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Abstract
Generative flow networks (GFlowNets) are amor-
tized variational inference algorithms that are
trained to sample from unnormalized target distri-
butions over compositional objects. A key limi-
tation of GFlowNets until this time has been that
they are restricted to discrete spaces. We present a
theory for generalized GFlowNets, which encom-
passes both existing discrete GFlowNets and ones
with continuous or hybrid state spaces, and per-
form experiments with two goals in mind. First,
we illustrate critical points of the theory and the
importance of various assumptions. Second, we
empirically demonstrate how observations about
discrete GFlowNets transfer to the continuous
case and show strong results compared to non-
GFlowNet baselines on several previously studied
tasks. This work greatly widens the perspectives
for the application of GFlowNets in probabilistic
inference and various modeling settings.

1. Introduction
Generative flow networks (GFlowNets; Bengio et al., 2021a)
are an increasingly popular class of methods that amortize
sampling from intractable distributions over spaces with a
compositional structure by learning a sequential sampling
policy. Their applications include the design of biological
structures such as molecules (Bengio et al., 2021a; Jain
et al., 2022), Bayesian structure learning (Deleu et al., 2022;
Nishikawa-Toomey et al., 2022), and robust combinatorial
optimization (Zhang et al., 2023b). Naturally, their devel-
opment and theoretical foundations (Bengio et al., 2021b;
Malkin et al., 2023; Zimmermann et al., 2022) have been
geared towards environments with discrete structures.

As many probabilistic inference and modeling problems
involve continuous variables, it is natural to ask whether
the advantages of GFlowNets, which include stable off-
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policy learning and the ability to capture many modes of the
target distribution, extend to general spaces. For example,
molecule design implies specifying relative spatial positions
of atoms and benefits from modeling continuous variables,
such as torsion angles (Jing et al., 2022), and Bayesian
structure learning requires the discovery of not only the
structure of the graphical model, but also its parameters.

As a first attempt at using GFlowNet losses to train an
amortized sampler of a unnormalized continuous density,
Malkin et al. (2023) showed that the off-policy benefits
of GFlowNets extend to a toy stochastic control problem.
However, a theory justifying the soundness GFlowNet losses
in domains with continuous actions has been still lacking.
More recently, Li et al. (2023) presented an extension of the
flow-matching conditions (Bengio et al., 2021a) to contin-
uous domains; however, this extension relies upon several
invalid assumptions, as we expand on in §3.1.

This paper presents a theory extending all known GFlowNet
training objectives to arbitrary spaces. It relies on measur-
able pointed graphs, a generalization of directed acyclic
graphs (DAGs) to measurable spaces, based on Markov ker-
nels. Our main theoretical contributions are an extension
of the flow-matching (FM; Bengio et al., 2021a), detailed
balance (DB; Bengio et al., 2021b), and trajectory balance
(TB; Malkin et al., 2022) conditions and a theorem proving
that the learned forward kernel samples from the target dis-
tribution when any of these conditions is satisfied. These
conditions lead to training losses involving density functions
and allowing gradient-based learning. Existing losses for
discrete GFlowNets are special cases of the ones we state.

Additionally, we provide experimental results in multiple
domains with different structures, some of which include
action spaces with both discrete and continuous compo-
nents. These experiments serve both to validate the theo-
retical claims and to inform practitioners of caveats that
are specific to continuous domains. Our comparative ex-
periments confirm that the already-proven advantages of
discrete GFlowNets transfer to more general state spaces.

The remainder of the paper is structured as follows:

§2 reviews GFlowNets and work on stochastic sampling;

§3 presents the theoretical results and a practical summary;
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§4 is devoted to empirically validating the theory and com-
paring generalized GFlowNets with baselines.

2. Background and related work
2.1. Stochastic sampling in continuous spaces

Sequential sampling in continuous spaces has a long history.
Specialized Markov chain Monte Carlo (MCMC) methods
exist for sampling from continuous or differentiable den-
sities, such as Langevin and Hamiltonian MCMC (Coffey
et al., 2004; Neal, 2012; Hoffman & Gelman, 2011).

Another line of work considers stochastic sampling in a
finite number of steps. The family of sequential Monte
Carlo methods (Doucet et al., 2001) and the closely related
annealed importance sampling (Neal, 2001) specify a se-
quence of intermediate target densities with respect to which
samplers aim to approximately satisfy detailed balance, but
the transition kernel is typically not a learned neural network
policy. More recently, learnable-kernel sampling methods,
formulated as score-based or stochastic differential equation
modeling, have been used for maximum-likelihood gener-
ative modeling (e.g., Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Ho et al., 2020; Dockhorn et al., 2022), as
well as for learning to sample from an intractable target den-
sity (Zhang & Chen, 2022). As we show in our experiments,
such algorithms can be seen as special cases of GFlowNets
where the state space is of a particular form (§4.2, §4.5).

Another related direction is stochastic normalizing flows
(Wu et al., 2020), which have been interpreted with a
Markov chain perspective (Hagemann et al., 2022), rely-
ing on Markov kernels and Radon-Nikodym derivatives just
as our theory of generalized GFlowNets.

2.2. Discrete GFlowNets

GFlowNets were first framed as a reinforcement learning
(RL) algorithm (Bengio et al., 2021a), with discrete state
and action spaces, that trains a sampler of a target distribu-
tion given by its unnormalized probability mass function,
called reward, using a local consistency objective known as
flow matching. This contrasts with usual RL algorithms
that aim at maximizing a given reward function, but is
equivalent to entropy-regularized RL methods in special
cases. Bengio et al. (2021b) laid out the theoretical foun-
dations of GFlowNets, based on flow networks defined on
DAGs, and proposed the detailed balance loss as a more
efficient alternative that bypasses the need to sum the flows
over large sets of children and parents, opening the door
for continuous states. The trajectory balance and subtra-
jectory balance losses (Malkin et al., 2022; Madan et al.,
2022) have been found to be yet more efficient. Pan et al.
(2022) proposed a framework to incorporate intrinsic ex-
ploration rewards when training a GFlowNet. Zhang et al.

(2023a); Malkin et al. (2023); Zimmermann et al. (2022)
proved a partial equivalence between GFlowNets and hi-
erarchical variational methods, but showed the superiority
of GFlowNets when learning with trajectories sampled off-
policy. Zhang et al. (2022) used GFlowNets for approximate
maximum-likelihood training of energy-based models, by-
passing the need for a given target reward.

Jain et al. (2022) used GFlowNets within an active learning
loop to design biological sequences. Zhang et al. (2023b)
used GFlowNets for an NP-hard combinatorial optimiza-
tion problem. Other applications include Bayesian struc-
ture learning: Deleu et al. (2022); Nishikawa-Toomey et al.
(2022) learn posteriors over the combinatorially large space
of causal graphs, which are naturally compositional.

Review of discrete GFlowNets. Given a non-negative tar-
get reward function 𝑅 on a finite space X, which coincides
with a subset of the vertices of a DAG called the terminat-
ing states, GFlowNet training objectives aim at learning
transition probabilities 𝑃𝐹 (𝑠′ | 𝑠) along the edges of the
DAG. The (forward) action policy 𝑃𝐹 induces a marginal
distribution 𝑃⊤

𝐹
over the terminating states, the final states

of trajectories that begin at the designated initial state and
sample transitions according to 𝑃𝐹 . The parameters of the
forward policy 𝑃𝐹 are sequentially updated using a stochas-
tic gradient of the objective function applied to a trajectory,
sampled either from the forward policy itself (on-policy), or
a modified version thereof in order to incentivize exploration
(off-policy). When the loss is at a global minimum, the for-
ward policy is able to effectively sample from a probability
distribution over X proportional to 𝑅.

All GFlowNet losses must introduce additional objects into
the parametrization to cope with the intractable representa-
tion of 𝑃⊤

𝐹
(𝑥) as a sum of the likelihoods of all (possibly

exponentially many) trajectories leading to 𝑥. For example,
the DB and TB objectives use a parametric backward policy
𝑃𝐵 (𝑠 | 𝑠′), which specifies a distribution over the parents
of any state in the DAG.

3. A theory for generalized GFlowNets
3.1. Practical summary

A summary of the key differences and analogies between
discrete and generalized GFlowNets is provided in Table 1,
and the precise way in which discrete GFlowNets are special
cases of generalized GFlowNets is stated in §B.

The theory we develop in this section shows that the main
losses used to train discrete GFlowNets, namely the de-
tailed balance (Bengio et al., 2021b) and the trajectory bal-
ance (Malkin et al., 2022) losses, naturally extend to gen-
eralized GFlowNets, simply by replacing probability mass
functions with probability density functions. Most impor-
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Table 1. Dictionary between discrete and generalized GFlowNets
Discrete GFlowNet Generalized GFlowNet Reference

The state space is a finite set with distinguished source and
sink states

The state space is a topological space with distinguished
source and sink states, and may consist of both continuous
and discrete components

Def. 1

Children and parents of a state 𝑠 Supports of the measures 𝜅(𝑠,−), 𝜅𝑏 (𝑠,−) Def. 1

All states are reachable from 𝑠0 All open sets are reachable from 𝑠0 with nonzero likelihood (1)

The state ⊥ has no outgoing edges The state ⊥ is absorbing (2)

The state graph is acyclic (⇒ trajectory lengths are bounded) The measurable pointed graph is finitely absorbing (7)

State flow 𝐹, forward policy 𝑃𝐹 , backward policy 𝑃𝐵 Flow measure 𝜇, forward kernel 𝑃𝐹 , backward kernel 𝑃𝐵 Defs. 3 and 5

Transition likelihoods 𝑃𝐹 (−|𝑠) only positive along edges Transition kernels 𝑃𝐹 (𝑠,−) absolutely continuous w.r.t. 𝜅 Def. 3

Terminating distribution 𝑃⊤
𝐹

Terminating state measure 𝑃⊤ Def. 9 and Thm. 1

Flow-matching implies sampler matches reward function 𝑅 Flow-matching implies sampler matches reward measure 𝑅 Def. 3 and Thm. 1

Detailed balance: 𝐹 (𝑠)𝑃𝐹 (𝑠′ |𝑠) = 𝐹 (𝑠′)𝑃𝐵 (𝑠 |𝑠′) Detailed balance: 𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′) = 𝜇(𝑑𝑠′)𝑃𝐵 (𝑠′, 𝑑𝑠) Def. 5

Trajectory balance: 𝑍𝑃𝐹 (𝜏) = 𝑅(𝑥𝜏)𝑃𝐵 (𝜏 | 𝑥𝜏) Trajectory balance: 𝑍𝑃𝐹 (𝑠0, 𝑑𝑠1) . . . 𝑃𝐹 (𝑠𝑛, {⊥}) =

𝑅(𝑑𝑠𝑛)𝑃𝐵 (𝑠𝑛, 𝑑𝑠𝑛−1) . . . 𝑃𝐵 (𝑠1, {𝑠0})
Def. 6

tantly, however, the soundness of the theory relies upon the
following assumptions, which need to be carefully verified
when training a GFlowNet in an infinite space:

(1) The structure of the state space must allow all states to
be reachable from the source state 𝑠0 (1);

(2) The structure must ensure that the number of steps re-
quired to reach any state from 𝑠0 is bounded (7);

(3) The learned probability measures need to be expressed
through densities over states, rather than over actions.

These assumptions are naturally verified in discrete domains,
as long as the state space is described by a pointed directed
acyclic graph (Bengio et al., 2021b).

On previous attempts to train continuous GFlowNets.
While Li et al. (2023) proposed to train continuous
GFlowNets by writing the flow matching conditions as inte-
grals rather than sums, assumptions (1) and (3) are violated
in a critical way. First, the environments considered in Li
et al. (2023)’s experiments violate assumption (1), without
which the main GFlowNet training theorems do not hold.
Second, regarding (3), Li et al. (2023) implicitly assumes
that for a state 𝑠 and flow function 𝐹 (𝑠 → 𝑠),∫

𝑠′:𝑠→𝑠′
𝐹 (𝑠 → 𝑠′) 𝑑𝑠′ =

∫
𝑎

𝐹 (𝑠 → 𝑇 (𝑠, 𝑎)) 𝑑𝑎,

where the second integral is taken over actions and 𝑇 (𝑠, 𝑎)
is the state reached by taking action 𝑎 from 𝑠. This change
of variables is invalid in general: the integrand on the right
side is missing the Jacobian term 𝑑𝑇 (𝑠,𝑎)

𝑑𝑎
, which need not

equal 1. In particular, it does not equal 1 in the environments
studied by Li et al. (2023) (although it may hold in special
cases, such as sampling in Euclidean spaces where 𝑇 (𝑠, 𝑎) =
𝑠 + 𝑎). These issues are concerning for the scope of that

method’s applicability.

3.2. Structured state space

Note. To help the reader form a mental picture, we list the
concepts introduced and their discrete analogues in Table 1
and formally state the connection in §B. Paragraphs marked
(★) explain the meaning of the technical results.

(★) How could one describe a structure in general spaces,
similar to DAGs on finite sets? In finite sets, it would
suffice to enumerate the child sets and parent sets of all
states, with the constraint that 𝑠′ is a child of 𝑠 if and only
if 𝑠 is a parent of 𝑠′. In general state spaces, however,
enumeration is replaced by measure. One could thus define,
for each state, a measure on the state space describing what
states can be accessed in one step.

The structured state spaces we consider will be called mea-
surable pointed graphs and rely on transition kernels (Num-
melin, 2004; Cappé et al., 2009; Petritis, 2015), of which
we recall the definition in §A.

Definition 1 (Measurable pointed graph). A measurable
pointed graph 𝐺 = (S̄,T , Σ, 𝑠0,⊥, 𝜅, 𝜅𝑏, 𝜈) consists of:

• A topological space (S̄,T), where T is the set of open
subsets of S̄ and Σ is the Borel 𝜎-algebra associated to
the topology on S̄;

• A pair of distinct distinguished states 𝑠0 ∈ S̄ and ⊥ ∈ S̄,
called the source state and sink state, such that {𝑠0} and
{⊥} are both open and closed sets. We define S = S̄ \{⊥}
and S◦ = S \ {𝑠0}, so the topology on S̄ is the disjoint
union topology on {𝑠0}, {⊥}, and S◦.

• A 𝜎-finite transition kernel 𝜅 on (S̄, Σ), called the refer-
ence kernel,
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• A 𝜎-finite transition kernel 𝜅𝑏 on (S̄, Σ), called the back-
ward reference kernel,

• A strictly positive 𝜎-finite measure 𝜈 on (S̄, Σ), called the
reference measure,

such that the following conditions hold:

∀𝐵 ∈ T \ {∅} ∃𝑛 ≥ 0 : 𝜅𝑛 (𝑠0, 𝐵) > 0, (1)
𝜅(⊥,−) = 𝛿⊥, (2)
∀𝐵 ∈ Σ, 𝑠 ↦→ 𝜅(𝑠, 𝐵) is continuous, (3)
∀𝐵 ∈ Σ ⊗ Σ, ((𝑠0, 𝑠0) ∉ 𝐵, (⊥,⊥) ∉ 𝐵) ⇒

𝜈 ⊗ 𝜅(𝐵) = 𝜈 ⊗ 𝜅𝑏 (𝐵), (4)

∀𝐵 ∈ Σ, 𝜅𝑏 (𝑠0, 𝐵) = 0, (5)
∀𝑠 ∈ S, 𝜅(𝑠, {⊥}) > 0 ⇒ 𝜅(𝑠, {⊥}) = 1. (6)

The measurable pointed graph is called finitely absorbing if

∃𝑁 > 0 : supp(𝜅𝑁 (𝑠0,−)) = {⊥}, (7)

in which case the minimal such 𝑁 is called the maximal
trajectory length.

(★) The reference transition kernel 𝜅 provides a notion of
“structure” of the state space. The support of 𝜅(𝑠,−) (resp.
𝜅𝑏 (𝑠,−)) can be thought of as the child set (resp. parent
set) of the state 𝑠. For example, in a discrete graph, 𝜅(𝑠,−)
could be uniform over the children of 𝑠. The reference
kernel is not a policy to be sampled, but an object needed
to define probability densities of policies. The measure 𝜈,
the reference with respect to which flows and rewards are
defined, is typically a simple measure, such as the counting
measure on a discrete set or the standard Lebesgue measure
on a Euclidean space.

In practice, if the structure is only defined by the reference
kernel 𝜅, then 𝜈 and 𝜅𝑏 satisfying the conditions of Def. 1
can be defined from 𝜅 under some mild assumptions, as we
discuss in Prop. 3 in §A.5.

From now on, we fix a finitely absorbing measurable pointed
graph𝐺 = (S̄,T , Σ, 𝑠0,⊥, 𝜅, 𝜅𝑏, 𝜈) with maximal trajectory
length 𝑁 .

Definition 2 (Terminating states). The set of terminating
states X is defined by:

X = {𝑠 ∈ S : 𝜅(𝑠, {⊥}) > 0}. (8)

(★) Terminating states are ones from which one can transi-
tion to ⊥ with positive probability. Any transition kernel
can be sampled for 𝑛 steps, yielding a measure over 𝑛-step
trajectories and a marginal measure over states reached after
𝑛 steps. As described in the Appendix (§A.4), this can be
used to define the marginal terminating measure 𝑃⊤ of a
transition kernel 𝑃𝐹 , used in the next section.

3.3. Flows

Definition 3 (Flows and flow-matching conditions). Given a
𝜎-finite measure 𝜇 over (S̄, Σ) that is absolutely continuous
w.r.t. 𝜈 (we write 𝜇 ≪ 𝜈), and a 𝜎-finite Markov kernel 𝑃𝐹
on (S̄, Σ) (i.e. a transition kernel such that each 𝑃𝐹 (𝑠,−)
is a probability measure) satisfying:

(1) 𝑃𝐹 (𝑠,−) ≪ 𝜅(𝑠,−) for every 𝑠 ∈ S̄,
(2) 𝑠 ↦→ 𝑃𝐹 (𝑠, 𝐵) is continuous for every 𝐵 ∈ Σ,

𝑃𝐹 is said to be a forward kernel over 𝐺. We say that
the tuple 𝐹 = (𝜇, 𝑃𝐹) satisfies the flow-matching (FM)
conditions if for any bounded measurable function 𝑓 : S̄ →
R satisfying 𝑓 (𝑠0) = 0, we have∫

S̄
𝑓 (𝑠′)𝜇(𝑑𝑠′) =

∬
S×S̄

𝑓 (𝑠′)𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′). (9)

In which case, we say that 𝐹 is a flow over 𝐺.

