN and SUM MOD. Parentheses are used to delimit the reach of each operator. The
answer is also a digit from 0 to 9, which allows us to easily transform the problem into a ten-way
classification task.

14

https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/2402.04347
https://arxiv.org/abs/2402.04347
https://arxiv.org/abs/2212.08136

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters for the language generation task. LR is the learning rate and “#” denotes
“the number of”.

HyperParam. OpenWebText Hyperparams. Figure 5 Hyperparams. Figure 6

#Layers 12 12 12
#Heads 8 12 8
Hidden Dim (D) 756 512 512
Feed Forward Dim. 3072 2048 2048
Latent Dim (L) 128 128 128
Local Attention Window 128 128 128
Convolution Kernel (K) 3 3 3
Dropout 0.0 0.0 0.2
LR 0.0006 0.0006 0.00025
LR-Warmup 2000 1000 2000
LR-Decay Cosine Cosine Cosine
#Iters. 100000 10000 300000
Weight Decay 0.01 0.01 0.01
Seq. Len. (T) 1024 - 5000
Batch Size (B) 80 - 4
Tokenizer BPE(57K) BPE(57K) BPE(57K)
Embedding Type Rope Rope Rope
Unroll Factor 256 256 256

Table 7: Hyperparameters for adopting Gemma to our framework. All the Gemma hyperparameters
are kept intact: huggingface.co/google/gemma-2-2b. LR is the learning rate and “#” denotes “the
number of”.

HyperParam. Value

Local Attention Window 128
Latent Dim (L) 128
LR 0.0006
LR-Warmup 2000
LR-Decay Cosine
#Iters. 100000
Seq. Len. (T) 4096
Batch Size (B) 4
Tokenizer Gemma2

Table 8: Hyperprameters used for training on LRA. Number of latent states L specified in the result
table. H=number heads, D=hidden dimension, LR=learning rate, B=batch size, WD=weight decay.
#Layers denotes the number of layers which include attention/approximation of attention and
non-linear projections. “Embed.” is the type of embedding used by the SWA.

Dataset #Layers H L D LR B WD Dropout Epochs Embed.

ListOps 6 4 40 128 1e-3 64 0.01 0.1 50 Rope
Text 6 4 256 256 1e-3 32 0.05 0.1 32 Rope
Retrieval 6 4 40 128 1e-4 32 0.01 0.1 20 Rope
Image 6 4 40 512 1e-3 32 0.05 0.1 200 Absolute
Pathfinder 6 4 256 256 1e-3 64 0.03 0.2 200 Absolute

A.2.2 TEXT

The Text corpus is represented by a binary classification task with long text sequences. One can
easily obtain large contexts from existent datasets by tokenizing at the character level. This part of
the benchmark is derived from the IMDb (Maas et al., 2011) movie review corpus, resulting in 4K
character sequences.

15

https://huggingface.co/google/gemma-2-2b

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

s l t

Figure 8: Graphical model for bidirectional Latte, l, t and s are discrete random variables.

A.2.3 RETRIEVAL

This dataset tests the ability of a model to predict the similarity between two long documents. Similarly
to the previous corpus, it ensures long contexts through character-level tokenization, resulting in 4K
tokens per document. Using a “two-tower model setup” (Tay et al., 2021) the total sequence length
becomes 8K. This is a binary classification problem, which uses accuracy as a metric.

A.2.4 IMAGE

Alongside text, images can also exhibit long-range dependencies by flattening the original image into
a sequence. The Image dataset is the sequential version of Cifar10 (Krizhevsky et al., 2009), which
contains images of 10 different entities: “airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck”. To obtain a sequence with one input channel we apply a grayscale transformation. The model
needs to predict the correct entity class, given the flattened image represented as a sequence of tokens.

A.2.5 PATHFINDER

This part of the benchmark is also represented by images where the task is to predict whether there
is a path between two points in a black-and-white image. This dataset consists of 32× 32 images
which after flattening result in sequences of length 1024. In general larger sequences can be created
by increasing the resolution. Data is tokenized similarly to the image dataset in Section A.2.4.

A.2.6 PATHX

This dataset is a version of PathFinder where the image size is increased to 128× 128, resulting in
flattened sequences of 16384 tokens. Since all the transformer architectures fail on this dataset, we
do not add it to the benchmark.

B LATTE

B.1 GRAPHICAL MODEL

Our latent variable model consists of three random variables as depicted in Figure 8.

