

GUARD: GOLD-UNCHANGED ANCHORED DISTILLATION FOR DEFENDING LLMS AGAINST MEMBERSHIP INFERENCE ATTACKS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Large language models (LLMs) are widely fine-tuned for many domain-specific
 014 tasks that often contain sensitive and private data. This heightens the risk of mem-
 015 bership inference attacks (MIAs), which aim to infer whether a particular sam-
 016 ple appeared in training. Prior work has developed increasingly strong MIAs for
 017 fine-tuned LLMs, but practical and effective defenses remain significantly lim-
 018 ited. The core challenge is a **privacy-utility tension**: fine-tuning improves utility
 019 by increasing confidence on the ground-truth (“gold”) token, yet this shift creates
 020 statistical differences that reveal membership. In this work, we introduce **GUARD**
 021 (Gold-Unchanged Anchored Distillation), a novel, robust, and lightweight de-
 022 fense that mitigates privacy leakage while preserving model utility. GUARD
 023 first fine-tunes a teacher model on downstream data to capture generalization and
 024 memorization capabilities. It then constructs an anchored target distribution by
 025 fixing the gold token’s probability to its pre-trained value and preserving the fine-
 026 tuned model’s ranking among non-gold tokens while assigning them pre-trained
 027 magnitudes. A student is distilled to match this target. This design suppresses the
 028 dominant membership signal while retaining task-relevant distributional structure.
 029 Across diverse model families and benchmarks, GUARD demonstrates state-of-
 030 the-art downstream utility, enhanced robustness against membership inference at-
 031 tacks, improved design efficiency, and strong scalability across tasks. Code will
 032 be released upon acceptance.

1 INTRODUCTION

035 Large language models (LLMs) are driving a new wave of AI by effectively addressing diverse and
 036 complex generation, understanding, and reasoning tasks (Schluntz & Zhang, 2024; Brown et al.,
 037 2020; Achiam et al., 2023; Jimenez et al., 2024). Despite their remarkable capabilities and wide-
 038 ranging applications, LLMs raise serious privacy concerns due to their tendency to memorize infor-
 039 mation from confidential or private datasets during autoregressive learning (Das et al., 2025; Carlini
 040 et al., 2021). A particularly concerning threat is the membership inference attack (MIA), where an
 041 adversary determines whether a specific data record was used in training a target model (Yeom et al.,
 042 2018; Shi et al., 2023; Zhang et al., 2024a; Xie et al., 2024; Fu et al., 2024; Carlini et al., 2021; Wang
 043 et al., 2024a).

044 Recent studies (Yeom et al., 2018; Fu et al., 2024) have shown that MIAs are broadly applicable
 045 to LLMs, with vulnerabilities especially pronounced in **fine-tuned models** (Zhang et al., 2025).
 046 This contrast is intuitive: in large-scale pre-training, an individual example is typically observed
 047 only once, making pre-trained models relatively insensitive to existing MIA techniques (Achiam
 048 et al., 2023; Zhang et al., 2025). Fine-tuned models, however, are trained repeatedly on smaller,
 049 domain-specific datasets that often include personally identifiable information (Chen et al., 2024),
 050 proprietary content (Liu et al., 2025), or organizationally sensitive records (AI, 2024). Such repeated
 051 exposure renders fine-tuned models far more vulnerable to MIAs. In practice, many organizations
 052 and individuals fine-tune open-source or commercial LLMs for high-stakes applications such as
 053 medical analysis (Labrak et al., 2024), legal reasoning (Colombo et al., 2024), clinical support (Ja-
 gannatha et al., 2021), code generation (Wang et al., 2024b; Mu et al., 2024), and multilingual
 054 processing (Alves et al., 2024)—domains where data privacy is particularly critical. Protecting sen-

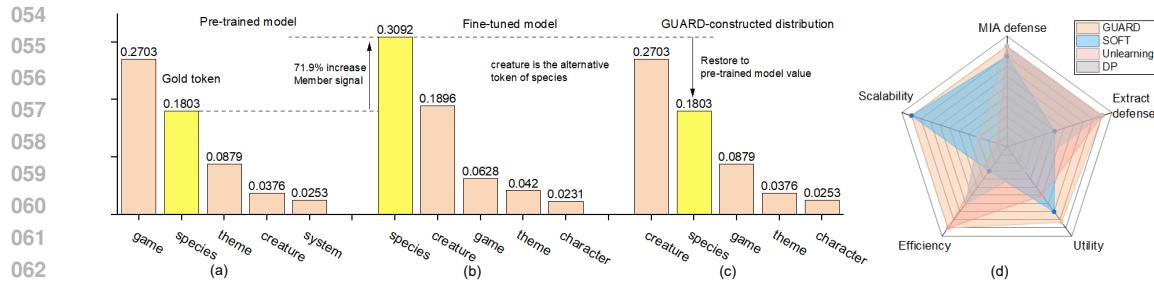


Figure 1: Comparison of token distributions and trade-offs of different defense methods. (a–c): Top-5 next-token distributions from the pre-trained model (p_0), fine-tuned model (p_{ft}), and GUARD-constructed distribution (q), with gold tokens in highlighted in yellow. As it shows, fine-tuning sharply increases gold token probability (e.g., +71.9%), boosting membership signals. GUARD restores the gold token probability to p_0 while preserving non-gold ranking from p_{ft} , effectively mitigating overfitting. (d): Radar plot shows the state-of-the-art balances in MIA defense, extraction attack, utility, efficiency, and scalability of GUARD as compared to existing methods. Note that “creature” is the alternative token of “species”.

sitive data in these scenarios is not only an ethical responsibility but also a regulatory requirement, thereby calling for effective and practical defenses (ccp; gdp).

Several lines of work aim to mitigate privacy risks in fine-tuned LLMs, including machine unlearning (Jang et al., 2022; Zhang et al., 2024b), differential privacy (DP) (Dwork, 2006; Abadi et al., 2016), and data obfuscation (Zhang et al., 2025). However, these methods entail sharp trade-offs in scalability, utility, efficiency, and efficacy. **Machine unlearning** attempts to revoke the influence of specific records by adjusting model parameters (e.g., via gradient inversion, influence functions, or re-weighting), yet current methods scale poorly and are typically limited to at most a few hundred samples per run (Zhang et al., 2024b; Fan et al., 2025). **DP** provides formal guarantees by injecting calibrated noise; yet in large generative models, it often induces substantial utility degradation, especially on nuanced sequence generation. **Data obfuscation** can preserve utility by masking or paraphrasing sensitive content (Zhang et al., 2025), but it is labor-intensive, risks semantic drift, and can remain vulnerable to re-identification or extraction (Carlini et al., 2021). These limitations motivate the need for **targeted defense mechanisms that scalably, efficiently, and robustly protect privacy while preserving the utility of models**.

In this work, we propose **GUARD** (**G**old-**U**nchanged **A**nchored **D**istillation), a novel, lightweight, and robust framework designed to mitigate privacy leakage in widely fine-tuned LLMs while preserving task performance. GUARD proceeds in three interlocked stages to achieve the goal. First, a model is fine-tuned on downstream data to capture both generalization and memorization capabilities. Second, a modified output distribution is constructed by preserving the gold token’s probability from the pre-trained model while reordering other tokens according to the fine-tuned model, but assigning their probabilities from the pre-trained model. Finally, knowledge distillation (Hinton et al., 2015; Gu et al., 2023) is applied, training the pre-trained model to match this anchored distribution with an additional penalty that prevents deviation of the gold token’s probability. **This framework directly targets the mechanism exploited by MIA attackers**, who often compare gold token probabilities between pre-trained and fine-tuned models to infer membership. By anchoring the gold token probability to that of the pre-trained model, GUARD can effectively neutralize this attack vector while retaining task-relevant knowledge.

At first glance, anchoring the gold token’s probability may seem counterintuitive, as fine-tuning often increases it. However, prior research (Furlanello et al., 2018; Phuong & Lampert, 2021; Sanh et al., 2020) has shown that fine-tuning does not merely amplify the probability of the gold token—it reshapes the entire output distribution, increasing probabilities for both the gold token and plausible alternatives while suppressing all others, as shown in Figures 1(a) and (b). The relative changes across the distribution—which tokens increase or decrease, and by how much—encode information about learned knowledge and the utility of models. By distilling the fine-tuned teacher into a pre-trained-anchored student (Figure 1(c)), GUARD captures this distributional knowledge, thereby maintaining task-relevant performance while significantly reducing privacy leakage.

We have conducted extensive experiments to evaluate GUARD on six benchmark datasets and three model families (LLaMA (Meta AI), GPT-Neo (Black et al., 2021), and Qwen (Team, 2024)). We test GUARD against nine MIA variants, including seven reference-free (Zlib (Carlini et al., 2021), Loss (Yeom et al., 2018), Lowercase (Carlini et al., 2021), Mink (Shi et al., 2023), Mink++ (Zhang et al., 2024a), ReCall (Xie et al., 2024), CON-ReCall (Wang et al., 2024a)) and two reference-based (Ratio (Carlini et al., 2021), Self-Prompt (Fu et al., 2024)) attacks. In all settings, GUARD consistently achieves state-of-the-art defense performance (Figure 1(d)). To further assess utility, we adopt the LLM-as-a-Judge framework (Zheng et al., 2023): models are evaluated on 200 constructed question–answer pairs sampled from Pile-CC and Wikipedia (Gao et al., 2020), scored with ChatGPT-4o ratings and ROUGE-L (Lin, 2004). The results show that GUARD maintains nearly identical performance to the original fine-tuned models despite privacy-preserving modifications. These findings demonstrate that **strong MIA defenses can be achieved without sacrificing task performance**.

Our contributions are threefold: (i) We systematically study the heightened vulnerability of fine-tuned LLMs to MIAs, highlighting the shortcomings of existing defenses. (ii) We introduce GUARD, a novel distillation-based framework that anchors gold token probabilities to the pre-trained model while transferring distributional knowledge from the fine-tuned model. (iii) We provide extensive empirical evidence across datasets, model families, and attack types, showing that GUARD achieves state-of-the-art defense with negligible utility loss.

2 RELATED WORK

Membership Inference Attacks (MIAs). MIA has long been a central topic in privacy and security for machine learning (Hu et al., 2022). Given a target model and a specific input, the goal of an MIA is to determine whether that input was part of the model’s training dataset. Early work has shown the effectiveness of MIAs across various domains, including both computer vision (Shokri et al., 2017) and natural language processing (NLP) (Carlini et al., 2021). In the era of LLMs, MIAs have gained renewed significance due to their ability to memorize, which can result in the potential exposure of sensitive or proprietary training data (Shi et al., 2023; Zhang et al., 2024a; Song et al., 2024; Carlini et al., 2021). Many MIAs exploit the model’s predictive bias—specifically, its tendency to assign higher probability (and thus lower loss) to the gold token for seen (member) data. This makes the gold token probability a strong indicator of membership. Recent MIAs often compare this signal between a fine-tuned model and its pre-trained counterpart: if the fine-tuned model assigns a disproportionately high probability to the gold token, the input is likely from its training set. This predictive disparity underpins the core threat model addressed in our work.

Existing Defense Mechanisms Against MIAs. Several strategies have been explored to mitigate privacy risks in fine-tuned LLMs, most notably **machine unlearning** (Jang et al., 2022; Zhang et al., 2024b), **differential privacy (DP)** (Abadi et al., 2016), and **data obfuscation** (Zhang et al., 2025). **Machine unlearning** seeks to enable models to “forget” sensitive data after training by removing the influence of targeted samples from model parameters. In principle, this approach allows a model to behave as if the data had never been included, without the expense of full retraining. However, existing methods often struggle with scalability, limiting their applicability in large-scale LLMs. **DP** offers strong theoretical guarantees by injecting carefully calibrated noise into gradients or parameters during training, ensuring that the presence or absence of any individual record cannot be reliably inferred. Despite its rigorous guarantees, DP frequently causes significant utility degradation, particularly in complex generation tasks that require fine-grained reasoning and semantic precision. **Data obfuscation** approaches instead focus on altering training examples to reduce leakage risks. For example, SOFT (Zhang et al., 2025) identifies influential data points based on their training loss and replaces them with obfuscated paraphrases. This targeted strategy helps balance privacy protection and model performance, mitigating membership leakage while preserving downstream accuracy. Nonetheless, such methods remain labor-intensive, risk altering semantic meaning, and can still leave models vulnerable to re-identification attacks. Taken together, these limitations highlight the need for **lightweight, scalable defenses that mitigate membership inference risks in fine-tuned LLMs while preserving utility**, motivating the approach we propose in this work.

