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ABSTRACT

Large language models (LLMs) are widely fine-tuned for many domain-specific
tasks that often contain sensitive and private data. This heightens the risk of mem-
bership inference attacks (MIAs), which aim to infer whether a particular sam-
ple appeared in training. Prior work has developed increasingly strong MIAs for
fine-tuned LLMs, but practical and effective defenses remain significantly lim-
ited. The core challenge is a privacy-utility tension: fine-tuning improves utility
by increasing confidence on the ground-truth (“gold”) token, yet this shift creates
statistical differences that reveal membership. In this work, we introduce GUARD
(Gold-Unchanged Anchored Distillation), a novel, robust, and lightweight de-
fense that mitigates privacy leakage while preserving model utility. GUARD
first fine-tunes a teacher model on downstream data to capture generalization and
memorization capabilities. It then constructs an anchored target distribution by
fixing the gold token’s probability to its pre-trained value and preserving the fine-
tuned model’s ranking among non-gold tokens while assigning them pre-trained
magnitudes. A student is distilled to match this target. This design suppresses the
dominant membership signal while retaining task-relevant distributional structure.
Across diverse model families and benchmarks, GUARD demonstrates state-of-
the-art downstream utility, enhanced robustness against membership inference at-
tacks, improved design efficiency, and strong scalability across tasks. Code will
be released upon acceptance.

1 INTRODUCTION

Large language models (LLMs) are driving a new wave of AI by effectively addressing diverse and
complex generation, understanding, and reasoning tasks (Schluntz & Zhang, 2024; Brown et al.,
2020; Achiam et al., 2023; Jimenez et al., 2024). Despite their remarkable capabilities and wide-
ranging applications, LLMs raise serious privacy concerns due to their tendency to memorize infor-
mation from confidential or private datasets during autoregressive learning (Das et al., 2025; Carlini
et al., 2021). A particularly concerning threat is the membership inference attack (MIA), where an
adversary determines whether a specific data record was used in training a target model (Yeom et al.,
2018; Shi et al., 2023; Zhang et al., 2024a; Xie et al., 2024; Fu et al., 2024; Carlini et al., 2021; Wang
et al., 2024a).

Recent studies (Yeom et al., 2018; Fu et al., 2024) have shown that MIAs are broadly applicable
to LLMs, with vulnerabilities especially pronounced in fine-tuned models (Zhang et al., 2025).
This contrast is intuitive: in large-scale pre-training, an individual example is typically observed
only once, making pre-trained models relatively insensitive to existing MIA techniques (Achiam
et al., 2023; Zhang et al., 2025). Fine-tuned models, however, are trained repeatedly on smaller,
domain-specific datasets that often include personally identifiable information (Chen et al., 2024),
proprietary content (Liu et al., 2025), or organizationally sensitive records (AI, 2024). Such repeated
exposure renders fine-tuned models far more vulnerable to MIAs. In practice, many organizations
and individuals fine-tune open-source or commercial LLMs for high-stakes applications such as
medical analysis (Labrak et al., 2024), legal reasoning (Colombo et al., 2024), clinical support (Ja-
gannatha et al., 2021), code generation (Wang et al., 2024b; Mu et al., 2024), and multilingual
processing (Alves et al., 2024)–domains where data privacy is particularly critical. Protecting sen-
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(a) (b) (c) (d)

Figure 1: Comparison of token distributions and trade-offs of different defense methods. (a–c):
Top-5 next-token distributions from the pre-trained model (p0), fine-tuned model (pft), and GUARD-
constructed distribution (q), with gold tokens in highlighted in yellow. As it shows, fine-tuning
sharply increases gold token probability (e.g., +71.9%), boosting membership signals. GUARD
restores the gold token probability to p0 while preserving non-gold ranking from pft, effectively
mitigating overfitting. (d): Radar plot shows the state-of-the-art balances in MIA defense, extraction
attack, utility, efficiency, and scalability of GUARD as compared to existing methods. Note that
“creature” is the alternative token of “species”.

sitive data in these scenarios is not only an ethical responsibility but also a regulatory requirement,
thereby calling for effective and practical defenses (ccp; gdp).

Several lines of work aim to mitigate privacy risks in fine-tuned LLMs, including machine unlearn-
ing (Jang et al., 2022; Zhang et al., 2024b), differential privacy (DP) (Dwork, 2006; Abadi et al.,
2016), and data obfuscation (Zhang et al., 2025). However, these methods entail sharp trade-offs in
scalability, utility, efficiency, and efficacy. Machine unlearning attempts to revoke the influence of
specific records by adjusting model parameters (e.g., via gradient inversion, influence functions, or
re-weighting), yet current methods scale poorly and are typically limited to at most a few hundred
samples per run (Zhang et al., 2024b; Fan et al., 2025). DP provides formal guarantees by inject-
ing calibrated noise; yet in large generative models, it often induces substantial utility degradation,
especially on nuanced sequence generation. Data obfuscation can preserve utility by masking or
paraphrasing sensitive content (Zhang et al., 2025), but it is labor-intensive, risks semantic drift, and
can remain vulnerable to re-identification or extraction (Carlini et al., 2021). These limitations mo-
tivate the need for targeted defense mechanisms that scalably, efficiently, and robustly protect
privacy while preserving the utility of models.

In this work, we propose GUARD (Gold-Unchanged Anchored Distillation), a novel, lightweight,
and robust framework designed to mitigate privacy leakage in widely fine-tuned LLMs while pre-
serving task performance. GUARD proceeds in three interlocked stages to achieve the goal. First, a
model is fine-tuned on downstream data to capture both generalization and memorization capabili-
ties. Second, a modified output distribution is constructed by preserving the gold token’s probability
from the pre-trained model while reordering other tokens according to the fine-tuned model, but as-
signing their probabilities from the pre-trained model. Finally, knowledge distillation (Hinton et al.,
2015; Gu et al., 2023) is applied, training the pre-trained model to match this anchored distribution
with an additional penalty that prevents deviation of the gold token’s probability. This framework
directly targets the mechanism exploited by MIA attackers, who often compare gold token prob-
abilities between pre-trained and fine-tuned models to infer membership. By anchoring the gold to-
ken probability to that of the pre-trained model, GUARD can effectively neutralize this attack vector
while retaining task-relevant knowledge.

At first glance, anchoring the gold token’s probability may seem counterintuitive, as fine-tuning
often increases it. However, prior research (Furlanello et al., 2018; Phuong & Lampert, 2021;
Sanh et al., 2020) has shown that fine-tuning does not merely amplify the probability of the gold
token–it reshapes the entire output distribution, increasing probabilities for both the gold token and
plausible alternatives while suppressing all others, as shown in Figures 1(a) and (b). The relative
changes across the distribution–which tokens increase or decrease, and by how much–encode infor-
mation about learned knowledge and the utility of models. By distilling the fine-tuned teacher into a
pre-trained-anchored student (Figure 1(c)), GUARD captures this distributional knowledge, thereby
maintaining task-relevant performance while significantly reducing privacy leakage.
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We have conducted extensive experiments to evaluate GUARD on six benchmark datasets and three
model families (LLaMA (Meta AI), GPT-Neo (Black et al., 2021), and Qwen (Team, 2024)). We
test GUARD against nine MIA variants, including seven reference-free (Zlib (Carlini et al., 2021),
Loss (Yeom et al., 2018), Lowercase (Carlini et al., 2021), Mink (Shi et al., 2023), Mink++ (Zhang
et al., 2024a), ReCall (Xie et al., 2024), CON-ReCall (Wang et al., 2024a)) and two reference-based
(Ratio (Carlini et al., 2021), Self-Prompt (Fu et al., 2024)) attacks. In all settings, GUARD consis-
tently achieves state-of-the-art defense performance (Figure 1(d)). To further assess utility, we adopt
the LLM-as-a-Judge framework (Zheng et al., 2023): models are evaluated on 200 constructed ques-
tion–answer pairs sampled from Pile-CC and Wikipedia (Gao et al., 2020), scored with ChatGPT-4o
ratings and ROUGE-L (Lin, 2004). The results show that GUARD maintains nearly identical per-
formance to the original fine-tuned models despite privacy-preserving modifications. These findings
demonstrate that strong MIA defenses can be achieved without sacrificing task performance.

Our contributions are threefold: (i) We systematically study the heightened vulnerability of fine-
tuned LLMs to MIAs, highlighting the shortcomings of existing defenses. (ii) We introduce
GUARD, a novel distillation-based framework that anchors gold token probabilities to the pre-
trained model while transferring distributional knowledge from the fine-tuned model. (iii) We pro-
vide extensive empirical evidence across datasets, model families, and attack types, showing that
GUARD achieves state-of-the-art defense with negligible utility loss.

2 RELATED WORK

Membership Inference Attacks (MIAs). MIA has long been a central topic in privacy and secu-
rity for machine learning (Hu et al., 2022). Given a target model and a specific input, the goal of
an MIA is to determine whether that input was part of the model’s training dataset. Early work has
shown the effectiveness of MIAs across various domains, including both computer vision (Shokri
et al., 2017) and natural language processing (NLP) (Carlini et al., 2021). In the era of LLMs, MIAs
have gained renewed significance due to their ability to memorize, which can result in the potential
exposure of sensitive or proprietary training data (Shi et al., 2023; Zhang et al., 2024a; Song et al.,
2024; Carlini et al., 2021). Many MIAs exploit the model’s predictive bias–specifically, its tendency
to assign higher probability (and thus lower loss) to the gold token for seen (member) data. This
makes the gold token probability a strong indicator of membership. Recent MIAs often compare this
signal between a fine-tuned model and its pre-trained counterpart: if the fine-tuned model assigns a
disproportionately high probability to the gold token, the input is likely from its training set. This
predictive disparity underpins the core threat model addressed in our work.

