
Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

RAISIN: RESIDUAL ALGORITHMS FOR VERSATILE
OFFLINE REINFORCEMENT LEARNING

Braham Snyder
UT Austin

Yuke Zhu
UT Austin

ABSTRACT

The residual gradient algorithm (RG), gradient descent of the Mean Squared Bell-
man Error, brings robust convergence guarantees to bootstrapped value estimation.
Meanwhile, the far more common semi-gradient algorithm (SG) suffers from well-
known instabilities and divergence. Unfortunately, RG often converges slowly in
practice. Baird (1995) proposed residual algorithms (RA), weighted averaging
of RG and SG, to combine RG’s robust convergence and SG’s speed. RA works
moderately well in the online setting. We find, however, that RA works dispro-
portionately well in the offline setting. Concretely, we find that merely adding a
variable residual component to SAC gives state-of-the-art scores for about half of
the D4RL gym tasks. We further show that using the minimum of ten critics lets
our algorithm approximately match SAC-N ’s state-of-the-art returns using 50×
less compute. In contrast, TD3+BC with the same minimum-of-ten-critics trick
does not match SAC-N ’s returns on many environments. The only hyperparameter
we tune is our residual weight — we leave all other hyperparameters unchanged
from SAC-N . 1

1 INTRODUCTION

Strong data scaling has given us baffling success in supervised learning. Offline reinforcement
learning (offline RL) holds promise for RL to scale with that same success, among other benefits.
Despite all the compelling motivations of offline RL (Levine et al., 2020), we still lack a simple,
versatile, and computationally efficient solution. By versatile, we mean algorithms that attain high
returns when trained on any of a diverse range of datasets, such as data collected by greatly differing
policies.

Arguably the simplest and most versatile approach thus far is SAC-N (An et al., 2021), which uses the
minimum of N critics instead of SAC’s usual two critics. SAC-N achieves state-of-the-art scores but,
unfortunately, requires up to 500 critics for sufficient pessimism on benchmark problems. Hu et al.
(2022) illustrates that stronger pessimism, specifically a smaller discount factor, enables SAC-N to
solve harder tasks (Rajeswaran et al., 2017). A smaller discount factor is simple and computationally
efficient pessimism but not versatile — it increases bias (Zhang et al., 2020).

In this paper, we identify residual algorithms (RA) (Baird, 1995) as a simple, versatile, and computa-
tionally efficient source of pessimism for SAC-N . As we explained, RA saw moderate success in
its goal of fusing RG’s convergence with SG’s speed. Recently, Zhang et al. (2019) found similar
success when extending RA to deep learning. But we find RA truly excels in the offline setting. Prior
works in both the online and offline settings (Geist et al., 2016; Fujimoto et al., 2022; Saleh & Jiang,
2019) show that, while RG performs well with data near the optimal policy, RG consistently fails
when the data is far from the optimal policy. Our key insight is that RA allows for the adjustable
exploitation of RG’s natural pessimism. In other words, a weighted RG component may serve as a
superior alternative to the widespread use of a weighted behavior cloning component for offline RL
(Fujimoto & Gu, 2021; Buckman et al., 2020). Critically, however, we also find that no single weight
for the RG component universally works well: you must tune it per dataset, similar to SAC-N (An
et al., 2021). We discuss potential routes for automatic tuning in Section 5.

We propose Raisin, roughly RA for SAC-N, giving D4RL (Fu et al., 2020) gym scores roughly
matching SAC-N — the state-of-the-art — with one-fiftieth of the critics. EDAC (An et al., 2021)

1This paper is also under review at ICLR 2023.

1

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

matches those scores as well but requires both five times more compute than Raisin and adjustment
of two hyperparameters per dataset. Raisin keeps the number of critics small and fixed and solely
requires adjusting one hyperparameter for pessimism (the residual weight).

Raisin easily runs at the same speed with one critic as it does with its standard ten critics (on one
GPU) thanks to embarrassing parallelization, similar to SAC-N (An et al., 2021). We plan to release
a clean and efficient implementation of Raisin (and SAC-N) upon acceptance of this manuscript.

Meanwhile, TD3+BC (Fujimoto & Gu, 2021) equipped with the same minimum-of-N -critics tool
(TD3+BC-N) does not appear versatile. It still does not match the scores of SAC-N on a few datasets
(especially the random datasets) despite tuning the pessimism per dataset. Outside of fundamental
offline RL research, such simple combinations of behavior cloning and reinforcement learning are
debatably the most common approach in the literature (Humphreys et al., 2022; Baker et al., 2022;
Nakano et al., 2021).

IQL is computationally efficient and potentially versatile but needs more testing on suboptimal data
(e.g., the random datasets of D4RL gym tasks). Maybe even more importantly, IQL is not simple. For
example, IQL uses a learning rate decay for its actor, rescales its rewards by 1000, clips advantages
to 100, and adds a third learning rate. Each one of these components may be overfitting. Conversely,
Raisin makes a single change to SAC-N , and SAC-N itself makes one change to SAC (Haarnoja
et al., 2018), an extensively well-tested algorithm.

Upside-down reinforcement learning (UDRL) (Schmidhuber, 2019; Kumar et al., 2019) has shown
some potential in recent work (Chen et al., 2021a; Lee et al., 2022), but scores poorly on suboptimal
data (Brandfonbrener et al., 2022). Not to mention that it wastes capacity learning poor behaviors
(Emmons et al., 2021) and that it kicks the maximization can down the road — UDRL requires a
desired-return hyperparameter, a goal specification, or a complicated equivalent.

2 PRELIMINARIES

We consider the standard offline RL setting of a fixed dataset D of transitions (s, a, r, s′), where s is
a state, a is an action taken in that state, r is the reward received for that action, and s′ is the new
state. We denote our policy πϕ(·|s), whose goal is to learn actions that maximize the discounted sum
of rewards

∑
t γ

tr, where γ is the discount factor. Qθ(s, a) is our state-action value function, whose
goal is to estimate the future discounted sum of rewards given a state-action pair.

For a comprehensive overview of residual algorithms (RA), see Zhang et al. (2019). We will give a
brief primer here in the context of SAC. Ignoring discounting for simplicity, SAC’s loss is:

L(θi,D) := E
(s,a,r,s′)∼D

(Qθi(s, a)− min
j=1,2

ȳ(j, r, s′)

)2
 ,

where θi refers to the parameters θ of the ith of two Q networks; and ȳ, the next-state target before
the minimum operation, is:

ȳ(j, r, s′) := r +
(
Q̄θj (s

′, ã′)− α log πϕ(ã
′|s′)

)
, ã′ ∼ πϕ(·|s′).