Knowledge Distillation. Knowledge distillation (KD) (Hinton et al., 2015; Gu et al., 2023; Phuong & Lampert, 2021) trains a student LM $q_\theta(y | x)$ to match a fixed teacher $p(y | x)$ by mini-

162 mizing a divergence (usually token-level Kullback-Leibler (KL) or cross-entropy with soft targets).
 163 Unlike one-hot labels, the teacher’s full distribution encodes *dark knowledge* (relative probabilities
 164 among non-gold tokens under the context of LLMs), which improves sample efficiency and gener-
 165 alization in autoregressive generation. Temperature scaling ($\tau > 1$) (Hinton et al., 2015; Sanh et al.,
 166 2020) softens teacher logits, preventing probability mass from collapsing onto a single token and
 167 exposing richer rank information; empirically this stabilizes optimization and yields better students.
 168 Beyond vanilla logit matching, sequence-level KD transfers distributions over whole outputs, while
 169 intermediate-feature and self-distillation variants propagate hidden representations or use the model
 170 as its own teacher (Phuong & Lampert, 2021). Recent LLM work (Sanh et al., 2020; Gu et al., 2023)
 171 distills instruction-following and chain-of-thought signals from larger teachers to smaller students,
 172 maintaining quality with far fewer parameters. Theoretically, KD can reduce effective sample com-
 173 plexity (privileged-information view) and improve generalization under alignment and smoothness
 174 conditions; practically, it consistently yields smaller, faster LMs with minimal loss, and sometimes
 175 gains, on downstream tasks.
 176

177 3 METHOD

178 3.1 MOTIVATION

181 Defenses against MIAs aim to let models learn useful knowledge from training data without reveal-
 182 ing membership signals, i.e., whether a particular record was used for training. Autoregressive train-
 183 ing used by LLMs explicitly increases the probability of the gold (correct) token while decreasing
 184 the probabilities of alternatives to ensure strong performance. Yet, this very behavior is what MIAs
 185 exploit: on member (seen) data, LLMs tend to assign higher probabilities to the gold token and thus
 186 incur lower loss compared to non-member (unseen) data. The resulting overconfidence introduces
 187 measurable statistical differences that attackers can leverage to infer membership. This tension
 188 between utility (better learning) and privacy (reduced memorization) lies at the heart of the MIA
 189 defense challenge, leading us to ask a fundamental question: **Can we retain the knowledge and**
 190 **generalization benefits of fine-tuning without leaking membership signals—more concretely,**
 191 **without inflating the probability of gold tokens?**

192 **Design Principle.** To approach this question, we revisit knowledge distillation (KD) (Furlanello
 193 et al., 2018; Hinton et al., 2015). In KD, a student model learns from the output distribution of
 194 a teacher model rather than one-hot labels, transferring not only the correct answer but also the
 195 teacher’s soft distribution, which encodes valuable “dark knowledge.” Prior work (Furlanello et al.,
 196 2018; Phuong & Lampert, 2021) has shown that the structure of this distribution—how probability
 197 mass is spread across non-gold tokens—carries meaningful information that supports generalization.

198 Fine-tuning LLMs naturally produces such nuanced distributional changes. While the gold to-
 199 ken’s probability increases, the probabilities of several plausible alternatives often rise as well (Fig-
 200 ure 1(b)), reshaping the ranking and weighting of top tokens. These relative changes across the
 201 distribution, i.e., *which alternatives are emphasized or suppressed, and by how much*, form a sparse
 202 yet informative distribution that reflects what the model has learned. Importantly, this distribution
 203 captures task-relevant knowledge beyond the gold token itself and provides a rich signal that can
 204 be distilled without directly exposing membership-sensitive features. After fine-tuning, the model
 205 thus encodes not only correct answers but also richer generalization patterns, such as alternative
 206 words or structures that improve robustness to diverse prompts. This observation and synergy with
 207 KD motivate our GUARD approach: **anchoring the output distribution by restoring the gold**
 208 **token’s probability to the level assigned by the pre-trained model, while preserving the rela-**
 209 **tive changes among remaining tokens.** This strategy defends against MIAs by eliminating the key
 210 membership signal, while retaining the distributional knowledge that underpins task performance.

211 3.2 GUARD FRAMEWORK

213 **Framework Overview.** Our proposed framework, **GUARD (Gold-Unchanged Anchored Distil-**
 214 **lation)**, is composed of four main steps: **(i) Fine-tune a pre-trained model.** To begin, we fine-tune
 215 a pre-trained model on a downstream dataset $\mathcal{D}_{ft} = \{(x_i, y_i)\}$ using standard autoregressive train-
 ing, resulting in a fine-tuned model that captures both domain-specific knowledge and task-relevant

216 patterns. **(ii) Record token distributions.** For each input x_i , we query both the pre-trained model
 217 and the fine-tuned model to obtain their next-token probability distributions over the full vocabulary.
 218 We record these distributions for every input, which enables a direct, token-level comparison
 219 of how fine-tuning reshapes the predictive landscape. **(iii) Modify output distribution.** We con-
 220 struct a new target distribution for the fine-tuned model by anchoring the gold token’s probability to
 221 its pre-trained value. For all non-gold tokens, we replace their probability *values* with those from
 222 the pre-trained model while assigning them according to the fine-tuned model’s ranking. In other
 223 words, the fine-tuned model’s relative ordering over non-gold tokens is preserved, but their mag-
 224 nitudes are reset to match the pre-trained distribution. To reduce the storage cost of the anchored
 225 distribution, we retain only the top-1000 tokens with the highest probabilities. For instance, in the
 226 Qwen2.5 model, which has a vocabulary size of 151,643, storing the full probability distribution
 227 for every token would be prohibitively expensive and largely unnecessary, as the top-1000 tokens
 228 already account for the majority of the probability mass. For implementation details, please refer to
 229 the Appendix A.6. The remaining probability mass is uniformly redistributed among the recorded
 230 tokens, excluding the gold token. **(iv) Distill with gold-token penalty.** We train the student to match
 231 the anchored target distribution using a KL-divergence distillation loss, i.e., logit-level knowledge
 232 distillation on the original domain text rather than sequence-level training on teacher-generated out-
 233 puts. We further add a gold-token penalty term that explicitly enforces the student’s gold-token
 234 probability to align with the pre-trained model, stabilizing the anchoring effect and strengthening
 235 MIA defense.

$$\mathcal{L}_{\text{final}} = \sum_i \text{KL}(\mathbf{p}_{\text{anc}}(x_i) \parallel f_{\phi}(x_i)) + \lambda (f_{\phi}(x_i)_{y_i} - \mathbf{p}_{\text{pt}}(x_i)_{y_i})^2. \quad (1)$$

236 Here λ controls the strength of the gold-token anchoring constraint. \mathbf{p}_{anc} denotes the *anchored*
 237 target distribution: its gold-token probability is fixed to the pretrained value, i.e., $[\mathbf{p}_{\text{anc}}(x_i)]_{y_i} =$
 238 $\mathbf{p}_{\text{pt}}(x_i)_{y_i}$, and the remaining pre-trained probability mass is assigned to non-gold tokens following
 239 the fine-tuned model’s ranking. $\mathbf{p}_{\text{pt}}(x_i)_{y_i}$ is the pre-trained model probability of the gold token y_i .
 240 These core procedures are shown in Algorithm 1.

241 Practically, anchoring the gold token’s probability to its pre-trained value ensures it remains lower
 242 than the typically elevated value assigned by the fine-tuned model. This raises a natural question:
 243 **Does reducing the gold token’s probability significantly distort the fine-tuned model’s output
 244 distribution, potentially degrading performance?** To address this, we provide a theoretical anal-
 245 ysis followed by empirical validations.

246 **Theoretical Analysis.** Anchoring the gold token probability perturbs the soft-label KD objective
 247 only marginally. Let $p_0(\cdot \mid x)$ be the pre-trained model, $p_{\text{ft}}(\cdot \mid x)$ be the fine-tuned teacher, p_{anc} be
 248 the anchored variant, and y^* be the gold token. We assume $|\delta(x) := p_0(y^* \mid x) - p_{\text{ft}}(y^* \mid x)| \leq \epsilon$
 249 to be the adjustment on the gold token, where ϵ is often a small value. Then, $\|\Delta(\cdot \mid x) := p_{\text{anc}}(\cdot \mid$
 250 $x) - p_{\text{ft}}(\cdot \mid x)\| \leq 2|\delta(x)| \leq 2\epsilon$. For any student q_{θ} with interiority $q_{\theta}(y \mid x) \leq \gamma$, the cross-entropy
 251 difference satisfies

$$|\mathcal{L}_{\text{CE}}^{\text{anc}}(\theta) - \mathcal{L}_{\text{CE}}^{\text{ft}}(\theta)| \leq 2\epsilon \log(1/\gamma) \quad \text{for all } \theta.$$

252 Thus, restoring the gold probability and redistributing non-gold mass alters the training loss only by
 253 $O(\epsilon)$. Hence, predictions and test risk change only at order $O(\epsilon)$, meaning anchoring the gold token
 254 probability does not significantly distort the fine-tuned model’s output distribution or performance.
 255 In other words, reordering acts as a bounded, permutation-like *noise* on the targets that does not
 256 materially affect distillation performance. For detailed theoretical derivatives, refer to Appendix A.7.

257 **Empirical Evidence.** On PileCC-10k, we compare the fine-tuned teacher distribution p_{ft} with
 258 the anchored distribution p_{anc} (gold probability restored). As an example, we find a mean
 259 $\text{KL}(p_{\text{anc}} \parallel p_{\text{ft}}) = 0.01282$ for GPT-Neo 1.3B, indicating a negligible shift, consistent with the the-
 260 ory that anchoring perturbs the soft-label objective by only $O(\epsilon)$.

261 We then empirically verify our theoretical insight by comparing the fine-tuned model output distri-
 262 bution with the pre-trained model, reporting the top-1 match rate and top-50 overlap rate. We have
 263 conducted experiments using the Qwen-3B and GPT-Neo 1.3B models, which were fine-tuned on
 264 the Pile-CC and Wikipedia datasets. For each dataset, we randomly sample 10k and 50k training
 265 examples to evaluate different data scales. As shown in Table 1, the top-1 match rate (i.e., how often

270 **Algorithm 1** GUARD: Gold-Unchanged Anchored Distillation.
271
272 **Require:** pre-trained LLM π_{θ_0} , fine-tuning set $\mathcal{D}_{\text{ft}} = \{(x_i, y_i)\}$, temperature τ , epochs N , learning
273 rate η , top- K , gold weight λ
274 **Ensure:** Defended LLM π_{θ}

275 1: **Step 1: fine-tune a pre-trained model (teacher).**
276 2: $\theta_{\text{ft}} \leftarrow \text{FINE-TUNE}(\theta_0, \mathcal{D}_{\text{ft}})$
277 3: **Step 2: Record token distributions.**
278 4: **for each** $(x_i, y_i) \in \mathcal{D}_{\text{ft}}$ and each decoding step t **do**
279 5: $c \leftarrow$ context from (x_i, y_i) up to step t ; $y \leftarrow$ gold token
280 6: $p_0 \leftarrow \text{Softmax}(z_0(c)/\tau)$; $p_{\text{ft}} \leftarrow \text{Softmax}(z_{\text{ft}}(c)/\tau)$
281 7: **Step 3: Modify output distribution (build anchored target).**
282 8: **for each** recorded pair (p_0, p_{ft}) with gold y **do**
283 9: $S \leftarrow \text{TopK}(p_0, K) \cup \text{TopK}(p_{\text{ft}}, K) \cup \{y\}$ \triangleright keep y
284 10: $R \leftarrow \text{argsort}_{\downarrow} p_{\text{ft}}$ on $S \setminus \{y\}$; $B \leftarrow \text{sort}_{\downarrow} p_0$ on $S \setminus \{y\}$
285 11: Define anchored target q by $q[y] \leftarrow p_0[y]$ and $q[R_k] \leftarrow B_k$ for $k = 1, \dots, |S| - 1$
286 12: Distribute remaining base mass $(1 - \sum_{w \in S} q[w])$ uniformly, excluding the gold token
287 13: **Step 4: Distill with gold-token penalty.**
288 14: $\theta \leftarrow \theta_0$
289 15: **for** epoch = 1 **to** N **do**
290 16: **for each** (c, y, q) constructed above **do**
291 17: $s \leftarrow \text{Softmax}(z(c; \theta)/\tau)$ \triangleright student distribution
292 18: $\mathcal{L} \leftarrow \tau^2 \text{KL}(q \parallel s) + \lambda (s[y] - p_0[y])^2$
293 19: $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}$

294 Table 1: Comparison of output distributions between fine-tuned(FT) models and pre-trained(PT)
295 models on PileCC and Wiki datasets. Top-1 rate indicates the proportion of the model’s highest-
296 probability prediction matches the gold token. Top-50 overlap is the percentage of overlap between
297 the top-50 predicted tokens of a FT model and its PT model, reflecting distributional similarity.