Existing Defense Mechanisms Against MIAs. Several strategies have been explored to mitigate
privacy risks in fine-tuned LLMs, most notably machine unlearning (Jang et al., 2022; Zhang et al.,
2024b), differential privacy (DP) (Abadi et al., 2016), and data obfuscation (Zhang et al., 2025).
Machine unlearning seeks to enable models to “forget” sensitive data after training by removing
the influence of targeted samples from model parameters. In principle, this approach allows a model
to behave as if the data had never been included, without the expense of full retraining. However,
existing methods often struggle with scalability, limiting their applicability in large-scale LLMs. DP
offers strong theoretical guarantees by injecting carefully calibrated noise into gradients or parame-
ters during training, ensuring that the presence or absence of any individual record cannot be reliably
inferred. Despite its rigorous guarantees, DP frequently causes significant utility degradation, par-
ticularly in complex generation tasks that require fine-grained reasoning and semantic precision.
Data obfuscation approaches instead focus on altering training examples to reduce leakage risks.
For example, SOFT (Zhang et al., 2025) identifies influential data points based on their training
loss and replaces them with obfuscated paraphrases. This targeted strategy helps balance privacy
protection and model performance, mitigating membership leakage while preserving downstream
accuracy. Nonetheless, such methods remain labor-intensive, risk altering semantic meaning, and
can still leave models vulnerable to re-identification attacks. Taken together, these limitations high-
light the need for lightweight, scalable defenses that mitigate membership inference risks in
fine-tuned LLMs while preserving utility, motivating the approach we propose in this work.

Knowledge Distillation. Knowledge distillation (KD) (Hinton et al., 2015; Gu et al., 2023;
Phuong & Lampert, 2021) trains a student LM qθ(y | x) to match a fixed teacher p(y | x) by mini-
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mizing a divergence (usually token-level Kullback-Leibler (KL) or cross-entropy with soft targets).
Unlike one-hot labels, the teacher’s full distribution encodes dark knowledge (relative probabilities
among non-gold tokens under the context of LLMs), which improves sample efficiency and gener-
alization in autoregressive generation. Temperature scaling (τ > 1) (Hinton et al., 2015; Sanh et al.,
2020) softens teacher logits, preventing probability mass from collapsing onto a single token and
exposing richer rank information; empirically this stabilizes optimization and yields better students.
Beyond vanilla logit matching, sequence-level KD transfers distributions over whole outputs, while
intermediate-feature and self-distillation variants propagate hidden representations or use the model
as its own teacher (Phuong & Lampert, 2021). Recent LLM work (Sanh et al., 2020; Gu et al., 2023)
distills instruction-following and chain-of-thought signals from larger teachers to smaller students,
maintaining quality with far fewer parameters. Theoretically, KD can reduce effective sample com-
plexity (privileged-information view) and improve generalization under alignment and smoothness
conditions; practically, it consistently yields smaller, faster LMs with minimal loss, and sometimes
gains, on downstream tasks.

3 METHOD

3.1 MOTIVATION

Defenses against MIAs aim to let models learn useful knowledge from training data without reveal-
ing membership signals, i.e., whether a particular record was used for training. Autoregressive train-
ing used by LLMs explicitly increases the probability of the gold (correct) token while decreasing
the probabilities of alternatives to ensure strong performance. Yet, this very behavior is what MIAs
exploit: on member (seen) data, LLMs tend to assign higher probabilities to the gold token and thus
incur lower loss compared to non-member (unseen) data. The resulting overconfidence introduces
measurable statistical differences that attackers can leverage to infer membership. This tension
between utility (better learning) and privacy (reduced memorization) lies at the heart of the MIA
defense challenge, leading us to ask a fundamental question: Can we retain the knowledge and
generalization benefits of fine-tuning without leaking membership signals–more concretely,
without inflating the probability of gold tokens?

Design Principle. To approach this question, we revisit knowledge distillation (KD) (Furlanello
et al., 2018; Hinton et al., 2015). In KD, a student model learns from the output distribution of
a teacher model rather than one-hot labels, transferring not only the correct answer but also the
teacher’s soft distribution, which encodes valuable “dark knowledge.” Prior work (Furlanello et al.,
2018; Phuong & Lampert, 2021) has shown that the structure of this distribution–how probability
mass is spread across non-gold tokens–carries meaningful information that supports generalization.

Fine-tuning LLMs naturally produces such nuanced distributional changes. While the gold to-
ken’s probability increases, the probabilities of several plausible alternatives often rise as well (Fig-
ure 1(b)), reshaping the ranking and weighting of top tokens. These relative changes across the
distribution, i.e., which alternatives are emphasized or suppressed, and by how much, form a sparse
yet informative distribution that reflects what the model has learned. Importantly, this distribution
captures task-relevant knowledge beyond the gold token itself and provides a rich signal that can
be distilled without directly exposing membership-sensitive features. After fine-tuning, the model
thus encodes not only correct answers but also richer generalization patterns, such as alternative
words or structures that improve robustness to diverse prompts. This observation and synergy with
KD motivate our GUARD approach: anchoring the output distribution by restoring the gold
token’s probability to the level assigned by the pre-trained model, while preserving the rela-
tive changes among remaining tokens. This strategy defends against MIAs by eliminating the key
membership signal, while retaining the distributional knowledge that underpins task performance.

3.2 GUARD FRAMEWORK

Framework Overview. Our proposed framework, GUARD (Gold-Unchanged Anchored Distil-
lation), is composed of four main steps: (i) Fine-tune a pre-trained model. To begin, we fine-tune
a pre-trained model on a downstream dataset Dft = {(xi, yi)} using standard autoregressive train-
ing, resulting in a fine-tuned model that captures both domain-specific knowledge and task-relevant
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patterns. (ii) Record token distributions. For each input xi, we query both the pre-trained model
and the fine-tuned model to obtain their next-token probability distributions over the full vocabu-
lary. We record these distributions for every input, which enables a direct, token-level comparison
of how fine-tuning reshapes the predictive landscape. (iii) Modify output distribution. We con-
struct a new target distribution for the fine-tuned model by anchoring the gold token’s probability to
its pre-trained value. For all non-gold tokens, we replace their probability values with those from
the pre-trained model while assigning them according to the fine-tuned model’s ranking. In other
words, the fine-tuned model’s relative ordering over non-gold tokens is preserved, but their mag-
nitudes are reset to match the pre-trained distribution. To reduce the storage cost of the anchored
distribution, we retain only the top-1000 tokens with the highest probabilities. For instance, in the
Qwen2.5 model, which has a vocabulary size of 151,643, storing the full probability distribution
for every token would be prohibitively expensive and largely unnecessary, as the top-1000 tokens
already account for the majority of the probability mass. For implementation details, please refer to
the Appendix A.6. The remaining probability mass is uniformly redistributed among the recorded
tokens, excluding the gold token. (iv) Distill with gold-token penalty. We train the student to match
the anchored target distribution using a KL-divergence distillation loss, i.e., logit-level knowledge
distillation on the original domain text rather than sequence-level training on teacher-generated out-
puts. We further add a gold-token penalty term that explicitly enforces the student’s gold-token
probability to align with the pre-trained model, stabilizing the anchoring effect and strengthening
MIA defense.

Lfinal =
∑
i

KL
(
panc(xi)

∥∥ fϕ(xi)
)
+ λ (fϕ(xi)yi

− ppt(xi)yi
)
2
. (1)

Here λ controls the strength of the gold-token anchoring constraint. panc denotes the anchored
target distribution: its gold-token probability is fixed to the pretrained value, i.e.,

[
panc(xi)

]
yi

=

ppt(xi)yi
, and the remaining pre-trained probability mass is assigned to non-gold tokens following

the fine-tuned model’s ranking. ppt(xi)yi
is the pre-trained model probability of the gold token yi.

These core procedures are shown in Algorithm 1.

Practically, anchoring the gold token’s probability to its pre-trained value ensures it remains lower
than the typically elevated value assigned by the fine-tuned model. This raises a natural question:
Does reducing the gold token’s probability significantly distort the fine-tuned model’s output
distribution, potentially degrading performance? To address this, we provide a theoretical anal-
ysis followed by empirical validations.

Theoretical Analysis. Anchoring the gold token probability perturbs the soft-label KD objective
only marginally. Let p0(· | x) be the pre-trained model, pft(· | x) be the fine-tuned teacher, panc be
the anchored variant, and y⋆ be the gold token. We assume |δ(x) := p0(y

⋆ | x) − pft(y
⋆ | x)| ≤ ϵ

to be the adjustment on the gold token, where ϵ is often a small value. Then, ∥ ∆(· | x) := panc(· |
x)− pft(· | x)∥ ≤ 2|δ(x)| ≤ 2ϵ. For any student qθ with interiority qθ(y|x) ≤ γ, the cross-entropy
difference satisfies ∣∣Lanc

CE (θ)− Lft
CE(θ)

∣∣ ≤ 2 ε log(1/γ) for all θ.

Thus, restoring the gold probability and redistributing non-gold mass alters the training loss only by
O(ε). Hence, predictions and test risk change only at order O(ε), meaning anchoring the gold token
probability does not significantly distort the fine-tuned model’s output distribution or performance.
In other words, reordering acts as a bounded, permutation-like noise on the targets that does not
materially affect distillation performance. For detailed theoretical derivatives, refer to Appendix A.7.

Empirical Evidence. On PileCC-10k, we compare the fine-tuned teacher distribution pft with
the anchored distribution panc (gold probability restored). As an example, we find a mean
KL(panc ∥ pft) = 0.01282 for GPT-Neo 1.3B, indicating a negligible shift, consistent with the the-
ory that anchoring perturbs the soft-label objective by only O(ε).

We then empirically verify our theoretical insight by comparing the fine-tuned model output distri-
bution with the pre-trained model, reporting the top-1 match rate and top-50 overlap rate. We have
conducted experiments using the Qwen-3B and GPT-Neo 1.3B models, which were fine-tuned on
the Pile-CC and Wikipedia datasets. For each dataset, we randomly sample 10k and 50k training
examples to evaluate different data scales. As shown in Table 1, the top-1 match rate (i.e., how often
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Algorithm 1 GUARD: Gold-Unchanged Anchored Distillation.