(★) The condition of absolute continuity w.r.t. the reference
kernel 𝜅 indicates that the flow 𝐹 must follow the “structure”
of the measurable pointed graph, by assigning positive mea-
sure only to parts of the space where the measure induced by
𝜅 is also positive. The kernel 𝑃𝐹 can be represented through
a density function with respect to 𝜅, which represents a prob-
ability mass (if the action space is discrete) or a probability
density (if it is continuous). This allows to write conditions
such as (9) using densities (Radon-Nikodym derivatives),
thus providing practical loss functions to train GFlowNets.
We expand on this point in §3.5.

Definition 4 (Reward-matching conditions). Let 𝐹 =

(𝜇, 𝑃𝐹) be a flow over 𝐺. Given a positive and finite mea-
sure 𝑅 over X, called the reward measure, satisfying 𝑅 ≪ 𝜈,
the flow 𝐹 is said to satisfy the reward-matching condition
w.r.t. 𝑅 if we have:

𝑅(𝑑𝑥) = 𝜇(𝑑𝑥)𝑃𝐹 (𝑥, {⊥}). (10)

The following theorem, proved in §E, ascertains that, similar
to discrete GFlowNets, when the flow and reward matching
conditions are satisfied, then recursively sampling from the
Markov kernel 𝑃𝐹 starting from 𝑠0 (until reaching ⊥) yields
samples from the normalized reward.

Theorem 1. If 𝐹 = (𝜇, 𝑃𝐹) is a flow over 𝐺, that satisfies
the reward matching conditions (10) w.r.t. a measure 𝑅, then
the corresponding terminating state measure 𝑃⊤ (Def. 10)
is a probability measure and satisfies for all 𝐵 ∈ Σ |X:

𝑃⊤ (𝐵) =
1

𝑅(X) 𝑅(𝐵). (11)

(★) 𝑅(X), the reward measure taken over the set of all ter-
minating states X, corresponds to the total reward or parti-
tion function 𝑍 of GFlowNets. Certain conditions (Def. 3
and 4) on 𝜇, which represents a state flow, and 𝑃𝐹 , which
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represents a policy, imply that the marginal terminating dis-
tribution of the policy is proportional to the reward. These
conditions correspond to the “flow in = flow out” condition
at vertices of a discrete DAG.

3.4. Detailed balance and trajectory balance

In finite GFlowNets, the detailed balance conditions (Bengio
et al., 2021b) and the trajectory balance conditions (Malkin
et al., 2022) were converted into training objectives in or-
der to sample from a target unnormalized distribution. In
this section, we present analogous conditions for general
measurable pointed graphs.

Definition 5. Let 𝜇 be a 𝜎-finite measure over (S̄, Σ) such
that 𝜇 ≪ 𝜈, 𝑃𝐹 a forward kernel over 𝐺, and 𝑃𝐵 a transi-
tion kernel on (S̄, Σ) such that:

(1) 𝑃𝐵 (𝑠,−) ≪ 𝜅𝑏 (𝑠,−) for every 𝑠 ∈ S̄,
(2) 𝑠 ↦→ 𝑃𝐵 (𝑠, 𝐵) is continuous for every 𝐵 ∈ Σ,
(3) 𝑃𝐵 (𝑠,−) is a probability measure for every 𝑠 ≠ 𝑠0,

𝑃𝐵 is then said to be a backward kernel over𝐺. We say that
(𝜇, 𝑃𝐹 , 𝑃𝐵) satisfy the detailed balance (DB) conditions
if for any bounded measurable function 𝑓 : S × S̄ → R
satisfying 𝑓 (𝑠, 𝑠0) = 0 for every 𝑠 ∈ S, we have∬

S×S̄
𝑓 (𝑠, 𝑠′)𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′) (12)

=

∬
S×S̄

𝑓 (𝑠, 𝑠′)𝜇(𝑑𝑠′)𝑃𝐵 (𝑠′, 𝑑𝑠).

The following proposition, proved in §E, shows an equiva-
lence between the DB and FM conditions.

Proposition 1. If (𝜇, 𝑃𝐹 , 𝑃𝐵) satisfy the detailed balance
conditions in Def. 5, then 𝐹 = (𝜇, 𝑃𝐹) satisfies the flow-
matching conditions in Def. 3 and is thus a flow.

Definition 6. Let 𝑃𝐹 be a forward kernel over 𝐺, 𝑃𝐵 a
backward kernel over 𝐺, and 𝑍 ∈ R+. Let 𝑅 be a positive
finite measure on X. The triple (𝑍, 𝑃𝐹 , 𝑃𝐵) satisfies the
trajectory balance (TB) conditions w.r.t. 𝑅 if for any 𝑛 ≥ 0
and any bounded measurable function 𝑓 : S̄𝑛+2 → R:∫
S̄𝑛+2

𝑍 𝑓 (𝑠,−−−−→𝑠1:𝑛+1)1𝑠𝑛≠⊥,𝑠𝑛+1=⊥𝑃⊗𝑛+1
𝐹 (𝑠0, 𝑑𝑠

−−−−−→
𝑑𝑠1:𝑛+1) (13)

=

∫
S̄𝑛+1

1𝑠=𝑠0 𝑓 (𝑠,−−→𝑠1:𝑛,⊥)𝑅(𝑑𝑠𝑛)𝑃⊗𝑛
𝐵 (𝑠𝑛, 𝑑𝑠′

−−−−−−→
𝑑𝑠𝑛−1:1 𝑑𝑠),

where −−→𝑠1:𝑛 denotes (𝑠1, . . . , 𝑠𝑛) and
−−−→
𝑑𝑠1:𝑛 denotes

𝑑𝑠1 . . . 𝑑𝑠𝑛.

The following proposition, proved in §E, shows an equiva-
lence between the TB and both the FM and reward matching
conditions.

Proposition 2. If (𝑍, 𝑃𝐹 , 𝑃𝐵) satisfy the TB conditions (13)
w.r.t. a measure 𝑅, then 𝐹 = (𝜇, 𝑃𝐵), where 𝜇 is defined by:

(1) 𝜇({⊥}) = 𝜇({𝑠0}) = 𝑍
(2) ∀𝐵 ∈ Σ |S: 𝜇(𝐵) = 𝜇({𝑠0})

∑∞
𝑛=0 𝑃

𝑛
𝐹
(𝑠0, 𝐵)

satisfies both the flow-matching conditions (9) and the re-
ward matching conditions (10) w.r.t. 𝑅.

(★) Analogues of the DB and TB conditions for discrete
GFlowNets were stated and shown to imply the FM con-
ditions. In the next section, they will be used to construct
training objectives for parametric policies.

3.5. Training losses for GFlowNets

Above, we have presented three conditions under which a
sampler based on a Markov kernel 𝑃𝐹 samples from the
normalized version of a given reward measure. In practice,
similar to discrete GFlowNets, the objects of interest (𝜇,
𝑃𝐹 , 𝑃𝐵, 𝑍) are parametrized by a vector 𝜃, and the goal is
to learn 𝜃 using gradient-based learning. In this section, we
derive losses corresponding to the previous objectives.

We recall the Radon-Nikodym theorem that states that for
any two given 𝜎-finite measures 𝑝 and 𝑞 on a measurable
space (𝑈,U) satisfying 𝑝 ≪ 𝑞, there exists a measurable
function 𝑓 : 𝑈→R+, which is unique up to a set of measure
zero under 𝑞, called the density or the Radon-Nikodym
derivative of 𝑝 w.r.t. 𝑞, such that:

∀𝐴 ∈ U, 𝑝(𝐴) =
∫
𝐴

𝑓 (𝑢)𝑞(𝑑𝑢). (14)

This theorem is convenient as it allows to bypass the need to
define the measures 𝜇, 𝑃𝐹 (𝑠,−), 𝑃𝐵 (𝑠,−) on every measur-
able set, and only requires parametrizing the corresponding
densities (w.r.t. 𝜈, 𝜅(𝑠,−), and 𝜅𝑏 (𝑠,−) respectively).
Definition 7 (Losses). Let 𝑢 : S→R+, 𝑝𝐹 : S × S̄→R+,
and 𝑝𝐵 : S × S→R+ be three functions, and 𝑍 ∈ R+ a
scalar, all parametrized by a vector 𝜃, and satisfying for
every 𝜃:

∀𝑠 ∈ S̄,
∫
S̄
𝑝𝐹 (𝑠, 𝑠′; 𝜃)𝜅(𝑠, 𝑑𝑠′) = 1 (15)

∀𝑠′ ∈ S̄,
∫
S̄
𝑝𝐵 (𝑠′, 𝑠; 𝜃)𝜅𝑏 (𝑠′, 𝑑𝑠) = 1 (16)

The flow-matching (FM) loss is defined for every 𝑠′ ∈ S as:

𝐿𝐹𝑀 (𝑠′; 𝜃) =
(
log

∫
S 𝑢(𝑠; 𝜃)𝑝𝐹 (𝑠, 𝑠

′; 𝜃)𝜅𝑏 (𝑠′, 𝑑𝑠)
𝑢(𝑠′; 𝜃)

)2
The detailed balance (DB) loss is defined for every (𝑠, 𝑠′) ∈
S × S as:

𝐿𝐷𝐵 (𝑠, 𝑠′; 𝜃) =
(
log

𝑢(𝑠; 𝜃)𝑝𝐹 (𝑠, 𝑠′; 𝜃)
𝑢(𝑠′; 𝜃)𝑝𝐵 (𝑠′, 𝑠; 𝜃)

)2
Denoting by 𝑟 the density of the reward measure 𝑅 w.r.t.
the reference measure 𝜈, the reward-matching (RM) loss is
defined for any 𝑥 ∈ X as:
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𝐿𝑅𝑀 (𝑥; 𝜃) =
(
log

𝑢(𝑥; 𝜃)𝑝𝐹 (𝑥,⊥; 𝜃)
𝑟 (𝑥)

)2
Finally, the trajectory balance (TB) loss is defined for every
complete trajectory 𝜏 = (𝑠0, 𝑠1, . . . , 𝑠𝑛, 𝑠𝑛+1) ∈ {𝑠0}×S𝑛×
{⊥} (also denoted −−−−→𝑠0:𝑛+1) where 𝑠𝑛 ∈ X and 𝑠𝑛+1 = ⊥ as:

𝐿𝑛𝑇𝐵 (𝜏; 𝜃) =
(
log

𝑍 (𝜃)∏𝑛
𝑡=0 𝑝𝐹 (𝑠𝑡 , 𝑠𝑡+1; 𝜃)

𝑟 (𝑠𝑛)
∏𝑛−1
𝑡=0 𝑝𝐵 (𝑠𝑡+1, 𝑠𝑡 ; 𝜃)

)2
.

Note that one could derive in a similar fashion a subtra-
jectory balance loss, similar to the one used in discrete
GFlowNets (Madan et al., 2022).

(★) The above losses resemble discrete GFlowNet losses.
When the action space is discrete, and the reference mea-
sures are the counting measures over vertices of a DAG,
𝑝𝐹 (𝑠, 𝑠′) is a transition probability 𝑃𝐹 (𝑠′ |𝑠). When it is
continuous, it represents a conditional probability density
over 𝑠′, given 𝑠.

Conversely, from functions 𝑢(−; 𝜃), 𝑝𝐹 (−; 𝜃), 𝑝𝐵 (−; 𝜃),
we can define a measure 𝜇(−; 𝜃) on (S̄, Σ) whose den-
sity w.r.t. 𝜈 is 𝑢 and forward and backward kernels
𝑃𝐹 (−; 𝜃), 𝑃𝐵 (−; 𝜃) such that 𝑝𝐹 (𝑠,−; 𝜃) and 𝑝𝐵 (𝑠′,−; 𝜃)
are their densities of w.r.t. 𝜅(𝑠,−) and 𝜅𝑏 (𝑠,−), respec-
tively1.

(★) The following theorem, proved in §E, ensures that, simi-
lar to the discrete case, minimizing the losses above leads
to samplers of the right probability measure.

Theorem 2. (1) If 𝐿𝐹𝑀 (−; 𝜃) = 0 𝜈-almost surely, then
𝐹 = (𝜇, 𝑃𝐹) is a flow (i.e. satisfies the flow-matching condi-
tions in Def. 3).
(2) If 𝐿𝐷𝐵 (−; 𝜃) = 0 𝜈 ⊗ 𝜅-almost surely, then (𝜇, 𝑃𝐹 , 𝑃𝐵)
satisfy the detailed balance conditions in Def. 5.
(3) If 𝐿𝑅𝑀 (−; 𝜃) = 0 𝜈 |X-almost surely, then (𝜇, 𝑃𝐹) satis-
fies the reward matching conditions in (10).
(4) If 𝐿𝑛

𝑇𝐵
(−; 𝜃) = 0 ((𝜈 ⊗ 𝜅⊗𝑛+1) | {𝑠0 }×S𝑛×{⊥})-almost

surely for every 𝑛 ≥ 0, then (𝑍𝜈({𝑠0}), 𝑃𝐹 , 𝑃𝐵) satisfy
the trajectory balance condition in Def. 6.

An important consequence of Thm. 2 is that if we can find
density functions that achieve zero loss using any of the
above objectives almost surely, in addition to the reward-
matching loss, then we obtain a way to sample terminating
states (i.e., elements of X) proportionally to the reward
measure 𝑅, according to Thm. 1.

Training generalized GFlowNets. The FM, DB, and TB
losses can be minimized using states (resp. pairs of subse-
quent states, trajectories) obtained from trajectories sampled
from a training policy 𝜋, which can be 𝑃𝐹 itself (on-policy),
or a modification of it to encourage exploration (off-policy).
Thm. 2 suggests that the parameters 𝜃 could be updated

1The measures at ⊥ are irrelevant.
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Figure 1. (a) Measurable pointed graph structure of the environ-
ment in §4.1: starting at 𝑠0, the first action makes a step within
the grey quarter-disc, and subsequent actions make steps of a fixed
size or terminate. (b) Evolution of the JSD during training of TB
and DB, with both a uniform 𝑃𝐵 and a learned 𝑃𝐵, for 𝜌 = 0.25;
(c) 𝜌 = 0.1. x-axis is the number of sampled trajectories. Shaded
areas represent standard deviations across 6 runs.

with stochastic gradients E𝜏=−−−−→𝑠0:𝑛+1∼𝜋 [∇𝜃L], where L is∑𝑛
𝑡=1 𝐿𝐹𝑀 (𝑠𝑡 ; 𝜃)+𝛼𝐿𝑅𝑀 (𝑠𝑛; 𝜃), or

∑𝑛
𝑡=0 𝐿𝐷𝐵 (𝑠𝑡 , 𝑠𝑡+1; 𝜃)+

𝛼𝐿𝑅𝑀 (𝑠𝑛; 𝜃) or 𝐿𝑇𝐵 (𝜏; 𝜃).

4. Experiments
4.1. A synthetic continuous environment

In this section, we study a synthetic environment inspired
by the hypergrid environment (Bengio et al., 2021a; Malkin
et al., 2022; 2023), with varying trajectory lengths and a
pointed graph structure imposing a mixed discrete and con-
tinuous probability measure for the policy 𝑃𝐹 . Code for
these experiments can be found at https://github.
com/saleml/continuous-gfn.

Structure of the state space. The measurable pointed graph
is specified by S = [0, 1]2, and 𝑠0 = (0, 0). A hyperparam-
eter 𝜌, called the step size, controls the maximal trajectory
length. 𝜅(𝑠0,−) is the Lebesgue measure on 𝐷0, the north-
eastern quarter disk of radius 𝜌 centered at 𝑠0. When 𝑠 ≠ 𝑠0,
and | |𝑠 | | < 1 − 𝜌, 𝜅(𝑠,−) is the sum of the one-dimensional
Lebesgue arclength measure on 𝐶+

𝑠 (the intersection of the
northeastern quarter circle of radius 𝜌 centered at 𝑠 and S)
and the Dirac measure 𝛿⊥. Finally, when | |𝑠 | | > 1 − 𝜌,
𝜅(𝑠,−) = 𝛿⊥. The forward structure is depicted in Fig. 1(a).
The backward reference kernel 𝜅𝑏 is defined similarly.

The reference measure 𝜈 is the sum of the Lebesgue measure
on S, 𝛿𝑠0 , and 𝛿⊥. All states besides 𝑠0 are terminating.

The reward measure 𝑅 on X is specified by a density func-
tion 𝑟 depicted in Fig. 2(a). The densities 𝑝𝐹 and 𝑝𝐵 are
parametrized with mixtures of Beta distributions for the
continuous components.

In Fig. 1(b,c), we compare DB and TB on two versions
of the environment (𝜌 ∈ {0.1, 0.25}), with both a uniform
and a learned 𝑃𝐵, using the Jensen-Shannon divergence
(JSD, §C.1) between the learned terminating state distri-
bution and the target distribution as an evaluation metric.
The results confirm the findings of Malkin et al. (2022) on
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0 1 0 1 0 0 0

Figure 2. (a) Reward density in [0, 1]2. (b) KDE fit on terminating
states of the models trained with TB, 𝜌 = 0.25. (c) KDE fit on
samples from the reward, brought back to 𝐷0 using a uniform 𝑃𝐵,
corresponding to what 𝑃𝐹 (𝑠0,−) needs to be in order to satisfy
DB or TB. A richer search space for the densities 𝑝𝐹 (𝑠,−) is
required to fit this distribution. (d) 𝑃𝐹 (𝑠0,−) for a trained model
with learnable 𝑃𝐵. (e) The measure induced by a trained 𝑃𝐵 on
𝐷0, which matches the learned 𝑃𝐹 (𝑠0,−) in (d).

s0

s1 s2 s99 s100

⊥

Figure 3. The GFlowNet state space for stochastic control tasks.
The solid arrows show a possible sampling trajectory and the
dashed arrows show other possible actions, i.e., point to other
states in the support of the reference kernel 𝜅.

the discrete grid domain: the TB loss is more efficient in
terms of credit assignment, as it learns to model the target
distribution faster and more precisely than DB, and the en-
vironment with longer trajectory lengths is harder to model.
Additionally, learning a backward policy significantly im-
proves the learning curves of both methods. A justification
of the importance of learning in a backward policy is pro-
vided in Fig. 2(c,d,e). Fig. 2(b) shows a KDE plot fit on
terminating states sampled from the model trained with TB
on the 𝜌 = 0.25 domain. We provide more details in §C.2.