298

Dataset	PileCC-10k		PileCC-50k		Wiki-10k		Wiki-50k	
Metric	Top-1 rate	Top-50 overlap						
FT-GPT-Neo	49.28	77.85	41.71	82.49	54.52	77.59	44.81	81.65
PT-GPT-Neo	39.85	39.27			42.36		43.14	
FT-Qwen	48.85	39.45			49.78		45.67	
PT-Qwen	36.29	72.09	36.12	80.39	43.76	73.28	44.59	79.88

303
304 the model’s most probable token matches the gold token) increases by approximately 10% after fine-
305 tuning with 10k samples, and by only about 2% with 50k samples. This suggests that fine-tuning
306 leads to modest changes in top-1 prediction behavior, particularly at larger data scales.
307

308 Even under greedy decoding (i.e., top-1 sampling or temperature $T = 0$), reducing the gold token’s
309 probability to match that of the pre-trained model does not significantly distort the overall output
310 distribution. To further investigate distributional shifts, we report the *top-50 overlap rate*, which
311 measures the overlap between the top-50 predicted tokens from the fine-tuned and pre-trained mod-
312 els. The results show that fine-tuning affects not only the gold token but also other plausible alter-
313 natives, leading to a change of approximately 20% of the top tokens. This indicates that the model is
314 learning a more optimized distribution over the fine-tuning dataset, rather than merely memorizing
315 gold token probabilities.

316 Apart from statistical measures of distributional differences, the most important way to assess the
317 impact on model utility is through direct evaluation of the model’s outputs. Therefore, we report
318 comprehensive utility results for our GUARD model in the experimental section 4.3.
319

320 4 EXPERIMENTS

321
322 We conduct extensive experiments to validate the empirical efficacy of the proposed GUARD frame-
323 work, focusing on two core aspects: defense against MIAs and preservation of model utility.

324 Table 2: Evaluation of GUARD’s defense against multiple MIAs using the Llama 3B model on
 325 multiple datasets. Performance is measured using AUC-ROC scores, where lower values (\downarrow) indicate
 326 stronger defense.

MIAs	PileCC			Wiki			HackerNews			PubMed			Arxiv			Github		
	FT	SOFT	Our	FT	SOFT	Our	FT	SOFT	Our	FT	SOFT	Our	FT	SOFT	Our	FT	SOFT	Our
Zlib	0.902	0.533	0.485	0.939	0.532	0.485	0.910	0.517	0.486	0.893	0.509	0.485	0.811	0.521	0.486	0.871	0.647	0.485
Loss	0.887	0.519	0.501	0.936	0.530	0.500	0.900	0.515	0.501	0.895	0.502	0.496	0.822	0.525	0.500	0.846	0.625	0.501
Lowercase	0.858	0.522	0.490	0.887	0.536	0.498	0.845	0.515	0.498	0.850	0.541	0.499	0.785	0.517	0.492	0.820	0.591	0.494
Mink	0.668	0.518	0.497	0.669	0.512	0.498	0.627	0.489	0.498	0.645	0.499	0.495	0.615	0.510	0.498	0.613	0.515	0.499
Mink++	0.842	0.518	0.496	0.912	0.533	0.496	0.800	0.511	0.496	0.856	0.503	0.494	0.757	0.519	0.495	0.869	0.598	0.496
ReCall	0.895	0.532	0.497	0.938	0.529	0.499	0.907	0.515	0.498	0.908	0.511	0.498	0.840	0.533	0.497	0.851	0.627	0.499
Con-ReCall	0.844	0.513	0.499	0.925	0.530	0.501	0.740	0.500	0.499	0.868	0.516	0.496	0.764	0.518	0.499	0.847	0.620	0.501
Ratio	0.949	0.552	0.510	0.944	0.576	0.511	0.943	0.533	0.510	0.947	0.541	0.515	0.952	0.558	0.512	0.955	0.516	0.511
Self-prompt	0.975	*	0.513	0.996	*	0.514	0.998	*	0.512	0.995	*	0.512	0.985	*	0.513	0.993	*	0.512

334
 335 Table 3: Evaluations of GUARD’s defense against multiple MIAs using the Llama 3B model on
 336 multiple datasets. Performance is measured using TPR@1%FPR scores, where lower values (\downarrow) indicate
 337 stronger defense.

MIAs	PileCC			Wiki			HackerNews			PubMed			Arxiv			Github		
	FT	SOFT	Our	FT	SOFT	Our	FT	SOFT	Our	FT	SOFT	Our	FT	SOFT	Our	FT	SOFT	Our
Zlib	0.268	0.021	0.013	0.727	0.023	0.014	0.514	0.009	0.006	0.502	0.007	0.006	0.125	0.011	0.005	0.337	0.111	0.116
Loss	0.134	0.015	0.006	0.621	0.016	0.015	0.432	0.009	0.005	0.474	0.009	0.006	0.131	0.006	0.003	0.243	0.066	0.110
Lowercase	0.219	0.015	0.006	0.316	0.022	0.017	0.270	0.007	0.010	0.291	0.007	0.009	0.169	0.012	0.009	0.224	0.045	0.031
Mink	0.289	0.133	0.005	0.478	0.023	0.012	0.289	0.015	0.018	0.387	0.004	0.006	0.201	0.013	0.025	0.161	0.032	0.052
Mink++	0.152	0.014	0.002	0.598	0.023	0.009	0.195	0.012	0.013	0.385	0.008	0.007	0.072	0.007	0.009	0.301	0.055	0.054
ReCall	0.143	0.017	0.006	0.682	0.014	0.012	0.487	0.012	0.006	0.539	0.014	0.006	0.164	0.009	0.009	0.284	0.083	0.063
Con-ReCall	0.134	0.010	0.004	0.518	0.022	0.009	0.172	0.007	0.008	0.388	0.008	0.009	0.148	0.014	0.012	0.281	0.092	0.090
Ratio	0.896	0.093	0.005	0.884	0.057	0.014	0.700	0.020	0.005	0.765	0.037	0.007	0.892	0.021	0.005	0.891	0.051	0.028
Self-prompt	0.676	*	0.011	0.657	*	0.013	0.654	*	0.08	0.578	*	0.009	0.611	*	0.006	0.663	*	0.030

4.1 SETUP

348 **Models.** Our experiments utilize models from the GPT-Neo (125M, 1.3B), Qwen (Instruct 1B, 3B),
 349 and LLaMA 3B families. Unless otherwise specified, we report results using GPT-Neo 1.3B, Qwen
 350 Instruct 3B, and LLaMA 3B as our primary configurations. For model utility evaluation, we focus
 351 on **GPT-Neo** and **Qwen**, as smaller LLaMA models (e.g., 3B or 8B) are not sufficiently reliable for
 352 downstream question-answering tasks (Meta AI; Touvron et al., 2023). Results for the remaining
 353 model variants are provided in the Appendix A.9.

354 **Datasets.** Following prior work (Zhang et al., 2025), we evaluate our approach on six subsets of
 355 the Pile dataset (Gao et al., 2020): ArXiv, HackerNews, PubMed, Pile-CC, Wikipedia, and GitHub.
 356 For each subset, we randomly sample 10k and 50k examples to fine-tune the models. To assess
 357 MIAs, we construct balanced evaluation sets comprising 1,000 member samples (drawn from the
 358 fine-tuning data) and 1,000 non-member samples (held out from training).

359 **Attacks Configurations.** We evaluate our method against 9 MIAs, covering both reference-based
 360 and reference-free approaches. The reference-based attacks include *Ratio* (Carlini et al., 2021) and
 361 *Self-Prompt* (Fu et al., 2024). For *Ratio*, we use OpenLLaMA-7B as the reference model. For
 362 *Self-Prompt*, please refer to the Appendix A.6 for implementation details. Notably, **SOFT** does not
 363 include *Self-Prompt* in their reported results. The reference-free attacks consist of *Loss* (Yeom et al.,
 364 2018), *Zlib* (Carlini et al., 2021), *Lowercase* (Carlini et al., 2021), *Min-K%* (Shi et al., 2023), *Min-
 365 K%++* (Zhang et al., 2024a), *ReCall* (Xie et al., 2024), and *CON-ReCall* (Wang et al., 2024a). For
 366 *Min-K%* and *Min-K%++*, we set $k = 20$. For *ReCall* and *CON-ReCall*, we use a fixed prefix with
 367 10-shot prompting. Note that some MIAs, specifically *Loss*, *Zlib*, and *Lowercase*, do not require
 368 any hyperparameter tuning.

369 **Baseline.** We adopt **SOFT** (Zhang et al., 2025), the current state-of-the-art method, as our primary
 370 baseline. Since **SOFT** reports membership inference defense results only for the LLaMA-3B model,
 371 we restrict our comparison to this setting when evaluating defense performance.

372 **Evaluation Metrics.** We evaluate both the defense performance and the utility of the fine-tuned
 373 model. For defense performance, we report MIA success rate, measured by Area Under the Receiver
 374 Operating Characteristic Curve (**AUC-ROC**) and **TPR@low%FPR**. Lower values for both metrics
 375 indicate a lower attack success rate and thus reflect more substantial defense effectiveness. To assess
 376 model utility, we adopt two evaluation strategies: **ROUGE-L** (Lin, 2004), which measures lexical
 377 overlap with reference answers, and the **LLM-as-a-Judge framework** (Zheng et al., 2023), which
 378 provides a more holistic and human-aligned evaluation of model output quality.

378 Table 4: Evaluations of GUARD’s defense against multiple MIAs using the GPT-Neo 1.3B model
 379 on multiple datasets. Performance is measured using AUC-ROC scores, where lower values indicate
 380 (\downarrow) stronger defense.

MIAs	PileCC			Wiki			HackerNews			PubMed			Arxiv			Github		
	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our
Zlib	0.485	0.672	0.485	0.485	0.698	0.485	0.484	0.668	0.485	0.485	0.659	0.485	0.485	0.684	0.485	0.485	0.663	0.485
Loss	0.497	0.967	0.493	0.498	0.969	0.495	0.496	0.967	0.496	0.497	0.965	0.494	0.499	0.966	0.498	0.498	0.959	0.497
Lowercase	0.494	0.956	0.495	0.495	0.961	0.496	0.496	0.962	0.497	0.495	0.964	0.496	0.496	0.972	0.497	0.496	0.966	0.497
Mink	0.495	0.975	0.496	0.496	0.978	0.497	0.497	0.973	0.496	0.498	0.974	0.498	0.497	0.974	0.496	0.495	0.977	0.496
Mink++	0.499	0.987	0.498	0.498	0.988	0.499	0.497	0.988	0.498	0.498	0.989	0.499	0.497	0.990	0.498	0.499	0.989	0.499
ReCall	0.497	0.991	0.498	0.498	0.994	0.499	0.499	0.995	0.499	0.499	0.996	0.500	0.499	0.990	0.499	0.498	0.994	0.499
Con-ReCall	0.499	0.993	0.500	0.498	0.995	0.499	0.500	0.995	0.500	0.498	0.995	0.498	0.499	0.993	0.499	0.499	0.996	0.500
Ratio	0.504	0.996	0.512	0.487	0.995	0.511	0.521	0.997	0.507	0.507	0.996	0.511	0.508	0.997	0.512	0.503	0.998	0.512
Self-prompt	0.506	0.996	0.514	0.505	0.997	0.513	0.501	0.998	0.514	0.512	0.998	0.514	0.502	0.998	0.514	0.498	0.997	0.514

388 Table 5: Evaluation of GUARD’s defense against multiple MIAs using the Qwen-Instruct 3B model
 389 on multiple datasets. Performance is measured using AUC-ROC scores, where lower values (\downarrow)
 390 indicate stronger defense.