B.2 TIME AND MEMORY COMPLEXITY

For the training complexity on a sequence of length T , we note that given αt−1,l, we need O(LD)
time and O(L) memory to compute αt,l. Since each βt requires only O(LD) time and O(1) space, all
the terms γt,l can be precomputed using matrix multiplication in time O(TLD) and O(TL) storage5.
Similarly, given ṽt−1,l one needs O(LD) time to calculate the update to ṽt,l and O(LD) space to
(in-place) store the update ṽt,l. Equation 10 therefore allows us to calculate all terms x̃1, . . . , x̃T in
total time O(TLD) and total space O(TL+ LD). This is compared to O(T 2D) time and O(TD)
space complexity for standard attention6 (Rabe & Staats, 2021).

5γt,l can be computed on the fly for each x̃t reducing the memory complexity to O(L). However, we
precompute it to take advantage of matrix multiplication on GPU.

6This is based on a sequential implementation – using a naive vectorised GPU implementation retains the
time complexity but increases the space requirement to O(TLD) for Latte and O(T 2D) for standard attention.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 9: Time and memory complexity during training. Only dominating terms are kept. T - sequence
length, L - number of latent states, D - hidden dimension W - local attention window.

Model Time Memory

Latte Causal O(TLD) O(TLD)
Latte Causal Seq. O(TLD) O(TL+ LD)
Latte Machiatto O(TLD + TWD) O(TLD + TWD)
Latte-Machiatto Seq. O(TLD + TWD) O(TL+ LD + TWD)
Latte Bidirectional O(TLD) O(TL+ LD)
Attention O(T 2D) O(T 2D)
Seq. Attention O(T 2D) O(TD)
Linformer O(TLD) O(TLD)
Perceiver O(TLD) O(TLD)

B.3 NUMERICAL STABILITY

The term p(l|t) in equation 8 can be calculated in a numerically stable way using exponential-max-
normalisation7. However, we cannot directly apply the same approach to stabilise αt,l since we
require p(s|l, t) in equation 8 to normalise for each t; furthermore, this must be computed sequentially
to retain the optimal computational complexity. To exemplify this difference, consider a sequence
y = [1, 10, 1000], for which we require normalised distributions eyi/

∑i
j=1 e

yj for each element
i ∈ {1, 2, 3}. In this case, subtracting the maximum value 1000 from each element [−999,−990, 0]
will result in underflow for the first two elements when exponentiated, giving numerically meaningless
results, except for the third distribution. We address this using a running maximum approach (Rabe &
Staats, 2021). Let θt,l = xT

tw
k
l and θ∗t,l = maxs∈{0,...,t} θs,l. We then use a sequential computation:

αt,l = αt−1,le
θ∗
t−1,l−θ∗

t,l + eθt,l−θ∗
t,l , ṽt,l = ṽt−1,le

θ∗
t−1,l−θ∗

t,l + eθt,l−θ∗
t,lvt (19)

This value for α is then used to define γ in equation 10, which is in turn used with ṽ above to compute
x̃t.

B.4 RELATIVE EMBEDDINGS

Relative embeddings have the advantage of generalising to sequence lengths unseen during training.
Since Latte calculates similarities between sequence tokens and global latent states, for which it is less
meaningful to define a relative distance. We therefore introduce VAPOR (Value Acting POsitional
Rotations) that computes values based on the relative distance between tokens, but leaves the attention
weights unaffected based on introducing a learnable rotation matrix R:

x̃t =

t∑
s=1

p(s|t)Rt−svs = Rt
t∑

s=1

p(s|t)R−svs = Rt
L∑

l=1

p(l|t)
t∑

s=1

p(s|l, t)R−svs (20)

Notice that in equation 20 we split the power of the rotation matrix in Rt prefactor and R−s postfactor.
This is computationally advantageous since for Latte we can reuse the calculation of the inner sum for
different tokens t. Hence, the time complexity of VAPOR remains linear. Furthermore, to efficiently
implement matrix powers, we use block diagonal rotation matrices for R as in Roformer (Su et al.,
2024). VAPOR can be used similarly in the bidirectional setting.

C EFFICIENCY

In this section, we focus on the runtime speed of the simple Latte layer as defined by Definition 1 and
Definition 2 to eliminate other confounding factors like convolutions or sliding window attention.
Figure 9 shows the computational and memory costs between standard causal attention and different
versions of our algorithm for various sequence lengths. To isolate the complexity of the attention
mechanism alone, we only calculate the time required to compute the transform x̃ of the input

7exi/
∑

i e
xi = exi−x∗

/
∑

i e
xi−x∗

, where x∗ is the maximum of the xi values.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

tokens. Whilst Latte and other efficient attention mechanisms have better scaling properties with
sequence length, GPU parallelisation of standard attention can make standard attention faster for
short sequences, beyond which efficient approaches dominate. See Figure 10 for results on smaller
sequence lengths. Since Latte time complexity is O(TLD), the crossover point where it becomes
faster than standard attention will increase with the number of latent states L, see Figure 12 in
Appendix C.1. Hence, there is a tradeoff between the speed of the method and model capacity.