4.2. Low-dimensional stochastic control

In this section, we show how generalized GFlowNets with
a state space of a particular form can be used to learn (dis-
cretizations of) stochastic differential equations so as to
sample from a black-box target density. We bridge two re-
cent works: Zhang & Chen (2022), from which we borrow
the datasets and many parts of the experimental setup, and
Malkin et al. (2023), where various algorithms for training
stochastic samplers in discrete spaces were considered and
whose claims we validate in the continuous case.

We restate the problem considered by Zhang & Chen (2022)
in GFlowNet terms. A reward density is given on a Eu-
clidean space R𝑛 (e.g., the plane in Fig. 3). The state space
is S = {𝑠0} ∪ (R𝑛 × {1, 2, . . . , 𝑇}), where 𝑇 is the num-
ber of moves an agent will make before terminating (here,
𝑇 = 100). Thus the noninitial states are pairs (x𝑡 , 𝑡) where

Table 2. Log-partition function estimation bias using importance-
weighted bound 𝐵RW (mean and standard deviation over 10 runs).
The bold value in each column shows the best result and all those
statistically equivalent to it (𝑝 > 0.1 under a Welch’s 𝑡-test). Algo-
rithms assuming access to the gradient of the reward (non-black-
box) are shown for comparison. Rows marked with ∗ require
importance weighting for gradient estimation. Cells with – were
unstable to optimize. Last three rows from Zhang & Chen (2022).
Black box? Gaussian mixture Funnel

✓ Off-policy GFlowNet TB −0.003 ± 0.011 −0.026 ± 0.020
✓ Off-policy Reverse KL∗ −1.609 ± 0.546 –
✓ Off-policy Forward KL∗ −0.001 ± 0.013 −0.087 ± 0.081

✓ On-policy GFlowNet TB −1.301 ± 0.434 −0.012 ± 0.108
✓ On-policy Reverse KL −1.237 ± 0.413 −0.040 ± 0.023
✓ On-policy Forward KL∗ −0.007 ± 0.023 −0.034 ± 0.143

✓ Non-SDE SMC −0.362 ± 0.293 −0.216 ± 0.157

× On-policy PIS-NN −1.192 ± 0.482 −0.018 ± 0.020

× Non-SDE HMC −1.876 ± 0.527 −0.835 ± 0.257

x𝑡 ∈ R𝑛 and 1 ≤ 𝑡 ≤ 𝑇 ; we identify 𝑠0 with (0, 0). Tra-
jectories begin at 𝑠0 and make successive steps through the
copies of R𝑛 until reaching the sink state.2 Learning a for-
ward policy amounts to learning a conditional probability
density 𝑝(x𝑡+1 |x𝑡 , 𝑡) over R𝑛. In particular, if this density is
Gaussian, then the policy is the 𝑇-step Euler-Maruyama dis-
cretization of an Itô stochastic differential equation (SDE).

Zhang & Chen (2022) studied this problem in the case where
the backward policy is fixed to be the discretization of a
Brownian motion with fixed variance 𝜎

𝑇
pinned at (0, 0),

and the forward policy is constrained to be Gaussian with
the same variance 𝜎

𝑇
but with learned mean. (The theory of

SDEs implies that in the 𝑇 → ∞ limit, the forward policy
𝑃𝐹 that minimizes the GFlowNet loss is indeed Gaussian
with the same variance as the fixed 𝑃𝐵.) We thus aim to
learn a function 𝜇(x𝑡 , 𝑡), the mean of the forward policy, so
as to make the policy sample from the target reward density.

The path integral sampler (PIS) training objective proposed
by Zhang & Chen (2022) minimizes the reverse KL diver-
gence between two measures over trajectories: that defined
by 𝑃𝐹 and that defined by 𝑅 and 𝑃𝐵. By Theorem 1 of
Malkin et al. (2023) (the proof of which trivially generalizes
to the continuous case), the gradient of this objective with
respect to the parameters of 𝑃𝐹 is proportional, in expecta-
tion, to that of the TB gradient when trained on-policy. A
key difference between PIS and the on-policy TB objective
is that the latter does not require access to the gradient of
the reward distribution, but treats it as a black box.

Datasets, algorithms, and baselines. We evaluate

2To be precise, the reference measure 𝜈 is the Lebesgue mea-
sure on each copy of R𝑛 and the counting measure on {𝑠0}. If 𝑠𝑖
is a state in the 𝑖-th copy of R𝑛 (if 𝑖 > 0) or the initial state 𝑠0 (if
𝑖 = 0), the reference kernel 𝜅(𝑠𝑖 ,−) is Lebesgue on the (𝑖 + 1)-st
copy of R𝑛 if 𝑖 < 𝑇 and 𝛿⊥ if 𝑖 = 𝑇 ; 𝜅𝑏 is defined similarly.
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GFlowNets and baselines on two synthetic densities: a 2-
dimensional mixture of 9 Gaussians and the 10-dimensional
funnel from MCMC literature (Hoffman & Gelman, 2011).

In addition to GFlowNet TB, we evaluate the two algorithms
for minimizing divergences between trajectory measures
studied by Malkin et al. (2023): the reverse KL optimized
via policy gradient – equivalent in expectation to TB – and
the forward KL, for which gradient estimation requires im-
portance weighting. We also evaluate the algorithms in an
off-policy setting, where the training trajectories are sam-
pled with additional variance injected into the policy to
encourage exploration (see §C for details). We include
baselines from Zhang & Chen (2022) as well.

All algorithms use the same model architecture as the PIS
baseline for 𝜇(x𝑡 , 𝑡) and are evaluated using two metrics
as defined in Zhang & Chen (2022): the log-partition func-
tion estimation bias using simple and importance-weighted
variational bounds, as defined in §C.3.

Results and discussion. From the results in Table 2, and
the extended results in Table C.1, we conclude that the two
main observations of Malkin et al. (2023) continue to hold
in this continuous setting. First, as expected, on-policy TB
and reverse KL perform similarly when both can be stably
optimized. Second, in settings where off-policy exploration
is important, TB is more stable and achieves a better fit to
the target than the other objectives, which require impor-
tance weighting for gradient estimation. Fig. C.1 shows that
exploration is necessary to discover modes. Finally, we note
that TB is competitive with the PIS objective despite not
having access to gradients of the reward density.

4.3. Stochastic control on a torus

We consider a variant of the samplers discussed in §4.2
to model reward densities on the surface of a 2D torus.
Distributions over tori are useful to model torsion angles
in molecular conformations, as we illustrate in §C.4 and
Fig. C.2 with the alanine dipeptide molecule.

To model the surface of a torus, the measurable pointed
graph is defined by S = {𝑠0}∪[0, 2𝜋)2×{𝑡 ∈ N, 1 ≤ 𝑡 ≤ 𝑇},
where 𝑡 denotes the step number and 𝑇 the trajectory length,
and 𝑠0 = ((0, 0), 0). Note that here [0, 2𝜋) has the topology
of the circle, not that induced from the real line.

We consider two reward densities: a synthetic multimodal
density, and a density based on the energy E of the ala-
nine dipeptide molecule as a function of two of the angles
defining the conformation of the molecule. More details
are provided in §C.4. We provide a visual representation of
learned and reward distributions in Fig. 4.

Figure 4. KDEs fit on samples from the reward functions (a: syn-
thetic multimodal reward function, c: Boltzmann distribution of
principal torsion angles of the alanine dipeptide molecule – de-
tails in §C.4) and on samples from the corresponding trained
GFlowNets (b, d). The topology of the torus imposes periodic
boundary conditions on [0, 2𝜋)2.

4.4. Posterior over continuous parameters in Bayesian
structure learning

To show the capacity of GFlowNets to model a distribution
over a mixed space of discrete and continuous quantities,
we study here the problem of learning the structure of a
Bayesian network and its parameters, from a Bayesian per-
spective. Extending the work of Deleu et al. (2022), our
goal here is to approximate the (joint) posterior distribution
𝑃(𝐺, 𝜃 | D) over the directed acyclic graph (DAG) struc-
ture 𝐺 of the Bayesian Network (discrete component) and
the parameters 𝜃 of its conditional probability distributions
(continuous component), given a dataset of observations D.

We use a GFlowNet that is structured as follows: starting
from the empty graph, the DAG 𝐺 is first generated one
edge at a time, following the structure of DAG-GFlowNet
(Deleu et al., 2022). Once the graph 𝐺 has been completely
generated, we then sample the parameters 𝜃 associated to
it, in order to reach a valid terminating state (𝐺, 𝜃). Details
about the state space, and the forward transition probability
are given in §C.5. We use the subtrajectory balance loss
(Madan et al., 2022) to train the GFlowNet with 𝑅(𝐺, 𝜃) =
𝑃(D | 𝜃, 𝐺)𝑃(𝜃, 𝐺) as a reward function.

In order to evaluate our approximation against the target
distribution, we consider problems where the true poste-
rior 𝑃(𝐺, 𝜃 | D) may be computed in closed form. More
precisely, we assume that the Bayesian network follows
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Table 3. Comparison between GFlowNet and other methods based
on variational inference on the Bayesian structure learning task.
(Graphs) RMSE between the estimated edge marginals and the
exact edge marginals. (Params.) Average negative log-probability
of the parameter samples under the exact posterior 𝑃(𝜃 | 𝐺,D).

Number of variables (𝑑)

3 4 5

G
ra

ph
s BCD Nets – 2.13 × 10−1 2.61 × 10−1

DiBS 3.28 × 10−1 2.95 × 10−1 3.15 × 10−1

GFlowNet 1.50 × 10−2 1.61 × 10−2 1.80 × 10−2

Pa
ra

m
s. BCD Nets – 2.17 × 102 2.63 × 102

DiBS 5.87 × 102 1.12 × 103 2.12 × 103

GFlowNet −1.75 × 100 −3.06 × 100 −5.17 × 100

a linear-Gaussian model and that the number of random
variables 𝑑 ≤ 5. Additional details about the experimental
settings and metrics are available in §C.5. In Table 3, we
compare the performance of the GFlowNet with two base-
line methods based on variational inference: DiBS (Lorch
et al., 2021) and BCD Nets (Cundy et al., 2021). In Table 3
(top), we report the root mean-square error (RMSE) between
the edge marginals computed with the approximation and
the exact posterior 𝑃(𝐺 | D); we observe that the model
learned by the GFlowNet is significantly more accurate on
the discrete component, supporting the observation made
in Malkin et al. (2023). Moreover, in Table 3 (bottom), we
observe that the sampled 𝜃 from the GFlowNet are signif-
icantly more likely under the exact posterior 𝑃(𝜃 | 𝐺,D),
suggesting that the GFlowNet’s approximation of the con-
tinuous component is also more accurate.

4.5. Connections with diffusion models

Table 4. ImageNet-32 results.
Method FID↓ NLL↓
Baseline 17.65 4.57
MLE-GFN 16.36 4.47

We show how the gener-
alized GFlowNet frame-
work can be applied be-
yond the setting of fit-
ting a sampler to a tar-
get reward function. As
shown in Zhang et al. (2023a), GFlowNets can also be
trained to maximize likelihood of a given set of terminating
states with an algorithm called MLE-GFN. Here we apply
MLE-GFN to generalized GFlowNets to improve denoising
diffusion probabilistic models (DDPMs; Ho et al., 2020).

Sampling process. The generative process in a DDPM
can be seen as a special case of the sampling process in a
generalized GFlowNet of the same form as in §4.2 and Fig. 3.
A fixed number of steps 𝑇 is made through a sequence of
copies of a high-dimensional space R𝑛 (with the 𝑖-th state
in the trajectory representing, e.g., an image at noise level
𝑇 − 𝑖). The policy at the first step, from 𝑠0 to (x1, 1), is
constrained to be unit Gaussian, while subsequent steps are

conditional Gaussians with a known variance.

More specifically, recall that diffusion models begin with a
sample x1 from a noise distribution and transform it through
a sequence of conditional Gaussian steps 𝑥1 → 𝑥2 → · · · →
𝑥𝑇 (note the unconventional reversed and one-based index-
ing). Viewing the intermediate samples x𝑡 as states (x𝑡 , 𝑡),
we can cast sampling from the diffusion model as sampling
from a GFlowNet, where the first action samples x1 by tran-
sitioning from the abstract initial state 𝑠0 and subsequent
actions follow a forward kernel 𝑃𝐹 (− | (x𝑡 , 𝑡)) whose sup-
port is {(x, 𝑡 +1) : x ∈ R𝑛} and whose density is a Gaussian
conditioned on x𝑡 and 𝑡.

Noising process. While DDPMs typically fix the noising
process – corresponding to the backward policy 𝑃𝐵 in the
GFlowNet – and learn only the denoiser (forward process),
MLE-GFN allows learning both 𝑃𝐹 and 𝑃𝐵 as Gaussian
policies. The description and proof of soundness of MLE-
GFN, as well as details of the parametrization of means and
variances, can be found in Zhang et al. (2023a).

Experimental result. We train a GFlowNet as described
above on the ImageNet-32 dataset (treated as a set of termi-
nating states) with 𝑇 = 100 steps. Table 4 demonstrates the
efficacy of our method compared to the DDPM baseline in
terms of both the sample quality (FID) and density modeling
(NLL). We defer other details and example images to §C.6.

5. Conclusion
We have developed a theory for generalized GFlowNets
and illustrated it through experiments. Future work will
exploit this theory and scale the experiments up to more
complex and high-dimensional spaces where generation in-
cludes both discrete and continuous choices. Possible appli-
cation areas include estimation of Bayesian neural network
posteriors, molecular conformer generation (discussed in
§C.4), and simulation-based inference for inverse problems
in the natural sciences.
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Cappé, O., Moulines, E., and Rydén, T. Inference in hidden
markov models. In Proceedings of EUSFLAT conference,
2009.

Coffey, W., Kalmykov, Y., and Waldron, J. The Langevin
Equation: With Applications to Stochastic Problems in
Physics, Chemistry and Electrical Engineering. 09 2004.

Cundy, C., Grover, A., and Ermon, S. BCD Nets: Scal-
able variational approaches for Bayesian causal discovery.
Neural Information Processing Systems (NeurIPS), 2021.
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A. Transition kernels: Additional notations and definitions
We first recall the definition of transition kernels and Markov kernels

Definition 8 (Transition kernel). Let (S̄, Σ) be a measurable (state) space. A function 𝜅 : S̄ × Σ → [0, +∞) is called a
positive 𝜎-finite transition kernel if

1. For any 𝐵 ∈ Σ, the mapping 𝑠 ↦→ 𝜅(𝑠, 𝐵) is measurable, where the space [0, +∞) is associated with the Borel 𝜎-algebra
B([0, +∞));

2. For any 𝑠 ∈ S, the mapping 𝐵 ↦→ 𝜅(𝑠, 𝐵) is a positive 𝜎-finite measure on (S̄, Σ).

A transition kernel such that the mappings 𝐵 ↦→ 𝜅(𝑠, 𝐵) are probability measures is called a Markov kernel.

Notations. Given a measurable space (S̄, Σ), we denote by Σ |U the restriction of Σ to any subset U of S̄.

A.1. Products of kernels.

Given a measurable space (S̄, Σ), a positive measure 𝜈 on (S̄, Σ), and a transition kernel 𝜅 on (S̄, Σ), we denote by 𝜈𝜅 (resp.
𝜈 ⊗ 𝜅) the measure on (S̄, Σ) (resp. (S̄ × S̄, Σ ⊗ Σ)) defined for 𝐵 ∈ Σ (resp. 𝐵 ∈ Σ ⊗ Σ) as:

𝜈𝜅(𝐵) =
∫
S̄
𝜈(𝑑𝑠)𝜅(𝑠, 𝐵). (17)

𝜈 ⊗ 𝜅(𝐵) =
∬

S̄2

1𝐵 (𝑠, 𝑠′)𝜈(𝑑𝑠)𝜅(𝑠, 𝑑𝑠′) (18)

In particular, for any state 𝑠 ∈ S̄, the 𝑛-step measure 𝜅𝑛 (𝑠,−) is recursively defined by 𝜅0 (𝑠,−) = 𝛿𝑠 , the Dirac at 𝑠, and:

𝜅𝑛+1 (𝑠,−) = 𝜅𝑛 (𝑠,−)𝜅. (19)

The following lemma, proved in §F ensures that absolute continuity between transition kernels transfers to 𝑛-step measures

Lemma 1. Let 𝑃𝐹 be a transition kernel on (S̄, Σ) such that 𝑃𝐹 (𝑠,−) ≪ 𝜅(𝑠,−) for every 𝑠 ∈ S̄. Then for every 𝑛 ≥ 1,
𝑃𝑛
𝐹
(𝑠,−) and 𝑠 ∈ S is absolutely continuous wrt. 𝜅𝑛 (𝑠,−).

A.2. Equality between measures

Given two measures 𝑝 and 𝑞 on (S̄, Σ), and a function 𝑔 : S̄→R, we use the notation:

𝑝(𝑑𝑠) = 𝑔(𝑠)𝑞(𝑑𝑠)

to say that for any measurable bounded function 𝑓 : S̄→R:∫
S̄
𝑓 (𝑠)𝑝(𝑑𝑠) =

∫
S̄
𝑓 (𝑠)𝑔(𝑠)𝑞(𝑑𝑠). (20)

Throughout the paper, we use the two notations interchangeable when the context allows it. Our proofs rely mostly on
writing the equality with measurable bounded functions.

Equalities between product measures require a special care, especially when using both the kernel 𝜅 and the backward
reference kernel 𝜅𝑏. For example (4) means that for any measurable bounded function 𝑓 : S̄ × S̄→R satisfying 𝑓 (𝑠0, 𝑠0) =
𝑓 (⊥,⊥) = 0: ∬

S̄×S̄
𝑓 (𝑠, 𝑠′)𝜈(𝑑𝑠)𝜅(𝑠, 𝑑𝑠′) =

∬
S̄×S̄

𝑓 (𝑠, 𝑠′)𝜈(𝑑𝑠′)𝜅𝑏 (𝑠′, 𝑑𝑠).