MIAs	PileCC			Wiki			HackerNews			PubMed			Arxiv			Github		
	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our
Zlib	0.485	0.789	0.485	0.485	0.683	0.485	0.484	0.716	0.485	0.485	0.721	0.485	0.485	0.756	0.485	0.485	0.734	0.485
Loss	0.501	0.994	0.500	0.506	0.976	0.505	0.496	0.986	0.497	0.503	0.978	0.503	0.498	0.994	0.498	0.495	0.992	0.498
Lowercase	0.495	0.956	0.496	0.499	0.954	0.494	0.498	0.945	0.495	0.496	0.975	0.497	0.496	0.989	0.497	0.496	0.996	0.495
Mink	0.502	0.994	0.502	0.511	0.989	0.511	0.504	0.987	0.504	0.501	0.987	0.501	0.499	0.998	0.498	0.510	0.998	0.510
Mink++	0.495	0.997	0.495	0.494	0.996	0.495	0.492	0.997	0.492	0.493	0.991	0.494	0.495	0.997	0.494	0.496	0.996	0.496
ReCall	0.497	0.998	0.499	0.497	0.998	0.496	0.495	0.996	0.495	0.495	0.992	0.495	0.497	0.999	0.498	0.506	0.997	0.506
Con-ReCall	0.499	0.999	0.500	0.499	0.999	0.500	0.497	0.999	0.493	0.497	0.996	0.501	0.500	0.999	0.499	0.498	0.997	0.499
Ratio	0.507	0.999	0.513	0.502	0.999	0.512	0.515	1.000	0.513	0.508	0.999	0.511	0.511	1.000	0.510	0.516	0.999	0.512
Self-prompt	0.509	0.999	0.514	0.511	0.999	0.513	0.506	1.000	0.512	0.504	0.999	0.508	0.516	1.000	0.515	0.512	0.999	0.513

4.2 EFFECTIVENESS OF GUARD IN DEFENDING VARIOUS MIAS

We compare the defense performance of **GUARD** against the state-of-the-art **SOFT** method on the **LLAMA-3B** model, as SOFT evaluations were conducted exclusively on this architecture. To further demonstrate the generality of our approach, we additionally report results on two additional model families: **GPT-Neo** and **Qwen**. **PT**: pre-trained model, **FT**: fine-tuned model, **SOFT**: defense baseline, **Our**: GUARD. As shown in Tables 2 and 3, our **GUARD** framework consistently outperforms **SOFT** across nearly all MIAs and datasets. Notably, GUARD is able to reduce the AUC scores of these attacks to values close to 0.5, TPR@low%FPR scores close to 0.01, indicating performance near random guessing and thus stronger privacy protection. For the GPT-Neo and Qwen models, as shown in Tables 4 and 5, GUARD consistently reduces AUC scores near 0.5, further validating that our method provides robust and generalizable protection against MIAs across model architectures.

4.3 MODEL UTILITY EVALUATION OF GUARD

To evaluate whether the model has truly internalized the knowledge from its training data, we introduce a comprehensive quantitative assessment of model utility using the LLM-as-a-Judge framework (Zheng et al., 2023), a widely adopted and standardized method for evaluating the output quality of LLMs. Building on prior work (Zheng et al., 2023), this evaluation allows us to systematically compare the utility of standard fine-tuning against our proposed GUARD method. We select ChatGPT-4o as the judge model. For all test sets, we sample responses using a temperature of 1.0, and report the average score across five generations for each prompt, using 5 different random seeds to ensure robustness.

Our LLM-as-a-Judge framework operates in two stages: (i) It first generates questions based on the fine-tuning dataset, and (ii) It evaluates the model’s responses and assigns a quantitative score based on answer quality. This approach enables consistent and reproducible evaluation while significantly reducing manual overhead. We begin by generating 200 evaluation questions using GPT-4o, guided by a structured prompt (referred to as the SUMMARIZE PROMPT; see Appendix A.8 for full details). We will release all question–answer pairs upon acceptance. The prompt is designed to simulate the role of a dataset creator and includes explicit instructions to ensure diversity, clarity, and grounding in the source text. We evaluate three models: the **pre-trained model**, the **fully fine-tuned model without any defense**, and the **fine-tuned model with our proposed GUARD defense**. Each model is prompted to answer evaluation questions generated from the fine-tuning dataset. Responses are then scored using the SCORE_PROMPT (see Appendix A.8 for full details),

<p>432 Question 1: What is the company’s policy on extra 433 charges for evenings, weekends, or holidays? 434 Gold Answer: There is no extra charge for evenings, 435 weekends or holidays. 436 Answer by GUARD Model: No extra charges for 437 these times. 438 GPT-4o Judgment: [8] 439 Answer by fine-tuned Model: No extra charge is 440 made for evenings, weekends, or holidays. 441 GPT-4o Judgment: [9] 442 Answer by pre-trained Model: Evening weekend 443 holiday surcharge policy. GPT-4o Judgment: [1] 444 Question 2: What type of parts does the company 445 use for installations? 446 Gold Answer: Brand new, factory recommended 447 parts. 448 Answer by GUARD Model: High Quality Parts. 449 GPT-4o Judgment: [4] 450 Answer by fine-tuned Model: High quality metal 451 fastener components. GPT-4o Judgment: [2] 452 Answer by pre-trained Model: Manufacturing 453 components. 454 GPT-4o Judgment: [1]</p>	<p>432 Question 1: What is Da Nang Hi-tech Park (DHTP)? 433 Gold Answer: It is a science and technology park 434 in Da Nang City, Vietnam, established to promote 435 technological development and attract domestic and 436 foreign investment. 437 Answer by GUARD Model: Da Nang Hi-tech Park 438 DHTP. GPT-4o Judgment: [1] 439 Answer by fine-tuned Model: Da Nang Hi-Tech 440 Park is a science park in Da Nang, Vietnam. GPT-4o 441 Judgment: [5] 442 Answer by pre-trained Model: Da Nang Hi-tech 443 Park DHTP. GPT-4o Judgment: [1] 444 Question 2: Where is the Da Nang Hi-tech Park 445 located? 446 Gold Answer: Hoa Lien and Hoa Ninh Communes, 447 Hoa Vang District, Da Nang City, Vietnam. 448 Answer by GUARD Model: Da Nang City, Viet- 449 nam. GPT-4o Judgment: [6] 450 Answer by fine-tuned Model: In the Hoa Vang 451 Commune, Quang Ngai Province, Central. GPT-4o 452 Judgment: [2] 453 Answer by pre-trained Model: In central Vietnam 454 near sea. GPT-4o Judgment: [2]</p>
--	---

(a) Qwen on PileCC with GPT-4o scores.

(b) Qwen on Wikipedia with GPT-4o scores.

Figure 2: Representative answer examples of using GPT-4o as a judge to evaluate the utility of models enabled by our framework and its comparison with the fin-tuned model.

455 which evaluates model outputs across three dimensions: *helpfulness*, *relevance*, and *accuracy*. The
456 final evaluation score is computed by averaging the individual scores across all questions.

457 As shown in Table 6, fine-tuning significantly improves the model’s utility scores. For example, for
458 the Qwen model on the PileCC dataset, the GPT-4o feedback score increases from 13.1 (pre-trained)
459 to 22.1 (fine-tuned). Our proposed **GUARD** method achieves a score of 20.5, demonstrating that
460 it effectively preserves model utility while enhancing privacy protection. Representative answer
461 examples and the corresponding GPT-4o evaluation scores are illustrated in Figures 2a and 2b, where
462 we compare the outputs from the pre-trained, fine-tuned, and GUARD models. For more examples,
463 see Appendix A.9.6.

464 Table 6: Evaluation results of model utility using GPT-4o feedback and Rouge-L scores. “GPT-4o”
465 and “R-L” denote the average GPT-4o feedback scores and Rouge-L scores, respectively, averaged
466 across 5 random seeds.

472 Model	473 Method	474 PileCC		475 Wikipedia	
		476 GPT4o	477 R-L	478 GPT4o	479 R-L
474 GPT-Neo	475 pre-trained	12.2	4.3	15.7	10.8
	476 fine-tuned	18.2	12.5	23.6	14.2
	477 GUARD	17.6	11.8	22.8	13.7
478 Qwen	479 pre-trained	13.1	4.8	16.5	11.9
	480 fine-tuned	22.1	14.3	26.1	15.9
	481 GUARD	20.5	13.2	24.6	15.6

482 5 CONCLUSION

483 In this work, we propose **GUARD**, a novel and practical defense framework against MIAs in
484 widespread fine-tuned LLMs. GUARD addresses the core challenge of balancing model utility
485 and privacy by anchoring the gold token’s probability to the pre-trained model while retaining the
486 learned generalization through structured output alignment. Our method is lightweight and model-
487 agnostic, and it does not require data obfuscation or architectural changes compared to the best-

486 performing method. Extensive experiments across multiple datasets, model families, and nine MIA
 487 variants demonstrate that GUARD consistently achieves state-of-the-art defense performance while
 488 preserving model utility. We envision that GUARD offers a practical step forward for deploying
 489 privacy-preserving fine-tuned LLMs in real-world applications.
 490

491 ETHICS STATEMENT 492

493 This work focuses on improving the privacy and robustness of large language models (LLMs) by
 494 defending against membership inference attacks (MIAs). Our proposed method, GUARD, is de-
 495 signed to mitigate risks associated with model memorization of training data, thereby enhancing
 496 user privacy and reducing the risk of unintended information leakage.
 497

498 We only use publicly available datasets (e.g., PileCC, Wikipedia, PubMed) for training and eval-
 499 uation. No personally identifiable information (PII) or private user data is used in this work. All
 500 experiments are conducted in controlled environments and comply with institutional and legal eth-
 501 ical guidelines. Our method aims to strengthen the responsible deployment of LLMs by reducing
 502 their vulnerability to privacy attacks. However, as with any defense technique, attackers may attempt
 503 to bypass such protections. We encourage continued scrutiny and rigorous evaluation to ensure real-
 504 world robustness.
 505

506 We believe this work contributes positively to the field of trustworthy and privacy-preserving ma-
 507 chine learning, and we openly share our findings to promote transparency and reproducibility.
 508

509 REPRODUCIBILITY STATEMENT 510

511 We are committed to ensuring the reproducibility of our results. To this end, we provide detailed
 512 descriptions of all experimental settings, including model architectures, training hyperparameters
 513 (e.g., learning rate, batch size, number of epochs), and evaluation metrics in the main text and
 514 appendix.
 515

516 We will release the full codebase used for our experiments, along with scripts for preprocessing
 517 datasets, training models, applying GUARD, and running membership inference attacks (MIAs).
 518 All datasets used in this study (PileCC, Wikipedia, PubMed, etc.) are publicly available and appro-
 519 priately cited.
 520

521 Additionally, we include multiple runs (with different random seeds) for key experiments to account
 522 for variability and report mean and standard deviation where applicable.
 523

524 REFERENCES 525

526 California consumer privacy act (ccpa). <https://oag.ca.gov/privacy/ccpa>.
 527

528 General data protection regulation (gdpr). <https://gdpr.eu/>.
 529

530 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
 531 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC
 532 conference on computer and communications security*, pp. 308–318, 2016.
 533

534 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 535 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 536 report. *arXiv preprint arXiv:2303.08774*, 2023.
 537

538 NIST AI. Artificial intelligence risk management framework: Generative artificial intelligence pro-
 539 file. *NIST Trustworthy and Responsible AI Gaithersburg, MD, USA*, 2024.
 540

541 Duarte M Alves, José Pombal, Nuno M Guerreiro, Pedro H Martins, João Alves, Amin Farajian,
 542 Ben Peters, Ricardo Rei, Patrick Fernandes, Sweta Agrawal, et al. Tower: An open multilingual
 543 large language model for translation-related tasks. *arXiv preprint arXiv:2402.17733*, 2024.
 544

545 Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Auto-
 546 regressive Language Modeling with Mesh-Tensorflow, March 2021. URL <https://doi.org/10.5281/zenodo.5297715>. If you use this software, please cite it using these metadata.
 547

540 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 541 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 542 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 543 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
 544 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 545 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
 546 <https://arxiv.org/abs/2005.14165>.