Q̄ denotes the target network (Mnih et al., 2015), and α is SAC’s entropy coefficient.

This critic loss derives from the Mean Squared Bellman Error (MSBE), a natural error function for
bootstrapped value estimation. But SAC’s critic does not quite optimize the MSBE, partly because
SAC, like all common value-based RL algorithms using gradient descent, ignores the gradient
contribution from the next-state term. In other words, gradient descent of SAC’s critic loss treats the
value of the next state (plus the reward) as a fixed target towards which the current state’s value is
stepped. This is known as the semi-gradient (SG) algorithm. In contrast, performing true gradient
descent of the MSBE is called the residual gradient (RG) algorithm. As a true gradient algorithm, RG
brings robust convergence guarantees. But, thus far, RG has empirically obtained poor returns and
at slow speeds. It also suffers from a few theoretical concerns (Baird, 1995; Sutton & Barto, 2018):
double sampling bias (for which we discuss workarounds in Section 5); convergence to unsatisfactory

2

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

values in certain stochastic settings with function approximation; and non-identifiability (though one
contribution of Patterson et al. (2021) is an identifiable MSBE). SG typically obtains higher returns
(when it converges) despite its lesser convergence guarantees and instabilities. For these reasons, SG
is used in practice.

In hopes of the best of both worlds, Baird (1995) proposed RA, weighted averaging of RG and SG.
Zhang et al. (2019) extended RA to DDPG, introducing bidirectional target networks as an intuitive
analog to the target networks commonly used for SG: since RG uses the current state and next state
symmetrically for the gradient, symmetry of the current state and next state for RG’s target network
likely makes sense as well. Zhang et al. (2019)’s critic loss for residual DDPG with bidirectional
target networks is:

L(θ,D) := E
(s,a,r,s′)∼D

(Qθ(s, a)− ȳ(r, s′)

)2

+ η

(
Q̄θ(s, a)− y(r, s′)

)2
 ,

where η ∈ [0, 1] controls the weight for backwards bootstrapping; and y, unlike ȳ, uses the main Q
network instead of Q̄. Both y and ȳ otherwise follow DDPG (Lillicrap et al., 2015).

3 RAISIN

SAC-N ’s impressive versatility comes at the cost of massive ensembles in some environments. And
as discussed in the introduction, it appears likely that even more pessimism may give SAC-N yet
more versatility.

Aiming to solve both challenges, we introduce Raisin, RA adapted to SAC-N . We incorporate Zhang
et al. (2019)’s bidirectional target networks, taking the minimum of N critics in the target network
terms, creating the critic loss (for the i-th of the N critics):

L(θi,D) := E
(s,a,r,s′)∼D

(Qθi(s, a)−min
j

ȳ(j, r, s′)

)2

+ η

(
min
j

Q̄θj (s, a)− y(i, r, s′)

)2
 ,

where j ∈ 1, . . . , N ; η ∈ [0, 1] again controls the weight for backwards bootstrapping; and again y,
unlike ȳ, uses the main Q networks instead of the target networks Q̄:

y(i, r, s′) := r + (Qθi(s
′, ã′)− α log πϕ(ã

′|s′)) , ã′ ∼ πϕ(·|s′).

Referring to Raisin as RA + SAC-N is only a rough explanation we use. Raisin is not the only
possible way to combine RA and SAC-N . For example, we only briefly tested the alternative
minimum placement (Q − min ȳ)2 + (Q̄ − min y)2. (Where we step min y in the second term
towards the average of Q̄.) There are certainly reasons to think that formulation could be worse than
Raisin (for example, it might reduce the possible range of pessimism), and Raisin indeed outscored
that algorithm in preliminary experiments (not shown). That said, we don’t yet consider alternative
RA + SAC-N approaches such as that one fully ruled out.

We have not yet considered whether ã′ ought to be sampled twice, independently for y and ȳ (or
independently for each critic, for that matter). In our experiments, we only sample it once, which
empirically works well.

Raisin’s policy update otherwise follows SAC (and SAC-N), maximizing only the minimum critic
estimate in the policy loss. Cheng et al. (2022) observed that, with their method, such an SAC-style
policy loss resulted in a limit cycle between their critics. We did not thoroughly investigate the
potential for this issue in Raisin or SAC-N , but we did test TD3-style policy optimization (maximizing
a fixed, arbitrary critic in the policy loss rather than the minimum critic) as they use, finding it not
to help. We additionally tested maximizing the median, the maximum, the total average, and order
statistics of the critic estimates in the policy loss, in various combinations with similar approaches
to the critic loss. None worked significantly better than Raisin. This aligns with Bai et al. (2022)’s

3

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

Table 1: Score on D4RL v2 environments, mean over four seeds. For readability, scores are rounded
to whole numbers, and standard deviations to two digits. Scores ≥ 90% of the best score are
highlighted . BC scores are taken from the SAC-N paper. IQL scores were taken from its paper.

SAC-N and SAC-10 scores were taken from the SAC-N paper where applicable. SAC-N uses up to
N = 500 critics. We use 10.

Task Name BC IQL SAC-10 TD3+BC-10 SAC-N Raisin
(N = 10) (N = 10) (N ≤ 500) (N = 10)

halfcheetah-random 2 ± 0.0 14 28 ± 0.9 30 ± 2.1 28 ± 0.9 28 ± 0.9
hopper-random 4 ± 0.6 8 9 ± 0.7 17 ± 11 31 ± 0.0 31 ± 0.1
walker2d-random 1 ± 0.1 8 7 ± 12 4 ± 1.0 22 ± 0.0 18 ± 9.2

halfcheetah-medium 43 ± 0.6 47 68 ± 1.2 49 ± 2.8 68 ± 1.2 68 ± 1.2
hopper-medium 54 ± 3.8 66 4 ± 1.0 87 ± 10 100 ± 0.3 73 ± 21
walker2d-medium 71 ± 11 78 95 ± 1.4 83 ± 6.7 88 ± 0.2 95 ± 1.4