We choose not to write (4) with the notation 𝜈(𝑑𝑠)𝜅(𝑠, 𝑑𝑠′) = 𝜈(𝑑𝑠′)𝜅(𝑠′, 𝑑𝑠) as it does not convey any information about
when “𝑑𝑠” and “𝑑𝑠′” represent {𝑠0}, {𝑠0} or {⊥}, {⊥}.
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A.3. Trajectory measures

Definition 9. Let 𝑃𝐹 be a transition kernel on (S̄, Σ). For any 𝑛 ≥ 0 and 𝑠 ∈ S̄, 𝑃𝐹 induces a measure 𝑃⊗𝑛
𝐹

(𝑠,−) over the
product space (S̄𝑛+1, Σ⊗(𝑛+1) ). 𝑃⊗𝑛

𝐹
(𝑠,−), called the 𝑛-step trajectory measure at 𝑠 recursively defined by

𝑃⊗0
𝐹 (𝑠,−) = 𝛿𝑠 , (21)

𝑃⊗𝑛+1
𝐹 (𝑠,−) = 𝑃⊗𝑛

𝐹 (𝑠,−) ⊗ 𝑃𝐹 . (22)

Notation. We use −−→𝑠1:𝑛 to denote (𝑠1, . . . , 𝑠𝑛) and
−−−→
𝑑𝑠1:𝑛 to denote 𝑑𝑠1 . . . 𝑑𝑠𝑛.

We can write for example: 𝑃⊗1
𝐹

(𝑠, 𝑑𝑠′ 𝑑𝑠1) = 𝛿𝑠 (𝑑𝑠′)𝑃𝐹 (𝑠′, 𝑑𝑠1) and 𝑃⊗2
𝐹

(𝑠, 𝑑𝑠′ 𝑑𝑠1 𝑑𝑠2) = 𝛿𝑠 (𝑑𝑠′)𝑃𝐹 (𝑠′, 𝑑𝑠1)𝑃𝐹 (𝑠1, 𝑑𝑠2),
and more generally:

𝑃⊗𝑛
𝐹 (𝑠, 𝑑𝑠′ −−−→𝑑𝑠1:𝑛) = 𝑃⊗𝑛−1

𝐹 (𝑠, 𝑑𝑠′ −−−−−−→𝑑𝑠1:𝑛−1)𝑃𝐹 (𝑠𝑛−1, 𝑑𝑠𝑛)

A.4. Terminating state measure

Given a measurable pointed DAG 𝐺 = (S̄,T , Σ, 𝑠0,⊥, 𝜅, 𝜅𝑏, 𝜈), any transition kernel 𝑃𝐹 on (S̄, Σ) induces a terminating
state measure 𝑃⊤, which is the sum of the 𝑛-step terminating state measures defined as follows:
Definition 10. Let 𝑃𝐹 be a transition kernel on (S̄, Σ). For any 𝑛 ≥ 0 we define the 𝑛-step terminating state measure 𝑃𝑛⊤
over (X, Σ |X), for any 𝐵 ∈ Σ |X as:

𝑃𝑛⊤ (𝐵) =
∫
S̄𝑛+1

𝑃⊗𝑛
𝐹 (𝑠0, 𝑑𝑠1 . . . 𝑑𝑠𝑛+1)1𝐵 (𝑠𝑛)1𝑠𝑛+1=⊥. (23)

The terminating state measure is defined as:

𝑃⊤ : 𝐵 ∈ Σ |X ↦→
∞∑︁
𝑛=1

𝑃𝑛⊤ (𝐵) (24)

The following lemma, proved in §F, relates the 𝑛-step terminating measures to the 𝑛-step measures 𝑃𝑛
𝐹
(𝑠0,−):

Lemma 2. Let 𝑃𝐹 be a transition kernel on (S̄, Σ). For every 𝑛 ≥ 1, we have:

𝑃𝑛⊤ (𝑑𝑥) = 𝑃𝐹 (𝑥, {⊥})𝑃𝑛−1𝐹 (𝑠0, 𝑑𝑥) (25)

A.5. Backward reference kernels

Given a reference kernel 𝜅, designing a backward reference kernel 𝜅𝑏 can be done using reverse kernels (Cappé et al., 2009),
which we redefine below:
Definition 11 (Reverse kernel). Let (S̄, Σ) be a measurable space, 𝜅 be a transition kernel on (S̄, Σ), and 𝜈 be a positive
measure on (S̄, Σ). A reverse kernel 𝜅𝑟𝜈 associated to 𝜈 and 𝜅 is a transition kernel over (S̄, Σ) such that:

𝜈 ⊗ 𝜅 = (𝜈𝜅) ⊗ 𝜅𝑟𝜈 (26)

Note how (26) is different from the condition of the backward reference kernel (4). Conveniently, there is a reference
measure 𝜈 for which the two conditions are equivalent, meaning that the backward reference kernel can be defined as the
reverse kernel associated to 𝜈 and 𝜅. While there is no guarantee that the reverse kernel exists or is unique in general,
existence is guaranteed if (S̄,T) is a Polish space (e.g. a discrete space, the Euclidian space R𝑛, hyperrectangles or balls in
R𝑛, or products or disjoint unions of countable families thereof) (Cappé et al., 2009). The following proposition, proved in
§F shows that.
Proposition 3. Given a Polish space (S̄,T), with source and sink states 𝑠0,⊥ ∈ S̄ such that {𝑠0} and {⊥} are both open
and closed sets, and a transition kernel 𝜅 on (S̄, Σ) satisfying (1), (2) and (7). Let 𝜈 be the measure defined by:

𝜈 =

𝑁∑︁
𝑛=0

𝜅𝑛 (𝑠0,−), (27)
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and let 𝜅𝑟𝜈 be any reverse kernel associated to 𝜅 and 𝜈 that satisfies the following two conditions:

𝜅𝑟𝜈 (𝑠0,−) = 0 i.e. it’s the trivial measure (28)

∀𝑠 ∈ S, 𝜅𝑏 (𝑠, {⊥}) = 0. (29)

Let 𝜅𝑏 be a transition kernel on (S̄, Σ) defined by:

∀𝑠 ≠ ⊥, 𝜅𝑏 (𝑠,−) = 𝜅𝑟𝜈 (𝑠,−),

∀𝐵 ∈ Σ |S , 𝜅
𝑏 (⊥, 𝐵) = 1

𝜈({⊥}) 𝜈 ⊗ 𝜅(𝐵 × {⊥}),

𝜅𝑏 (⊥, {⊥}) = 0.

𝜈 is strictly positive and 𝜅𝑏 satisfies (4). Note that the existence of a reverse kernel satisfying (28) and (29) is guaranteed by
Lemma 3 below, proved in §F.

Lemma 3. Given a Polish space (S̄,T), with source and sink states 𝑠0,⊥ ∈ S̄ such that {𝑠0} and {⊥} are both open and
closed sets, and a transition kernel 𝜅 on (S̄, Σ) satisfying (1), (2) and (7). Then the measure 𝜈 defined by:

𝜈 =

𝑁∑︁
𝑛=0

𝜅𝑛 (𝑠0,−), (30)

If 𝜅𝑏 is a reverse kernel associated to 𝜈 and 𝜅, then the kernel 𝜅′ defined by:

𝜅′ (𝑠0,−) = 0, (31)

𝜅′ (⊥,−) = 𝜅𝑏 (⊥,−), (32)
∀𝑠′ ∈ S \ {𝑠0}, 𝜅′ (𝑠′, {⊥}) = 0 (33)

∀𝑠′ ∈ S \ {𝑠0}, ∀𝐵 ∈ Σ, ⊥ ∉ 𝐵 ⇒ 𝜅′ (𝑠′, 𝐵) = 𝜅𝑏 (𝑠, 𝐵), (34)

is also a reverse kernel associated to 𝜈 and 𝜅.

B. Pointed DAGs as measurable pointed graphs
The following example shows that pointed directed acyclic graphs (Bengio et al., 2021b) are a special case of finitely
absorbing measurable pointed graphs.

Example 1. Finite state spaces are special cases of measurable pointed graphs. Let 𝐺 = (𝑉, 𝐸, 𝑠0,⊥) be a pointed directed
acyclic graph, where 𝑉 is the finite set of vertices, 𝐸 ⊂ 𝑉 × 𝑉 is the set of directed edges, 𝑠0 ∈ 𝑉 is the initial state, and
⊥ ∈ 𝑉 is the sink state.

The set of vertices 𝑉 with the discrete topology corresponds to the state space. We can define a transition kernel 𝜅 such that
for any vertex 𝑠 ∈ 𝑉 , and any 𝐵 ∈ P(𝑉), with P(𝑉) the power set of 𝑉 , containing all subsets of 𝑉:

𝜅(𝑠, 𝐵) =
∑︁
𝑠′∈𝐵

1𝑠→𝑠′∈𝐸 + 1𝑠=⊥,⊥∈𝐵

Using this transition kernel, the measure 𝐵 ↦→ 𝜅𝑛 (𝑠, 𝐵) over (𝑉,P(𝑉)) counts the number of trajectories of length 𝑛 starting
at 𝑠 that ends at a vertex in 𝐵 in the pointed graph 𝐺.

The reverse kernel can be defined for any vertex 𝑠′ ∈ 𝑉 and any 𝐵 ∈ P(𝑉) as:

𝜅𝑏 (𝑠′, 𝐵) =
∑︁
𝑠∈𝐵

1𝑠→𝑠′∈𝐸 ,

and the reference measure 𝜈 can be defined as the counting measure (that counts the number of elements in any 𝐵 ∈ P(𝑉)).

Since (𝑉,P(𝑉)) is a discrete space, the condition of accessibility in (1) can be verified for only singletons 𝐵 = {𝑠}. This
condition then corresponds to having a positive number of trajectories of any length 𝑛 > 0 starting at 𝑠0 and ending in
𝑠, which is exactly the notion of accessibility in 𝐺. The continuity condition is trivially satisfied because the topology is
discrete, and (4) is trivially satisfied. Finally, (7) is satisfied given the acyclicity of 𝐺.
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C. Experimental details
C.1. Approximating the Jensen-Shannon Divergence

Given an unnormalized target reward measure 𝑟 with respect to the Lebesgue measure on a bounded space X, and a
GFlowNet sampler 𝑃⊤ of terminating states, we approximate the JSD between the learned sampler and the normalized
distribution 𝑅(𝑑𝑥) = 1∫

X 𝑟 (𝑥′ )𝑑𝑥′
𝑟 (𝑥)𝑑𝑥 as follows:

(1) We sample 𝑁 points from the the target distribution using rejection sampling, with a uniform distribution as a proposal,
(2) We fit a kernel density estimator (KDE) on the above samples,
(3) We fit a second KDE on 𝑁 samples from 𝑃⊤
(4) We use both KDEs to score a fixed set of points defining a discretization of the sample space X,
(5) We normalize both sets of scores in order to obtain valid probability mass functions on the grid,
(6) We evaluate the JSD between the two probability mass functions.

C.2. A synthetic continuous environment

The forward and backward kernels 𝑃𝐹 , 𝑃𝐵 are defined by their densities 𝑝𝐹 and 𝑝𝐵 wrt. the reference kernels 𝜅, 𝜅𝑏.

𝜅, 𝜈, 𝜅𝑏 satisfy the requirements of a finitely absorbing measurable pointed graph. More notably, all states can be reached
from 𝑠0 within 1 +

⌈√
2
𝜌

⌉
steps.

The topology T on S̄ = S ∪ {⊥} is the disjoint union topology on {𝑠0,⊥} and S.

We parametrized 𝑝𝐹 (𝑠0,−) using a mixture of four Beta distributions for both the radius 𝑟 ∈ (0, 𝜌) and the angle 𝜃 ∈ (0, 𝜋2 ).
We used a mixture of two Beta distributions for the angle 𝜃 ∈ (𝜃𝑚𝑖𝑛 (𝑠), 𝜃𝑚𝑎𝑥 (𝑠)) when modeling 𝑝𝐹 (𝑠,−) and 𝑝𝐵 (𝑠,−).
The forward policy neural network has an extra output head corresponding to the probability of terminating the trajectory,
i.e. 𝑝𝐹 (𝑠0,⊥). The learned probabilities were effectively multiplied by the right Jacobians to account for the support of the
Beta distributions ([0, 1]) being different from that of 𝜃 or 𝑟 .

Reward density.

The reward measure 𝑅 was specified using a density 𝑟 wrt. the Lebesgue measure 𝜆 on X = (0, 1)2. Following Bengio et al.
(2021a) and Malkin et al. (2022), the (unnormalized) density is defined for every 𝑥 = (𝑥1, 𝑥2) ∈ X as:

𝑟 (𝑥) = 0.1 + 0.51 |𝑥1−0.5 | ∈ (0.25,5]1 |𝑥2−0.5 | ∈ (0.25,5] + 21 |𝑥1−0.5 | ∈ (0.25,5]1 |𝑥2−0.5 | ∈ (0.3,4)

Hyperparameters.

We learned the concentration parameters of the Beta distributions, which were restrained to the interval [0.1, 5.1], using a
three-layered neural network with 128 units per layer, and leaky ReLU activation for 𝑠 ≠ 𝑠0. The parameters corresponding
to 𝑝𝐹 (𝑠0,−) were learned separately.

Each iteration consisted of sampling 128 trajectories from the forward policy, and evaluating the TB or the DB loss (with
𝛼 = 1), before taking a gradient step on the learned parameters. We trained the models for 20,000 iterations.

For both the DB and TB losses, we used a learning rate of 10−3 for the parameters of 𝑝𝐹 , 𝑝𝐵, 𝑝𝐹 (𝑠0,−) (and log 𝑍 for TB,
𝑢 for DB). The learning rate was annealed using a discount factor of 0.5 every 2500 iterations.

In experiments with learned 𝑝𝐵, both 𝑝𝐹 and 𝑝𝐵 shared parameters except in the output layer. In DB, 𝑝𝐹 and 𝑢 shared
parameters except in the output layer.

Evaluation metric. We approximated the JSD between the learned the terminating state distribution and the target
distribution following the scheme described in §C.1.

C.3. Low-dimensional stochastic control

The neural network computing 𝜇(x𝑡 , 𝑡) had the same architecture as in Zhang & Chen (2022): a pair of 2-layer MLP
processing x𝑡 and a 128-dimensional Fourier feature representation of 𝑡, followed by a 3-layer MLP on the concatenation of
the features derived from x𝑡 and from 𝑡. We set 𝜎 = 5 for the Gaussians density and 𝜎 = 1 for funnel density. Exploration
algorithms added a constant 𝜖

2

𝑇
to the sampling policy variance at each step; we used a value of 𝜖 = 0.1 linearly annealed to
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GFlowNet TB Reverse KL Forward KL

No exploration

Fixed exploration 𝜖 = 0.1

Annealed exploration 𝜖 = 0.1 ↘ 0

Target

Figure C.1. The target density for 9 Gaussians and samples from models trained with various algorithms trained for 1500 batches. (When
trained longer, GFlowNet TB policies with exploration learn to model the modes with higher precision.)

0 over the course of training. All models are trained for 1500 batches of 300 samples with a learning rate of 10−2 for the
policy and 10−1 for log 𝑍 (in the case of GFlowNet algorithms); we found that higher learning rates made optimization
unstable. We also observed that the off-policy forward KL and TB algorithms continue to improve with longer training,
unlike the on-policy algorithms, which experience mode collapse and cease to discover new areas of the density landscape.
Fig. C.1 shows samples from models trained with various algorithms and highlights the importance of exploration.

The simple and importance-weighted estimates of the log-partition function from Zhang & Chen (2022) are defined, in
GFlowNet terms, as

𝐵 =
1

𝐾

𝐾∑︁
𝑖=1

log
𝑅(𝑥 (𝑖)

𝑇
)𝑝⊗𝑇
𝐵

(𝜏 (𝑖) |𝑥 (𝑖)
𝑇

)
𝑝⊗𝑇
𝐹

(𝜏 (𝑖) )
,

𝐵RW = log
1

𝐾

𝐾∑︁
𝑖=1

𝑅(𝑥 (𝑖)
𝑇

)𝑝⊗𝑇
𝐵

(𝜏 (𝑖) |𝑥 (𝑖)
𝑇

)
𝑝⊗𝑇
𝐹

(𝜏 (𝑖) )
,

where the 𝜏 (𝑖) are 𝐾 trajectories sampled from 𝑃𝐹 , the 𝑥 (𝑖) are their terminating states, and 𝑝⊗𝑇
𝐹

(𝜏 (𝑖) ), 𝑝⊗𝑇
𝐵

(𝜏 (𝑖) |𝑥 (𝑖)
𝑇

) are
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Table C.1. Estimation bias of the log-partition function using simple (𝐵) and importance-weighted (𝐵RW) bounds (mean and standard
deviation over 10 runs). The bold value in each column shows the best result and all those statistically equivalent to it (𝑝 > 0.1 under a
Welch’s 𝑡-test). Algorithms assuming access to the gradient of the reward (non-black-box) are shown for comparison. Rows marked with ∗

require importance weighting for gradient estimation. Cells with – were unstable to optimize. Last three rows from Zhang & Chen (2022).

Gaussian mixture (𝑑 = 2) Funnel (𝑑 = 10)
Black box? 𝐵 𝐵RW 𝐵 𝐵RW

✓ Off-policy GFlowNet TB −0.150 ± 0.019 −0.003 ± 0.011 −0.219 ± 0.020 −0.026 ± 0.020
✓ Off-policy Reverse KL∗ −1.706 ± 0.537 −1.609 ± 0.546 – –
✓ Off-policy Forward KL∗ −0.306 ± 0.036 −0.001 ± 0.013 −2.822 ± 0.576 −0.087 ± 0.081

✓ On-policy GFlowNet TB −1.409 ± 0.427 −1.301 ± 0.434 −0.265 ± 0.026 −0.012 ± 0.108
✓ On-policy Reverse KL −1.348 ± 0.397 −1.237 ± 0.413 −0.259 ± 0.018 −0.040 ± 0.023
✓ On-policy Forward KL∗ −0.254 ± 0.032 −0.007 ± 0.023 −1.384 ± 0.284 −0.034 ± 0.143

✓ Non-SDE SMC −0.362 ± 0.293 −0.216 ± 0.157

× On-policy PIS-NN −1.691 ± 0.370 −1.192 ± 0.482 −0.098 ± 0.005 −0.018 ± 0.020

× Non-SDE HMC −1.876 ± 0.527 −0.835 ± 0.257

the products of forward (resp. backward) Gaussian policy densities along the trajectories. Note that both estimates would
equal the true integral of the reward density for a perfect sampler. Identically to Zhang & Chen (2022), we use 𝐾 = 2000 for
the 2-dimensional Gaussian mixture dataset and 𝐾 = 6000 for the 10-dimensional funnel dataset.