(a) Time Performance. (b) Memory Performance.

Figure 9: Runtime comparison of Causal and Bidirectional Latte with both the Standard Causal
Attention and the sequential implementation. Here we use batch size B = 2, transformer hidden
dimension of D = 128, number of latent states L = 128 and number of heads H = 4. For all the
sequential implementations, we unroll the loop 256 times (Appendix A.1.1) and group the operations
into chunk sizes of 1000 for the sequential standard attention. We report results as an average of 100
repeats.

In Figure 10 we benchmark the time performance for Latte on smaller sequence lengths, complement-
ing Figure 9a. We notice that Causal Latte is slower than Standard Causal Attention until sequence
length 1600. Nonetheless, our implementation is always faster than the sequential version of Standard
Causal Attention, with a smaller memory usage. The bidirectional case is faster and uses less memory
for any sequence length.

(a) Time Performance. (b) Memory Performance.

Figure 10: Complementary version of Figure 9a for smaller sequence lengths. The same settings
were used as in Figure 9a and we average the results over 100 runs.

We also do a comparison with FlashAttention (Dao et al., 2022) in Figure 11. We see that our linear
mechanism is still faster on long sequences, even though we do not provide a CUDA hardware
optimisation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 50000 100000 150000 200000 250000 300000

Sequence length

0

10000

20000

30000

40000

50000

Ti
m

e
(m

s)

Flash Causal Attention
Causal Latte

Figure 11: Flash Causal Attention compared to Latte Attention for one layer. Batch size is 5, head
dimension is set to 8.

C.1 IMPACT OF NUMBER OF STATES ON RUNTIME

We also analyse the runtime cost for different numbers of latent variables. We fix the sequence
length T to 5000, the hidden dimension D to 512, the number of heads H to 4 and batch size B to 4,
while we vary the number of latent states from 64 to 512. The loop unroll factor can be considered
a hyperparameter concerning the computation time. In this case, we choose an unroll factor of 10.
Figure 12 shows that both bidirectional and causal Latte is faster than the linear memory causal
attention implemented with a scan; however, it is slightly slower than the standard causal attention
when L = D = 512. This is explained by the fact that standard causal attention exploits parallelised
matrix operations on GPU. Furthermore, as we previously showed in Section B.3, Latte is still faster
when the sequence length increases.

Figure 12: Run time versus the number of latent states L. SCA: Standard Causal Attention, LMCA:
Standard Causal Attention (Sequential), CL: Causal Latte, BL: Bidirectional Latte. Experiment
settings: T = 5000, D = 512, H = 4, B = 4

C.2 INFERENCE PERFORMANCE

We take the models trained on OpenWebText data and study the inference time requirements for
the language generation task. All the models receive an initial prompt of 20 tokens and generate
sequences autoregressively using top 40 tokens sampling. The generated sequence length is 256

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

tokens. We run our experiments on both CPU and one A100 GPU and show in Table 10 that in the
case of CPU-hosted inference and batch 16, our models are ten times faster than the transformer
models. As we increase the batch size, the difference becomes even larger. On GPU, our models are
still considerably faster than transformers for both batch sizes. Notably, we see that the runtime on
GPU for Latte models is not impacted by the increase in batch size due to the size of the GPU.

Table 10: Inference time in seconds for models used in OpenWebText Table 1 for 256 sequence
length.

Model Batch Size CPU Time (s) GPU Time (s)

Standard Att. (additive) 16 807.318 399.290
Rope (rotation) 16 940.305 458.897
Latte (additive) 16 81.620 75.766
VAPOR Latte 16 89.163 101.935

Standard Att. (additive) 128 2002.587 554.828
Rope (rotation) 128 2228.802 622.909
Latte (additive) 128 111.778 75.223
VAPOR Latte 128 124.606 101.797

D RETRIEVAL CAPABILITIES

Linear models are known for being worse than transformers in retrieval capabilities(Arora et al.,
2023). Hence we test the capabilities of our model on the synthetic MQAR data (Arora et al., 2023)
and compare it with two other linear models and the standard transformer. Figure 13 shows that
Latte-Mach++ performs competitively with the transformer and outperforms the other linear models
in our training set. In all the experiments, the window size of attention is 128, being smaller than the
context length.