halfcheetah-medium-replay 38 ± 2.1 44 64 ± 0.8 44 ± 1.4 64 ± 0.8 64 ± 0.8
hopper-medium-replay 17 ± 4.8 95 102 ± 0.3 98 ± 12 102 ± 0.5 102 ± 0.3
walker2d-medium-replay 20 ± 9.8 74 83 ± 1.1 76 ± 18 79 ± 0.7 83 ± 1.1

halfcheetah-medium-expert 44 ± 1.6 87 107 ± 2.0 91 ± 3.7 107 ± 2.0 107 ± 2.0
hopper-medium-expert 54 ± 4.7 92 6 ± 8.0 113 ± 0.2 110 ± 0.3 111 ± 0.6
walker2d-medium-expert 90 ± 13 110 88 ± 58 110 ± 2.0 117 ± 0.4 103 ± 9.1

halfcheetah-expert 92 ± 1.5 94 105 ± 2.6 91 ± 0.8 105 ± 2.6 105 ± 2.6
hopper-expert 108 ± 9.7 110 1 ± 0.0 112 ± 0.2 110 ± 0.3 110 ± 0.4
walker2d-expert 109 ± 0.2 108 3 ± 2.8 110 ± 0.3 107 ± 2.4 109 ± 0.3

comparable conclusions regarding their policy loss. From the other direction, we ran preliminary
tests of TD3+BC with an SAC-style policy loss (maximizing the minimum critic) that did not appear
to improve TD3+BC.

With a fixed η = 0, and our default 10 critics, Raisin would be exactly SAC-10 (SAC-N with
N = 10). When η = 0 and N = 2, Raisin equates to SAC.

With a fixed η = 1, Raisin could roughly be interpreted as RG-SAC-N. We find RG-SAC-N
underperforms on certain datasets, such as halfcheetah-random. This supports the conclusion of some
works we discuss in Section 5, namely that RG may perform poorly when the data is far from the
optimal policy. Pure RG’s poor performance persisted even with extensive, combinatorial tuning,
including various approaches attempting to increase optimism. We give more details in Appendix G.

We give the complete pseudocode for Raisin in Algorithm 1.

4 EXPERIMENTS

In all of our experiments with Raisin, we do not attempt to tune any hyperparameters other than
pessimism. That is, we use the default hyperparameters of SAC-N , which uses the default hyperpa-
rameters of SAC aside from increasing the number of layers (for both the actor and critic) from 2 to
3, following e.g. CQL.

Like SAC-N and ATAC (Cheng et al., 2022), we find that tuning the pessimism (in our case η)
per dataset is crucial for performance, so we study that setting, tuning for both Raisin and the new
baseline we introduce below. SAC-N ’s experiments were tuned the same way.

4.1 RAISIN-10 VS. TD3+BC-10

Fixing N = 10, and giving TD3+BC the minimum-of-N -critics trick as well, we find that Raisin
generally outscores TD3+BC-10 (even when we tune each method’s respective pessimism on each of

4

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

Table 2: N = 2 scores. SAC scores from An et al. (2021). TD3+BC scores (for v2 environments)
are taken from the TD3+BC appendix. Unlike our main experiments with TD3+BC-10 above, this
experiment is an unfair comparison in Raisin-2’s favor in that TD3+BC scores here use only 1M
gradient steps and a single pessimism setting. But the TD3+BC paper’s (Fujimoto & Gu, 2021)
Figures 4 and 6 might imply neither difference would help TD3+BC as much as one might think.

Task Name TD3+BC Raisin-2 SAC

halfcheetah-random 11 ± 1.1 30 ± 1.4 30 ± 1.4
hopper-random 9 ± 0.6 31 ± 0.2 10 ± 1.5
walker2d-random 2 ± 1.7 7 ± 7.8 1 ± 0.8

halfcheetah-medium 48 ± 0.3 63 ± 0.4 55 ± 28
hopper-medium 59 ± 4.2 71 ± 29 1 ± 0.0
walker2d-medium 84 ± 2.1 89 ± 1.0 0 ± 0.2

halfcheetah-medium-replay 45 ± 0.5 54 ± 2.0 1 ± 1.0
hopper-medium-replay 61 ± 19 102 ± 1.2 7 ± 0.5
walker2d-medium-replay 82 ± 5.5 90 ± 5.9 0 ± 0.3

halfcheetah-medium-expert 91 ± 4.3 50 ± 38 28 ± 19
hopper-medium-expert 98 ± 9.4 80 ± 57 1 ± 0.0
walker2d-medium-expert 110 ± 0.5 115 ± 1.1 2 ± 3.9

halfcheetah-expert 97 ± 1.1 43 ± 24 -1 ± 1.8
hopper-expert 108 ± 7.0 31 ± 45 1 ± 0.0
walker2d-expert 110 ± 0.3 45 ± 50 1 ± 0.3

the datasets). We show this in Table 1. For example, Raisin scores 90% or higher than the best score
on twelve tasks, whereas TD3+BC-10 only achieves this for seven tasks.

An et al. (2021) echoes this finding, where CQL does not match SAC-N ’s performance even when
CQL is given the N critics trick, and the pessimism (N) is tuned per dataset. Their results with
CQL-N and our results with TD3+BC-10 show that the N critics trick is no silver bullet for all offline
RL algorithms.

As An et al. (2021) found with SAC-N , we find Raisin requires longer to converge on certain
environments, so, like them, we run our experiments (Raisin and TD3+BC-10) for 3M gradient steps.

We give the pessimism settings for each method in Appendix A.

4.2 ENSEMBLE ABLATION: RAISIN-2 (N = 2)

We find Raisin with N = 2, which we call Raisin-2 (approximately SAC with residual algorithms
and bidirectional target networks), surprisingly improves SAC’s D4RL gym scores by a median factor
of 54. We show those scores in Table 2. Raisin-2 gives a competitive offline RL algorithm on its own,
with negligible additional computation — but Raisin shines best with scaling (as shown in Table 1).

Along with the results of the N = 10 experiments, this experiment shows that the whole of Raisin
is greater than the sum of its parts, and that both the RA and SAC-N aspects are necessary. Raisin
without SAC-N performs poorly at both -expert and medium-expert datasets, and SAC-10 catastroph-
ically fails at e.g. hopper-expert, but their careful combination matches the state of the art. The subpar
scores of TD3+BC-10 show that such a combination does not always work well.