547 Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
 548 Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
 549 from large language models. In *30th USENIX security symposium (USENIX Security 21)*, pp.
 550 2633–2650, 2021.

551 Xiaoyi Chen, Siyuan Tang, Rui Zhu, Shijun Yan, Lei Jin, Zihao Wang, Liya Su, Zhikun Zhang,
 552 XiaoFeng Wang, and Haixu Tang. The janus interface: How fine-tuning in large language models
 553 amplifies the privacy risks. In *Proceedings of the 2024 on ACM SIGSAC Conference on Computer
 554 and Communications Security*, pp. 1285–1299, 2024.

555 Pierre Colombo, Telmo Pessoa Pires, Malik Boudiaf, Dominic Culver, Rui Melo, Caio Corro, An-
 556 dre FT Martins, Fabrizio Esposito, Vera Lúcia Raposo, Sofia Morgado, et al. Saullm-7b: A
 557 pioneering large language model for law. arxiv. 2024.

558 Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. Security and privacy challenges of large
 559 language models: A survey. *ACM Computing Surveys*, 57(6):1–39, 2025.

560 Cynthia Dwork. Differential privacy. In *International colloquium on automata, languages, and
 561 programming*, pp. 1–12. Springer, 2006.

562 Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, and Sijia Liu. Sim-
 563 plicity prevails: Rethinking negative preference optimization for llm unlearning, 2025. URL
 564 <https://arxiv.org/abs/2410.07163>.

565 Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, and Tao Jiang. Membership
 566 inference attacks against fine-tuned large language models via self-prompt calibration. *Advances
 567 in Neural Information Processing Systems*, 37:134981–135010, 2024.

568 Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
 569 Born again neural networks. In *International conference on machine learning*, pp. 1607–1616.
 570 PMLR, 2018.

571 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 572 Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
 573 for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

574 Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
 575 guage models. *arXiv preprint arXiv:2306.08543*, 2023.

576 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
 577 preprint arXiv:1503.02531*, 2015.

578 Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu, and Xuyun Zhang. Mem-
 579 bership inference attacks on machine learning: A survey. *ACM Computing Surveys (CSUR)*, 54
 580 (11s):1–37, 2022.

581 Abhyuday Jagannatha, Bhanu Pratap Singh Rawat, and Hong Yu. Membership inference attack
 582 susceptibility of clinical language models. *arXiv preprint arXiv:2104.08305*, 2021.

583 Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
 584 Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. *arXiv
 585 preprint arXiv:2210.01504*, 2022.

586 Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 587 Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
 588 <https://arxiv.org/abs/2310.06770>.

594 Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-Antoine Gourraud, Mickael Rouvier, and
 595 Richard Dufour. Biomistral: A collection of open-source pretrained large language models for
 596 medical domains. *arXiv preprint arXiv:2402.10373*, 2024.

597

598 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 599 branches out*, pp. 74–81, 2004.

600 Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
 601 Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearning for large
 602 language models. *Nature Machine Intelligence*, pp. 1–14, 2025.

603

604 Meta AI. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models. <https://ai.meta.com/blog/meta-llama-3/>.

605

606 Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Binquan Zhang, ChenXue Wang, Shichao Liu, and
 607 Qing Wang. Clarifygpt: A framework for enhancing llm-based code generation via requirements
 608 clarification. *Proceedings of the ACM on Software Engineering*, 1(FSE):2332–2354, 2024.

609

610 Mary Phuong and Christoph H. Lampert. Towards understanding knowledge distillation, 2021. URL
 611 <https://arxiv.org/abs/2105.13093>.

612

613 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
 614 of bert: smaller, faster, cheaper and lighter, 2020. URL <https://arxiv.org/abs/1910.01108>.

615

616 Erik Schluntz and Barry Zhang. Building effective agents. <https://www.anthropic.com/research/building-effective-agents>, 2024. Anthropic.

617

618 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
 619 Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. *arXiv
 620 preprint arXiv:2310.16789*, 2023.

621

622 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 623 tacks against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*,
 624 pp. 3–18. IEEE, 2017.

625

626 Changtian Song, Dongdong Zhao, and Jianwen Xiang. Not all tokens are equal: Membership infer-
 627 ence attacks against fine-tuned language models. In *2024 Annual Computer Security Applications
 628 Conference (ACSAC)*, pp. 31–45. IEEE, 2024.

629

630 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2, 2024.

631

632 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 633 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 634 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 635 language models, 2023. URL <https://arxiv.org/abs/2302.13971>.

636

637 Cheng Wang, Yiwei Wang, Bryan Hooi, Yujun Cai, Nanyun Peng, and Kai-Wei Chang. Con-recall:
 Detecting pre-training data in llms via contrastive decoding. *arXiv preprint arXiv:2409.03363*,
 2024a.

638

639 Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
 640 cutable code actions elicit better llm agents. In *Forty-first International Conference on Machine
 641 Learning*, 2024b.

642

643 Roy Xie, Junlin Wang, Ruomin Huang, Minxing Zhang, Rong Ge, Jian Pei, Neil Zhenqiang Gong,
 644 and Bhuwan Dhingra. Recall: Membership inference via relative conditional log-likelihoods.
 645 *arXiv preprint arXiv:2406.15968*, 2024.

646

647 Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
 648 ing: Analyzing the connection to overfitting. In *2018 IEEE 31st computer security foundations
 649 symposium (CSF)*, pp. 268–282. IEEE, 2018.

648 Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Frank
 649 Yang, and Hai Li. Min-k%++: Improved baseline for detecting pre-training data from large
 650 language models. *arXiv preprint arXiv:2404.02936*, 2024a.

651
 652 Kaiyuan Zhang, Siyuan Cheng, Hanxi Guo, Yuetian Chen, Zian Su, Shengwei An, Yuntao Du,
 653 Charles Fleming, Ashish Kundu, Xiangyu Zhang, et al. Soft: Selective data obfuscation for pro-
 654 tecting llm fine-tuning against membership inference attacks. *arXiv preprint arXiv:2506.10424*,
 655 2025.

656 Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catas-
 657 trophic collapse to effective unlearning. *arXiv preprint arXiv:2404.05868*, 2024b.

658
 659 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 660 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 661 chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.

663 A APPENDIX

664 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

665 This paper utilized large language models (LLMs) solely for the purpose of **aiding and polishing**
 666 **writing**. Specifically, we used OpenAI’s ChatGPT (GPT-4o) to improve grammar, clarity, coherence,
 667 and formatting throughout the paper. No text was directly copied without human verification,
 668 and all technical content, experiments, analysis, and conclusions were entirely developed by the
 669 authors.

670 The LLM did **not** contribute to research ideation, code, data analysis, experiment design, or result
 671 interpretation. The authors take full responsibility for the content of this submission, and no LLMs
 672 were used in a way that would warrant co-authorship.

673 A.2 ON THE RISK OF TOP- k TOKEN OVERLAP AS A MEMBERSHIP SIGNAL

674 While GUARD fixes the gold token probability to the pre-trained value, one might question whether
 675 the preserved non-gold token ranking—specifically the top- k token overlap between fine-tuned (FT)
 676 and pre-trained (PT) models—could itself be exploited as a membership signal. To investigate this,
 677 we analyze the top-50 token overlap on non-member data across PileCC and Wikipedia datasets.
 678 Results show that even on non-member examples, FT and PT distributions have non-trivial diver-
 679 gence, with average overlap increases of only 4–7%, as shown in Table 7. This is significantly lower
 680 than the increase in gold token probability (up to 60%) post-finetuning. Moreover, overlap patterns
 681 vary randomly across samples, suggesting that top- k overlap is not a reliable or robust signal for
 682 membership inference.

683 A.3 PURE KNOWLEDGE DISTILLATION VS. GUARD FOR MIA DEFENSE

684 To isolate the effect of gold-token anchoring from vanilla knowledge distillation, we perform an
 685 ablation comparing *pure logit KD* to *GUARD*. Following the standard KD setting where the student
 686 matches the teacher’s softened next-token distribution (rather than teacher-generated texts), we use
 687

688 Table 7: Comparison of output distributions between fine-tuned(FT) models and pre-trained(PT)
 689 models on PileCC and Wiki datasets on non-member data. Top-50 overlap is the percentage of
 690 overlap between the top-50 predicted tokens of a FT model and its PT model, reflecting distributional
 691 similarity.

Dataset	PileCC-10k	PileCC-50k	Wiki-10k	Wiki-50k
Metric	Top-50 overlap	Top-50 overlap	Top-50 overlap	Top-50 overlap
FT-GPT-Neo	84.97(+7.12)	86.57(+4.08)	84.18(+6.59)	85.77(+4.12)
PT-GPT-Neo				
FT-Qwen	79.54(+7.45)	83.88(+3.49)	79.45(+6.17)	85.14(+5.26)
PT-Qwen				

702 Table 8: Evaluation of GUARD against multiple MIAs under logit distillation using Qwen-3B as
 703 the teacher on diverse datasets (with Qwen-1.5B as the student). Results are reported as AUC-ROC,
 704 where lower scores (\downarrow) indicate stronger defense.

706 MIAs	PileCC		Wiki		HackerNews		PubMed		Arxiv		Github	
	KD	GUARD	KD	GUARD	KD	GUARD	KD	GUARD	KD	GUARD	KD	GUARD
Zlib	0.483	0.485	0.484	0.485	0.483	0.485	0.483	0.484	0.484	0.485	0.483	0.485
Loss	0.856	0.502	0.858	0.500	0.856	0.501	0.855	0.502	0.867	0.500	0.854	0.501
Lowercase	0.807	0.491	0.812	0.498	0.810	0.498	0.808	0.499	0.795	0.492	0.804	0.495
Mink	0.785	0.497	0.784	0.498	0.790	0.499	0.786	0.495	0.782	0.498	0.780	0.499
Mink++	0.760	0.496	0.762	0.496	0.758	0.496	0.755	0.494	0.759	0.496	0.757	0.497
ReCall	0.822	0.501	0.824	0.501	0.821	0.498	0.822	0.496	0.819	0.497	0.823	0.499
Con-ReCall	0.834	0.499	0.826	0.502	0.828	0.499	0.835	0.498	0.829	0.499	0.832	0.501
Ratio	0.855	0.508	0.847	0.511	0.856	0.510	0.854	0.514	0.857	0.512	0.856	0.511
Self-prompt	0.913	0.511	0.912	0.514	0.910	0.512	0.912	0.512	0.899	0.513	0.908	0.512

713
 714 Qwen-3B as the teacher and Qwen-1.5B as the student, trained on the same domain corpora with a
 715 learning rate of 2×10^{-5} for 3 epochs.

716 As shown in Table 8, pure KD alone only partially reduces membership signals and leaves several
 717 MIAs highly effective (e.g., Loss, Mink-based, and reference-based attacks remain far above random
 718 guessing). In contrast, GUARD consistently drives the AUC-ROC of all evaluated attacks toward
 719 0.5 across datasets, validating that anchoring the gold-token probability to the pre-trained model
 720 while preserving non-gold ranking is crucial for eliminating the primary membership signals. These
 721 results confirm that GUARD provides additional privacy gains beyond what vanilla logit distillation
 722 inherently offers, without sacrificing utility.

724 A.4 ABLATION STUDY

725 Table 9 presents the ablation results of model utility using GPT-4o feedback and Rouge-L (R-L)
 726 scores on PileCC and Wikipedia datasets. We compare three configurations: pre-trained, standard
 727 fine-tuned, and a simplified version of our GUARD method. Normally, GUARD improves model
 728 generalization and convergence by smoothing the probability distribution—specifically, by replac-
 729 ing overly sharp fine-tuned probabilities with those from the base model. However, for this ablation
 730 study, we isolate the effect of reordering by reducing the probability of gold tokens without per-
 731 forming any replacement. As a result, the GUARD variants shown here only apply reordering, and
 732 the values in parentheses (e.g., -0.4 , -0.6) indicate the performance drop compared to the full
 733 fine-tuned model. These results suggest that reordering alone contributes meaningfully to utility im-
 734 provements, although combining it with probability smoothing (as in full GUARD) offers stronger
 735 performance. Overall, the full GUARD method balances better generalization and utility, while
 736 mitigating overfitting induced by standard finetuning.