We show extended results, including both simple and importance-weighted variational bounds, in Table C.1.

C.4. Stochastic control on a torus environment

The transition kernel 𝜅(𝑠,−) for any 𝑠 = ( �̃�, 𝑡) when 𝑡 < 𝑇 is the product of the Lebesgue measure on [0, 2𝜋)2 with the Dirac
measure at 𝑡 +1, and 𝜅(( �̃�, 𝑇),−) = 𝛿⊥ for every �̃� ∈ [0, 2𝜋)2. Similar to §4.2, the reference measure is 𝜈 = 𝛿𝑠0 +

∑𝑇
𝑡=1 𝜆⊗ 𝛿𝑡 ,

where 𝜆 is the Lebesgue measure on each copy of the torus [0, 2𝜋)2.

We parameterized the densities 𝑝𝐹 and 𝑝𝐵 with mixtures of independent von Mises distributions defined by a measure of
location 𝜇 and a measure of concentration 𝜅. We considered two tasks in the torus environment defined by different reward
functions.

Synthetic multimodal task. For this task, we designed a reward density with six modes on the torus surface:

𝑅6 (𝜓, 𝜑) = (sin(3𝜓) + cos(2𝜑) + 2)3.

Molecule conformation task. In this task, we define the reward function using the energy E of an alanine dipeptide
molecule, which depends on the conformation of the molecule C (spatial arrangement of its atoms). This conformation can
be efficiently parametrizeded using internal coordinates: bond lengths, bond angles, and torsion angles (Jing et al., 2022;
Thiede et al., 2022). For alanine dipeptide, there are four torsion angles largely influencing the energy (see Fig. C.2). In our
experiments, the GFlowNet generates values for the angles 𝜓 and 𝜑 while keeping all other coordinates fixed. In this way,
the support of the reward function remains a torus, and its values are proportional to the Boltzmann distribution with energy
E:

𝑅𝐴𝐷 (𝜓, 𝜑) = exp(−E(C(𝜓, 𝜑))),

The plots in Fig. 4 show the results of training a GFlowNet on a toroidal space with a continuous synthetic multimodal
reward function 𝑅6 (see text) and a reward function defined by the Boltzmann distribution of the alanine dipeptide molecule
𝑅𝐴𝐷 . The images represent the density over a discretization of the space [0, 2𝜋)2, obtained after fitting KDE with 100,000
samples. The samples to fit the reward densities (Fig. 4(a-c)) were obtained via rejection sampling, and the GFlowNet
densities (Fig. 4b-d) use GFlowNet samples from the learned distribution over terminating states 𝑃⊤.

Results. To evaluate the performance of the GFlowNet trained with the TB loss, we calculated the Jensen-Shannon divergence
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Figure C.2. Alanine dipeptide 3D structure. Torsion angles 𝜓, 𝜑,
𝜃1, 𝜃2 have the biggest impact on the energy of the molecule. A
pair of torsion angles 𝜑 and 𝜓 can take any values ∈ [0, 2𝜋], while
𝜃1 and 𝜃2 can be either close to 0 or 𝜋 due to energy barriers
(Mironov et al., 2018). The image is rendered using MolView
(Bergwerf, 2014)

(see §C.1 for details about its estimation) between the learned terminating state distribution 𝑃⊤ and the normalized reward
distribution. We provide a visual representation of learned and reward distributions in Fig. 4. Quantitatively, the GFlowNet
achieved a JSD of 0.063 for the synthetic multimodal task and 0.009 for the molecule conformation task. These results
show that the generalized GFlowNet can model probability densities over non-Euclidean spaces.

Hyperparameters. We modeled both 𝑝𝐹 and 𝑝𝐵 with 5-layer perceptrons with 512 hidden units per layer, training the full
set of parameters of each model separately. These models output, for each angle 𝜓 and 𝜑, the location 𝜇𝑖 and concentration
𝜅𝑖 of 5 independent von Mises distributions, mixed with learned weights 𝑤𝑖 . To take into account the topology of the torus,
we encoded input angles with trigonometric transformations (sin(𝑘𝜓), cos(𝑘𝜓), 𝑘 = 1, . . . , 5, for both angles 𝜓 and 𝜑). We
used a learning rate of 10−5 for the model parameters and 10−2 for log 𝑍 , updating the parameters with batches of 100
trajectories of length 𝑇 = 10. With the synthetic reward, the model converged in about 5,000 iterations; in the molecular
conformation task, we trained for 40k iterations.

C.5. Posterior over continuous parameters in Bayesian structure learning

Bayesian Networks. Recall that a Bayesian Network is a probabilistic model, where the joint distribution over 𝑑 random
variables {𝑋1, . . . , 𝑋𝑑} factorizes according to a directed acyclic graph (DAG) 𝐺 as:

𝑃(𝑋1, . . . , 𝑋𝑑; 𝜃, 𝐺) =
𝑑∏
𝑖=1

𝑃(𝑋𝑖 | Pa𝐺 (𝑋𝑖); 𝜃𝑖),

where Pa𝐺 (𝑋𝑖) is the set of parents of 𝑋𝑖 in 𝐺, and 𝜃𝑖 is the set of parameters for the conditional probability distribution of
𝑋𝑖 . We denote by 𝜃 = {𝜃1, . . . , 𝜃𝑑} the set of all the parameters of this model.

We assume that 𝜃 ∈ Θ𝐺 , where Θ𝐺 is the space of all parameters for the Bayesian Network. Note that this space of
parameters depends on the structure 𝐺 of the Bayesian Network. For example, the Bayesian Network where all the random
variables are mutually independent (corresponding to 𝐺 being empty) has fewer parameters than another Bayesian Network
that encodes dependencies between those random variables. We will also denote by G the space of DAG over 𝑑 nodes; the
number of elements in this space grows super-exponentially with 𝑑.

Linear Gaussian model. In order to compute the exact posterior distribution 𝑃(𝐺, 𝜃 | D) in closed-form, we consider
here a linear-Gaussian model for the parametrization of the conditional probability distributions appearing in the Bayesian
Network. More precisely, the conditional probability distribution is given by

𝑃(𝑋𝑖 | Pa𝐺 (𝑋𝑖); 𝜃𝑖) = N(𝑋𝑖 | 𝜇𝑖 , 𝜎2) where 𝜇𝑖 =
∑︁

𝑋 𝑗 ∈Pa𝐺 (𝑋𝑖 )
𝜃𝑖 𝑗𝑋 𝑗 .

In other words, 𝑋𝑖 follows a Normal distribution, whose mean 𝜇𝑖 is given by a linear combination of its parents, and with
fixed variance 𝜎2. For this class of models,

Θ𝐺 ≃
𝑑?
𝑖=1

R |Pa𝐺 (𝑋𝑖 ) |
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GFlowNet over a mixed state space. We are using the GFlowNet in order to approximate the joint posterior distribution
𝑃(𝐺, 𝜃 | D), and therefore its terminating states have the form (𝐺, 𝜃), where 𝐺 ∈ G is a DAG, and 𝜃 ∈ Θ𝐺 are the
associated parameters. Unlike Nishikawa-Toomey et al. (2022), which uses Variational Bayes to update the distribution over
parameters 𝜃, we model the distribution over both the graphs and parameters using a single GFlowNet.

The generation of a terminating state follows 2 phases: during the first phase, the DAG 𝐺 is constructed by adding one
edge at a time, starting from the empty graph, following the structure of DAG-GFlowNet (Deleu et al., 2022). To reach a
graph 𝐺 with 𝑘 edges, we therefore are taking 𝑘 steps in the GFlowNet. The states traversed during this first phase have no
parameters associated to them; we denote by (𝐺, ♯) ∈ S such an (intermediate) state, where ♯ ∉ Θ𝐺′ for any 𝐺′ ∈ G is a
symbol indicating that 𝐺 has no corresponding parameters.

Then once we have finished adding edges (in practice, this decision is made by selecting a special “stop” action), we sample
the parameters 𝜃 ∈ Θ𝐺 associated to 𝐺 by taking a final step in the GFlowNet to reach the terminating state (𝐺, 𝜃) ∈ X.
Since the space of parameters depends on the graph 𝐺, we define the state space of the GFlowNet as

S =
⋃
𝐺∈G

{𝐺} × Θ̄𝐺 and X =
⋃
𝐺∈G

{𝐺} × Θ𝐺 ,

where Θ̄𝐺 = Θ𝐺 ∪ {♯} indicates the space of parameters, augmented with the special symbol ♯. All the states in this state
space are guaranteed to be accessible from the initial state (𝐺0, ♯), where 𝐺0 is the empty graph.

Reference kernel. Given a DAG 𝐺, the measure 𝜅((𝐺, ♯),−) is the sum of a discrete measure (to transition to another
intermediate state (𝐺′, ♯)) and a continuous measure (to transition to a terminating state (𝐺, 𝜃)). We can write this measure
as

𝜅((𝐺, ♯),−) =
∑︁

𝐺′∈Ch(𝐺)
𝛿 (𝐺′ ,♯) + (𝛿𝐺 ⊗ 𝜆Θ𝐺

),

where Ch(𝐺) represents the children of 𝐺 in DAG-GFlowNet (Deleu et al., 2022), i.e. the graphs 𝐺′ obtained by adding an
edge to 𝐺, and 𝜆Θ𝐺

is the Lebesgue measure over Θ𝐺 . Moreover, we also have 𝜅((𝐺, 𝜃),−) = 𝛿⊥ for all terminating state
(𝐺, 𝜃) ∈ X; in other words, there is no transition from a terminating state other than to the sink state.

The backward reference kernel 𝜅𝑏 on the other hand is simpler: it is always a discrete transition kernel, regardless of the
state. We have

𝜅𝑏 ((𝐺, 𝜃),−) = 𝛿 (𝐺,♯) and 𝜅𝑏 ((𝐺′, ♯),−) =
∑︁

𝐺∈Pa(𝐺′ )
𝛿 (𝐺,♯) ,

where Pa(𝐺′) are the parents of 𝐺′ in DAG-GFlowNet, i.e. they are the graphs obtained by removing a single edge from 𝐺′.

Forward transition probability. In order to define the 𝑃𝐹 , we consider 2 cases: either we have a distribution of the
form 𝑃𝐹 (𝐺′ | 𝐺), where 𝐺′ is the result of adding an edge to 𝐺, or a distribution of the form 𝑃𝐹 (𝜃 | 𝐺). Note that
here we are using a slight abuse of notation, where 𝑃𝐹 (𝐺′ | 𝐺) (resp. 𝑃𝐹 (𝜃 | 𝐺)) represents 𝑃𝐹 ((𝐺′, ♯) | (𝐺, ♯)) (resp.
𝑃𝐹 ((𝐺, 𝜃) | (𝐺, ♯))). The distribution 𝑃𝐹 (𝜃 | 𝐺) is parametrized by a Normal distribution, whose mean and (diagonal)
covariance are returned by a neural network. Similar to (Deleu et al., 2022), 𝑃𝐵 is fixed to the uniform distribution.

Data generation. We sampled a dataset D as follows: (1) we first generated a DAG 𝐺∗ from an Erdös-Renyi model, then
(2) we sampled the parameters 𝜃∗ of the conditional probability distributions from a Normal distribution, each edge having a
weight 𝜃∗

𝑖 𝑗
∼ N(0, 1), and finally (3) we sampled 𝑁 = 100 datapoints from the Bayesian Network described above with

(𝐺∗, 𝜃∗), using ancestral sampling. Note that the ground-truths 𝐺∗ and 𝜃∗ are unknown to the GFlowNet, and it only uses
the observations from D.

Evaluations. To evaluate the quality of the approximation learned by the GFlowNet, and to compare it against the baseline
methods based on variational inference (Lorch et al., 2021; Cundy et al., 2021), we study the distribution over graphs
(discrete component) and the distribution over graphs (continuous component) separately. Recall that since we assume that
our model is linear-Gaussian over small graphs (𝑑 ≤ 5), we can compute the exact posterior distribution 𝑃(𝐺, 𝜃 | D) in
closed form.

In Table 3, we compared the edge marginals estimated using the posterior approximations to the exact edge marginals. For
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Table C.2. Comparison between GFlowNet and other methods based on variational inference on the Bayesian structure learning task, for
different marginals of interest of the distribution over graphs 𝑃(𝐺 | D).

RMSE Pearson’s r

Number of variables (𝑑) 3 4 5 3 4 5

Edges
BCD Nets – 2.13 × 10−1 2.61 × 10−1 – 0.8578 0.7886
DiBS 3.28 × 10−1 2.95 × 10−1 3.15 × 10−1 0.6903 0.7085 0.7170
GFlowNet 1.50 × 10−2 1.61 × 10−2 1.80 × 10−2 0.9993 0.9990 0.9990

Paths
BCD Nets – 2.59 × 10−1 3.08 × 10−1 – 0.8378 0.7500
DiBS 3.50 × 10−1 3.35 × 10−1 3.48 × 10−1 0.6951 0.7080 0.7020
GFlowNet 3.39 × 10−3 1.07 × 10−2 1.99 × 10−2 1.0000 0.9996 0.9989

Markov
blanket

BCD Nets – 3.02 × 10−1 3.49 × 10−1 – 0.8831 0.7864
DiBS 3.88 × 10−1 3.80 × 10−1 4.45 × 10−1 0.7840 0.7892 0.6888
GFlowNet 2.14 × 10−2 2.38 × 10−2 2.83 × 10−2 0.9986 0.9982 0.9980

any pair of random variables (𝑋𝑖 , 𝑋 𝑗 ), this means evaluating the following marginals

𝑃(𝑋𝑖 → 𝑋 𝑗 | D) =
∑︁

𝐺 |𝑋𝑖∈Pa𝐺 (𝑋 𝑗 )
𝑃(𝐺 | D).

To estimate this marginal using samples {(𝐺𝑘 , 𝜃𝑘)}𝐾𝑘=1 from the GFlowNet (or from the variational inference methods), we
can simply use the sample graphs 𝐺𝑘 in order to get an empirical approximation of the maginal posterior 𝑃(𝐺 | D). In
other words,

𝑃(𝑋𝑖 → 𝑋 𝑗 ) =
1

𝐾

𝐾∑︁
𝑘=1

1(𝑋𝑖 → 𝑋 𝑗 ∈ 𝐺𝑘)

We then report the root mean-square error (RMSE) between the edge marginals estimated using the posterior approximations,
and those computed using the exact posterior:

RMSE(𝑃, 𝑃) =
(

1

𝑑 (𝑑 − 1)
∑︁
𝑖≠ 𝑗

(
𝑃(𝑋𝑖 → 𝑋 𝑗 ) − 𝑃(𝑋𝑖 → 𝑋 𝑗 | D)

)2)1/2
.

In Table C.2, we also report the RMSE for other marginals: the marginal of having a directed path between two nodes
𝑃(𝑋𝑖 ⇝ 𝑋 𝑗 | D), as well as the marginal of node 𝑋𝑖 being in the Markov blanket of 𝑋 𝑗 𝑃(𝑋𝑖 ∈ MarkovBlanket(𝑋 𝑗 ) | D).
In addition to the RMSE between those marginals, we also report the Pearson correlation coefficient, as in (Deleu et al.,
2022). Note that no metric is reported on graphs over 𝑑 = 3 nodes for BCD Nets (Cundy et al., 2021) due to technical
reasons (the method is not applicable for graphs smaller than 4 nodes).

To evaluate the accuracy of the approximation on the continuous part of the distribution, we report in Table 3 the (average)
negative log-probability of the sampled parameters 𝜃𝑘 from the different approximations (GFlowNet, DiBS (Lorch et al.,
2021), and BCD Nets (Cundy et al., 2021)) against the exact posterior distribution 𝑃(𝜃 | 𝐺,D). More precisely, we compute

Measure𝜃 (𝑃, 𝑃) = − 1

𝐾 |D|

𝐾∑︁
𝑘=1

log 𝑃(𝜃𝑘 | 𝐺𝑘 ,D)

In other words, the lower this metric is, the more likely the samples 𝜃𝑘 from those approximations are under the exact
posterior distribution over parameters.

C.6. Connections with diffusion models

We train a diffusion model-specified GFlowNet with 𝑇 = 100 for 200, 000 steps. This is much shorter than other state-of-
the-art work (such as Lipman et al. (2022)) and takes less than 3 days on a single V100 GPU. All NLL results are computed

20



A Theory of Continuous Generative Flow Networks

Figure C.3. Generated samples from MLE-GFN on ImageNet-32 dataset.

in bits per dimension (BPD). We use 50, 000 generated samples to compute the FID score for evaluating the sample quality.
The Adam learning rate is 2× 10−4 for the forward policy and 2× 10−5 for the backward policy. The parameter of backward
policy is {𝜙𝑖}𝑇𝑖=1, where the variance coefficient 𝛽𝑖 satisfies 𝛽𝑖 = 𝛽𝑖 · exp (𝜙𝑖) and 𝛽𝑖 is the original variance coefficient used
in Ho et al. (2020). For details about the MLE-GFN algorithm, we refer to Zhang et al. (2023a). Fig. C.3 shows examples of
images generated by the algorithm.

D. Additional lemmas and propositions
In this section, we will write and prove lemmas and propositions that would help explain and shorten the proofs of the main
results presented in the main text and in §A, which we provide in §E.

The following lemma ensures that in a measurable pointed graph, {𝑠0} is not accessible.

Lemma 4. ∀𝑠 ∈ S, 𝜅(𝑠, {𝑠0}) = 0

Proof We will present a proof by contradiction.