While we again use 3M gradient steps for this experiment, Raisin-2 looks like it would benefit from
more gradient steps. We include learning curves in Appendices C and D.

5

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

0.0 0.2 0.4 0.6 0.8 1.0
Gradient step 1e6

0

10

20

30

40

50

60

70

80

S
co

re
0%
25%
50%
75%
100%

0.0 0.2 0.4 0.6 0.8 1.0
Gradient step 1e6

10
2

10
4

10
6

10
8

10
10

10
12

10
14

M
ea

n
Q

 T
ar

ge
ts

0%
25%
50%
75%
100%

Figure 1: Left: Raisin-1 (N = 1) scores on hopper-expert with 1M gradient steps, varying η, the
residual weight. η = 100%’s massive improvement over η = 0% suggests our second minimum
operation is not the only driver of Raisin’s pessimism. Right: Average Q targets for Raisin-1 on
hopper-expert, showing that higher η avoids unreasonably large Q values. The convergence of
η = 0% might also imply that instability alone does not account for the failure of SG.

4.3 WHY ARE RAS ROBUSTLY PESSIMISTIC HERE? (N = 1)

To our knowledge, we are the first to show that RA can induce robust pessimism, in the sense that RA
can empirically turn an online algorithm into a strong offline algorithm. In these two experiments, we
test two hypotheses for this robust pessimism.

Is it the second minimum? We first test the hypothesis that RAs are robustly pessimistic here
primarily due to the second minimum operation we introduced, on the current state in the backwards
bootstrapping term: minj Q̄θj (s, a). To do so, we run Raisin with N = 1, effectively removing
both our new minimum operation and SAC-N ’s original minimum operation. Even with N = 1,
increasing the backwards bootstrapping weight η drastically increases scores, as we show in the left
plot of Figure 1.

Figure 1 (right) additionally shows that larger η values decrease the Q targets. Notably, even η = 0%
does converge (albeit to massive values) despite poor scores, suggesting RAs indeed play an important
role beyond improved convergence.

These results rule out the second minimum operation as being Raisin’s primary source of increased
pessimism.

Is it value function initialization? Wang & Ueda (2021) argue that RG (recall that RG is equivalent
to RA with η = 100%) has a tendency to maintain the average prediction. They point out that, in the
tabular case, the changes in RG’s value prediction at the current state and next state nearly cancel out
(dependent on the discount factor) when viewing the value predictions aggregated over all states and
actions. They further argue that when Q∗ lies above Q’s initialization (as it does in our experiments),
RG’s performance hinges on the exploration strategy chosen. This relates to the earlier observations
that residual algorithms can be slow (Baird, 1995).

Accordingly, we test the effects of varying the value initialization. With N = 1, increasing the value
initialization indeed quickly gives worse scores, shown in the left of Figure 2. And the average Q
targets indeed remain nearly constant over gradient steps with larger initializations, shown in the
right of Figure 2.

Thus, at first sight, negative rewards, along with a standard near-zero initialization (Andrychowicz
et al., 2020), might pose an issue for Raisin. However, returning to our standard N = 10, Raisin
performs far more robustly, as we show in the left of Figure 3.

Consequently, one might expect the corresponding Q targets to look like the N = 1 case but to
just decrease faster towards Q∗. Instead, we see more and more of a peculiar rebound effect from

6

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

0.0 0.2 0.4 0.6 0.8 1.0
Gradient step 1e6

0

10

20

30

40

50

S
co

re

Q-Value Initialization
0
100
200
300
400

0.0 0.2 0.4 0.6 0.8 1.0
Gradient step 1e6

0

50

100

150

200

250

300

350

400

M
ea

n
Q

 T
ar

ge
ts

Q-Value Initialization
0
100
200
300
400

Figure 2: Left: Raisin-1 with η = 100%, scores on hopper-expert when varying the value initializa-
tion. Scores deteriorate quickly as the initialization increases. For reference, Raisin-10, TD3+BC-10,
and SAC-N all achieve average returns of roughly 3,500 on hopper-expert (normalized scores of
110). N = 1 is not robust to large initializations. Right: Raisin-1 with η = 100%, average Q targets
on hopper-expert when varying the value initialization. The slow rates of change align with Wang &
Ueda (2021)’s speculation that their argument extends to the function approximation case.

excessive optimism towards excessive pessimism as we increase Q’s initialization, all despite the
decent returns. We show this in the right of Figure 3.

Granted, both SAC-N and Raisin sometimes exhibit similar behavior of high scores with excessively
low Q targets even without modifying Q’s initialization. For example, we reliably see this with the
standard SAC-500 to solve hopper-expert (not shown).

In any case, we ran limited tests at large value initializations with re-tuning of η, further improving
performance. Moreover, removing the need to tune η may be within close reach through recent
work related to RG, some of which we discuss in the following section. Not to mention, a larger N
nearly eliminated the issue already, and there are clear routes for additional improvements to Raisin’s
computational efficiency, such as DroQ (Hiraoka et al., 2021) and BatchEnsemble (Wen et al., 2020).

These results suggest value function initialization may play a key role in Raisin’s pessimism. However,
future work in this direction should start by examining in-depth the strange Q-target overshooting
effect of SAC-N on its own. We speculate that using independent targets might be important here,
following Ghasemipour et al. (2022).

Is it fixed points? Xiao et al. (2021)’s findings suggest that RG and SG may converge to different
fixed points in the overparameterized setting. We hypothesize this may also partly explain RG’s
apparent pessimism. To investigate, we train RG (η = 100%) and SG in new runs starting from
high-scoring model weights. When N = 1, RG and SG attain high scores on hopper-expert and
halfcheetah-random, respectively. We then restart training from those high-scoring weights using
both RG and SG on each environment. On hopper-expert, SG trained from RG’s high-scoring weights
reverts to low scores, whereas new RG runs trained from those same weights keep their high scores.
Similarly, on halfcheetah-random, RG trained from SG’s high-scoring weights falls to low scores,
whereas new SG runs starting from those same weights keep their high scores. Our results provide
evidence in favor of fixed points playing an important role. We give more details in Appendix F

5 RELATED WORK

5.1 ONLINE RESIDUAL APPROACHES

Bi-Res-DDPG (Zhang et al., 2019) reviews RG, SG, RA, and their respective fixed points. They
introduce bidirectional target networks for residual algorithms in the context of DDPG. Bi-Res-
DDPG shows up to a 3× improvement in AUC (area under the curve of returns) over DDPG on the

7

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gradient step 1e6

0

20

40

60

80

100

S
co

re

Q-Value Initialization
0
2000
4000
6000

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gradient step 1e6

10
8

10
6

10
4

10
2

10
0

10
0

10
2

10
4

M
ea

n
Q

 T
ar

ge
ts Q-Value Initialization

0
2000
4000
6000

Figure 3: Left: Raisin-10 with η = 20%, scores on hopper-expert when varying the value initializa-
tion. Right: Raisin-10 with η = 20%, average Q targets on hopper-expert when varying the value
initialization. Note the strange overshooting effect at higher value initializations, even though such
agents often achieve high scores. We do sometimes observe this even with the standard initialization
of 0, for example, SAC-N on hopper-expert with 500 critics, as suggested by An et al. (2021).