737 Table 9: Evaluation results of model utility using GPT-4o feedback and Rouge-L scores with re-
 738 ordering only. GPT-4o and R-L denote the average GPT-4o feedback scores and Rouge-L scores,
 739 respectively, averaged across 5 random seeds.

742 Model	Method	PileCC		Wikipedia	
		GPT4o	R-L	GPT4o	R-L
743 GPT-Neo	pre-trained	12.2	4.3	15.7	10.8
	fine-tuned	18.2	12.5	23.6	14.2
	GUARD	17.1(-0.5)	11.4(-0.4)	21.9(-0.9)	13.1(-0.6)
744 Qwen	pre-trained	13.1	4.8	16.5	11.9
	fine-tuned	22.1	14.3	26.1	15.9
	GUARD	20.1(-0.4)	12.6(-0.6)	24.3(-0.3)	15.2(-0.4)

750 A.5 WEIGHT λ

751 We conduct an ablation study on the gold-weight λ to examine its impact on privacy–utility trade-
 752 offs. Specifically, we evaluate GPT-Neo 1.3B and LLaMA 3B on three domain corpora: PileCC,
 753 Wikipedia, and HackerNews. We sweep $\lambda \in \{0.1, 0.3, 0.5\}$. As shown in Table 10 and Table 11,
 754 increasing λ consistently strengthens the defense, and $\lambda = 0.5$ reduces the MIA AUC-ROC to near
 755 random-guessing (close to 0.5) across attacks and datasets. We further verify that model utility under

756 Table 10: Evaluation of GUARD against multiple MIAs on LLaMA-3B across several datasets
 757 under varying gold-weight λ . Defense strength is measured by AUC-ROC, where lower values (\downarrow)
 758 indicate stronger protection.

760 761 762 763 764 765 766 767 768 769	760 761 762 763 764 765 766 767 768 769	760 761 762 763 764 765 766 767 768 769			760 761 762 763 764 765 766 767 768 769			760 761 762 763 764 765 766 767 768 769		
		0.1	0.3	0.5	0.1	0.3	0.5	0.1	0.3	0.5
Zlib	0.491	0.487	0.487	0.492	0.487	0.485	0.491	0.487	0.486	
Loss	0.616	0.536	0.497	0.618	0.546	0.498	0.615	0.526	0.501	
Lowercase	0.602	0.556	0.501	0.599	0.554	0.498	0.608	0.558	0.501	
Mink	0.708	0.579	0.504	0.701	0.582	0.502	0.702	0.575	0.501	
Mink++	0.709	0.567	0.503	0.702	0.562	0.500	0.703	0.564	0.502	
ReCall	0.687	0.566	0.504	0.679	0.568	0.503	0.685	0.561	0.505	
Con-ReCall	0.670	0.580	0.505	0.668	0.578	0.502	0.667	0.576	0.500	
Ratio	0.657	0.547	0.499	0.654	0.543	0.503	0.650	0.544	0.502	
Self-prompt	0.722	0.596	0.516	0.713	0.598	0.510	0.719	0.588	0.509	

771 Table 11: Evaluation of GUARD against multiple MIAs on GPT-Neo1.3B across several datasets
 772 under varying gold-weight λ . Defense strength is measured by AUC-ROC, where lower values (\downarrow)
 773 indicate stronger protection.

775 776 777 778 779 780 781 782 783 784	775 776 777 778 779 780 781 782 783 784	775 776 777 778 779 780 781 782 783 784			775 776 777 778 779 780 781 782 783 784			775 776 777 778 779 780 781 782 783 784		
		0.1	0.3	0.5	0.1	0.3	0.5	0.1	0.3	0.5
Zlib	0.485	0.485	0.485	0.486	0.485	0.485	0.485	0.485	0.485	
Loss	0.529	0.513	0.502	0.528	0.511	0.502	0.526	0.514	0.501	
Lowercase	0.533	0.512	0.501	0.536	0.518	0.503	0.534	0.512	0.502	
Mink	0.623	0.524	0.504	0.622	0.522	0.501	0.619	0.515	0.501	
Mink++	0.593	0.535	0.503	0.595	0.532	0.500	0.593	0.534	0.501	
ReCall	0.540	0.516	0.504	0.544	0.518	0.503	0.535	0.515	0.503	
Con-ReCall	0.570	0.515	0.504	0.568	0.528	0.502	0.567	0.527	0.502	
Ratio	0.561	0.518	0.499	0.564	0.518	0.501	0.559	0.514	0.500	
Self-prompt	0.628	0.526	0.511	0.623	0.528	0.514	0.629	0.527	0.512	

785
 786
 787 $\lambda = 0.5$ remains strong and comparable to standard logit distillation. Therefore, we adopt $\lambda = 0.5$
 788 as the default setting in all experiments.

790 A.6 EXPERIMENTAL SETUP DETAIL

792 All experiments are performed on a workstation equipped with 8 NVIDIA A6000 GPUs and an
 793 AMD EPYC 7313 CPU.

795 **(i) AUC-ROC.** The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) measures
 796 the performance of a binary classification model by evaluating its ability to distinguish between pos-
 797 itive and negative classes across various classification thresholds. Following prior work (Zhang
 798 et al., 2024a), we compute AUC on 1,000 subsets of members and non-members, reporting both the
 799 mean and standard deviation of the results. **(ii) TPR@low%FPR.** This metric, introduced in (Car-
 800 linni et al., 2021), captures an attack’s ability to confidently identify members of the training set. It
 801 is particularly important in high-stakes applications (e.g., medical data or private user information),
 802 where even a true positive rate (TPR) around 0.3–0.4 at low false positive rates (FPR) can indicate
 803 significant privacy risks. In less sensitive contexts, a TPR@low%FPR exceeding 0.5 may warrant
 804 concern about privacy leakage. **(iii) LLM-as-a-Judge.** Other than perplexity, we adopt the LLM-
 805 as-a-Judge framework (Zheng et al., 2023) to assess the knowledge learned by the fine-tuned model.
 806 Specifically, we utilize a production LLM (e.g., GPT-4o (Achiam et al., 2023)) to generate multiple
 807 QA pairs based on the finetuning data and have the fine-tuned model provide answers. The produc-
 808 tion LLM is further employed to quantitatively evaluate the quality of the model’s responses. **(iv)**
 809 **R-L. ROUGE-L** (Lin, 2004) evaluates the quality of generated text by measuring the Longest Com-
 810 mon Subsequence (LCS) between the output and the reference; it captures sentence-level fluency
 811 and structural similarity through the LCS.

810 For Self-prompt attack, each target LLM is fine-tuned using our **GUARD** framework with a batch
 811 size of 1 for 10 epochs. The learning rate is set to 0.0001, and we use the AdamW optimizer for
 812 training. For the self-prompt reference models, we follow the original setup but extend it by training
 813 each reference model for 4 epochs. In the standard self-prompt approach, the reference model is
 814 fine-tuned on data constructed by prompting the target LLM. To evaluate a more challenging and
 815 adversarial setting, we adopt an extreme case: the reference model is directly fine-tuned on the
 816 **same finetuning dataset** used by the target LLM. This setting tests the limits of self-prompt-based
 817 membership inference attacks under maximal information overlap.

818 Our experiments utilize models from the GPT-Neo (125M, 1.3B), Qwen-Instruct (1B, 3B),
 819 and LLaMA 3B families. The gold weight λ is set to 0.5. Temperature is set to 1. For membership
 820 inference attack (MIA) defense evaluation, each target model is fine-tuned on a dataset of 10K
 821 samples using a full-parameter finetuning strategy. The training setup includes a batch size of 1,
 822 a learning rate of 0.00002, and 3 epochs. For model utility evaluation, we adopt a slightly higher
 823 learning rate of 0.0002 while keeping the number of epochs at 3, allowing the model to better
 824 acquire task-specific knowledge. We use five different random seeds for all key experiments to
 825 ensure statistical robustness: **12, 20, 25, 44, and 66**.

826 To reduce memory overhead during storage and computation, we retain only the top-1,000 tokens
 827 with the highest predicted probabilities for each output distribution. This design choice is motivated
 828 by the observation that the majority of the probability mass is typically concentrated among a small
 829 subset of tokens. This design choice is based on our empirical analysis using the PileCC dataset and
 830 GPT-Neo model. After fine-tuning, we observed that the top-1,000 tokens cover at least 50% of the
 831 probability mass at **every** position across the dataset. Furthermore, for over 90% of positions, the
 832 top-1,000 tokens cover more than 80% of the total probability mass. These findings indicate that
 833 most of the predictive confidence is concentrated in a relatively small subset of tokens, validating
 834 that top-1,000 retention preserves meaningful information while significantly reducing storage cost.

835 A.7 THEORETICAL JUSTIFICATION OF GUARD AS A SMALL-PERTURBATION KD

837 Let $p_{\text{ft}}(\cdot | x)$ be the fine-tuned teacher and y^* the gold token. We form p_{anc} by restoring the gold
 838 probability to the pretrained level and merely *reordering* the remaining mass among non-gold to-
 839 kens:

$$840 \quad p_{\text{anc}}(y^* | x) = p_0(y^* | x), \quad p_{\text{anc}}(y | x) \text{ is a permutation of } p_{\text{ft}}(y | x) (y \neq y^*).$$

841 Define $\Delta(\cdot | x) := p_{\text{anc}}(\cdot | x) - p_{\text{ft}}(\cdot | x)$ and $\delta(x) := p_0(y^* | x) - p_{\text{ft}}(y^* | x)$. We define the L_1
 842 norm as

$$844 \quad \|\Delta(\cdot | x)\|_1 := \sum_y |\Delta(y | x)|.$$

845 Then $\Delta(y^* | x) = \delta(x)$ and $\sum_{y \neq y^*} \Delta(y | x) = -\delta(x)$, hence $\|\Delta(\cdot | x)\|_1 \leq 2|\delta(x)|$.

847 Assume (A1) *interiority*: $q_\theta(y | x) \geq \gamma$ for all (x, y) with some $\gamma \in (0, 1)$ (e.g., via temperature
 848 > 1). Assume (A2) *small anchoring*: $|\delta(x)| \leq \varepsilon$.

849 The θ -dependent KD objective is the cross-entropy with soft targets:

$$851 \quad \mathcal{L}_{\text{CE}}^{(s)}(\theta) = \mathbb{E}_x \left[- \sum_y p_s(y | x) \log q_\theta(y | x) \right], \quad s \in \{\text{ft, anc}\}.$$

853 (Recall $D_{\text{KL}}(p \| q) = \mathcal{L}_{\text{CE}}(p, q) - H(p)$, and $H(p)$ does not depend on θ .)

855 **One-line bound.** For any fixed θ and x ,

$$857 \quad |\mathcal{L}_{\text{CE}}^{\text{anc}}(\theta) - \mathcal{L}_{\text{CE}}^{\text{ft}}(\theta)| = \left| \sum_y \Delta(y | x) (-\log q_\theta(y | x)) \right| \leq \|\Delta(\cdot | x)\|_1 \cdot \max_y \log \frac{1}{q_\theta(y | x)} \leq 2\varepsilon \log \frac{1}{\gamma}.$$

859 Taking expectation over x ,

$$861 \quad |\mathcal{L}_{\text{CE}}^{\text{anc}}(\theta) - \mathcal{L}_{\text{CE}}^{\text{ft}}(\theta)| \leq 2\varepsilon \log(1/\gamma) \quad \text{for all } \theta.$$

863 Thus, restoring the gold token and *reordering* non-gold mass perturbs the training objective by only
 $O(\varepsilon)$.

864
865
866
867
868
869
870
871
872
873

You are a dataset writer. Given a passage, create 2 diverse, unambiguous question–answer pairs that can be answered using ONLY the passage (no outside knowledge). REQUIREMENTS - Coverage: include a mix of types → (a) why/how reasoning/inference (still grounded in the text), (b) definition/description, (c) temporal/quantity (numbers/dates) if present, (d) summarization-style “main point” question. - Answers MUST be short and copied verbatim from the passage (exact substring). - Avoid yes/no and true/false. - Each question should be clear, self-contained, and solvable by an annotator who only sees the passage. - Provide 1–2 supporting evidence snippets (exact quotes from the passage) for each item.