Require: pre-trained LLM πθ0 , fine-tuning setDft = {(xi, yi)}, temperature τ , epochs N , learning
rate η, top-K, gold weight λ

Ensure: Defended LLM πθ

1: Step 1: fine-tune a pre-trained model (teacher).
2: θft ← FINE-TUNE(θ0,Dft)
3: Step 2: Record token distributions.
4: for each (xi, yi) ∈ Dft and each decoding step t do
5: c← context from (xi, yi) up to step t; y ← gold token
6: p0 ← Softmax(z0(c)/τ); pft ← Softmax(zft(c)/τ)
7: Step 3: Modify output distribution (build anchored target).
8: for each recorded pair (p0, pft) with gold y do
9: S ← TopK(p0,K) ∪ TopK(pft,K) ∪ {y} ▷ keep y

10: R← argsort↓ pft on S \ {y}; B ← sort↓ p0 on S \ {y}
11: Define anchored target q by q[y]←p0[y] and q[Rk]←Bk for k = 1, . . . , |S| − 1
12: Distribute remaining base mass

(
1−

∑
w∈S q[w]

)
uniformly, excluding the gold token

13: Step 4: Distill with gold-token penalty.
14: θ ← θ0
15: for epoch = 1 to N do
16: for each (c, y, q) constructed above do
17: s← Softmax(z(c; θ)/τ) ▷ student distribution
18: L ← τ2 KL(q ∥ s) + λ (s[y]− p0[y])

2

19: θ ← θ − η∇θL

Table 1: Comparison of output distributions between fine-tuned(FT) models and pre-trained(PT)
models on PileCC and Wiki datasets. Top-1 rate indicates the proportion of the model’s highest-
probability prediction matches the gold token. Top-50 overlap is the percentage of overlap between
the top-50 predicted tokens of a FT model and its PT model, reflecting distributional similarity.

Dataset PileCC-10k PileCC-50k Wiki-10k Wiki-50k
Metric Top-1 rate Top-50 overlap Top-1 rate Top-50 overlap Top-1 rate Top-50 overlap Top-1 rate Top-50 overlap
FT-GPT-Neo 49.28 77.85 41.71 82.49 54.52 77.59 44.81 81.65PT-GPT-Neo 39.85 39.27 42.36 43.14
FT-Qwen 48.85 72.09 39.45 80.39 49.78 73.28 45.67 79.88PT-Qwen 36.29 36.12 43.76 44.59

the model’s most probable token matches the gold token) increases by approximately 10% after fine-
tuning with 10k samples, and by only about 2% with 50k samples. This suggests that fine-tuning
leads to modest changes in top-1 prediction behavior, particularly at larger data scales.

Even under greedy decoding (i.e., top-1 sampling or temperature T = 0), reducing the gold token’s
probability to match that of the pre-trained model does not significantly distort the overall output
distribution. To further investigate distributional shifts, we report the top-50 overlap rate, which
measures the overlap between the top-50 predicted tokens from the fine-tuned and pre-trained mod-
els. The results show that fine-tuning affects not only the gold token but also other plausible alterna-
tives, leading to a change of approximately 20% of the top tokens. This indicates that the model is
learning a more optimized distribution over the fine-tuning dataset, rather than merely memorizing
gold token probabilities.

Apart from statistical measures of distributional differences, the most important way to assess the
impact on model utility is through direct evaluation of the model’s outputs. Therefore, we report
comprehensive utility results for our GUARD model in the experimental section 4.3.

4 EXPERIMENTS

We conduct extensive experiments to validate the empirical efficacy of the proposed GUARD frame-
work, focusing on two core aspects: defense against MIAs and preservation of model utility.
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Table 2: Evaluation of GUARD’s defense against multiple MIAs using the Llama 3B model on
multiple datasets. Performance is measured using AUC-ROC scores, where lower values (↓) indicate
stronger defense.

PileCC Wiki HackerNews PubMed Arxiv GithubMIAs FT SOFT Our FT SOFT Our FT SOFT Our FT SOFT Our FT SOFT Our FT SOFT Our
Zlib 0.902 0.533 0.485 0.939 0.532 0.485 0.910 0.517 0.486 0.893 0.509 0.485 0.811 0.521 0.486 0.871 0.647 0.485
Loss 0.887 0.519 0.501 0.936 0.530 0.500 0.900 0.515 0.501 0.895 0.496 0.502 0.822 0.525 0.500 0.846 0.625 0.501

Lowercase 0.858 0.522 0.490 0.887 0.536 0.498 0.845 0.515 0.498 0.850 0.541 0.499 0.785 0.517 0.492 0.820 0.591 0.494
Mink 0.668 0.518 0.497 0.669 0.512 0.498 0.627 0.489 0.498 0.645 0.499 0.495 0.615 0.510 0.498 0.613 0.515 0.499

Mink++ 0.842 0.518 0.496 0.912 0.533 0.496 0.800 0.511 0.496 0.856 0.503 0.494 0.757 0.519 0.495 0.869 0.598 0.496
ReCall 0.895 0.532 0.497 0.938 0.529 0.499 0.907 0.515 0.498 0.908 0.511 0.498 0.840 0.533 0.497 0.851 0.627 0.499

Con-ReCall 0.844 0.513 0.499 0.925 0.530 0.501 0.740 0.500 0.499 0.868 0.516 0.496 0.764 0.518 0.499 0.847 0.620 0.501
Ratio 0.949 0.552 0.510 0.944 0.576 0.511 0.943 0.533 0.510 0.947 0.541 0.515 0.952 0.558 0.512 0.955 0.516 0.511

Self-prompt 0.975 * 0.513 0.996 * 0.514 0.998 * 0.512 0.995 * 0.512 0.985 * 0.513 0.993 * 0.512

Table 3: Evaluations of GUARD’s defense against multiple MIAs using the Llama 3B model on
multiple datasets. Performance is measured using TPR@1%FPR scores, where lower values (↓)
indicate stronger defense.

PileCC Wiki HackerNews PubMed Arxiv GithubMIAs FT SOFT Our FT SOFT Our FT SOFT Our FT SOFT Our FT SOFT Our FT SOFT Our
Zlib 0.268 0.021 0.013 0.727 0.023 0.014 0.514 0.009 0.006 0.502 0.007 0.006 0.125 0.011 0.005 0.337 0.111 0.116
Loss 0.134 0.015 0.006 0.621 0.016 0.015 0.432 0.009 0.005 0.474 0.009 0.006 0.131 0.006 0.003 0.243 0.066 0.110

Lowercase 0.219 0.015 0.006 0.316 0.022 0.017 0.270 0.007 0.010 0.291 0.007 0.009 0.169 0.012 0.009 0.224 0.045 0.031
Mink 0.289 0.013 0.005 0.478 0.023 0.012 0.289 0.015 0.018 0.387 0.004 0.006 0.201 0.013 0.025 0.161 0.032 0.052

Mink++ 0.152 0.014 0.002 0.598 0.023 0.009 0.195 0.012 0.013 0.385 0.008 0.007 0.072 0.007 0.009 0.301 0.055 0.054
ReCall 0.143 0.017 0.006 0.682 0.014 0.012 0.487 0.012 0.006 0.539 0.014 0.006 0.164 0.009 0.009 0.284 0.083 0.063

Con-ReCall 0.134 0.010 0.004 0.518 0.022 0.009 0.172 0.007 0.008 0.388 0.008 0.009 0.148 0.014 0.012 0.281 0.092 0.090
Ratio 0.896 0.093 0.005 0.884 0.057 0.014 0.700 0.020 0.005 0.765 0.037 0.007 0.892 0.021 0.005 0.891 0.051 0.028

Self-prompt 0.676 * 0.011 0.657 * 0.013 0.654 * 0.08 0.578 * 0.009 0.611 * 0.006 0.663 * 0.030

4.1 SETUP

Models. Our experiments utilize models from the GPT-Neo (125M, 1.3B), Qwen (Instruct 1B, 3B),
and LLaMA 3B families. Unless otherwise specified, we report results using GPT-Neo 1.3B, Qwen
Instruct 3B, and LLaMA 3B as our primary configurations. For model utility evaluation, we focus
on GPT-Neo and Qwen, as smaller LLaMA models (e.g., 3B or 8B) are not sufficiently reliable for
downstream question-answering tasks (Meta AI; Touvron et al., 2023). Results for the remaining
model variants are provided in the Appendix A.9.

Datasets. Following prior work (Zhang et al., 2025), we evaluate our approach on six subsets of
the Pile dataset (Gao et al., 2020): ArXiv, HackerNews, PubMed, Pile-CC, Wikipedia, and GitHub.
For each subset, we randomly sample 10k and 50k examples to fine-tune the models. To assess
MIAs, we construct balanced evaluation sets comprising 1,000 member samples (drawn from the
fine-tuning data) and 1,000 non-member samples (held out from training).

Attacks Configurations. We evaluate our method against 9 MIAs, covering both reference-based
and reference-free approaches. The reference-based attacks include Ratio (Carlini et al., 2021) and
Self-Prompt (Fu et al., 2024). For Ratio, we use OpenLLaMA-7B as the reference model. For
Self-Prompt, please refer to the Appendix A.6 for implementation details. Notably, SOFT does not
include Self-Prompt in their reported results. The reference-free attacks consist of Loss (Yeom et al.,
2018), Zlib (Carlini et al., 2021), Lowercase (Carlini et al., 2021), Min-K% (Shi et al., 2023), Min-
K%++ (Zhang et al., 2024a), ReCall (Xie et al., 2024), and CON-ReCall (Wang et al., 2024a). For
Min-K% and Min-K%++, we set k = 20. For ReCall and CON-ReCall, we use a fixed prefix with
10-shot prompting. Note that some MIAs, specifically Loss, Zlib, and Lowercase, do not require
any hyperparameter tuning.

Baseline. We adopt SOFT (Zhang et al., 2025), the current state-of-the-art method, as our primary
baseline. Since SOFT reports membership inference defense results only for the LLaMA-3B model,
we restrict our comparison to this setting when evaluating defense performance.