DeepMind Control Suite (Tassa et al., 2018). Whereas we identify RA as a natural fit for offline RL,
propose what can be seen as Bi-Res-SAC, and show a median 50× improvement in final scores over
SAC. We further show that the minimum-of-N -critics trick synergizes with our algorithm particularly
well, which lets us match SAC-N with a tiny fraction of the ensemble size and outscore TD3+BC
given the same N critics trick. Lastly, we also delve into the sources of our robust pessimism.

C-DQN (Wang & Ueda, 2021) minimizes the maximum of RG’s loss and SG’s loss. Similar to RA,
they claim this captures the best of both worlds, convergence and efficiency. They do not compare
against RA, and they study only the online setting. A C-DQN-like approach might offer a way to
avoid the need to tune η or some equivalent. They additionally analyze potential failure modes of RG,
as we discussed earlier.

5.2 OFFLINE RESIDUAL APPROACHES

ATAC (Cheng et al., 2022) introduces an adversarially trained algorithm with strong theoretical
backing. They also incorporate RA as a fixed, equal weighting of RG and SG, using it for stability
on top of their offline RL method. In contrast, we use a variable RA to control pessimism, showing
among other things that RA integrated into SAC dramatically improves its returns in offline RL when
η is set appropriately.

DBRM (Saleh & Jiang, 2019) finds that RG fails at simple offline RL benchmarks when given
the trajectories of a Q-learning agent trained online. This holds even with a fully deterministic
environment (i.e., no double sampling bias, explained below), and despite the fact that Q-learning (a
new agent trained offline on the same dataset) performs fairly well. They propose and test higher
norms of the Bellman error to penalize larger residuals more, which requires more optimization steps
but gets slightly better performance. It does not match SG’s performance. This experimental setting
is similar to D4RL’s -medium-replay and -full-replay datasets, where we find intermediate values of
η to significantly outperform η ∈ {0, 1}.
Xiao et al. (2021) analyzes the fixed points of RG and SG in the overparameterized linear setting,
finding they converge to different fixed points, potentially calling for increased caution around the
common discussion point that overparameterized neural networks are capable of minimizing the
MSBE perfectly by minimizing its projection (Fujimoto et al., 2022), the Mean Squared Projected
Bellman Error (MSPBE). They further introduce two regularizers for SG and RG, again in the hopes
of obtaining the best of both worlds. This is another potential avenue for replacing the need to tune η
for Raisin, or for upgrading/removing Raisin’s SG component (which, as with the most commonly
used RL algorithms, may cause divergence).

8

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

5.3 DOUBLE SAMPLING BIAS

In stochastic environments, the algorithm we have presented looks more like the naive residual
gradient (naive RG) algorithm (Sutton & Barto, 2018) than the true RG. Naive RG arises when
applying RG without a second, independent sample for all stochastic transitions. Naive RG, a biased
estimate of true RG, no longer minimizes the MSBE. As such, naive RG can lead to poor solutions in
certain stochastic environments.

Our understanding is that MuJoCo (Todorov et al., 2012) (at least in the context of the v2 environ-
ments of gym (Brockman et al., 2016), which we use in this paper) is stochastic (OpenAI, 2022;
DeepMind, 2022). Although Fujimoto et al. (2022) claims otherwise, perhaps because they assume
the stochasticity is minor enough to ignore. That being said, we follow Zhang et al. (2019) in ignoring
this stochasticity, which empirically is not a blocker for strong performance. Granted, this suggests
properly handling the double sampling bias could lead to yet stronger performance for Raisin. Many
prior works, such as K-loss (Feng et al., 2019) and SBEED (Dai et al., 2017), have already tackled
this issue.

5.4 MISCELLANEOUS RELATED WORK

Estimation Bias and The Update-to-Data Ratio. Offline RL and SAC-N , in particular, have clear
ties to the literature on estimation bias in bootstrapped value learning, such as the many works making
use of ensembles in ways similar to the minimum-of-N -critics trick, and/or high update-to-data
(UTD) ratios (of which offline RL is the extreme point). This includes methods such as Maxmin
Q-Learning (Lan et al., 2020), REDQ (Chen et al., 2021b), TQC (Kuznetsov et al., 2020), and more
recently DroQ (Hiraoka et al., 2021), which have led to impressive results in real-world reinforcement
learning (Smith et al., 2022).

Theoretically Sound Algorithms. Works such as TDC (Sutton et al., 2009), SBEED (Dai et al.,
2017), and QRC (Patterson et al., 2021) use gradient corrections to build convergent online RL
algorithms. Gradient correction algorithms can be seen as approximations to gradient descent of the
MSBE (Patterson et al., 2021), which Raisin approximates as well (in a much different manner). We
believe our empirical results may help further develop such sound algorithms, especially in the offline
setting. Additionally, the adaptivity of these algorithms might point to a similar adaptive approach
that obviates Raisin’s need to tune η.

Recent Criticism of The Bellman Error. Fujimoto et al. (2022) uses both theory and experiments
to point out drawbacks of the Bellman error, primarily its deficiencies concerning the value error.
However, they conclude that the Bellman error can be a usable objective for on-policy evaluation.
Geist et al. (2016) proposes a method for minimizing the Bellman residual through policy search (tan-
gentially circumventing double sampling bias in the process) to more fairly compare the minimization
of the Bellman residual versus direct maximization of the estimated value. They theoretically and
empirically analyze the two approaches, similarly finding that their minimization of the Bellman
residual performs poorly when the optimal policy is far from the data.