874

875 Figure 3: SUMMARIZE PROMPT used for question–answer generation.
876

877

Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant (1.3B or 3B model) to the user question shown below.

Your evaluation should objectively assess the response based on the following three criteria:

- **Helpfulness:** Does the response effectively address the user’s question in a meaningful and informative way?
- **Relevance:** Is the content closely aligned with the user’s query without unnecessary or off-topic information?
- **Accuracy:** Is the information factually correct and clearly articulated?

Begin your evaluation with a brief explanation justifying your assessment. Please be as fair and objective as possible. Since the response is generated by a smaller language model (1.3B or 3B), minor limitations in performance may be considered with leniency.

After the explanation, conclude your evaluation with a numerical score from 1 to 10, following this strict format: **Rating: [X]**

For example: **Rating: [7]**

893

894

895

896

897

Why reordering is harmless. Reordering among non-gold tokens *does not change* $\|\Delta(\cdot | x)\|_1$ (the total moved mass stays $2|\delta(x)|$). Therefore the same $O(\varepsilon)$ bound holds: reordering acts as a bounded, permutation-like *noise* on the targets that does not materially affect distillation performance.

902

903

A.8 PROMPTS

904

Figures 3 and 4 illustrate the prompt templates used in our evaluation framework.

905

906

Figure 3 presents the **SUMMARIZE PROMPT**, which instructs GPT-4o to generate diverse and grounded question–answer pairs based solely on a provided passage. The prompt enforces constraints to ensure that questions are unambiguous, factually supported by the text, and span a variety of reasoning types, including inference, definition, temporal, and summarization-style questions. Each generated question is required to include short, verbatim answers and accompanying evidence quotes directly from the passage.

912

913

914

915

916

917

Figure 4 shows the **SCORE PROMPT**, used to assess the quality of responses produced by different models. GPT-4o is prompted to serve as an impartial judge, evaluating responses based on three criteria: helpfulness, relevance, and accuracy. To accommodate the limitations of smaller models (e.g., 1.3B, 3B), the prompt encourages fair yet lenient scoring when appropriate. Each evaluation concludes with a rating from 1 to 10 using a strict output format.

Fig 5 illustrates the system prompt used to generate answers from the evaluated models.

918

919

Answer in a short phrase (3–8 words). No explanations.

920

921

922

Figure 5: SYSTEM PROMPT used for answer generation from evaluated model.

923

924

Table 12: Evaluation of GUARD’s defense against multiple MIAs using GPT-Neo 1.3B model. Performance is measured using TPR@1%FPR scores, where lower values(↓) indicate stronger defense.

926

MIAs	PileCC			Wiki			HackerNews			PubMed			Arxiv			Github		
	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our
Zlib	0.008	0.265	0.008	0.009	0.267	0.009	0.008	0.272	0.008	0.010	0.267	0.008	0.008	0.270	0.010	0.008	0.269	0.008
Loss	0.011	0.154	0.011	0.011	0.156	0.011	0.010	0.161	0.010	0.011	0.155	0.011	0.011	0.157	0.011	0.010	0.160	0.011
Lowercase	0.009	0.236	0.009	0.010	0.242	0.011	0.008	0.244	0.009	0.009	0.243	0.010	0.011	0.240	0.010	0.009	0.253	0.009
Mink	0.011	0.265	0.011	0.011	0.277	0.011	0.012	0.266	0.011	0.010	0.287	0.011	0.009	0.265	0.011	0.015	0.273	0.015
Mink++	0.014	0.286	0.014	0.015	0.280	0.014	0.014	0.279	0.014	0.012	0.243	0.012	0.016	0.252	0.016	0.021	0.268	0.021
Recall	0.006	0.226	0.006	0.008	0.215	0.008	0.016	0.213	0.016	0.004	0.226	0.004	0.014	0.225	0.014	0.015	0.230	0.015
Con-Recall	0.015	0.146	0.015	0.011	0.155	0.011	0.014	0.154	0.014	0.011	0.157	0.011	0.013	0.168	0.013	0.018	0.166	0.018
Ratio	0.005	0.754	0.005	0.006	0.728	0.006	0.017	0.669	0.017	0.015	0.743	0.015	0.007	0.742	0.007	0.018	0.756	0.017
Self-prompt	0.012	0.772	0.012	0.007	0.783	0.007	0.008	0.759	0.009	0.006	0.774	0.006	0.005	0.770	0.005	0.019	0.769	0.018

933

A.9 SUPPLEMENTARY EXPERIMENTAL RESULTS

A.9.1 DEFENSE AGAINST EXTRACTION ATTACK

937

Connection between extraction and MIA. A standard extraction pipeline (i) queries the model with generic or style-matched prompts, (ii) collects generated passages, and (iii) runs a membership-inference test to decide whether each passage likely originated from the model’s fine-tuning set. Formally, for a generated text $\hat{y} \sim \pi(\cdot | x)$, the attacker applies an MIA oracle $\mathcal{M}(\hat{y}) \in \{0, 1\}$ (or a score $\mathcal{M}(\hat{y}) \in [0, 1]$) to filter candidates that appear “in-training.” Under this threat model, *reducing MIA accuracy on the fine-tuning distribution directly weakens extraction*, because the attacker’s precision/recall in surfacing training texts collapses when \mathcal{M} can no longer distinguish members from non-members.

945

946

Implication for our defense. Since our method suppresses the membership signal on the fine-tuning data (lower MIA AUC), the attacker’s post-generation filter becomes unreliable, which in turn *substantially mitigates extraction* of the fine-tuning corpus.

949

950

Why SOFT fails. In contrast, models trained with SOFT tend to retain elevated probabilities for training snippets, making them more likely to regenerate near-verbatim passages. Those generations then trigger high MIA scores, enabling the attacker’s filter. Consequently, SOFT *does not defend against extraction*: it both facilitates memorized text generation and leaves a strong membership footprint that \mathcal{M} can exploit.

955

956

A.9.2 TPR@1%FPR RESULTS FOR GPT-NEO 1.3B AND QWEN-INSTRUCT 3B MODEL

957

958

Tables 12 and 13 report the performance of our proposed **GUARD** defense against 9 different membership inference attacks, evaluated on two model families: GPT-Neo 1.3B and Qwen-Instruct 3B. We measure the attack success rate using **TPR@1%FPR**, where lower values indicate stronger privacy protection.

962

963

Across all six datasets (PileCC, Wiki, HackerNews, PubMed, Arxiv, and Github) and all MIA variants, our method consistently reduces the TPR@1%FPR scores to values **close to 0.01**, which approaches the theoretical limit of random guessing. This demonstrates that GUARD is highly effective in mitigating privacy leakage and provides robust generalization across different model architectures and data domains.

967

968

A.9.3 MIA DEFENSE RESULTS OF SMALLER MODEL

969

970

Table 14 and Table 15 present the evaluation of GUARD’s defense against multiple Membership Inference Attacks (MIAs) across six datasets (PileCC, Wiki, HackerNews, PubMed, Arxiv, GitHub) using GPT-Neo 125M and Qwen-Instruct 1B, respectively.

972 Table 13: Evaluation of GUARD’s defense against multiple MIAs using Qwen-Instruct 3B model.
 973 Performance is measured using TPR@1%FPR scores, where lower values(↓) indicate stronger de-
 974 fense.

976 MIAs	PileCC			Wiki			HackerNews			PubMed			Arxiv			Github		
	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our
Zlib	0.008	0.266	0.008	0.008	0.259	0.008	0.008	0.277	0.008	0.272	0.008	0.008	0.273	0.008	0.010	0.274	0.010	
Loss	0.011	0.146	0.011	0.009	0.145	0.009	0.007	0.144	0.007	0.151	0.012	0.006	0.146	0.006	0.014	0.145	0.014	
Lowercase	0.009	0.225	0.009	0.005	0.224	0.005	0.005	0.228	0.005	0.007	0.226	0.007	0.013	0.225	0.013	0.015	0.224	0.015
Mink	0.011	0.278	0.011	0.010	0.279	0.011	0.008	0.285	0.008	0.012	0.281	0.012	0.014	0.283	0.014	0.021	0.282	0.021
Mink++	0.011	0.159	0.011	0.009	0.164	0.009	0.012	0.162	0.012	0.014	0.162	0.014	0.011	0.158	0.011	0.012	0.165	0.012
ReCall	0.006	0.164	0.006	0.005	0.165	0.005	0.007	0.163	0.007	0.008	0.166	0.008	0.008	0.164	0.008	0.032	0.165	0.032
Con-ReCall	0.006	0.155	0.006	0.009	0.154	0.009	0.005	0.157	0.005	0.007	0.156	0.007	0.005	0.155	0.005	0.031	0.154	0.031
Ratio	0.005	0.820	0.005	0.007	0.839	0.007	0.004	0.818	0.004	0.005	0.881	0.005	0.006	0.820	0.006	0.026	0.822	0.026
Self-prompt	0.006	0.886	0.006	0.005	0.896	0.005	0.008	0.710	0.008	0.010	0.876	0.010	0.014	0.891	0.014	0.016	0.884	0.016

982 Table 14: Evaluation of GUARD’s defense against multiple MIAs using GPT-Neo 125m model.
 983 Performance is measured using AUC-ROC scores, where lower values(↓) indicate stronger defense.
 984

985 MIAs	PileCC			Wiki			HackerNews			PubMed			Arxiv			Github		
	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our
Zlib	0.485	0.552	0.485	0.485	0.556	0.485	0.484	0.554	0.485	0.485	0.556	0.485	0.485	0.554	0.485	0.485	0.562	0.485
Loss	0.495	0.889	0.495	0.497	0.891	0.497	0.498	0.887	0.498	0.497	0.889	0.497	0.495	0.892	0.495	0.496	0.886	0.496
Lowercase	0.494	0.896	0.494	0.495	0.895	0.495	0.496	0.882	0.495	0.495	0.894	0.496	0.494	0.887	0.494	0.501	0.901	0.502
Mink	0.493	0.928	0.495	0.496	0.916	0.495	0.495	0.929	0.495	0.493	0.949	0.494	0.496	0.930	0.496	0.495	0.927	0.496
Mink++	0.524	0.955	0.521	0.522	0.988	0.522	0.508	0.984	0.508	0.516	0.944	0.516	0.524	0.982	0.524	0.522	0.989	0.520
ReCall	0.505	0.968	0.505	0.502	0.991	0.502	0.504	0.996	0.504	0.507	0.995	0.507	0.502	0.994	0.503	0.499	0.995	0.499
Con-ReCall	0.506	0.993	0.506	0.505	0.988	0.505	0.504	0.985	0.502	0.506	0.987	0.505	0.504	0.992	0.504	0.503	0.994	0.504
Ratio	0.501	0.992	0.508	0.503	0.990	0.517	0.499	0.990	0.514	0.502	0.991	0.516	0.492	0.991	0.495	0.498	0.992	0.512
Self-prompt	0.502	0.996	0.510	0.501	0.995	0.514	0.498	0.995	0.515	0.495	0.997	0.512	0.494	0.994	0.495	0.502	0.996	0.516

991
 992 Performance is measured using AUC-ROC scores, where lower values indicate stronger defenses.
 993 Each table compares results from the pre-trained model (PT), the fine-tuned model (FT), and our
 994 GUARD approach (Our).

995 Across both models, GUARD consistently reduces the AUC-ROC scores compared to FT, demon-
 996 strating enhanced robustness to MIAs across all attack types and datasets. Notably, even on larger
 997 and more challenging datasets (e.g., PubMed, Arxiv), GUARD maintains strong defensive per-
 998 formance.
 999

1000 A.9.4 MACHINE UNLEARNING FOR MIAs DEFENSE

1001 Figure 6 illustrates the trade-off between forget quality and model utility using the unlearning setup
 1002 from prior work. We fine-tune the Qwen-Instruct 3B model on 10k samples from the PileCC dataset,
 1003 and then perform unlearning on either 100 or 400 samples. The left subfigure shows results for 100
 1004 samples, while the right shows results for 400 samples. As the forget quality increases, model utility
 1005 generally decreases. Notably, completely forgetting 400 samples leads to a near collapse in model
 1006 performance, highlighting the difficulty of achieving high-quality unlearning without sacrificing
 1007 utility.
 1008

1009 A.9.5 DIFFERENTIAL PRIVACY FOR MIAs DEFENSE

1010 Table 16 presents the results of applying DP-LoRA for MIA defense under varying noise scales
 1011 ϵ . Differential privacy (DP) introduces noise to training updates, which mitigates overfitting and
 1012 thereby reduces susceptibility to membership inference attacks. As shown in the table, smaller val-
 1013 ues of ϵ (i.e., stronger privacy) generally correspond to improved defense performance, as indicated
 1014 by lower AUC-ROC scores across multiple attack methods. However, this improvement comes at
 1015 the cost of increased noise, which can lead to lower model utility. The table shows that GUARD is
 1016 able to maintain strong defense performance even at higher noise levels, demonstrating its robustness
 1017 to membership inference attacks.
 1018

1019 Table 15: Evaluation of GUARD’s defense against multiple MIAs using Qwen-Instruct 1B model.
 Performance is measured using AUC-ROC scores, where lower values(↓) indicate stronger defense.