64 128 256
State dimension

0.92

0.94

0.96

0.98

1.00

AC
C

Causal Latte
Standard Causal Attention
GLA
Mamba

(a) Sequence length 256, number keys: 16

64 128 256
State dimension

0.0

0.2

0.4

0.6

0.8

1.0

AC
C

Standard Causal Attention
Causal Latte
GLA
Mamba

(b) Sequence length 512, number keys: 64

Figure 13: MQAR dataset on different sequence length and number of key-value pairs. We set the
number of test examples to 10000 and train examples to 100000.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E CAUSAL LATTE IMPLEMENTATION

1 @partial(jax.jit, static_argnums=(3, 5))
2 def causal_latte(Wq, Wk, Wv, H, X, unroll=100):
3 """
4 Scan implementation of latte.
5 B: batch size H: nr heads, T: seq_len, D: hidden_dim. L: number latent states
6 Args:
7 Wq: jnp.array(DL), Wk:jnp.array(DL), Wv:jnp.array(DM) - parameter matrices
8 H: int - nr heads
9 X: jnp.array(BTD) - input

10 unroll: int - unroll of the loop
11 Returns:
12 y: jnp.array(BTD) - transformed output sequence
13 """
14
15 def accumulate(carry, args):
16 csum, norm_cumsum, prev_mx = carry
17 Qs_t, curr_alph, V_t, c_mx = args
18 revert_maxi = jnp.exp(-c_mx + prev_mx)
19 add_maxi = jnp.exp(curr_alph - c_mx)
20
21 norm_cumsum = jnp.einsum("BHL,BHL->BHL", norm_cumsum, revert_maxi)
22 norm_cumsum += add_maxi
23 carry = jnp.einsum("BHLD,BHL->BHLD", csum, revert_maxi)
24 carry += jnp.einsum("BHL,BHD->BHLD", add_maxi, V_t)
25 y = jnp.einsum("BHL,BHLD->BHD", Qs_t / norm_cumsum, carry)
26 return ((carry, norm_cumsum, c_mx), y)
27
28 B, T, D = X.shape
29 L = Wk.shape[-1]
30
31 V = jnp.einsum("DM,BTD->TBM", Wv, X).reshape(T, B, H, -1)
32 Q = jnp.einsum("DL,BTD->TBL", Wq, X).reshape(T, B, H, -1)
33 K = jnp.einsum("DL,BTD->TBL", Wk, X).reshape(T, B, H, -1)
34 maxi = jax.lax.cummax(K, axis=0)
35
36 init_alpha = jnp.zeros(shape=(B, H, L // H))
37 init_carry = jnp.zeros((B, H, L // H, D // H))
38 Qs = jax.nn.softmax(Q, axis=-1)
39 _, y = jax.lax.scan(
40 accumulate,
41 unroll=unroll,
42 init=(
43 init_carry,
44 init_alpha,
45 K[0],
46),
47 xs=[Qs, K, V, maxi],
48)
49 # TBHD -> BTHD
50 y = y.transpose(1, 0, 2, 3)
51 return y.reshape(B, T, D)

Listing 1: Scan version of Latte.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 1, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 1, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 1, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 1, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 1, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 1, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 1, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 1, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 2, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 2, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 2, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 2, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 2, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 2, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 2, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 2, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 3, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 3, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 3, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 3, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 3, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 3, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 3, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 3, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 4, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 4, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 4, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 4, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 4, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 4, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 4, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 4, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 5, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 5, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 5, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 5, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 5, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 5, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 5, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 5, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 6, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 6, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 6, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 6, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 6, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 6, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 6, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 6, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 7, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 7, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 7, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 7, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 7, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 7, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t
Layer 7, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 7, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 8, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 8, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 8, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 8, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 8, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 8, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 8, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 8, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 9, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 9, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 9, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 9, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 9, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 9, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 9, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 9, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 10, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 10, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 10, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 10, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 10, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 10, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 10, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 10, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 11, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 11, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 11, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 11, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 11, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 11, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 11, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 11, Head 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 12, Head 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 12, Head 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 12, Head 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 12, Head 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 12, Head 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 12, Head 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 12, Head 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
l

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

t

Layer 12, Head 8

Figure 14: p(l|t) for layers 1 to 12 and heads 1 to 8, from Section 4.3
22

	Introduction
	Latte Attention
	Non-causal (bidirectional) Latte
	Causal Latte
	Latte Macchiato
	Extensions

	Related Work
	Experiments
	Language Modelling
	Empirical Runtime Efficiency
	Latent State Analysis
	Bidirectional Tasks
	Extending a Pre-trained Model

	Conclusion
	Experimental Details
	Language Modelling
	Hyperparameters

	LRA Dataset
	ListOps
	Text
	Retrieval
	Image
	PathFinder
	PathX

	Latte
	Graphical Model
	Time and Memory Complexity
	Numerical Stability
	Relative Embeddings

	Efficiency
	Impact of number of states on runtime
	Inference Performance

	Retrieval Capabilities
	Causal Latte Implementation