Let N = {𝑠 ∈ S̄, 𝜅(𝑠, {𝑠0}) > 0}, and assume that N ≠ ∅. (0,∞) being an open set, and 𝑠 ↦→ 𝜅(𝑠, {𝑠0}) continuous, this
means that N ∈ T̄ (i.e. it is open). From (1), it follows that there is some 𝑛 ≥ 0 such that 𝜅𝑛 (𝑠0,N) > 0.

Applying (19), we obtain:

𝜅𝑛+1 (𝑠0, {𝑠0}) =
∫
S̄
𝜅𝑛 (𝑠0, 𝑑𝑠′)𝜅(𝑠′, {𝑠0}) ≥

∫
N
𝜅𝑛 (𝑠0, 𝑑𝑠′)𝜅(𝑠′, {𝑠0}) > 0.

Writing, for all 𝑚 > 1:

𝜅𝑚(𝑛+1) (𝑠0, {𝑠0}) =
∫
S̄
𝜅 (𝑚−1) (𝑛+1) (𝑠0, 𝑑𝑠′)𝜅𝑛+1 (𝑠′, {𝑠0}) ≥

∫
{𝑠0 }

𝜅 (𝑚−1) (𝑛+1) (𝑠0, 𝑑𝑠′)𝜅𝑛+1 (𝑠′, {𝑠0})

= 𝜅 (𝑚−1) (𝑛+1) (𝑠0, {𝑠0})𝜅𝑛+1 (𝑠0, {𝑠0}),

it follows from a simple induction that ∀𝑚 ≥ 1, 𝜅𝑚(𝑛+1) (𝑠0, {𝑠0}) > 0, which contradicts (7).

N is thus necessarily empty.
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The following lemma ensures a compatibility between the definition of the terminating states X and 𝜅𝑏 (⊥,−):
Lemma 5. The support of 𝜅𝑏 (⊥,−) is the closure of X.

Proof Let 𝑠 be an element in the support of 𝜅𝑏 (⊥,−). By definition of the support, it means that for any 𝐵 ∈ T containing
𝑠, there is some 𝐵′ ⊆ 𝐵 such that 𝐵′ ⊆ X. In particular, 𝐵 ∩ X ≠ ∅. This means that 𝑠 is a point of closure of X.

Conversely, let 𝑠 be a point of closure of X. Given any open set 𝐵 ∈ T containing 𝑠, 𝑠 being a closure point means that
𝐵 ∩ X (which is measurable) is non-empty. Following (4), we get:

𝜈({⊥})𝜅𝑏 (⊥, 𝐵 ∩ X) =
∫
S̄
1𝐵∩X (𝑠′)𝜈(𝑑𝑠′)𝜅(𝑠′, {⊥})

The RHS of the previous equality is positive because 𝜈 is a strictly positive measure and 𝜅(𝑠′, {⊥}) > 0 for every 𝑠′ ∈ X,
following Def. 2. Hence 𝜅𝑏 (⊥, 𝐵 ∩ X) > 0. It follows that 𝜅𝑏 (⊥, 𝐵) ≥ 𝜅𝑏 (⊥, 𝐵 ∩ X) > 0. Meaning that 𝑠 is indeed within
the support of 𝜅𝑏 (⊥,−).

The proof of Lemma 2 relies on an the following intermediary lemma, which relates the 𝑛-step trajectory measures 𝑃⊗𝑛
𝐹

(𝑠,−)
to the 𝑛-step measures 𝑃𝑛

𝐹
(𝑠,−) defined by (19).

Lemma 6. Let 𝑃𝐹 be a transition kernel on (S̄, Σ). For every 𝑠 ∈ S̄, 𝑛 ≥ 0, and for any bounded measurable function
𝑓 : S̄ → R, we have: ∫

S̄𝑛+1
𝑓 (𝑠′)𝑃⊗𝑛

𝐹 (𝑠, 𝑑𝑠1 . . . 𝑑𝑠𝑛𝑑𝑠′) =
∫
S̄
𝑓 (𝑠′)𝑃𝑛𝐹 (𝑠, 𝑑𝑠′) (35)

Proof We prove the lemma by induction on 𝑛. First, for 𝑛 = 0, using (21)∫
S̄
𝑓 (𝑠′)𝑃⊗0

𝐹 (𝑠, 𝑑𝑠′) = 𝑓 (𝑠) =
∫
S̄
𝑓 (𝑠′)𝑃0

𝐹 (𝑠, 𝑑𝑠′).

Then, assuming that (35) is satisfied for some 𝑛 ≥ 0, we get:∫
S̄𝑛+2

𝑓 (𝑠′)𝑃⊗𝑛+1
𝐹 (𝑠, 𝑑𝑠1 . . . 𝑑𝑠𝑛+1𝑑𝑠′) =

∫
S̄𝑛+2

𝑓 (𝑠′)𝑃⊗𝑛
𝐹 (𝑠, 𝑑𝑠1 . . . 𝑑𝑠𝑛+1)𝑃𝐹 (𝑠𝑛+1, 𝑑𝑠′)

=

∫
S̄𝑛+1

∫
S̄
𝑓 (𝑠′)𝑃𝐹 (𝑠𝑛+1, 𝑑𝑠′)︸                       ︷︷                       ︸
≜𝑔 (𝑠𝑛+1 )

𝑃⊗𝑛
𝐹 (𝑠, 𝑑𝑠1 . . . 𝑑𝑠𝑛+1)

=

∫
S̄
𝑔(𝑠𝑛+1)𝑃𝑛𝐹 (𝑠, 𝑑𝑠𝑛+1) =

∬
S̄×S̄

𝑓 (𝑠′)𝑃𝐹 (𝑠𝑛+1, 𝑑𝑠′)𝑃𝑛𝐹 (𝑠, 𝑑𝑠𝑛+1)

=

∫
S̄
𝑓 (𝑠′)𝑃𝑛+1𝐹 (𝑠, 𝑑𝑠𝑛+1),

where we applied the inductive hypothesis to a new bounded and measurable3 function 𝑔, and applied the recursive
definition of 𝑃𝑛+1

𝐹
.

The next proposition is crucial in proving Thm. 1.
Proposition 4. Let 𝐹 = (𝜇, 𝑃𝐹) be a flow over 𝐺 (i.e. 𝐹 satisfies the flow-matching conditions (9)), then the measure 𝑢
defined by:

𝑢 : 𝐵 ∈ Σ |S ↦→
∞∑︁
𝑛=0

𝑃𝑛𝐹 (𝑠0, 𝐵), (36)

is finite, and satisfies for all 𝐵 ∈ Σ |S
𝜇({𝑠0})𝑢(𝐵) = 𝜇(𝐵) (37)

3This can be seen by writing 𝑓 = 𝑓 + − 𝑓 − , where 𝑓 +, 𝑓 − are non-negative, writing each of 𝑓 +, 𝑓 − as a limit of step functions, and
using the monotone convergence theorem.
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Proof First, using a simple recursion, we show that ∀𝑛 ≥ 𝑁, 𝑃𝑛
𝐹
(𝑠0,−) = 𝛿⊥. The base case (𝑛 = 𝑁) is satisfied as a

consequence of Lemma 1, and the fact that the measurable pointed graph is finitely absorbing. Assuming it holds for some
𝑛 ≥ 𝑁 , going back to the definition of the 𝑛-step measure, we have for every 𝐵 ∈ Σ:

𝑃𝑛+1𝐹 (𝑠0, 𝐵) =
∫
S̄
𝑃𝑛𝐹 (𝑠0, 𝑑𝑠)𝑃𝐹 (𝑠, 𝐵) =

∫
S̄
𝛿⊥ (𝑑𝑠)𝑃𝐹 (𝑠, 𝐵) = 𝑃𝐹 (⊥, 𝐵) = 𝛿⊥ (𝐵),

where the last equality stems from the absolute continuity of 𝑃𝐹 (⊥,−) wrt. 𝜅(⊥,−) and (7).

This shows that for every 𝐵 ∈ Σ |S :

𝑢(𝐵) =
𝑁−1∑︁
𝑛=0

𝑃𝑛𝐹 (𝑠0, 𝐵).

Which shows the measure 𝑢 is finite.

Next, we partition S into 𝑁 disjoint sets S0, . . . ,S𝑁−1, where:

𝑠 ∈ S𝑛 ⇔ 𝑛 = max{𝑚 ∈ N0 : ∀𝐵 ∈ T , 𝑠 ∈ 𝐵 ⇒ 𝑃𝑚𝐹 (𝑠0, 𝐵) > 0}

S𝑛 ∈ Σ given that S𝑛 = S′
𝑛 \

⋃∞
𝑘=1 S′

𝑛+𝑘 , where S′
𝑛 is the support of 𝑃𝑛

𝐹
(𝑠0,−), which is known to be a closed set, and hence

measurable.

Writing any 𝐵 ∈ Σ |S as:

𝐵 =

𝑁−1⋃
𝑛=0

𝐵 ∩ S𝑛,

and using the additivity property of the measures 𝑢 and 𝜇, then proving (37) for all 𝐵 ∈ Σ |S , amounts to proving it for all
𝐵 ∈ Σ |S𝑛

for all 𝑛 ∈ {0, . . . , 𝑁 − 1}, given that the sets S𝑖 are themselves measurable. We prove this by strong induction on
𝑛.

Base case: For 𝑛 = 0, S0 = {𝑠0}, and Σ |S0
= {{𝑠0}}.

𝑢({𝑠0}) = 𝑃0
𝐹 (𝑠0, {𝑠0}) = 𝛿𝑠0 ({𝑠0}) = 1,

Hence (37) is satisfied for 𝐵 = {𝑠0}.

Induction step: Assume that for some 𝑛 ≥ 0, (37) is satisfied for all 𝐵 ∈ Σ |S𝑚
for all 𝑚 ≤ 𝑛, and let 𝐵 ∈ Σ |S𝑛+1 .

Define 𝐵′ = {𝑠′ ∈ S : 𝑃𝐹 (𝑠′, 𝐵) > 0}. We first show that 𝐵′ ⊆ ⋃𝑛
𝑚=0 S𝑚. If there is 𝑠′ ∈ 𝐵′ and 𝑛′ > 𝑛 such that 𝑠′ ∈ S𝑛′ ,

then for any open set 𝐵 (i.e. 𝐵 ∈ T ) containing 𝑠′, 𝑃𝑛
′
𝐹
(𝑠0, 𝐵) > 0. �̃� ↦→ 𝑃𝐹 ( �̃�, 𝐵) being a continuous function, it follows

that 𝐵′ itself is open. Hence 𝑃𝑛
′
𝐹
(𝑠0, 𝐵′) > 0. And noting that:

𝑃𝑛
′+1
𝐹 (𝑠0, 𝐵) =

∫
S̄
𝑃𝑛

′
𝐹 (𝑠0, 𝑑𝑠′)𝑃𝐹 (𝑠′, 𝐵) ≥

∫
𝐵′
𝑃𝑛

′
𝐹 (𝑠0, 𝑑𝑠′)𝑃𝐹 (𝑠′, 𝐵) > 0,

which would contradict the fact that 𝐵 ⊆ S𝑛+1, given that 𝑛′ + 1 > 𝑛 + 1. This shows that 𝐵′ ⊆ ⋃𝑛
𝑚=0 S𝑚.

Hence:

𝜇({𝑠0})𝑢(𝐵) = 𝜇({𝑠0})
𝑛+1∑︁
𝑚=0

𝑃𝑚𝐹 (𝑠0, 𝐵) = 𝜇({𝑠0}) 𝛿𝑠0 (𝐵)︸ ︷︷ ︸
=0

+𝜇({𝑠0})
𝑛∑︁
𝑚=0

𝑃𝑚+1
𝐹 (𝑠0, 𝐵)

= 𝜇({𝑠0})
𝑛∑︁
𝑚=0

∫
𝐵′
𝑃𝑚𝐹 (𝑠0, 𝑑𝑠′)𝑃𝐹 (𝑠′, 𝐵) =

∫
𝐵′
𝜇({𝑠0})𝑢(𝑑𝑠′)𝑃𝐹 (𝑠′, 𝐵)

=

∫
𝐵′
𝜇(𝑑𝑠′)𝑃𝐹 (𝑠′, 𝐵) = 𝜇(𝐵),

where the last two equalities stem from the induction hypothesis and the flow matching conditions respectively.
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The following lemma, relates the flow measures at the source and sink states to the reward measure and shows that the
source and sink flows correspond to the ”total reward” 𝑅(X) (called the partition function with discrete GFlowNets):
Lemma 7. Let 𝐹 = (𝜇, 𝑃𝐹) be a flow over 𝐺 satisfying reward-matching conditions in (10) w.r.t. a measure 𝑅, then

𝜇({𝑠0}) = 𝜇({⊥}) = 𝑅(X). (38)

Proof Applying (10) to the function 𝑓 : 𝑥 ∈ X ↦→ 1, we get:∫
X
𝑅(𝑑𝑥) =

∫
X
𝜇(𝑑𝑥)𝑃𝐹 (𝑥, {⊥}). (39)

Additionally, from (8), we get ∀𝑠 ∈ S \ X, 𝜅(𝑠, {⊥}) = 0. It follows from the absolute continuity requirements of 𝑃𝐹 that
∀𝑠 ∈ S \ X, 𝑃𝐹 (𝑠, {⊥}) = 0. Hence:∫

X
𝑅(𝑑𝑥) =

∫
S
𝜇(𝑑𝑠)𝑃𝐹 (𝑠, {⊥}) =

∬
S×S̄

1𝑠′=⊥𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′) =
∫
S̄
1𝑠′=⊥𝜇(𝑑𝑠′) = 𝜇({⊥}),

where the last line follows from (9). This shows that 𝜇({⊥}) = 𝑅(X).

Note that as a consequence of Lemma 4 and the absolute continuity requirement, a 𝑃𝐹 satisfies:

∀𝑠 ∈ S̄, 𝑃𝐹 (𝑠, {𝑠0}) = 0 (40)

Next, following (9) and (40), we have:∬
S×S̄

𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′) =
∬

S×S̄
1𝑠′≠𝑠0𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′) =

∫
S̄
1𝑠′≠𝑠0𝜇(𝑑𝑠′) = 𝜇(S̄) − 𝜇({𝑠0}). (41)

On the other hand, because each 𝑃𝐹 (𝑠,−) is a probability measure on S̄:∬
S×S̄

𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′) =
∫
S

(∫
S̄
𝑃𝐹 (𝑠, 𝑑𝑠′)

)
𝜇(𝑑𝑠) =

∫
S
𝜇(𝑑𝑠) = 𝜇(S) (42)

Subtracting (41) from (42), we get:

𝜇({𝑠0}) = 𝜇(S̄) − 𝜇(S) = 𝜇({⊥}) = 𝑅(X)

The following lemma is crucial to prove Prop. 2.
Lemma 8. If (𝑃𝐹 , 𝑃𝐵, 𝑍) satisfy the trajectory balance conditions wrt. 𝑅, then for any 𝑛 ∈ {0, ..., 𝑁}, and for any
measurable bounded function 𝑓 : S → R:

𝑍

∫
S
𝑓 (𝑠)𝑃𝑛𝐹 (𝑠0, 𝑑𝑠)𝑃𝐹 (𝑠, {⊥}) =

∫
S
𝑓 (𝑠)𝑃𝑛𝐵 (𝑠, {𝑠0})𝑅(𝑑𝑠) (43)

Proof Using Lemma 6, we have:

𝑍

∫
S
𝑓 (𝑠)𝑃𝑛𝐹 (𝑠0, 𝑑𝑠)𝑃𝐹 (𝑠, {⊥}) = 𝑍

∫
S̄𝑛+1

1𝑠≠⊥ 𝑓 (𝑠)𝑃𝐹 (𝑠, {⊥})𝑃⊗𝑛
𝐹 (𝑠0, 𝑑𝑠′𝑑𝑠1 . . . 𝑑𝑠𝑛−1𝑑𝑠)

= 𝑍

∫
S̄𝑛+2

1𝑠≠⊥,𝑠𝑛+1=⊥ 𝑓 (𝑠)𝑃⊗𝑛+1
𝐹 (𝑠0, 𝑑𝑠′𝑑𝑠1 . . . 𝑑𝑠𝑛−1𝑑𝑠𝑑𝑠𝑛+1)

=

∫
S̄𝑛+2

1𝑠≠⊥1𝑠′′=𝑠0 𝑓 (𝑠)𝑅(𝑑𝑠)𝑃⊗𝑛
𝐵 (𝑠, 𝑑𝑠′𝑑𝑠𝑛−1 . . . 𝑑𝑠1, 𝑑𝑠′′)

=

∫
S̄
𝑓 (𝑠)1𝑠≠⊥𝑅(𝑑𝑠)

∫
S̄𝑛+1

1𝑠′′=𝑠0𝑃
⊗𝑛
𝐵 (𝑠, 𝑑𝑠′𝑑𝑠𝑛−1 . . . 𝑑𝑠1, 𝑑𝑠′′)

=

∫
S̄
𝑓 (𝑠)1𝑠≠⊥𝑅(𝑑𝑠)

∫
S̄
1𝑠′′=𝑠0𝑃

𝑛
𝐵 (𝑠, 𝑑𝑠′′)

=

∫
S
𝑓 (𝑠)𝑅(𝑑𝑠)𝑃𝑛𝐵 (𝑠, {𝑠0})

24



A Theory of Continuous Generative Flow Networks

The following proposition generalizes Lemma 5 of (Bengio et al., 2021b) to measurable pointed graphs, and is crucial in
proving Prop. 2

Proposition 5. Let 𝑃𝐵 be a backward kernel over 𝐺. Let 𝑃𝐵,𝑇 be the measure defined by:

𝑃𝐵,𝑇 (𝑠) =
∞∑︁
𝑛=0

𝑃𝑛𝐵 (𝑠, {𝑠0}) (44)

We have ∀𝑠 ∈ S:
𝑃𝐵,𝑇 (𝑠) = 1 (45)

Proof First, using a simple recursion, we show that ∀𝑛 ≥ 𝑁, 𝑃𝑛
𝐵
(𝑠, {𝑠0}) = 0. The base case (𝑛 = 𝑁) is trivially satisfied

because the measurable pointed graph has maximal trajectory length 𝑁 and 𝑃𝐵 (𝑠0,−) is the trivial measure (i.e. it assigns
zero to every measurable set), given that it is absolutely continuous wrt. 𝜅𝑏 (𝑠0,−). Assuming it holds for some 𝑛 ≥ 𝑁 , we
have:

𝑃𝑛+1𝐵 (𝑠, 𝑠0) =
∫
S̄
𝑃𝐵 (𝑠, 𝑑𝑠′)𝑃𝑛𝐵 (𝑠′, {𝑠0}) =

∫
S̄
𝑃𝐵 (𝑠, 𝑑𝑠′).0 = 0

This shows that for every 𝑠 ∈ S:

𝑃𝐵,𝑇 (𝑠) =
𝑁−1∑︁
𝑛=0

𝑃𝑛𝐵 (𝑠, 𝑑𝑠0).