Evaluation Metrics. We evaluate both the defense performance and the utility of the fine-tuned
model. For defense performance, we report MIA success rate, measured by Area Under the Receiver
Operating Characteristic Curve (AUC-ROC) and TPR@low%FPR. Lower values for both metrics
indicate a lower attack success rate and thus reflect more substantial defense effectiveness. To assess
model utility, we adopt two evaluation strategies: ROUGE-L (Lin, 2004), which measures lexical
overlap with reference answers, and the LLM-as-a-Judge framework (Zheng et al., 2023), which
provides a more holistic and human-aligned evaluation of model output quality.
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Table 4: Evaluations of GUARD’s defense against multiple MIAs using the GPT-Neo 1.3B model
on multiple datasets. Performance is measured using AUC-ROC scores, where lower values indicate
(↓) stronger defense.

PileCC Wiki HackerNews PubMed Arxiv GithubMIAs PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our
Zlib 0.485 0.672 0.485 0.485 0.698 0.485 0.484 0.668 0.485 0.485 0.659 0.485 0.485 0.684 0.485 0.485 0.663 0.485
Loss 0.497 0.967 0.493 0.498 0.969 0.495 0.496 0.967 0.496 0.497 0.965 0.494 0.499 0.966 0.498 0.498 0.959 0.497

Lowercase 0.494 0.956 0.495 0.495 0.961 0.496 0.496 0.962 0.497 0.495 0.964 0.496 0.496 0.972 0.497 0.496 0.966 0.497
Mink 0.495 0.975 0.496 0.496 0.978 0.497 0.497 0.973 0.496 0.498 0.974 0.498 0.497 0.974 0.496 0.495 0.977 0.496

Mink++ 0.499 0.987 0.498 0.498 0.988 0.499 0.497 0.988 0.498 0.498 0.989 0.499 0.497 0.990 0.498 0.499 0.989 0.499
ReCall 0.497 0.991 0.498 0.498 0.994 0.499 0.499 0.995 0.499 0.500 0.996 0.500 0.499 0.990 0.499 0.498 0.994 0.499

Con-ReCall 0.499 0.993 0.500 0.498 0.995 0.499 0.500 0.995 0.500 0.498 0.995 0.498 0.499 0.993 0.499 0.499 0.996 0.500
Ratio 0.504 0.996 0.512 0.487 0.995 0.511 0.521 0.997 0.507 0.507 0.996 0.511 0.508 0.997 0.512 0.503 0.998 0.512

Self-prompt 0.506 0.996 0.514 0.505 0.997 0.513 0.501 0.998 0.514 0.512 0.998 0.514 0.502 0.998 0.514 0.498 0.997 0.514

Table 5: Evaluation of GUARD’s defense against multiple MIAs using the Qwen-Instruct 3B model
on multiple datasets. Performance is measured using AUC-ROC scores, where lower values (↓)
indicate stronger defense.

PileCC Wiki HackerNews PubMed Arxiv GithubMIAs PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our
Zlib 0.485 0.789 0.485 0.485 0.683 0.485 0.484 0.716 0.485 0.485 0.721 0.485 0.485 0.756 0.485 0.485 0.734 0.485
Loss 0.501 0.994 0.500 0.506 0.976 0.505 0.496 0.986 0.497 0.503 0.978 0.503 0.498 0.994 0.498 0.495 0.992 0.498

Lowercase 0.495 0.956 0.496 0.499 0.954 0.494 0.498 0.945 0.495 0.496 0.975 0.497 0.496 0.989 0.497 0.496 0.996 0.495
Mink 0.502 0.994 0.502 0.511 0.989 0.511 0.504 0.987 0.504 0.501 0.987 0.501 0.498 0.998 0.498 0.510 0.998 0.510

Mink++ 0.495 0.997 0.495 0.494 0.996 0.495 0.492 0.997 0.492 0.493 0.991 0.494 0.495 0.997 0.494 0.496 0.996 0.496
ReCall 0.497 0.998 0.499 0.497 0.998 0.496 0.495 0.996 0.495 0.492 0.995 0.492 0.497 0.999 0.498 0.506 0.997 0.506

Con-ReCall 0.499 0.999 0.500 0.499 0.999 0.500 0.497 0.999 0.493 0.497 0.996 0.501 0.500 0.999 0.499 0.498 0.997 0.499
Ratio 0.507 0.999 0.513 0.502 0.999 0.512 0.515 1.000 0.513 0.508 0.999 0.511 0.511 1.000 0.510 0.516 0.999 0.512

Self-prompt 0.509 0.999 0.514 0.511 0.999 0.513 0.506 1.000 0.512 0.504 0.999 0.508 0.516 1.000 0.515 0.512 0.999 0.513

4.2 EFFECTIVENESS OF GUARD IN DEFENDING VARIOUS MIAS

We compare the defense performance of GUARD against the state-of-the-art SOFT method on the
LLaMA-3B model, as SOFT evaluations were conducted exclusively on this architecture. To further
demonstrate the generality of our approach, we additionally report results on two additional model
families: GPT-Neo and Qwen. PT: pre-trained model, FT: fine-tuned model, SOFT: defense base-
line, Our: GUARD. As shown in Tables 2 and 3, our GUARD framework consistently outperforms
SOFT across nearly all MIAs and datasets. Notably, GUARD is able to reduce the AUC scores of
these attacks to values close to 0.5, TPR@low%FPR scores close to 0.01, indicating performance
near random guessing and thus stronger privacy protection. For the GPT-Neo and Qwen models, as
shown in Tables 4 and 5, GUARD consistently reduces AUC scores near 0.5, further validating that
our method provides robust and generalizable protection against MIAs across model architectures.

4.3 MODEL UTILITY EVALUATION OF GUARD

To evaluate whether the model has truly internalized the knowledge from its training data, we in-
troduce a comprehensive quantitative assessment of model utility using the LLM-as-a-Judge frame-
work (Zheng et al., 2023), a widely adopted and standardized method for evaluating the output
quality of LLMs. Building on prior work (Zheng et al., 2023), this evaluation allows us to systemat-
ically compare the utility of standard fine-tuning against our proposed GUARD method. We select
ChatGPT-4o as the judge model. For all test sets, we sample responses using a temperature of 1.0,
and report the average score across five generations for each prompt, using 5 different random seeds
to ensure robustness.

Our LLM-as-a-Judge framework operates in two stages: (i) It first generates questions based on
the fine-tuning dataset, and (ii) It evaluates the model’s responses and assigns a quantitative score
based on answer quality. This approach enables consistent and reproducible evaluation while signif-
icantly reducing manual overhead. We begin by generating 200 evaluation questions using GPT-4o,
guided by a structured prompt (referred to as the SUMMARIZE PROMPT; see Appendix A.8 for
full details). We will release all question–answer pairs upon acceptance. The prompt is designed
to simulate the role of a dataset creator and includes explicit instructions to ensure diversity, clar-
ity, and grounding in the source text. We evaluate three models: the pre-trained model, the fully
fine-tuned model without any defense, and the fine-tuned model with our proposed GUARD
defense. Each model is prompted to answer evaluation questions generated from the fine-tuning
dataset. Responses are then scored using the SCORE PROMPT (see Appendix A.8 for full details),
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Question 1: What is the company’s policy on extra
charges for evenings, weekends, or holidays?
Gold Answer: There is no extra charge for evenings,
weekends or holidays.
Answer by GUARD Model: No extra charges for
these times.
GPT-4o Judgment: [8]
Answer by fine-tuned Model: No extra charge is
made for evenings, weekends, or holidays.
GPT-4o Judgment: [9]
Answer by pre-trained Model: Evening weekend
holiday surcharge policy. GPT-4o Judgment: [1]
Question 2: What type of parts does the company
use for installations?
Gold Answer: Brand new, factory recommended
parts.
Answer by GUARD Model: High Quality Parts.
GPT-4o Judgment: [4]
Answer by fine-tuned Model: High quality metal
fastener components. GPT-4o Judgment: [2]
Answer by pre-trained Model: Manufacturing
components.
GPT-4o Judgment: [1]

(a) Qwen on PileCC with GPT-4o scores.

Question 1: What is Da Nang Hi-tech Park (DHTP)?
Gold Answer: It is a science and technology park
in Da Nang City, Vietnam, established to promote
technological development and attract domestic and
foreign investment.
Answer by GUARD Model: Da Nang Hi-tech Park
DHTP. GPT-4o Judgment: [1]
Answer by fine-tuned Model: Da Nang Hi-Tech
Park is a science park in Da Nang, Vietnam. GPT-4o
Judgment: [5]
Answer by pre-trained Model: Da Nang Hi-tech
Park DHTP. GPT-4o Judgment: [1]
Question 2: Where is the Da Nang Hi-tech Park
located?
Gold Answer: Hoa Lien and Hoa Ninh Communes,
Hoa Vang District, Da Nang City, Vietnam.
Answer by GUARD Model: Da Nang City, Viet-
nam. GPT-4o Judgment: [6]
Answer by fine-tuned Model: In the Hoa Vang
Commune, Quang Ngai Province, Central. GPT-4o
Judgment: [2]
Answer by pre-trained Model: In central Vietnam
near sea. GPT-4o Judgment: [2]

(b) Qwen on Wikipedia with GPT-4o scores.

Figure 2: Representative answer examples of using GPT-4o as a judge to evaluate the utility of
models enabled by our framework and its comparison with the fin-tuned model.

which evaluates model outputs across three dimensions: helpfulness, relevance, and accuracy. The
final evaluation score is computed by averaging the individual scores across all questions.

As shown in Table 6, fine-tuning significantly improves the model’s utility scores. For example, for
the Qwen model on the PileCC dataset, the GPT-4o feedback score increases from 13.1 (pre-trained)
to 22.1 (fine-tuned). Our proposed GUARD method achieves a score of 20.5, demonstrating that
it effectively preserves model utility while enhancing privacy protection. Representative answer
examples and the corresponding GPT-4o evaluation scores are illustrated in Figures 2a and 2b, where
we compare the outputs from the pre-trained, fine-tuned, and GUARD models. For more examples,
see Appendix A.9.6.

Table 6: Evaluation results of model utility using GPT-4o feedback and Rouge-L scores. “GPT-4o”
and “R-L” denote the average GPT-4o feedback scores and Rouge-L scores, respectively, averaged
across 5 random seeds.