Pessimism. Buckman et al. (2020) argues that offline RL algorithms that induce pessimism by
penalizing deviations from the policy that collected the data may be strictly worse than uncertainty-
based approaches. This may further support the notion that Raisin and Raisin-like approaches are a
more promising approach than TD3+BC and TD3+BC-like approaches.

6 CONCLUSION

Prior offline RL algorithms are either not versatile, not simple, or computationally inefficient. Raisin
works on datasets collected by diverse behavior policies, consists of two simple changes to SAC, and
requires only two percent of the compute of SAC-N despite state-of-the-art scores.

Important future work includes investigating automatic alternatives to tuning η, evaluating on more
challenging benchmarks, integrating a sound alternative to SG (though nearly all other RL algorithms
used in practice are also based on SG), and further investigations into why Raisin works well.

9

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-Based Offline
Reinforcement Learning with Diversified Q-Ensemble. arXiv, October 2021. doi: 10.48550/arXiv.
2110.01548.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael Marinier,
Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier
Bachem. What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study.
arXiv, June 2020. doi: 10.48550/arXiv.2006.05990.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement Learning. arXiv,
February 2022. doi: 10.48550/arXiv.2202.11566.

L. Baird. Residual Algorithms: Reinforcement Learning with Function Approximation. 1995. URL
https://www.semanticscholar.org/paper/Residual-Algorithms.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video PreTraining (VPT): Learning to Act by Watching
Unlabeled Online Videos. arXiv, June 2022. doi: 10.48550/arXiv.2206.11795.

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When
does return-conditioned supervised learning work for offline reinforcement learning? arXiv, June
2022. doi: 10.48550/arXiv.2206.01079.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Jacob Buckman, Carles Gelada, and Marc G. Bellemare. The Importance of Pessimism in Fixed-
Dataset Policy Optimization. arXiv, September 2020. doi: 10.48550/arXiv.2009.06799.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision Transformer: Reinforcement Learning via Sequence
Modeling. arXiv, June 2021a. doi: 10.48550/arXiv.2106.01345.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized Ensembled Double Q-Learning:
Learning Fast Without a Model. arXiv, January 2021b. doi: 10.48550/arXiv.2101.05982.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially Trained Actor Critic
for Offline Reinforcement Learning. arXiv, February 2022. doi: 10.48550/arXiv.2202.02446.

Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and Le Song. SBEED:
Convergent Reinforcement Learning with Nonlinear Function Approximation. arXiv, December
2017. doi: 10.48550/arXiv.1712.10285.

DeepMind. dm_control, September 2022. URL https://github.com/deepmind/dm_
control/issues/64.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. RvS: What is Essential for
Offline RL via Supervised Learning? arXiv, December 2021. doi: 10.48550/arXiv.2112.10751.

Yihao Feng, Lihong Li, and Qiang Liu. A Kernel Loss for Solving the Bellman Equation. arXiv,
May 2019. doi: 10.48550/arXiv.1905.10506.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for Deep
Data-Driven Reinforcement Learning. arXiv, April 2020. doi: 10.48550/arXiv.2004.07219.

Scott Fujimoto and Shixiang Shane Gu. A Minimalist Approach to Offline Reinforcement Learning.
arXiv, June 2021. doi: 10.48550/arXiv.2106.06860.

Scott Fujimoto, David Meger, Doina Precup, Ofir Nachum, and Shixiang Shane Gu. Why Should I
Trust You, Bellman? The Bellman Error is a Poor Replacement for Value Error. arXiv, January
2022. doi: 10.48550/arXiv.2201.12417.

10

https://www.semanticscholar.org/paper/Residual-Algorithms
https://github.com/deepmind/dm_control/issues/64
https://github.com/deepmind/dm_control/issues/64

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

Matthieu Geist, Bilal Piot, and Olivier Pietquin. Is the Bellman residual a bad proxy? arXiv, June
2016. doi: 10.48550/arXiv.1606.07636.

Seyed Kamyar Seyed Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why So Pessimistic?
Estimating Uncertainties for Offline RL through Ensembles, and Why Their Independence
Matters. OpenReview, October 2022. URL https://openreview.net/forum?id=
z64kN1h1-rR.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. arXiv, January 2018.
doi: 10.48550/arXiv.1801.01290.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout Q-Functions for Doubly Efficient Reinforcement Learning. arXiv, October 2021. doi:
10.48550/arXiv.2110.02034.

Hao Hu, Yiqin Yang, Qianchuan Zhao, and Chongjie Zhang. On the Role of Discount Factor in
Offline Reinforcement Learning. arXiv, June 2022. doi: 10.48550/arXiv.2206.03383.

Peter C. Humphreys, David Raposo, Toby Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Alex Goldin, Adam Santoro, and Timothy Lillicrap. A
data-driven approach for learning to control computers. arXiv, February 2022. doi: 10.48550/
arXiv.2202.08137.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-Conditioned Policies. arXiv, December
2019. doi: 10.48550/arXiv.1912.13465.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling Overesti-
mation Bias with Truncated Mixture of Continuous Distributional Quantile Critics. arXiv, May
2020. doi: 10.48550/arXiv.2005.04269.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin Q-learning: Controlling the
Estimation Bias of Q-learning. arXiv, February 2020. doi: 10.48550/arXiv.2002.06487.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, and Igor Mordatch. Multi-Game
Decision Transformers. arXiv, May 2022. doi: 10.48550/arXiv.2205.15241.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning:
Tutorial, Review, and Perspectives on Open Problems. arXiv, May 2020. doi: 10.48550/arXiv.
2005.01643.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv,
September 2015. doi: 10.48550/arXiv.1509.02971.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. WebGPT:
Browser-assisted question-answering with human feedback. arXiv, December 2021. doi: 10.
48550/arXiv.2112.09332.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep Double Descent: Where Bigger Models and More Data Hurt. arXiv, December 2019. doi:
10.48550/arXiv.1912.02292.

OpenAI. gym, September 2022. URL https://github.com/openai/gym/issues/1193.

11

https://openreview.net/forum?id=z64kN1h1-rR
https://openreview.net/forum?id=z64kN1h1-rR
https://github.com/openai/gym/issues/1193

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

Andrew Patterson, Adam White, and Martha White. A Generalized Projected Bellman Error for
Off-policy Value Estimation in Reinforcement Learning. arXiv, April 2021. doi: 10.48550/arXiv.
2104.13844.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforcement
Learning and Demonstrations. arXiv, September 2017. doi: 10.48550/arXiv.1709.10087.