Which shows the measure 𝑃𝐵,𝑇 is finite.

Next, we partition S into 𝑁 disjoint sets S0, . . . ,S𝑁−1, where:

𝑠 ∈ S𝑛 ⇔ 𝑛 = max{𝑚 ∈ N0 : 𝑃𝑚𝐵 (𝑠, {𝑠0}) > 0}

S𝑛 ∈ Σ given that S𝑛 = S′
𝑛 \

⋃∞
𝑘=0 S′

𝑛+𝑘 , where S′
𝑛 is the support of 𝑃𝑛

𝐵
(−, {𝑠0}), which is known to be a closed set, and

hence measurable.

Writing :

S =

𝑁−1⋃
𝑛=0

S𝑛,

Then proving (45) for all 𝑠 ∈ S, amounts to proving it for all 𝑠 ∈ S𝑛 for all 𝑛 ∈ {0, . . . , 𝑁 − 1}. We prove this by strong
induction on 𝑛.

Base case: For 𝑛 = 0, S0 = {𝑠0}, and

𝑃𝐵,𝑇 (𝑠0) = 𝑃0
𝐵 (𝑠0, {𝑠0}) = 𝛿𝑠0 ({𝑠0}) = 1,

Hence it is satisfied for n = 0.

Induction step: Assume that for some 𝑛 ≥ 0, (45) is satisfied for all 𝑠 ∈ S𝑚 for all 𝑚 ≤ 𝑛, and let 𝑠 ∈ S𝑛+1.

Define 𝐵𝑠 = {𝑠′ ∈ S : ∀𝐵 ∈ T , 𝑠′ ∈ 𝐵 => 𝑃𝐵 (𝑠, 𝐵) > 0}. We first show by contradiction that 𝐵𝑠 ⊆
⋃𝑛
𝑚=0 S𝑚. If there is

𝑠′ ∈ 𝐵𝑠 and 𝑛′ > 𝑛 such that 𝑠′ ∈ S𝑛′ , then 𝑃𝑛
′
𝐵
(𝑠′, {𝑠0}) > 0, and by continuity of �̃� ↦→ 𝑃𝑛

′
𝐵
( �̃�, {𝑠0}), there exists an open

set 𝐵 (i.e. 𝐵 ∈ T ) containing 𝑠′ such that 𝑃𝑛
′
𝐵
( �̃�, {𝑠0}) > 0 for all �̃� ∈ 𝐵. Hence:

𝑃𝑛
′+1
𝐵 (𝑠, {𝑠0}) =

∫
S̄
𝑃𝐵 (𝑠, 𝑑𝑠′)𝑃𝑛

′
𝐵 (𝑠′, {𝑠0}) ≥

∫
𝐵

𝑃𝐵 (𝑠, 𝑑𝑠′)𝑃𝑛
′
𝐵 (𝑠′, {𝑠0}) > 0,

which would contradict the fact that 𝑠 ∈ S𝑛+1, given that 𝑛′ + 1 > 𝑛 + 1.
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Hence:

𝑃𝐵,𝑇 (𝑠) =
𝑛+1∑︁
𝑚=0

𝑃𝑚𝐵 (𝑠, {𝑠0}) =
𝑛+1∑︁
𝑚=1

𝑃𝑚𝐵 (𝑠, {𝑠0}) given that 𝑠 ≠ 𝑠0

=

𝑛+1∑︁
𝑚=1

∫
𝑠′∈𝐵𝑠

𝑃𝐵 (𝑠, 𝑑𝑠′)𝑃𝑚−1
𝐵 (𝑠′, {𝑠0}) =

∫
𝑠′∈𝐵𝑠

𝑃𝐵 (𝑠, 𝑑𝑠′)
𝑛∑︁
𝑚=0

𝑃𝑚𝐵 (𝑠′, {𝑠0})︸               ︷︷               ︸
=1

=

∫
𝑠′∈𝐵𝑠

𝑃𝐵 (𝑠, 𝑑𝑠′) = 1

E. Proofs of results in the main text
We are now ready to prove the main theorem of the paper, which we restate here:
Theorem 1. If 𝐹 = (𝜇, 𝑃𝐹) is a flow over 𝐺, that satisfies the reward matching conditions (10) wrt. a measure 𝑅, then the
terminating state measure:

𝑃𝑇 : 𝐵 ∈ Σ |X ↦→
∞∑︁
𝑛=1

𝑃𝑛𝑇 (𝐵) (46)

is a probability measure and satisfies for all 𝐵 ∈ Σ |X:

𝑃𝑇 (𝐵) =
1

𝑅(X) 𝑅(𝐵) (47)

Proof Using Lemma 2, the terminating state measure 𝑃𝑇 satisfies for any bounded measurable function 𝑓 : X→R:∫
X
𝑓 (𝑥)𝑃𝑇 (𝑑𝑥) =

∫
X
𝑓 (𝑥)𝑃𝐹 (𝑥,⊥)

∞∑︁
𝑛=0

𝑃𝑛𝐹 (𝑠0, 𝑑𝑥).

It follows from Prop. 4 that

𝜇({𝑠0})
∫
X
𝑓 (𝑥)𝑃𝑇 (𝑑𝑥) =

∫
X
𝑓 (𝑥)𝑃𝐹 (𝑥,⊥)𝜇(𝑑𝑥).

Following Lemma 7, and the positivity assumption on 𝑅 that:∫
X
𝑓 (𝑥)𝑃𝑇 (𝑑𝑥) =

1

𝑅(X)

∫
X
𝑓 (𝑥)𝑃𝐹 (𝑥,⊥)𝜇(𝑑𝑥).

Finally, using (10), we obtain: ∫
X
𝑓 (𝑥)𝑃𝑇 (𝑑𝑥) =

1

𝑅(X)

∫
X
𝑓 (𝑥)𝑅(𝑑𝑥).

𝑃𝑇 being a probability measure follows by applying the last equality to the function 𝑓 : 𝑥 ↦→ 1.

Next, we will prove Prop. 1.
Proposition 1. If (𝜇, 𝑃𝐹 , 𝑃𝐵) satisfy the detailed balance conditions in Def. 5, then 𝐹 = (𝜇, 𝑃𝐹) satisfies the flow-matching
conditions in Def. 3 and is thus a flow.

Proof For any bounded measurable function 𝑓 : S̄ → R satisfying 𝑓 (𝑠0) = 0, we can define a function 𝑔 : S × S̄ → R
such that for all (𝑠, 𝑠′) ∈ S × S̄, 𝑔(𝑠, 𝑠′) = 𝑓 (𝑠′). Note that 𝑔 satisfies 𝑔(𝑠, 𝑠0) = 0 for every 𝑠 ∈ S. Applying the detailed
balance conditions to the function 𝑔, we have∬

S×S̄
𝑔(𝑠, 𝑠′)𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′) =

∬
S×S̄

𝑓 (𝑠′)𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′)
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On the other hand, using the RHS of (12) in the detailed balance conditions, we get∬
S×S̄

𝑔(𝑠, 𝑠′)𝜇(𝑑𝑠′)𝑃𝐵 (𝑠′, 𝑑𝑠) =
∬

S×S̄
𝑓 (𝑠′)𝜇(𝑑𝑠′)𝑃𝐵 (𝑠′, 𝑑𝑠) =

∫
S̄
𝑓 (𝑠′)𝜇(𝑑𝑠′)

∫
S
𝑃𝐵 (𝑠′, 𝑑𝑠),

Following (2) and the the absolute continuity conditions of 𝑃𝐵 with respect to 𝜅𝑏, we have:

∀𝑠′ ∈ S, 𝑃𝐵 (𝑠′, {⊥}) = 0,

from which it follows that: ∬
S×S̄

𝑔(𝑠, 𝑠′)𝜇(𝑑𝑠′)𝑃𝐵 (𝑠′, 𝑑𝑠) =
∫
S̄
𝑓 (𝑠′)𝜇(𝑑𝑠′)

∫
S̄
𝑃𝐵 (𝑠′, 𝑑𝑠)︸           ︷︷           ︸

=1

This shows that (𝜇, 𝑃𝐹) satisfy the flow matching conditions.

Next, we will prove Prop. 2, which we restate here:

Proposition 2. If (𝑍, 𝑃𝐹 , 𝑃𝐵) satisfy the trajectory balance condition (13) wrt. a measure 𝑅, then 𝐹 = (𝜇, 𝑃𝐵), where 𝜇 is
defined by

(1) 𝜇({⊥}) = 𝜇({𝑠0}) = 𝑍
(2) ∀𝐵 ∈ Σ |S: 𝜇(𝐵) = 𝜇({𝑠0})

∑∞
𝑛=0 𝑃

𝑛
𝐹
(𝑠0, 𝐵)

satisfies both the flow-matching conditions (9) and the reward matching conditions (10) wrt. 𝑅.

Proof First we show that 𝜇 satisfies the flow-matching condition. for any bounded measurable function 𝑓 : S̄ → R
satisfying 𝑓 (𝑠0) = 0, we have :∬

S×S̄
𝑓 (𝑠′)𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′) =

∬
S×S̄

𝑓 (𝑠′)𝜇(𝑠0)
∞∑︁
𝑛=0

𝑃𝑛𝐹 (𝑠0, 𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′)

=

∫
S̄
𝑓 (𝑠′)𝜇(𝑠0)

∞∑︁
𝑛=0

𝑃𝑛+1𝐹 (𝑠0, 𝑑𝑠′)

=

∫
S̄
𝑓 (𝑠′)𝜇(𝑠0)

∞∑︁
𝑛=0

𝑃𝑛𝐹 (𝑠0, 𝑑𝑠′) (because 𝑓 (𝑠0) = 0)

=

∫
S̄
𝑓 (𝑠′)𝜇(𝑑𝑠′)

Now, we will show the reward matching condition. For any bounded measurable function 𝑓 : X → R∫
X
𝑓 (𝑠)𝜇(𝑑𝑠)𝑃𝐹 (𝑠,⊥) =

∫
S
1X (𝑠) 𝑓 (𝑠) 𝜇({𝑠0})︸   ︷︷   ︸

=𝑍

∞∑︁
𝑛=0

𝑃𝑛𝐹 (𝑠0, 𝑑𝑠)𝑃𝐹 (𝑠,⊥)

=

∞∑︁
𝑛=0

∫
S
1X (𝑠) 𝑓 (𝑠)𝑅(𝑑𝑠)𝑃𝑛𝐵 (𝑠, {𝑠0})

=

∫
S
1X (𝑠) 𝑓 (𝑠)𝑅(𝑑𝑠)

∞∑︁
𝑛=0

𝑃𝑛𝐵 (𝑠, {𝑠0}) =
∫
X
𝑓 (𝑠)𝑅(𝑑𝑠)

where we used Prop. 5 and Lemma 8.

The following is the proof of Thm. 2, which we restate here:
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Theorem 2. (1) If 𝐿𝐹𝑀 (−; 𝜃) = 0 𝜈-almost surely, then 𝐹 = (𝜇, 𝑃𝐹) is a flow (i.e. satisfies the flow-matching conditions
in Def. 3).
(2) If 𝐿𝐷𝐵 (−; 𝜃) = 0 𝜈 ⊗ 𝜅-almost surely, then (𝜇, 𝑃𝐹 , 𝑃𝐵) satisfy the detailed balance conditions in Def. 5.
(3) If 𝐿𝑅𝑀 (−; 𝜃) = 0 𝜈 |X-almost surely, then (𝜇, 𝑃𝐹) satisfies the reward matching conditions in (10).
(4) If 𝐿𝑛

𝑇𝐵
(−; 𝜃) = 0 ((𝜈⊗𝜅⊗𝑛+1) | {𝑠0 }×S𝑛×{⊥})-almost surely for every 𝑛 ≥ 0, then (𝑍𝜈({𝑠0}), 𝑃𝐹 , 𝑃𝐵) satisfy the trajectory

balance condition in Def. 6.

Proof We will first show the result for the flow-matching loss. Let the function 𝑣 : S̄→R+ be the function, depending on
the parameter 𝜃, defined by ∀𝑠′ ∈ S̄:

𝑣(𝑠′; 𝜃) :=
∫
S
𝑢(𝑠; 𝜃)𝑝𝐹 (𝑠, 𝑠′; 𝜃)𝜅𝑏 (𝑠′, 𝑑𝑠).

If we assume that 𝐿𝐹𝑀 (−; 𝜃) = 0 𝜈-almost surely, then we have equivalently 𝑢(−; 𝜃) = 𝑣(−; 𝜃) 𝜈-almost surely. Let
𝑓 : S̄→R be a bounded measurable function such that 𝑓 (𝑠0) = 0, we then have∫

S̄
𝑓 (𝑠′)𝑢(𝑠′; 𝜃)𝜈(𝑑𝑠′) =

∫
S̄
𝑓 (𝑠′)𝑣(𝑠′; 𝜃)𝜈(𝑑𝑠′)

=

∫
S̄
𝑓 (𝑠′)

∫
S
𝑢(𝑠; 𝜃)𝑝𝐹 (𝑠, 𝑠′; 𝜃)𝜅𝑏 (𝑠′, 𝑑𝑠)𝜈(𝑑𝑠′)

=

∬
S̄×S

𝑓 (𝑠′)𝑢(𝑠; 𝜃)𝑝𝐹 (𝑠, 𝑠′; 𝜃)𝜅(𝑠, 𝑑𝑠′)𝜈(𝑑𝑠),

where we used the fact that 𝜈 ⊗ 𝜅 = 𝜈 ⊗ 𝜅𝑏 (from (4) in Def. 1) in the last equality. Replacing the densities (and reference
measures) in the equality above with their corresponding measures 𝜇 and 𝑃𝐹 , we get∫

S̄
𝑓 (𝑠′)𝜇(𝑑𝑠′) =

∬
S×S̄

𝑓 (𝑠′)𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′).

Since this equality is valid for any bounded measurable function 𝑓 satisfying 𝑓 (𝑠0) = 0, this is the definition of 𝐹 = (𝜇, 𝑃𝐹)
satisfying the flow-matching conditions (Def. 3).

The proof for the detailed balance loss is similar. Let the functions 𝑔 : S̄ × S̄→R+ and ℎ : S̄ × S̄→R+ defined as

𝑔(𝑠, 𝑠′; 𝜃) := 𝑢(𝑠; 𝜃)𝑝𝐹 (𝑠, 𝑠′; 𝜃)
ℎ(𝑠, 𝑠′; 𝜃) := 𝑢(𝑠′; 𝜃)𝑝𝐵 (𝑠′, 𝑠; 𝜃).

If 𝐿𝐷𝐵 (−; 𝜃) = 0 𝜈 ⊗ 𝜅-almost surely, then we have equivalently 𝑔(−; 𝜃) = ℎ(−, 𝜃). Let 𝑓 : S × S̄→R be a bounded
measurable function such that 𝑓 (𝑠, 𝑠0) = 0 for all 𝑠 ∈ S. We have∬

S×S̄
𝑓 (𝑠, 𝑠′)𝑔(𝑠, 𝑠′; 𝜃) (𝜈 ⊗ 𝜅) (𝑑𝑠, 𝑑𝑠′)

=

∬
S×S̄

𝑓 (𝑠, 𝑠′)𝑢(𝑠; 𝜃)𝑝𝐹 (𝑠, 𝑠′; 𝜃) (𝜈 ⊗ 𝜅) (𝑑𝑠 𝑑𝑠′)

=

∬
S×S̄

𝑓 (𝑠, 𝑠′)ℎ(𝑠, 𝑠′; 𝜃) (𝜈 ⊗ 𝜅) (𝑑𝑠 𝑑𝑠′)

=

∬
S×S̄

𝑓 (𝑠, 𝑠′)ℎ(𝑠, 𝑠′; 𝜃) (𝜈 ⊗ 𝜅𝑏) (𝑑𝑠′ 𝑑𝑠)

=

∬
S×S̄

𝑓 (𝑠, 𝑠′)𝑢(𝑠′; 𝜃)𝑝𝐵 (𝑠′, 𝑠; 𝜃) (𝜈 ⊗ 𝜅𝑏) (𝑑𝑠′ 𝑑𝑠),

where we used 𝜈 ⊗ 𝜅 = 𝜈 ⊗ 𝜅𝑏 in the 3rd inequality. Note that while the equalities between functions are valid 𝜈 ⊗ 𝜅-almost
surely over the whole space S̄ × S̄, we only used the equality restricted to S × S̄. Moreover, since 𝑢, 𝑝𝐹 , and 𝑝𝐵 are the
densities of the respective measures 𝜇, 𝑃𝐹 , and 𝑃𝐵 (wrt. the appropriate reference measures), we know that for 𝐵 ∈ Σ̄ ⊗ Σ̄

(𝜇 ⊗ 𝑃𝐹) (𝐵) =
∬
𝐵

𝑢(𝑠; 𝜃)𝑝𝐹 (𝑠, 𝑑𝑠′) (𝜈 ⊗ 𝜅) (𝑑𝑠 𝑑𝑠′)

(𝜇 ⊗ 𝑃𝐵) (𝐵) =
∬
𝐵

𝑢(𝑠′; 𝜃)𝑝𝐵 (𝑠′, 𝑑𝑠) (𝜈 ⊗ 𝜅𝑏) (𝑑𝑠′ 𝑑𝑠).
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Replacing these measures in the equality above, we obtain∬
S×S̄

𝑓 (𝑠, 𝑠′)𝜇(𝑑𝑠)𝑃𝐹 (𝑠, 𝑑𝑠′) =
∬

S×S̄
𝑓 (𝑠, 𝑠′)𝜇(𝑑𝑠′)𝑃𝐵 (𝑠′, 𝑑𝑠).