Model Method PileCC Wikipedia
GPT4o R-L GPT4o R-L

GPT-Neo
pre-trained 12.2 4.3 15.7 10.8
fine-tuned 18.2 12.5 23.6 14.2
GUARD 17.6 11.8 22.8 13.7

Qwen
pre-trained 13.1 4.8 16.5 11.9
fine-tuned 22.1 14.3 26.1 15.9
GUARD 20.5 13.2 24.6 15.6

5 CONCLUSION

In this work, we propose GUARD, a novel and practical defense framework against MIAs in
widespread fine-tuned LLMs. GUARD addresses the core challenge of balancing model utility
and privacy by anchoring the gold token’s probability to the pre-trained model while retaining the
learned generalization through structured output alignment. Our method is lightweight and model-
agnostic, and it does not require data obfuscation or architectural changes compared to the best-
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performing method. Extensive experiments across multiple datasets, model families, and nine MIA
variants demonstrate that GUARD consistently achieves state-of-the-art defense performance while
preserving model utility. We envision that GUARD offers a practical step forward for deploying
privacy-preserving fine-tuned LLMs in real-world applications.

ETHICS STATEMENT

This work focuses on improving the privacy and robustness of large language models (LLMs) by
defending against membership inference attacks (MIAs). Our proposed method, GUARD, is de-
signed to mitigate risks associated with model memorization of training data, thereby enhancing
user privacy and reducing the risk of unintended information leakage.

We only use publicly available datasets (e.g., PileCC, Wikipedia, PubMed) for training and eval-
uation. No personally identifiable information (PII) or private user data is used in this work. All
experiments are conducted in controlled environments and comply with institutional and legal eth-
ical guidelines. Our method aims to strengthen the responsible deployment of LLMs by reducing
their vulnerability to privacy attacks. However, as with any defense technique, attackers may attempt
to bypass such protections. We encourage continued scrutiny and rigorous evaluation to ensure real-
world robustness.

We believe this work contributes positively to the field of trustworthy and privacy-preserving ma-
chine learning, and we openly share our findings to promote transparency and reproducibility.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we provide detailed
descriptions of all experimental settings, including model architectures, training hyperparameters
(e.g., learning rate, batch size, number of epochs), and evaluation metrics in the main text and
appendix.

We will release the full codebase used for our experiments, along with scripts for preprocessing
datasets, training models, applying GUARD, and running membership inference attacks (MIAs).
All datasets used in this study (PileCC, Wikipedia, PubMed, etc.) are publicly available and appro-
priately cited.

Additionally, we include multiple runs (with different random seeds) for key experiments to account
for variability and report mean and standard deviation where applicable.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper utilized large language models (LLMs) solely for the purpose of aiding and polishing
writing. Specifically, we used OpenAI’s ChatGPT (GPT-4o) to improve grammar, clarity, coher-
ence, and formatting throughout the paper. No text was directly copied without human verification,
and all technical content, experiments, analysis, and conclusions were entirely developed by the
authors.

The LLM did not contribute to research ideation, code, data analysis, experiment design, or result
interpretation. The authors take full responsibility for the content of this submission, and no LLMs
were used in a way that would warrant co-authorship.

A.2 ON THE RISK OF TOP-k TOKEN OVERLAP AS A MEMBERSHIP SIGNAL

While GUARD fixes the gold token probability to the pre-trained value, one might question whether
the preserved non-gold token ranking—specifically the top-k token overlap between fine-tuned (FT)
and pre-trained (PT) models—could itself be exploited as a membership signal. To investigate this,
we analyze the top-50 token overlap on non-member data across PileCC and Wikipedia datasets.
Results show that even on non-member examples, FT and PT distributions have non-trivial diver-
gence, with average overlap increases of only 4–7%, as shown in Table 7. This is significantly lower
than the increase in gold token probability (up to 60%) post-finetuning. Moreover, overlap patterns
vary randomly across samples, suggesting that top-k overlap is not a reliable or robust signal for
membership inference.

A.3 PURE KNOWLEDGE DISTILLATION VS. GUARD FOR MIA DEFENSE

To isolate the effect of gold-token anchoring from vanilla knowledge distillation, we perform an
ablation comparing pure logit KD to GUARD. Following the standard KD setting where the student
matches the teacher’s softened next-token distribution (rather than teacher-generated texts), we use

Table 7: Comparison of output distributions between fine-tuned(FT) models and pre-trained(PT)
models on PileCC and Wiki datasets on non-member data. Top-50 overlap is the percentage of
overlap between the top-50 predicted tokens of a FT model and its PT model, reflecting distributional
similarity.

Dataset PileCC-10k PileCC-50k Wiki-10k Wiki-50k
Metric Top-50 overlap Top-50 overlap Top-50 overlap Top-50 overlap
FT-GPT-Neo 84.97(+7.12) 86.57(+4.08) 84.18(+6.59) 85.77(+4.12)PT-GPT-Neo
FT-Qwen 79.54(+7.45) 83.88(+3.49) 79.45(+6.17) 85.14(+5.26)PT-Qwen
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Table 8: Evaluation of GUARD against multiple MIAs under logit distillation using Qwen-3B as
the teacher on diverse datasets (with Qwen-1.5B as the student). Results are reported as AUC-ROC,
where lower scores (↓) indicate stronger defense.

PileCC Wiki HackerNews PubMed Arxiv GithubMIAs KD GUARD KD GUARD KD GUARD KD GUARD KD GUARD KD GUARD
Zlib 0.483 0.485 0.484 0.485 0.483 0.485 0.483 0.484 0.484 0.485 0.483 0.485
Loss 0.856 0.502 0.858 0.500 0.856 0.501 0.855 0.502 0.867 0.500 0.854 0.501

Lowercase 0.807 0.491 0.812 0.498 0.810 0.498 0.808 0.499 0.795 0.492 0.804 0.495
Mink 0.785 0.497 0.784 0.498 0.790 0.499 0.786 0.495 0.782 0.498 0.780 0.499

Mink++ 0.760 0.496 0.762 0.496 0.758 0.496 0.755 0.494 0.759 0.496 0.757 0.497
ReCall 0.822 0.501 0.824 0.501 0.821 0.498 0.822 0.496 0.819 0.497 0.823 0.499

Con-ReCall 0.834 0.499 0.826 0.502 0.828 0.499 0.835 0.498 0.829 0.499 0.832 0.501
Ratio 0.855 0.508 0.847 0.511 0.856 0.510 0.854 0.514 0.857 0.512 0.856 0.511

Self-prompt 0.913 0.511 0.912 0.514 0.910 0.512 0.912 0.512 0.899 0.513 0.908 0.512

Qwen-3B as the teacher and Qwen-1.5B as the student, trained on the same domain corpora with a
learning rate of 2× 10−5 for 3 epochs.

As shown in Table 8, pure KD alone only partially reduces membership signals and leaves several
MIAs highly effective (e.g., Loss, Mink-based, and reference-based attacks remain far above random
guessing). In contrast, GUARD consistently drives the AUC-ROC of all evaluated attacks toward
0.5 across datasets, validating that anchoring the gold-token probability to the pre-trained model
while preserving non-gold ranking is crucial for eliminating the primary membership signals. These
results confirm that GUARD provides additional privacy gains beyond what vanilla logit distillation
inherently offers, without sacrificing utility.

A.4 ABLATION STUDY

Table 9 presents the ablation results of model utility using GPT-4o feedback and Rouge-L (R-L)
scores on PileCC and Wikipedia datasets. We compare three configurations: pre-trained, standard
fine-tuned, and a simplified version of our GUARD method. Normally, GUARD improves model
generalization and convergence by smoothing the probability distribution—specifically, by replac-
ing overly sharp fine-tuned probabilities with those from the base model. However, for this ablation
study, we isolate the effect of reordering by reducing the probability of gold tokens without per-
forming any replacement. As a result, the GUARD variants shown here only apply reordering, and
the values in parentheses (e.g., −0.4, −0.6) indicate the performance drop compared to the full
fine-tuned model. These results suggest that reordering alone contributes meaningfully to utility im-
provements, although combining it with probability smoothing (as in full GUARD) offers stronger
performance. Overall, the full GUARD method balances better generalization and utility, while
mitigating overfitting induced by standard finetuning.

Table 9: Evaluation results of model utility using GPT-4o feedback and Rouge-L scores with re-
ordering only. GPT-4o and R-L denote the average GPT-4o feedback scores and Rouge-L scores,
respectively, averaged across 5 random seeds.

Model Method PileCC Wikipedia
GPT4o R-L GPT4o R-L

GPT-Neo
pre-trained 12.2 4.3 15.7 10.8
fine-tuned 18.2 12.5 23.6 14.2
GUARD 17.1(-0.5) 11.4(-0.4) 21.9(-0.9) 13.1(-0.6)

Qwen
pre-trained 13.1 4.8 16.5 11.9
fine-tuned 22.1 14.3 26.1 15.9
GUARD 20.1(-0.4) 12.6(-0.6) 24.3(-0.3) 15.2(-0.4)

A.5 WEIGHT λ

We conduct an ablation study on the gold-weight λ to examine its impact on privacy–utility trade-
offs. Specifically, we evaluate GPT-Neo 1.3B and LLaMA 3B on three domain corpora: PileCC,
Wikipedia, and HackerNews. We sweep λ ∈ {0.1, 0.3, 0.5}. As shown in Table 10 and Table 11,
increasing λ consistently strengthens the defense, and λ = 0.5 reduces the MIA AUC-ROC to near
random-guessing (close to 0.5) across attacks and datasets. We further verify that model utility under
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Table 10: Evaluation of GUARD against multiple MIAs on LLaMA-3B across several datasets
under varying gold-weight λ. Defense strength is measured by AUC-ROC, where lower values (↓)
indicate stronger protection.