Ehsan Saleh and Nan Jiang. Deterministic bellman residual minimization. In Proceedings of
Optimization Foundations for Reinforcement Learning Workshop at NeurIPS, 2019.

Juergen Schmidhuber. Reinforcement Learning Upside Down: Don’t Predict Rewards – Just Map
Them to Actions. arXiv, December 2019. doi: 10.48550/arXiv.1912.02875.

Ralf Schoknecht and Artur Merke. Td (0) converges provably faster than the residual gradient
algorithm. In Proceedings of the 20th International Conference on Machine Learning (ICML-03),
pp. 680–687, 2003.

Laura Smith, Ilya Kostrikov, and Sergey Levine. A Walk in the Park: Learning to Walk in 20 Minutes
With Model-Free Reinforcement Learning. arXiv, August 2022. doi: 10.48550/arXiv.2208.07860.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An Introduction. MIT press, 2018.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In Proceedings of The 26th Annual International Conference
On Machine Learning, pp. 993–1000, 2009.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
DeepMind Control Suite. arXiv, January 2018. doi: 10.48550/arXiv.1801.00690.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Zhikang T. Wang and Masahito Ueda. Convergent and Efficient Deep Q Network Algorithm. arXiv,
June 2021. doi: 10.48550/arXiv.2106.15419.

Yeming Wen, Dustin Tran, and Jimmy Ba. BatchEnsemble: An Alternative Approach to Efficient
Ensemble and Lifelong Learning. arXiv, February 2020. doi: 10.48550/arXiv.2002.06715.

Chenjun Xiao, Bo Dai, Jincheng Mei, Oscar A Ramirez, Ramki Gummadi, Chris Harris, and Dale
Schuurmans. Understanding and leveraging overparameterization in recursive value estimation. In
International Conference on Learning Representations, 2021.

Shangtong Zhang, Wendelin Boehmer, and Shimon Whiteson. Deep Residual Reinforcement
Learning. arXiv, May 2019. doi: 10.48550/arXiv.1905.01072.

Shangtong Zhang, Romain Laroche, Harm van Seijen, Shimon Whiteson, and Remi Tachet des
Combes. A Deeper Look at Discounting Mismatch in Actor-Critic Algorithms. arXiv, October
2020. doi: 10.48550/arXiv.2010.01069.

12

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

A PESSIMISM SETTINGS

Table 3: TD3+BC-10’s α multiplies Q in its policy loss (higher is more optimistic). Raisin’s η
multiplies its backwards bootstrapping term (lower is more optimistic).

Task Name TD3+BC-10: α Raisin: η Raisin-2: η
(N = 10) (N = 2)

halfcheetah-random 150 0% 0%
hopper-random 20 10% 40%
walker2d-random 0.5 1% 20%

halfcheetah-medium 4 0% 20%
hopper-medium 10 10% 60%
walker2d-medium 10 0% 20%

halfcheetah-medium-replay 2 0% 20%
hopper-medium-replay 50 0% 20%
walker2d-medium-replay 8 0% 40%

halfcheetah-medium-expert 2 0% 0%
hopper-medium-expert 2 20% 40%
walker2d-medium-expert 4 30% 20%

halfcheetah-expert 0.5 0% 40%
hopper-expert 2 20% 80%
walker2d-expert 1 5% 60%

B ALGORITHM PSEUDOCODE

Algorithm 1 Raisin. Differences from SAC highlighted .

1: repeat
2: Sample a batch B = {(s, a, r, s′)} from the offline dataset D
3: Compute the shared, pre-minimization, current-state targets Q̄θj (s, a) for j ∈ 1, . . . , N .
4: Compute the shared, pre-minimization, next-state targets for j ∈ 1, . . . , N :

ȳ(j, r, s′) := r +
(
Q̄θj (s

′, ã′)− α log πϕ(ã
′|s′)

)
, ã′ ∼ πϕ(·|s′)

5: Update each critic Qθi descending its gradient:

∇θi

1

|B|
∑

(s,a,r,s′)∈B

(Qθi(s, a)− min
j∈1,...,N

ȳ(j, r, s′)

)2

+ η

(
min

j∈1,...,N
Q̄θj (s, a)− y(i, r, s′)

)2

where the next-state prediction is :

y(i, r, s′) := r + (Qθi(s
′, ã′)− α log πϕ(ã

′|s′)) , ã′ ∼ πϕ(·|s′)

6: Update the policy πϕ ascending its gradient:

∇ϕ
1

|B|
∑
s∈B

(
min

j=1,...,N
Qϕj (s, ãϕ(s)) − α log πϕ (ãϕ(s) | s)

)
,

where ãϕ(s) is a sample from πϕ(· | s) which is differentiable w.r.t. ϕ via the reparameteriza-
tion trick.

7: Update target networks with ϕ′
i ← ρϕ′

i + (1− ρ)ϕi

13

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

C RAISIN (N = 10) LEARNING CURVES

Like An et al. (2021), we see strange, highly non-monotonic learning over gradient steps on some
datasets. This occurs in the most consistent manner on the hopper datasets, particularly hopper-
random. We speculate this might be related to epoch-wise double descent (Nakkiran et al., 2019), but
it’s unclear. We omit a few curves where Raisin’s optimal setting recovers SAC-N (η = 0), since we
only re-ran enough of those experiments to verify we still saw the same behavior. (Our code is built
on their SAC-N code.)

25

0

25

50

75

100

125

S
co

re

hopper-medium-expert-v2

20

0

20

40

60

80

100

120

140
hopper-expert-v2

20

0

20

40

60

80

100

120

walker2d-expert-v2

0

20

40

60

80

100

120

140

S
co

re

walker2d-medium-expert-v2

0

20

40

60

80

100

120
hopper-medium-v2

0

20

40

60

80

100

120

hopper-medium-replay-v2

20

0

20

40

60

80

100

120

S
co

re

walker2d-medium-v2

0

20

40

60

80

walker2d-medium-replay-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gradient step 1e6

0

5

10

15

20

25

30

35

40
hopper-random-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gradient step 1e6

0

5

10

15

20

25

30

S
co

re

halfcheetah-random-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gradient step 1e6

5

0

5

10

15

20

25

walker2d-random-v2

14

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

D RAISIN-2 (N = 2) LEARNING CURVES

With smaller N , the first peak is less sharp. For a similar depiction of this phenomenon as N varies
more, see An et al. (2021)’s Figure 1.