Since this equality is valid for any bounded measurable function 𝑓 such that 𝑓 (𝑠, 𝑠0) = 0 for all 𝑠 ∈ S, this corresponds to
(𝜇, 𝑃𝐹 , 𝑃𝐵) satisfying the detailed balance conditions (Def. 5).

Now, for the trajectory balance loss: for a trajectory (𝑠, 𝑠1, .., 𝑠𝑛+1) ∈ S𝑛+2, we define:

𝑝⊗𝑛+1𝐹 (𝑠,−−−−→𝑠1:𝑛+1) = 𝑝𝐹 (𝑠, 𝑠1, 𝜃)
𝑛∏
𝑡=1

𝑝𝐹 (𝑠𝑡 , 𝑠𝑡+1, 𝜃)

𝑝⊗𝑛𝐵 (−−→𝑠𝑛:1, 𝑠) = 𝑝𝐵 (𝑠1, 𝑠, 𝜃)
𝑛−1∏
𝑡=1

𝑝𝐵 (𝑠𝑡+1, 𝑠𝑡 , 𝜃)

For any bounded measurable function 𝑓 : S̄𝑛+2 → R, assuming 𝐿𝑛
𝑇𝐵

= 0 almost surely for every 𝑛 ≥ 0:∫
S𝑛+2

𝑍 (𝜃) 𝑓 (𝑠,−−−−→𝑠1:𝑛+1)1𝑠=𝑠0 ,𝑠𝑛≠⊥,𝑠𝑛+1=⊥𝑝⊗𝑛+1𝐹 (𝑠,−−−−→𝑠1:𝑛+1)𝜈 ⊗ 𝜅⊗𝑛+1 (𝑑𝑠
−−−−−→
𝑑𝑠1:𝑛+1)

=

∫
{𝑠0 }×S𝑛−1×X×{⊥}

𝑍 (𝜃) 𝑓 (𝑠,−−−−→𝑠1:𝑛+1)𝑝⊗𝑛+1𝐹 (𝑠,−−−−→𝑠1:𝑛+1)𝜈 ⊗ 𝜅⊗𝑛+1 (𝑑𝑠
−−−−−→
𝑑𝑠1:𝑛+1)

=

∫
{𝑠0 }×S𝑛×{⊥}

𝑓 (𝑠,−−−−→𝑠1:𝑛+1)𝑟 (𝑠𝑛)𝑝⊗𝑛𝐵 (−−→𝑠𝑛:1, 𝑠)𝜈 ⊗ 𝜅⊗𝑛+1 (𝑑𝑠
−−−−−→
𝑑𝑠1:𝑛+1)

=

∫
{𝑠0 }×S𝑛

𝑓 (𝑠,−−→𝑠1:𝑛,⊥)𝑟 (𝑠𝑛) 𝜅(𝑠𝑛, {⊥})︸       ︷︷       ︸
=1 (see (6))

𝑝⊗𝑛𝐵 (−−→𝑠𝑛:1, 𝑠)𝜈 ⊗ 𝜅⊗𝑛 (𝑑𝑠
−−−→
𝑑𝑠1:𝑛)

=

∫
{𝑠0 }×S𝑛

𝑓 (𝑠,−−→𝑠1:𝑛,⊥)𝑟 (𝑠𝑛)𝑝⊗𝑛𝐵 (−−→𝑠𝑛:1, 𝑠)𝜈 ⊗ 𝜅𝑏,⊗𝑛 (
−−−→
𝑑𝑠𝑛:1 𝑑𝑠)

=

∫
S𝑛+1

𝑓 (𝑠,−−→𝑠1:𝑛,⊥)1𝑠=𝑠0𝑟 (𝑠𝑛)𝜈(𝑑𝑠𝑛)𝑝⊗𝑛𝐵 (−−→𝑠𝑛:1, 𝑠)𝜅𝑏,⊗𝑛 (𝑠𝑛,
−−−−−−→
𝑑𝑠𝑛−1:1 𝑑𝑠)

Replacing the measures in the last equality obtained, we recover the TB condition in Def. 6 with (𝑍𝜈({𝑠0}), 𝑃𝐹 , 𝑃𝐵).

Here, we used 𝜈 ⊗ 𝜅⊗𝑛 = 𝜈 ⊗ 𝜅𝑏,⊗𝑛, ∀𝑛 ∈ {0, ..𝑁}. We can show this by simple induction : for 𝑛 = 0, it is trivially satisfied .
Now suppose it is true for a given 𝑛 ≤ 𝑁 − 1, using (4). We have :

𝜈 ⊗ 𝜅⊗𝑛+1 (𝑑𝑠 −−−−−→𝑑𝑠1:𝑛+1) = 𝜈 ⊗ 𝜅⊗𝑛 (𝑑𝑠
−−−→
𝑑𝑠1:𝑛)𝜅(𝑠𝑛, 𝑑𝑠𝑛+1) = 𝜈 ⊗ 𝜅𝑏,⊗𝑛 (

−−−→
𝑑𝑠𝑛:1 𝑑𝑠)𝜅(𝑠𝑛, 𝑑𝑠𝑛+1)

= 𝜈(𝑑𝑠𝑛)𝜅(𝑠𝑛, 𝑑𝑠𝑛+1)𝜅𝑏,⊗𝑛 (𝑠𝑛,
−−−→
𝑑𝑠𝑛:1 𝑑𝑠) = 𝜈(𝑑𝑠𝑛+1)𝜅𝑏 (𝑠𝑛+1, 𝑑𝑠𝑛)𝜅𝑏,⊗𝑛 (𝑠𝑛,

−−−→
𝑑𝑠𝑛:1 𝑑𝑠)

= 𝜈(𝑑𝑠𝑛+1)𝜅𝑏,⊗𝑛+1 (𝑠𝑛+1,
−−−→
𝑑𝑠𝑛:1 𝑑𝑠) = 𝜈 ⊗ 𝜅𝑏,⊗𝑛+1 (

−−−−−→
𝑑𝑠𝑛+1:1 𝑑𝑠)

Which proves the claim above.

F. Proofs of lemmas and propositions in §A
Lemma 1.

Proof We prove the lemma by induction on 𝑛. The base case (𝑛 = 1) is trivially satisfied. Assuming the property holds for
some 𝑛 ≥ 0, let 𝑠 ∈ S̄ and 𝐵 ∈ Σ such that 𝜅𝑛+1 (𝑠, 𝐵) = 0.

𝑃𝑛+1𝐹 (𝑠, 𝐵) =
∫
S̄
𝑃𝑛𝐹 (𝑠, 𝑑𝑠′)𝑃𝐹 (𝑠′, 𝐵).
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If 𝑃𝑛+1
𝐹

(𝑠, 𝐵) > 0, that would mean there exists an open set 𝐵′ ∈ T such that 𝑃𝑛
𝐹
(𝑠, 𝐵′) > 0 and 𝑃𝐹 (𝑠′, 𝐵) > 0 for all

𝑠′ ∈ 𝐵′. From the induction hypothesis, it would follow that 𝜅𝑛 (𝑠, 𝐵′) > 0 and 𝜅(𝑠′, 𝐵) > 0 for all 𝑠′ ∈ 𝐵′, meaning that:

𝜅𝑛+1 (𝑠, 𝐵) =
∫
S̄
𝜅𝑛 (𝑠, 𝑑𝑠′)𝜅(𝑠′, 𝐵) ≥

∫
𝐵′
𝜅𝑛 (𝑠, 𝑑𝑠′)𝜅(𝑠′, 𝐵) > 0.

A contradiction ! Hence, 𝑃𝑛+1
𝐹

(𝑠, 𝐵) = 0

Lemma 2.

Proof Starting from the definition of 𝑃𝑛⊤:∫
X
𝑓 (𝑥)𝑃𝑛⊤ (𝑑𝑥) =

∫
S̄
𝑓 (𝑠𝑛)1X (𝑠𝑛)𝑃𝑛⊤ (𝑑𝑥) =

∫
S̄𝑛+1

1X (𝑠𝑛) 𝑓 (𝑠𝑛)𝑃⊗𝑛
𝐹 (𝑠0, 𝑑𝑠1 . . . 𝑑𝑠𝑛+1)1𝑠𝑛+1=⊥

Hence, using the recursive definition of 𝑃⊗𝑛
𝐹

in (22):∫
X
𝑓 (𝑥)𝑃𝑛⊤ (𝑑𝑥) =

∫
S̄𝑛+1

1X (𝑠𝑛) 𝑓 (𝑠𝑛)𝑃⊗𝑛−1
𝐹 (𝑠0, 𝑑𝑠1 . . . 𝑑𝑠𝑛)𝑃𝐹 (𝑠𝑛, 𝑑𝑠𝑛+1)1𝑠𝑛+1=⊥

=

∫
S̄𝑛

1X (𝑠𝑛) 𝑓 (𝑠𝑛)𝑃𝐹 (𝑠𝑛, {⊥})︸                            ︷︷                            ︸
𝑔 (𝑠𝑛 )

𝑃⊗𝑛−1
𝐹 (𝑠0, 𝑑𝑠1 . . . 𝑑𝑠𝑛)

=

∫
S̄𝑛

𝑔(𝑠𝑛)𝑃⊗𝑛−1
𝐹 (𝑠0, 𝑑𝑠1 . . . 𝑑𝑠𝑛)

=

∫
S̄
𝑔(𝑠𝑛)𝑃𝑛−1𝐹 (𝑠0, 𝑑𝑠𝑛) =

∫
X
𝑓 (𝑥)𝑃𝐹 (𝑥, {⊥}𝑃𝑛−1𝐹 (𝑠0, 𝑑𝑠𝑛),

where we applied Lemma 6 to the bounded and measurable function 𝑔.

Lemma 3.

Proof Let 𝑓 : S̄2→R be a bounded measurable function.∫
S̄2

𝑓 (𝑠, 𝑠′)𝜈𝜅(𝑑𝑠′)𝜅′ (𝑠′, 𝑑𝑠) =
∫
S̄
𝑓 (𝑠, 𝑠0) 𝜈𝜅({𝑠0})︸    ︷︷    ︸

=0

𝜅′ (𝑠0, 𝑑𝑠) +
∫
S

∫
S̄\{𝑠0 }

𝑓 (𝑠, 𝑠′)𝜈𝜅(𝑑𝑠′)𝜅′ (𝑠′, 𝑑𝑠)

+
∫
S\{𝑠0 }

𝑓 (⊥, 𝑠′)𝜈𝜅(𝑑𝑠′) 𝜅′ (𝑠′, {⊥})︸       ︷︷       ︸
=0

+ 𝑓 (⊥,⊥)𝜈𝜅({⊥})𝜅′ (⊥, {⊥})

=

∫
S

∫
S̄\{𝑠0 }

𝑓 (𝑠, 𝑠′)𝜈𝜅(𝑑𝑠′)𝜅𝑏 (𝑠′, 𝑑𝑠) +
∫
S̄
𝑓 (𝑠, 𝑠0) 𝜈𝜅({𝑠0})︸    ︷︷    ︸

=0

𝜅𝑏 (𝑠0, 𝑑𝑠)

+ 𝑓 (⊥,⊥)𝜈𝜅({⊥})𝜅𝑏 (⊥, {⊥}) (48)

On the other hand, let 𝐵 be the largest open set within Ssuch that ∀𝑠′ ∈ 𝐵, 𝜅𝑏 (𝑠′, {⊥}) > 0. Applying the definition of the
reverse kernel (26) to the function 𝑓 : (𝑠, 𝑠′) ↦→ 1𝑠=⊥1𝐵 (𝑠′), we get:∫

S̄
1𝐵 (𝑠′)𝜈({⊥})𝜅(⊥, 𝑠′) =

∫
S̄
1𝐵 (𝑠′)𝜈𝜅(𝑠′)𝜅𝑏 (𝑠′, {⊥})

The LHS of the previous equality is 0, following (2). It follows from the assumption that ∀𝑠′ ∈ 𝐵, 𝜅𝑏 (𝑠′, {⊥}) > 0 that
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𝜈𝜅(𝐵) = 0. Hence: ∫
S\{𝑠0 }

𝑓 (⊥, 𝑠′)𝜈𝜅(𝑑𝑠′)𝜅𝑏 (𝑠′, {⊥})

=

∫
S̄\{𝑠0 }

1S\𝐵 (𝑠′) 𝑓 (⊥, 𝑠′)𝜈𝜅(𝑑𝑠′)𝜅𝑏 (𝑠′, {⊥})

+
∫
S̄\{𝑠0 }

1𝐵 (𝑠′) 𝑓 (⊥, 𝑠′)𝜈𝜅(𝑑𝑠′)𝜅𝑏 (𝑠′, {⊥})

The first summand of the RHS of the last equality is zero by the definition of 𝐵. The second summand is zero because
𝜈𝜅(𝐵) = 0. Going back to (48), we obtain:∫

S̄2

𝑓 (𝑠, 𝑠′)𝜈𝜅(𝑑𝑠′)𝜅′ (𝑠′, 𝑑𝑠) =
∫
S̄2

𝑓 (𝑠, 𝑠′)𝜈𝜅(𝑑𝑠′)𝜅𝑏 (𝑠′, 𝑑𝑠) =
∫
S̄2

𝑓 (𝑠, 𝑠′)𝜅(𝑑𝑠)𝜅(𝑠, 𝑑𝑠′)

Proposition 3.

Proof First, note that (2) and (7) imply that ∀𝑛 ≥ 𝑁, 𝜅𝑛 (𝑠0,−) = 𝛿⊥. This can be shown by a simple induction on 𝑛, writing
for any 𝐵 ∈ Σ:

𝜅𝑛+1 (𝑠0, 𝐵) =
∫
S̄
𝜅𝑛 (𝑠0, 𝑑𝑠)𝜅(𝑑𝑠, 𝐵).

This entails that (1) could be rewritten as:

∀𝐵 ∈ T \ {∅}, ∃𝑛 ∈ {0, . . . , 𝑁} : 𝜅𝑛 (𝑠0, 𝐵) > 0.

Hence,

∀𝐵 ∈ T \ {∅}, 𝜈(𝐵) > 0.

The measure 𝜈 is thus strictly positive.

Note that for any 𝐵 in Σ |S such that 𝑠0 ∉ 𝐵.

𝜈𝜅(𝐵) =
∫
S̄
𝜈(𝑑𝑠)𝜅(𝑠, 𝐵)

=

∫
S̄

𝑁∑︁
𝑛=0

𝜅𝑛 (𝑠0, 𝑑𝑠)𝜅(𝑠, 𝐵) =
𝑁∑︁
𝑛=0

∫
S̄
𝜅𝑛 (𝑠0, 𝑑𝑠)𝜅(𝑠, 𝐵)

=

𝑁∑︁
𝑛=0

𝜅𝑛+1 (𝑠0, 𝐵) =
𝑁+1∑︁
𝑛=1

𝜅𝑛 (𝑠0, 𝐵).

Because 𝐵 ⊆ S, then 𝜅𝑁+1 (𝑠0, 𝐵) = 𝛿⊥ (𝐵) = 0. And because 𝑠0 ∉ 𝐵, 𝜅0 (𝑠0, 𝐵) = 𝛿𝑠0 (𝐵) = 0. From this it follows that:

𝜈𝜅(𝐵) = 𝜈(𝐵)
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Then, let 𝐵 ∈ Σ |S ⊗ Σ |S such that (𝑠0, 𝑠0) ∉ 𝐵. Using the definition of the reverse kernel, we obtain:

𝜈 ⊗ 𝜅(𝐵) = (𝜈𝜅) ⊗ 𝜅𝑟𝜈 (𝐵) =
∫
S̄×S̄

1𝐵 (𝑠, 𝑠′)𝜈𝜅(𝑑𝑠′)𝜅𝑟𝜈 (𝑑𝑠′, 𝑑𝑠)

=

∫
S×(S\{𝑠0 })

1𝐵 (𝑠, 𝑠′) 𝜈𝜅(𝑑𝑠′)︸  ︷︷  ︸
=𝜈 (𝑑𝑠)

𝜅𝑟𝜈 (𝑑𝑠′, 𝑑𝑠) +
∫
S
1𝐵 (𝑠, 𝑠0) 𝜈𝜅(𝑠0)︸ ︷︷ ︸

=0

𝜅𝑟𝜈 (𝑠0, 𝑑𝑠)

=

∫
S×(S\{𝑠0 })

1𝐵 (𝑠, 𝑠′)𝜈(𝑑𝑠′)𝜅𝑟𝜈 (𝑑𝑠′, 𝑑𝑠)

=

∫
S×(S\{𝑠0 })

1𝐵 (𝑠, 𝑠′)𝜈(𝑑𝑠′)𝜅𝑟𝜈 (𝑑𝑠′, 𝑑𝑠) +
∫
S\{𝑠0 }

1𝐵 (𝑠, 𝑠0)𝜅(𝑠0) 𝜅𝑟𝜈 (𝑠0, 𝑑𝑠)︸      ︷︷      ︸
=0

=

∫
S̄×S̄

1𝐵 (𝑠, 𝑠′)𝜈(𝑑𝑠′)𝜅𝑟𝜈 (𝑑𝑠′, 𝑑𝑠)

= 𝜈 ⊗ 𝜅𝑟𝜈 (𝐵)

Finally, if 𝐵 ∈ Σ |S :

𝜈 ⊗ 𝜅(𝐵 × {⊥}) =
∫
S
1𝐵 (𝑑𝑠)𝜈(𝑑𝑠)𝜅(𝑠, {⊥}) =

∫
S
1𝐵 (𝑑𝑠)𝜈({⊥})𝜅𝑏 (⊥, 𝑑𝑠) = 𝜈 ⊗ 𝜅𝑏 (𝐵 × {⊥})

𝜈 ⊗ 𝜅({⊥} × 𝐵) = 𝜈({⊥}) 𝜅(⊥, 𝐵)︸  ︷︷  ︸
=0

=

∫
S
1𝐵 (𝑠′)𝜈(𝑑𝑠′) 𝜅𝑏 (𝑠′, {⊥})︸        ︷︷        ︸

=0

= 𝜈 ⊗ 𝜅𝑏 ({⊥} × 𝐵)
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