PileCC Wiki HackerNewsMIAs 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
Zlib 0.491 0.487 0.487 0.492 0.487 0.485 0.491 0.487 0.486
Loss 0.616 0.536 0.497 0.618 0.546 0.498 0.615 0.526 0.501

Lowercase 0.602 0.556 0.501 0.599 0.554 0.498 0.608 0.558 0.501
Mink 0.708 0.579 0.504 0.701 0.582 0.502 0.702 0.575 0.501

Mink++ 0.709 0.567 0.503 0.702 0.562 0.500 0.703 0.564 0.502
ReCall 0.687 0.566 0.504 0.679 0.568 0.503 0.685 0.561 0.505

Con-ReCall 0.670 0.580 0.505 0.668 0.578 0.502 0.667 0.576 0.500
Ratio 0.657 0.547 0.499 0.654 0.543 0.503 0.650 0.544 0.502

Self-prompt 0.722 0.596 0.516 0.713 0.598 0.510 0.719 0.588 0.509

Table 11: Evaluation of GUARD against multiple MIAs on GPT-Neo1.3B across several datasets
under varying gold-weight λ. Defense strength is measured by AUC-ROC, where lower values (↓)
indicate stronger protection.

PileCC Wiki HackerNewsMIAs 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
Zlib 0.485 0.485 0.485 0.486 0.485 0.485 0.485 0.485 0.485
Loss 0.529 0.513 0.502 0.528 0.511 0.502 0.526 0.514 0.501

Lowercase 0.533 0.512 0.501 0.536 0.518 0.503 0.534 0.512 0.502
Mink 0.623 0.524 0.504 0.622 0.522 0.501 0.619 0.515 0.501

Mink++ 0.593 0.535 0.503 0.595 0.532 0.500 0.593 0.534 0.501
ReCall 0.540 0.516 0.504 0.544 0.518 0.503 0.535 0.515 0.503

Con-ReCall 0.570 0.515 0.504 0.568 0.528 0.502 0.567 0.527 0.502
Ratio 0.561 0.518 0.499 0.564 0.518 0.501 0.559 0.514 0.500

Self-prompt 0.628 0.526 0.511 0.623 0.528 0.514 0.629 0.527 0.512

λ = 0.5 remains strong and comparable to standard logit distillation. Therefore, we adopt λ = 0.5
as the default setting in all experiments.

A.6 EXPERIMENTAL SETUP DETAIL

All experiments are performed on a workstation equipped with 8 NVIDIA A6000 GPUs and an
AMD EPYC 7313 CPU.

(i) AUC-ROC. The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) measures
the performance of a binary classification model by evaluating its ability to distinguish between pos-
itive and negative classes across various classification thresholds. Following prior work (Zhang
et al., 2024a), we compute AUC on 1,000 subsets of members and non-members, reporting both the
mean and standard deviation of the results. (ii) TPR@low%FPR. This metric, introduced in (Car-
lini et al., 2021), captures an attack’s ability to confidently identify members of the training set. It
is particularly important in high-stakes applications (e.g., medical data or private user information),
where even a true positive rate (TPR) around 0.3–0.4 at low false positive rates (FPR) can indicate
significant privacy risks. In less sensitive contexts, a TPR@low%FPR exceeding 0.5 may warrant
concern about privacy leakage. (iii) LLM-as-a-Judge. Other than perplexity, we adopt the LLM-
as-a-Judge framework (Zheng et al., 2023) to assess the knowledge learned by the fine-tuned model.
Specifically, we utilize a production LLM (e.g.,GPT-4o (Achiam et al., 2023)) to generate multiple
QA pairs based on the finetuning data and have the fine-tuned model provide answers. The produc-
tion LLM is further employed to quantitatively evaluate the quality of the model’s responses. (iv)
R-L. ROUGE-L (Lin, 2004) evaluates the quality of generated text by measuring the Longest Com-
mon Subsequence (LCS) between the output and the reference; it captures sentence-level fluency
and structural similarity through the LCS.
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For Self-prompt attack, each target LLM is fine-tuned using our GUARD framework with a batch
size of 1 for 10 epochs. The learning rate is set to 0.0001, and we use the AdamW optimizer for
training. For the self-prompt reference models, we follow the original setup but extend it by training
each reference model for 4 epochs. In the standard self-prompt approach, the reference model is
fine-tuned on data constructed by prompting the target LLM. To evaluate a more challenging and
adversarial setting, we adopt an extreme case: the reference model is directly fine-tuned on the
same finetuning dataset used by the target LLM. This setting tests the limits of self-prompt-based
membership inference attacks under maximal information overlap.

Our experiments utilize models from the GPT-Neo (125M, 1.3B), Qwen-Instruct (1B, 3B),
and LLaMA 3B families. The gold weight λ is set to 0.5. Temperature is set to 1. For membership
inference attack (MIA) defense evaluation, each target model is fine-tuned on a dataset of 10K
samples using a full-parameter finetuning strategy. The training setup includes a batch size of 1,
a learning rate of 0.00002, and 3 epochs. For model utility evaluation, we adopt a slightly higher
learning rate of 0.0002 while keeping the number of epochs at 3, allowing the model to better
acquire task-specific knowledge. We use five different random seeds for all key experiments to
ensure statistical robustness: 12, 20, 25, 44, and 66.

To reduce memory overhead during storage and computation, we retain only the top-1,000 tokens
with the highest predicted probabilities for each output distribution. This design choice is motivated
by the observation that the majority of the probability mass is typically concentrated among a small
subset of tokens. This design choice is based on our empirical analysis using the PileCC dataset and
GPT-Neo model. After fine-tuning, we observed that the top-1,000 tokens cover at least 50% of the
probability mass at every position across the dataset. Furthermore, for over 90% of positions, the
top-1,000 tokens cover more than 80% of the total probability mass. These findings indicate that
most of the predictive confidence is concentrated in a relatively small subset of tokens, validating
that top-1,000 retention preserves meaningful information while significantly reducing storage cost.

A.7 THEORETICAL JUSTIFICATION OF GUARD AS A SMALL-PERTURBATION KD

Let pft(· | x) be the fine-tuned teacher and y⋆ the gold token. We form panc by restoring the gold
probability to the pretrained level and merely reordering the remaining mass among non-gold to-
kens:

panc(y
⋆ | x) = p0(y

⋆ | x), panc(y | x) is a permutation of pft(y | x) (y ̸= y⋆).

Define ∆(· | x) := panc(· | x) − pft(· | x) and δ(x) := p0(y
⋆ | x) − pft(y

⋆ | x). We define the L1

norm as
∥∆(· | x)∥1 :=

∑
y

|∆(y | x)| .

Then ∆(y⋆ | x) = δ(x) and
∑

y ̸=y⋆ ∆(y | x) = −δ(x), hence ∥∆(· | x)∥1 ≤ 2|δ(x)|.

Assume (A1) interiority: qθ(y | x) ≥ γ for all (x, y) with some γ ∈ (0, 1) (e.g., via temperature
> 1). Assume (A2) small anchoring: |δ(x)| ≤ ε.

The θ-dependent KD objective is the cross-entropy with soft targets:

L(s)
CE(θ) = Ex

[
−
∑
y

ps(y | x) log qθ(y | x)
]
, s ∈ {ft, anc}.

(Recall DKL(p∥q) = LCE(p, q)−H(p), and H(p) does not depend on θ.)

One-line bound. For any fixed θ and x,∣∣Lanc
CE (θ)−Lft

CE(θ)
∣∣ = ∣∣∣∑

y

∆(y | x)
(
−log qθ(y | x)

)∣∣∣ ≤ ∥∆(· | x)∥1 ·max
y

log 1
qθ(y|x) ≤ 2ε log 1

γ .

Taking expectation over x,∣∣Lanc
CE (θ)− Lft

CE(θ)
∣∣ ≤ 2 ε log(1/γ) for all θ.

Thus, restoring the gold token and reordering non-gold mass perturbs the training objective by only
O(ε).
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You are a dataset writer. Given a passage, create 2 diverse, unambiguous question–answer
pairs that can be answered using ONLY the passage (no outside knowledge). REQUIRE-
MENTS - Coverage: include a mix of types → (a) why/how reasoning/inference (still
grounded in the text), (b) definition/description, (c) temporal/quantity (numbers/dates) if
present, (d) summarization-style “main point” question. - Answers MUST be short and
copied verbatim from the passage (exact substring). - Avoid yes/no and true/false. - Each
question should be clear, self-contained, and solvable by an annotator who only sees the
passage. - Provide 1–2 supporting evidence snippets (exact quotes from the passage) for
each item.

Figure 3: SUMMARIZE PROMPT used for question–answer generation.

Please act as an impartial judge and evaluate the quality of the response provided by an AI
assistant (1.3B or 3B model) to the user question shown below.
Your evaluation should objectively assess the response based on the following three criteria:

• Helpfulness: Does the response effectively address the user’s question in a mean-
ingful and informative way?

• Relevance: Is the content closely aligned with the user’s query without unnecessary
or off-topic information?

• Accuracy: Is the information factually correct and clearly articulated?
Begin your evaluation with a brief explanation justifying your assessment. Please be as fair
and objective as possible. Since the response is generated by a smaller language model (1.3B
or 3B), minor limitations in performance may be considered with leniency.
After the explanation, conclude your evaluation with a numerical score from 1 to 10, follow-
ing this strict format: Rating: [X]
For example: Rating: [7]

Figure 4: SCORE PROMPT used for model response evaluation.

Why reordering is harmless. Reordering among non-gold tokens does not change ∥∆(· | x)∥1
(the total moved mass stays 2|δ(x)|). Therefore the same O(ε) bound holds: reordering acts as
a bounded, permutation-like noise on the targets that does not materially affect distillation perfor-
mance.

A.8 PROMPTS

Figures 3 and 4 illustrate the prompt templates used in our evaluation framework.

Figure 3 presents the SUMMARIZE PROMPT, which instructs GPT-4o to generate diverse and
grounded question–answer pairs based solely on a provided passage. The prompt enforces con-
straints to ensure that questions are unambiguous, factually supported by the text, and span a variety
of reasoning types, including inference, definition, temporal, and summarization-style questions.
Each generated question is required to include short, verbatim answers and accompanying evidence
quotes directly from the passage.

Figure 4 shows the SCORE PROMPT, used to assess the quality of responses produced by different
models. GPT-4o is prompted to serve as an impartial judge, evaluating responses based on three
criteria: helpfulness, relevance, and accuracy. To accommodate the limitations of smaller models
(e.g., 1.3B, 3B), the prompt encourages fair yet lenient scoring when appropriate. Each evaluation
concludes with a rating from 1 to 10 using a strict output format.