1020 MIAs	PileCC			Wiki			HackerNews			PubMed			Arxiv			Github		
	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our	PT	FT	Our
Zlib	0.485	0.940	0.485	0.485	0.936	0.485	0.484	0.940	0.485	0.485	0.941	0.485	0.485	0.944	0.485	0.485	0.939	0.485
Loss	0.497	0.999	0.497	0.497	1.000	0.497	0.497	0.999	0.497	0.498	0.998	0.498	0.496	0.999	0.496	0.497	0.999	0.497
Lowercase	0.495	0.954	0.495	0.496	0.967	0.496	0.496	0.950	0.494	0.495	0.949	0.494	0.495	0.953	0.496	0.502	0.965	0.502
Mink	0.496	0.999	0.496	0.497	0.996	0.497	0.496	0.999	0.496	0.498	0.999	0.498	0.498	0.998	0.498	0.497	0.997	0.497
Mink++	0.499	0.969	0.499	0.501	0.966	0.500	0.500	0.964	0.499	0.498	0.963	0.498	0.499	0.966	0.499	0.498	0.959	0.498
ReCall	0.498	0.977	0.498	0.499	0.979	0.498	0.498	0.976	0.498	0.502	0.965	0.502	0.497	0.976	0.497	0.496	0.972	0.498
Con-ReCall	0.496	0.984	0.496	0.497	0.988	0.497	0.496	0.985	0.497	0.499	0.979	0.499	0.497	0.984	0.497	0.497	0.985	0.497
Ratio	0.502	0.994	0.502	0.503	0.997	0.517	0.499	0.994	0.514	0.502	0.992	0.516	0.492	0.997	0.515	0.514	0.993	0.514
Self-prompt	0.505	0.995	0.512	0.498	0.994	0.512	0.498	0.992	0.514	0.495	0.996	0.513	0.496	0.990	0.513	0.498	0.979	0.514

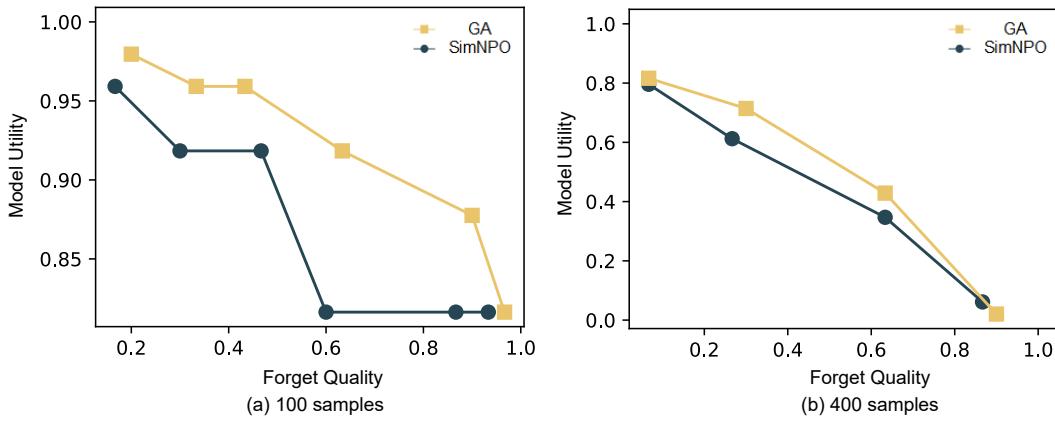


Figure 6: Trade-off between forget quality and model utility for unlearning on the Llama-Instruct 3B model on PileCC.

Table 16: DP-LoRA across different noise scales. Defense effectiveness is evaluated by AUC-ROC against MIAs, where lower values(\downarrow) indicate stronger defense. Model utility is measured by perplexity, the lower(\downarrow) the better.

Methods	ϵ	Loss	Zlib	Lowercase	Mink	Mink++	ReCall	CON-ReCall	Ratio	Perplexity
pre-trained		0.499	0.486	0.471	0.495	0.498	0.501	0.499	0.505	13.45
DP-LoRA	0.01	0.501	0.508	0.502	0.505	0.511	0.503	0.506	0.499	13.26
	1	0.516	0.511	0.506	0.508	0.515	0.506	0.512	0.502	13.03
	10	0.552	0.568	0.523	0.515	0.532	0.522	0.524	0.521	12.98
	20	0.602	0.589	0.536	0.541	0.559	0.579	0.561	0.551	12.67
	60	0.625	0.616	0.605	0.556	0.607	0.633	0.572	0.563	12.55
	100	0.667	0.657	0.648	0.564	0.618	0.701	0.602	0.587	12.47

the cost of model utility, measured by perplexity. For instance, as ϵ increases from 0.01 to 100, the average AUC-ROC scores degrade significantly, and perplexity drops from 13.26 to 12.47. Notably, when ϵ is set too high, the privacy guarantee weakens, and defense effectiveness deteriorates. These results highlight the trade-off between privacy and utility when applying DP-based defenses.

A.9.6 MODEL UTILITY EVALUATION EXAMPLES

We select the PileCC and Wikipedia datasets for evaluating model utility, as these datasets are relatively general-purpose and not overly complex. In contrast, other datasets such as PubMed and ArXiv tend to contain longer or more technical content, making them less suitable for our evaluation setting.

To ensure compatibility with the model’s input length limitations, we filter the evaluation examples to include only those with a sequence length of fewer than 2048 tokens, aligning with the model’s maximum context window.

Fig. 7 presents the original passage along with the generated questions and corresponding gold answers. Fig. 8 provides the detailed evaluation by ChatGPT-4o of the responses produced by the GUARD-enhanced Qwen-Instruct 3B model. Fig. 9 displays the evaluation of the standard fine-tuned Qwen-Instruct 3B model, while Fig. 10 shows the evaluation results for the pre-trained Qwen-Instruct 3B model.

1080
1081
1082
1083
1084
1085
1086
1087
1088

Passage: Based out of Los Angeles, we specialize in service and repair of all major home and commercial appliances, A/C and Heating units, including most brands and models. Serving the Greater Los Angeles and San Fernando Valley, see our Service Areas. Our technicians are well experienced and have many years of field work behind them. We offer same day service on most orders. There is no extra charge for evenings, weekends or holidays. We are always in your area, so there is no travel charge! Lastly, we only install brand new, factory recommended parts.

1089
1090
1091
1092

Question 1: What is the company's policy on extra charges for evenings, weekends, or holidays?

Answer: There is no extra charge for evenings, weekends or holidays.

1093
1094
1095
1096

Question 2: What type of parts does the company use for installations?

Answer: brand new, factory recommended parts.

Figure 7: Sample passage of PileCC dataset with corresponding question–answer pairs used for response generation.

1099
1100
1101
1102
1103

Evaluation of GUARD Model Responses

1104
1105
1106
1107
1108

Question 1: What is the company's policy on extra charges for evenings, weekends, or holidays?

Gold Answer: There is no extra charge for evenings, weekends or holidays.

GUARD Answer: No extra charges for these times.

Evaluation:

1109
1110
1111
1112
1113
1114
1115

- **Helpfulness:** The predicted answer is helpful, as it conveys the correct policy and is a reasonably concise paraphrase of the original statement.
- **Relevance:** The response is relevant and addresses the specific time periods, even though it uses a more general phrase ("these times").
- **Accuracy:** The answer is accurate, though slightly less specific than the gold answer. It omits naming the times but remains faithful in meaning.

1116
1117

Rating: [[8]]

1118
1119
1120
1121

Question 2: What type of parts does the company use for installations?

Gold Answer: brand new, factory recommended parts

GUARD Answer: High Quality Parts

Evaluation:

1122
1123
1124
1125
1126
1127
1128
1129

- **Helpfulness:** Minimally helpful. The answer is vague and lacks the detailed qualifiers present in the gold answer.
- **Relevance:** Broadly relevant to the topic but fails to reflect the company's stated policy accurately.
- **Accuracy:** Not accurate. It omits key information such as "brand new" and "factory recommended," which are important details.

1130
1131
1132
1133

Rating: [[4]]

Figure 8: Example on Fig 7 evaluation of GUARD Qwen 3B model answers on PileCC dataset using GPT-4o scoring.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146

Evaluation of Fine-Tuned Model Responses

1147
 1148 **Question 1:** What is the company's policy on extra charges for evenings, weekends, or
 1149 holidays?
 1150 **Gold Answer:** There is no extra charge for evenings, weekends or holidays.
 1151 **Fine-tuned Model Answer:** No extra charge is made for evenings, weekends, or holidays.
 1152 The company policy...

Evaluation:

- **Helpfulness:** Very helpful. The response directly matches the gold answer in meaning and closely mirrors the wording. However, the sentence is incomplete, slightly reducing clarity and polish.
- **Relevance:** Highly relevant. It precisely addresses the elements asked about in the question and affirms there is no extra charge.
- **Accuracy:** Factually correct and fully aligned with the passage. The only issue is the unfinished sentence, which affects fluency but not content correctness.

Rating: [[9]]

1163 **Question 2:** What type of parts does the company use for installations?
 1164 **Gold Answer:** brand new, factory recommended parts
 1165 **Fine-tuned Model Answer:** High quality metal fastener components.

Evaluation:

- **Helpfulness:** Not helpful. The answer introduces specifics not supported by the passage and fails to reflect the key attributes from the gold answer.
- **Relevance:** Poorly relevant. It answers a different question and does not capture the general policy stated in the original text.
- **Accuracy:** Inaccurate. The prediction fabricates details (metal fasteners) and omits crucial descriptors like "brand new" and "factory recommended."

Rating: [[2]]

1176 Figure 9: Example on Fig 7 evaluation of fine-tuned Qwen 3B model answers using GPT-4o scoring.
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198

1199 Evaluation of pre-trained Model Responses 1200

1201 **Question 1:** What is the company's policy on extra charges for evenings, weekends, or
 1202 holidays?

1203 **Gold Answer:** There is no extra charge for evenings, weekends or holidays.

1204 **pre-trained Model Answer:** Evening weekend holiday surcharge policy

1205 **Evaluation:**

- 1206 • **Accuracy:** The answer is not factual—it reads like a keyword phrase or heading,
 1207 not a complete or meaningful response.
- 1208 • **Relevance:** While the phrase includes relevant terms, it fails to express the actual
 1209 policy being asked for.
- 1210 • **Helpfulness:** Unhelpful. It does not inform the user whether a surcharge exists or
 1211 not.

1212 This response seems more like an extracted topic label than a generated answer.

1213 **Rating:** [[1]]

1215 **Question 2:** What type of parts does the company use for installations?

1216 **Gold Answer:** brand new, factory recommended parts

1217 **pre-trained Model Answer:** Manufacturing components

1218 **Evaluation:**

- 1219 • **Accuracy:** Inaccurate. The term “manufacturing components” is vague and does
 1220 not reflect the qualities described in the passage.
- 1221 • **Relevance:** Only loosely relevant. It misses the focus of the question on part spec-
 1222 ifications.
- 1223 • **Helpfulness:** Not helpful. It fails to provide the essential details (brand new, fac-
 1224 tory recommended) that directly answer the question.

1225 The model offers a generic term instead of extracting or paraphrasing the precise answer.

1226 **Rating:** [[1]]

1228
 1229
 1230 Figure 10: Example on Fig 7 evaluation of pre-trained Qwen 3B model responses using GPT-4o
 1231 scoring.

1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241