20

0

20

40

60

80

100

120

140

S
co

re

walker2d-medium-expert-v2

25

0

25

50

75

100

125

150
hopper-medium-expert-v2

20

0

20

40

60

80

100

120

140

hopper-expert-v2

20

0

20

40

60

80

100

120

140

S
co

re

walker2d-expert-v2

0

20

40

60

80

100

120

hopper-medium-replay-v2

0

20

40

60

80

100

120
hopper-medium-v2

20

0

20

40

60

80

100

120

S
co

re

walker2d-medium-replay-v2

0

20

40

60

80

100
halfcheetah-medium-expert-v2

0

20

40

60

80

100

walker2d-medium-v2

0

20

40

60

80

100

S
co

re

halfcheetah-expert-v2

0

10

20

30

40

50

60

70
halfcheetah-medium-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gradient step 1e6

0

10

20

30

40

50

60

70
halfcheetah-medium-replay-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gradient step 1e6

0

5

10

15

20

25

30

35

S
co

re

hopper-random-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gradient step 1e6

5

0

5

10

15

20

25

walker2d-random-v2

15

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

E A RAISIN ANALOG FOR TD3

We also test a Raisin analog for TD3 to examine the generality of our approach and to show the
advantage of Raisin over a method approximately equivalent to the prior work Bi-Res-DDPG (Zhang
et al., 2019) (since TD3 is essentially an improved DDPG). Our results show that RA-TD3-N (like
Raisin, this is only an approximate nickname because RA + TD3 is underspecified) scores similarly
well, whereas RA-TD3-1 (roughly equivalent to Bi-Res-DDPG) scores poorly. The latter is surely
due to insufficient pessimism, like with Raisin-2.

We find that RA-TD3-10 does best at smaller values of η than Raisin, with the best settings at 0.5%
for hopper-random, 7.5% for walker2d-random, and 10% for hopper-expert. Additionally, we find
using an SAC-style policy loss (maximizing the minimum critic instead of an arbitrary critic like
TD3) performs better, so we use that here. (As we noted earlier, however, the SAC-style policy loss
did not appear to help TD3+BC-10 much.) For RA-TD3-1, we find that η = 100% performs best, so
we used that here.

Table 4: RA-TD3 scores, with Raisin scores for reference.

Task Name RA-TD3-1 RA-TD3-10 Raisin-10

hopper-random - 27 ± 10 31 ± 0.1
walker2d-random - 12 ± 6.3 18 ± 9.2
hopper-expert 12 ± 15 103 ± 16 110 ± 0.4

F FIXED POINT EXPERIMENTS

We use N = 1 to study the simplest case. We trained SG-SAC-1 (regular SAC, but N = 1) on
halfcheetah-random for 250k steps, using 10 seeds. We then train both SG and RG SAC-1 (where
RG-SAC-1 is η = 100%) resuming from those weights that were trained with SG. We start from
only 5 of the highest-scoring original seeds, since about half of those seeds were stuck at poor scores
(because N = 1) and we’re only interested here in how the algorithms behave once they reach a
good fixed point. For each of the 5 saved SG models, we resume 2 more seeds using both SG and
RG, giving 10 seeds total for RG resumes and 10 seeds total for SG resumes. We train for another
250k steps. RG’s scores fall dramatically, whereas SG scores do not. We show the scores in Table 5.
This experiment provides some evidence in favor of Xiao et al. (2021)’s finding that TD and BRM
converge to different fixed points in the overparameterized setting. Put another way, it provides some
evidence that slow convergence might not be RG’s issue here (though again, Figure 2 suggests slow
convergence can still be an issue in certain setups, as argued in e.g. Wang & Ueda (2021)).

Table 5: SG-SAC-1 scores on halfcheetah-random, and scores when resuming training with new runs
for both RG and SG from those trained weights. SG resume scores are much higher than SG-SAC-1
scores partly because of the additional training time, and also because as discussed we resumed
training only from high-scoring seeds.

Task Name SG-SAC-1 RG-SAC-1 resume SG-SAC-1 resume

halfcheetah-random 17 ± 15 -2.0 ± 0.3 32 ± 3.5

We also run a similar experiment training RG SAC-1 on hopper-expert for 2M steps. Again, we then
train both SG and RG SAC-1 (for 500K steps) resumed from those weights. Similar to the other
experiment, SG scores fall dramatically, but RG scores do not. We show these scores in Table 6. This
gives additional evidence in favor of fixed points being important here.

16

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

Table 6: RG-SAC-1 scores on hopper-expert, and scores when resuming training with new runs for
both RG and SG from those trained weights.

Task Name RG-SAC-1 RG-SAC-1 resume SG-SAC-1 resume

hopper-expert 39 ± 20 63 ± 24 0.7 ± 0.1

We did not load the saved optimizer state — we could test loading the saved optimizer state as well,
but we think this would be fairly unlikely to significantly change the results.

G PURE RG

We find pure RG fails to exceed an average score of 5 on halfcheetah-random, where a good score
would be about 28. These poor scores persisted even with extensive, combinatorial tuning of the actor
and critic learning rates, γ (Schoknecht & Merke, 2003), the value initialization, and various ensemble
aggregation techniques attempting to make RG more optimistic. For example, we simultaneously
tuned each learning rate along with whether to maximize the minimum, maximum, or average of the
critics in the policy loss, while at the same time tuning the order statistic of the critics to replace the
minimums in the critic loss. We ran hundreds of these experiments, usually for 500k gradient steps
each. None of those approaches succeeded in raising pure RG’s score above 5.

17

	Introduction
	Preliminaries
	Raisin
	Experiments
	Raisin-10 vs. TD3+BC-10
	Ensemble Ablation: Raisin-2 (N=2)
	Why are RAs robustly pessimistic here? (N = 1)

	Related Work
	Online Residual Approaches
	Offline Residual Approaches
	Double Sampling Bias
	Miscellaneous Related Work

	Conclusion
	Pessimism Settings
	Algorithm Pseudocode
	Raisin (N = 10) Learning Curves
	Raisin-2 (N = 2) Learning Curves
	A Raisin Analog for TD3
	Fixed Point Experiments
	Pure RG