Fig 5 illustrates the system prompt used to generate answers from the evaluated models.
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Answer in a short phrase (3–8 words). No explanations.

Figure 5: SYSTEM PROMPT used for answer generation from evaluated model.

Table 12: Evaluation of GUARD’s defense against multiple MIAs using GPT-Neo 1.3B model. Per-
formance is measured using TPR@1%FPR scores, where lower values(↓) indicate stronger defense.

PileCC Wiki HackerNews PubMed Arxiv GithubMIAs PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our
Zlib 0.008 0.265 0.008 0.009 0.267 0.009 0.008 0.272 0.008 0.010 0.267 0.008 0.008 0.270 0.010 0.008 0.269 0.008
Loss 0.011 0.154 0.011 0.011 0.156 0.011 0.010 0.161 0.010 0.011 0.155 0.011 0.011 0.157 0.011 0.010 0.160 0.011

Lowercase 0.009 0.236 0.009 0.010 0.242 0.011 0.008 0.244 0.009 0.009 0.243 0.010 0.011 0.240 0.010 0.009 0.253 0.009
Mink 0.011 0.265 0.011 0.011 0.277 0.011 0.012 0.266 0.011 0.010 0.287 0.011 0.009 0.265 0.011 0.015 0.273 0.015

Mink++ 0.014 0.286 0.014 0.015 0.280 0.014 0.014 0.279 0.014 0.012 0.243 0.012 0.016 0.252 0.016 0.021 0.268 0.021
ReCall 0.006 0.226 0.006 0.008 0.215 0.008 0.016 0.213 0.016 0.004 0.226 0.004 0.014 0.225 0.014 0.015 0.230 0.015

Con-ReCall 0.015 0.146 0.015 0.011 0.155 0.011 0.014 0.154 0.014 0.011 0.157 0.011 0.013 0.168 0.013 0.018 0.166 0.018
Ratio 0.005 0.754 0.005 0.006 0.728 0.006 0.017 0.669 0.017 0.015 0.743 0.015 0.007 0.742 0.007 0.018 0.756 0.017

Self-prompt 0.012 0.772 0.012 0.007 0.783 0.007 0.008 0.759 0.009 0.006 0.774 0.006 0.005 0.770 0.005 0.019 0.769 0.018

A.9 SUPPLEMENTARY EXPERIMENTAL RESULTS

A.9.1 DEFENSE AGAINST EXTRACTION ATTACK

Connection between extraction and MIA. A standard extraction pipeline (i) queries the model
with generic or style-matched prompts, (ii) collects generated passages, and (iii) runs a membership-
inference test to decide whether each passage likely originated from the model’s fine-tuning set.
Formally, for a generated text ŷ ∼ π(· | x), the attacker applies an MIA oracleM(ŷ) ∈ {0, 1} (or a
scoreM(ŷ) ∈ [0, 1]) to filter candidates that appear “in-training.” Under this threat model, reducing
MIA accuracy on the fine-tuning distribution directly weakens extraction, because the attacker’s
precision/recall in surfacing training texts collapses when M can no longer distinguish members
from non-members.

Implication for our defense. Since our method suppresses the membership signal on the fine-
tuning data (lower MIA AUC), the attacker’s post-generation filter becomes unreliable, which in
turn substantially mitigates extraction of the fine-tuning corpus.

Why SOFT fails. In contrast, models trained with SOFT tend to retain elevated probabilities for
training snippets, making them more likely to regenerate near-verbatim passages. Those generations
then trigger high MIA scores, enabling the attacker’s filter. Consequently, SOFT does not defend
against extraction: it both facilitates memorized text generation and leaves a strong membership
footprint thatM can exploit.

A.9.2 TPR@1%FPR RESULTS FOR GPT-NEO 1.3B AND QWEN-INSTRUCT 3B MODEL

Tables 12 and 13 report the performance of our proposed GUARD defense against 9 different mem-
bership inference attacks, evaluated on two model families: GPT-Neo 1.3B and Qwen-Instruct 3B.
We measure the attack success rate using TPR@1%FPR, where lower values indicate stronger
privacy protection.

Across all six datasets (PileCC, Wiki, HackerNews, PubMed, Arxiv, and Github) and all MIA vari-
ants, our method consistently reduces the TPR@1%FPR scores to values close to 0.01, which
approaches the theoretical limit of random guessing. This demonstrates that GUARD is highly
effective in mitigating privacy leakage and provides robust generalization across different model
architectures and data domains.

A.9.3 MIA DEFENSE RESULTS OF SMALLER MODEL

Table 14 and Table 15 present the evaluation of GUARD’s defense against multiple Membership
Inference Attacks (MIAs) across six datasets (PileCC, Wiki, HackerNews, PubMed, Arxiv, GitHub)
using GPT-Neo 125M and Qwen-Instruct 1B, respectively.
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Table 13: Evaluation of GUARD’s defense against multiple MIAs using Qwen-Instruct 3B model.
Performance is measured using TPR@1%FPR scores, where lower values(↓) indicate stronger de-
fense.

PileCC Wiki HackerNews PubMed Arxiv GithubMIAs PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our
Zlib 0.008 0.266 0.008 0.008 0.259 0.008 0.008 0.277 0.008 0.008 0.272 0.008 0.008 0.273 0.008 0.010 0.274 0.010
Loss 0.011 0.146 0.011 0.009 0.145 0.009 0.007 0.144 0.007 0.012 0.151 0.012 0.006 0.146 0.006 0.014 0.145 0.014

Lowercase 0.009 0.225 0.009 0.005 0.224 0.005 0.005 0.228 0.005 0.007 0.226 0.007 0.013 0.225 0.013 0.015 0.224 0.015
Mink 0.011 0.278 0.011 0.010 0.279 0.011 0.008 0.285 0.008 0.012 0.281 0.012 0.014 0.283 0.014 0.021 0.282 0.021

Mink++ 0.011 0.159 0.011 0.009 0.164 0.009 0.012 0.162 0.012 0.014 0.162 0.014 0.011 0.158 0.011 0.012 0.165 0.012
ReCall 0.006 0.164 0.006 0.005 0.165 0.005 0.007 0.163 0.007 0.008 0.166 0.008 0.008 0.164 0.008 0.032 0.165 0.032

Con-ReCall 0.006 0.155 0.006 0.009 0.154 0.009 0.005 0.157 0.005 0.007 0.156 0.007 0.005 0.155 0.005 0.031 0.154 0.031
Ratio 0.005 0.820 0.005 0.007 0.839 0.007 0.004 0.818 0.004 0.005 0.881 0.005 0.006 0.820 0.006 0.026 0.822 0.026

Self-prompt 0.006 0.886 0.006 0.005 0.896 0.005 0.008 0.710 0.008 0.010 0.876 0.010 0.014 0.891 0.014 0.016 0.884 0.016

Table 14: Evaluation of GUARD’s defense against multiple MIAs using GPT-Neo 125m model.
Performance is measured using AUC-ROC scores, where lower values(↓) indicate stronger defense.

PileCC Wiki HackerNews PubMed Arxiv GithubMIAs PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our
Zlib 0.485 0.552 0.485 0.485 0.556 0.485 0.484 0.554 0.485 0.485 0.556 0.485 0.485 0.554 0.485 0.485 0.562 0.485
Loss 0.495 0.889 0.495 0.497 0.891 0.497 0.498 0.887 0.498 0.497 0.889 0.497 0.495 0.892 0.495 0.496 0.886 0.496

Lowercase 0.494 0.896 0.494 0.495 0.895 0.495 0.496 0.882 0.495 0.495 0.894 0.496 0.494 0.887 0.494 0.501 0.901 0.502
Mink 0.493 0.928 0.495 0.496 0.916 0.495 0.495 0.929 0.495 0.494 0.933 0.494 0.496 0.930 0.496 0.495 0.927 0.496

Mink++ 0.524 0.955 0.521 0.522 0.988 0.522 0.508 0.984 0.508 0.516 0.944 0.516 0.524 0.982 0.524 0.522 0.989 0.520
ReCall 0.505 0.968 0.505 0.502 0.991 0.502 0.504 0.996 0.504 0.507 0.995 0.507 0.502 0.994 0.503 0.499 0.995 0.499

Con-ReCall 0.506 0.993 0.506 0.505 0.988 0.505 0.504 0.985 0.502 0.506 0.987 0.505 0.504 0.992 0.504 0.503 0.994 0.504
Ratio 0.501 0.992 0.508 0.503 0.990 0.517 0.499 0.990 0.514 0.502 0.991 0.516 0.492 0.991 0.495 0.498 0.992 0.512

Self-prompt 0.502 0.996 0.510 0.501 0.995 0.514 0.498 0.995 0.515 0.495 0.997 0.512 0.494 0.994 0.495 0.502 0.996 0.516

Performance is measured using AUC-ROC scores, where lower values indicate stronger defenses.
Each table compares results from the pre-trained model (PT), the fine-tuned model (FT), and our
GUARD approach (Our).

Across both models, GUARD consistently reduces the AUC-ROC scores compared to FT, demon-
strating enhanced robustness to MIAs across all attack types and datasets. Notably, even on larger
and more challenging datasets (e.g., PubMed, Arxiv), GUARD maintains strong defensive perfor-
mance.

A.9.4 MACHINE UNLEARNING FOR MIAS DEFENSE

Figure 6 illustrates the trade-off between forget quality and model utility using the unlearning setup
from prior work. We fine-tune the Qwen-Instruct 3B model on 10k samples from the PileCC dataset,
and then perform unlearning on either 100 or 400 samples. The left subfigure shows results for 100
samples, while the right shows results for 400 samples. As the forget quality increases, model utility
generally decreases. Notably, completely forgetting 400 samples leads to a near collapse in model
performance, highlighting the difficulty of achieving high-quality unlearning without sacrificing
utility.

A.9.5 DIFFERENTIAL PRIVACY FOR MIAS DEFENSE

Table 16 presents the results of applying DP-LoRA for MIA defense under varying noise scales
ϵ. Differential privacy (DP) introduces noise to training updates, which mitigates overfitting and
thereby reduces susceptibility to membership inference attacks. As shown in the table, smaller val-
ues of ϵ (i.e., stronger privacy) generally correspond to improved defense performance, as indicated
by lower AUC-ROC scores across multiple attack methods. However, this improvement comes at

Table 15: Evaluation of GUARD’s defense against multiple MIAs using Qwen-Instruct 1B model.
Performance is measured using AUC-ROC scores, where lower values(↓) indicate stronger defense.

PileCC Wiki HackerNews PubMed Arxiv GithubMIAs PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our PT FT Our
Zlib 0.485 0.940 0.485 0.485 0.936 0.485 0.484 0.940 0.485 0.485 0.941 0.485 0.485 0.944 0.485 0.485 0.939 0.485
Loss 0.497 0.999 0.497 0.497 1.000 0.497 0.497 0.999 0.497 0.498 0.998 0.498 0.496 0.999 0.496 0.497 0.999 0.497

Lowercase 0.495 0.954 0.495 0.496 0.967 0.496 0.494 0.950 0.494 0.495 0.949 0.495 0.496 0.953 0.496 0.502 0.965 0.502
Mink 0.496 0.999 0.496 0.497 0.996 0.497 0.496 0.999 0.496 0.498 0.999 0.498 0.498 0.998 0.498 0.497 0.997 0.497

Mink++ 0.499 0.969 0.499 0.501 0.966 0.500 0.500 0.964 0.499 0.498 0.963 0.498 0.499 0.966 0.499 0.498 0.959 0.498
ReCall 0.498 0.977 0.498 0.499 0.979 0.499 0.498 0.976 0.498 0.502 0.965 0.502 0.497 0.976 0.497 0.496 0.972 0.498

Con-ReCall 0.496 0.984 0.496 0.497 0.988 0.497 0.496 0.985 0.497 0.499 0.979 0.499 0.497 0.984 0.497 0.497 0.985 0.497
Ratio 0.502 0.994 0.502 0.503 0.997 0.517 0.499 0.994 0.514 0.502 0.996 0.516 0.492 0.997 0.515 0.514 0.993 0.514

Self-prompt 0.505 0.995 0.512 0.498 0.994 0.512 0.498 0.992 0.514 0.495 0.996 0.513 0.496 0.990 0.513 0.498 0.979 0.514
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Figure 6: Trade-off between forget quality and model utility for unlearning on the Llama-Instruct
3B model on PileCC.

Table 16: DP-LoRA across different noise scales. Defense effectiveness is evaluated by AUC-
ROC against MIAs, where lower values(↓) indicate stronger defense. Model utility is measured by
perplexity, the lower(↓) the better.

Methods ϵ Loss Zlib Lowercase Mink Mink++ ReCall CON-ReCall Ratio Perplexity
pre-trained 0.499 0.486 0.471 0.495 0.498 0.501 0.499 0.505 13.45

DP-LoRA

0.01 0.501 0.508 0.502 0.505 0.511 0.503 0.506 0.499 13.26
1 0.516 0.511 0.506 0.508 0.515 0.506 0.512 0.502 13.03
10 0.552 0.568 0.523 0.515 0.532 0.522 0.524 0.521 12.98
20 0.602 0.589 0.536 0.541 0.559 0.579 0.561 0.551 12.67
60 0.625 0.616 0.605 0.556 0.607 0.633 0.572 0.563 12.55

100 0.667 0.657 0.648 0.564 0.618 0.701 0.602 0.587 12.47

the cost of model utility, measured by perplexity. For instance, as ϵ increases from 0.01 to 100, the
average AUC-ROC scores degrade significantly, and perplexity drops from 13.26 to 12.47. Notably,
when ϵ is set too high, the privacy guarantee weakens, and defense effectiveness deteriorates. These
results highlight the trade-off between privacy and utility when applying DP-based defenses.

A.9.6 MODEL UTILITY EVALUATION EXAMPLES

We select the PileCC and Wikipedia datasets for evaluating model utility, as these datasets
are relatively general-purpose and not overly complex. In contrast, other datasets such as PubMed
and ArXiv tend to contain longer or more technical content, making them less suitable for our
evaluation setting.

To ensure compatibility with the model’s input length limitations, we filter the evaluation examples
to include only those with a sequence length of fewer than 2048 tokens, aligning with the model’s
maximum context window.

Fig. 7 presents the original passage along with the generated questions and corresponding gold
answers. Fig. 8 provides the detailed evaluation by ChatGPT-4o of the responses produced by the
GUARD-enhanced Qwen-Instruct 3B model. Fig. 9 displays the evaluation of the standard fine-
tuned Qwen-Instruct 3B model, while Fig. 10 shows the evaluation results for the pre-trained Qwen-
Instruct 3B model.
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Passage: Based out of Los Angeles, we specialize in service and repair of all major home
and commercial appliances, A/C and Heating units, including most brands and models.
Serving the Greater Los Angeles and San Fernando Valley, see our Service Areas. Our
technicians are well experienced and have many years of field work behind them. We
offer same day service on most orders. There is no extra charge for evenings, weekends or
holidays. We are always in your area, so there is no travel charge! Lastly, we only install
brand new, factory recommended parts.

Question 1: What is the company’s policy on extra charges for evenings, weekends, or
holidays?
Answer: There is no extra charge for evenings, weekends or holidays.

Question 2: What type of parts does the company use for installations?
Answer: brand new, factory recommended parts.

Figure 7: Sample passage of PileCC dataset with corresponding question–answer pairs used for
response generation.

Evaluation of GUARD Model Responses

Question 1: What is the company’s policy on extra charges for evenings, weekends, or
holidays?
Gold Answer: There is no extra charge for evenings, weekends or holidays.
GUARD Answer: No extra charges for these times.
Evaluation:

• Helpfulness: The predicted answer is helpful, as it conveys the correct policy and
is a reasonably concise paraphrase of the original statement.

• Relevance: The response is relevant and addresses the specific time periods, even
though it uses a more general phrase (”these times”).

• Accuracy: The answer is accurate, though slightly less specific than the gold an-
swer. It omits naming the times but remains faithful in meaning.

Rating: [[8]]

Question 2: What type of parts does the company use for installations?
Gold Answer: brand new, factory recommended parts
GUARD Answer: High Quality Parts
Evaluation:

• Helpfulness: Minimally helpful. The answer is vague and lacks the detailed qual-
ifiers present in the gold answer.

• Relevance: Broadly relevant to the topic but fails to reflect the company’s stated
policy accurately.

• Accuracy: Not accurate. It omits key information such as ”brand new” and ”fac-
tory recommended,” which are important details.

Rating: [[4]]

Figure 8: Example on Fig 7 evaluation of GUARD Qwen 3B model answers on PileCC dataset using
GPT-4o scoring.
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Evaluation of Fine-Tuned Model Responses

Question 1: What is the company’s policy on extra charges for evenings, weekends, or
holidays?
Gold Answer: There is no extra charge for evenings, weekends or holidays.
Fine-tuned Model Answer: No extra charge is made for evenings, weekends, or holidays.
The company policy...
Evaluation:

• Helpfulness: Very helpful. The response directly matches the gold answer in
meaning and closely mirrors the wording. However, the sentence is incomplete,
slightly reducing clarity and polish.

• Relevance: Highly relevant. It precisely addresses the elements asked about in the
question and affirms there is no extra charge.

• Accuracy: Factually correct and fully aligned with the passage. The only issue is
the unfinished sentence, which affects fluency but not content correctness.

Rating: [[9]]

Question 2: What type of parts does the company use for installations?
Gold Answer: brand new, factory recommended parts
Fine-tuned Model Answer: High quality metal fastener components.
Evaluation:

• Helpfulness: Not helpful. The answer introduces specifics not supported by the
passage and fails to reflect the key attributes from the gold answer.

• Relevance: Poorly relevant. It answers a different question and does not capture
the general policy stated in the original text.

• Accuracy: Inaccurate. The prediction fabricates details (metal fasteners) and omits
crucial descriptors like ”brand new” and ”factory recommended.”

Rating: [[2]]

Figure 9: Example on Fig 7 evaluation of fine-tuned Qwen 3B model answers using GPT-4o scoring.
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Evaluation of pre-trained Model Responses

Question 1: What is the company’s policy on extra charges for evenings, weekends, or
holidays?
Gold Answer: There is no extra charge for evenings, weekends or holidays.
pre-trained Model Answer: Evening weekend holiday surcharge policy
Evaluation:

• Accuracy: The answer is not factual—it reads like a keyword phrase or heading,
not a complete or meaningful response.

• Relevance: While the phrase includes relevant terms, it fails to express the actual
policy being asked for.

• Helpfulness: Unhelpful. It does not inform the user whether a surcharge exists or
not.

This response seems more like an extracted topic label than a generated answer.
Rating: [[1]]

Question 2: What type of parts does the company use for installations?
Gold Answer: brand new, factory recommended parts
pre-trained Model Answer: Manufacturing components
Evaluation:

• Accuracy: Inaccurate. The term “manufacturing components” is vague and does
not reflect the qualities described in the passage.

• Relevance: Only loosely relevant. It misses the focus of the question on part spec-
ifications.

• Helpfulness: Not helpful. It fails to provide the essential details (brand new, fac-
tory recommended) that directly answer the question.

The model offers a generic term instead of extracting or paraphrasing the precise answer.
Rating: [[1]]

Figure 10: Example on Fig 7 evaluation of pre-trained Qwen 3B model responses using GPT-4o
scoring.

23


	Introduction
	Related work
	Method
	Motivation
	Guard Framework

	Experiments
	Setup
	Effectiveness of GUARD in Defending Various MIAs
	Model Utility Evaluation of GUARD

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	On the Risk of Top-k Token Overlap as a Membership Signal
	Pure Knowledge Distillation vs. GUARD for MIA Defense
	Ablation study
	Weight 
	Experimental setup detail
	Theoretical Justification of GUARD as a Small-Perturbation KD
	Prompts
	Supplementary Experimental Results
	Defense against extraction attack
	TPR@1%FPR results for GPT-Neo 1.3B and Qwen-Instruct 3B model
	MIA defense results of smaller model
	Machine unlearning for MIAs defense
	Differential privacy for MIAs defense
	Model Utility Evaluation Examples



