
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

INVERSIONGNN: A DUAL PATH NETWORK FOR MULTI-
PROPERTY MOLECULAR OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Exploring chemical space to find novel molecules that simultaneously satisfy mul-
tiple properties is crucial in drug discovery. However, existing methods often
struggle with trading off multiple properties due to the conflicting or correlated
nature of chemical properties. To tackle this issue, we introduce InversionGNN
framework, an effective yet sample-efficient dual-path graph neural network (GNN)
for multi-objective drug discovery. In the direct prediction path of InversionGNN,
we train the model for multi-property prediction to acquire knowledge of the opti-
mal combination of functional groups. Then the learned chemical knowledge helps
the inversion generation path to generate molecules with required properties. In
order to decode the complex knowledge of multiple properties in the inversion
path, we propose a gradient-based pareto search method to balance conflicting
properties and generate Pareto optimal molecules. Additionally, InversionGNN is
able to search the full Pareto front approximately in discrete chemical space. Com-
prehensive experimental evaluations show that InversionGNN is both effective and
sample-efficient in various real-world discrete multi-objective settings including
drug discovery.

1 INTRODUCTION

Molecular optimization refers to the process of systematically modifying the structure of a given
molecule to enhance its properties in practical drug discovery. It combines known chemical knowledge
with innovative exploration to discover and develop unknown high-performance molecules. Molecular
optimization is challenging as it usually involves reasoning about multiple, often conflicting or
correlated, objectives (Fromer & Coley, 2023). For example, for a new drug to be successful, it must
simultaneously be potent, bioavailable, safe, and synthesizable (Dara et al., 2022). Generally, these
objectives often exhibit implicit relationships, which can be either conflicting or correlated, rather
than being independent (Jain et al., 2023). For example, molecules that are effective against a target
may also have detrimental effects on humans.

Although several drug discovery models have been proposed to tackle Multi-Objective Molecular
Optimization (MOMO), most of them do not make full use of acquired chemical knowledge, such as
how the combination of substructures affects chemical properties. More specifically, they merely em-
ploy a pretrained chemical property predictor as discriminator, filtering high-performance molecules
based on the predicted scores (Nigam et al., 2020; Xie et al., 2021; Brown et al., 2019). Additionally,
most studies neglect the conflicting or correlated relationships among chemical properties and simply
use a predefined Linear Scalarization function (e.g., mean) to perform a weighted summation of the
losses (Jin et al., 2018; Wang et al., 2023; De Cao & Kipf, 2018; Shi et al., 2020; Liu et al., 2021;
Shi et al., 2020; Fu et al., 2022; Zhou et al., 2019; Jin et al., 2020b; Jain et al., 2023; Xie et al.,
2021). However, Linear Scalarization often results in biased solutions and leaves certain areas of
objective space unexplored, which has been mathematically analyzed by Boyd et al. (2004). Abbasi
et al. (2022) employs multi-objective Genetic Algorithms to tackle MOMO, but it is computationally
expensive and requires a large number of oracle calls. Recently, Jain et al. (2023) and Zhu et al.
(2024) adopt the multi-objective Bayesian Optimization to address MOMO. Nevertheless, both of
them suffer from high computational costs and struggle with high-dimensional optimization.

To design a effective yet sample-efficient model for MOMO, we identify two key challenges:
1. How to make full use of acquired chemical knowledge to facilitate molecular optimization? To
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tackle this, we introduce a dual-path graph neural network (GNN) (Kipf & Welling, 2016; Xu et al.,
2019; Velickovic et al., 2018; Gilmer et al., 2017) to incorporate complicated chemical knowledge
and perform molecular property prediction in the direct prediction path. Unlike existing methods
that regard it as a discriminator, in the inversion generation path, we leverage the gradient w.r.t the
molecule structure to optimize the molecular graph. The mapping of chemical structure to properties,
learned through the direct path, can effectively guide the adding of substructure to a base molecule in
molecular optimization process.
2. How to dealing with the conflicting or correlated properties in the inversion generation path?
In our dual-path GNN model, the direct path easily learns each property distribution using different
classification heads. However, in the inversion generation process, it is challenging to apply multiple
complicated property constraints to one single molecule. For example, given two conflicting proper-
ties, enhancing one property will weaken the other property. To capture all possible trade-offs among
conflicting or correlated properties, we introduce the gradient-based Pareto optimization technique,
which is designed to balance multiple conflicting or correlated objectives (Zhou et al., 2023; Ju
et al., 2022; Liu et al., 2022). Instead of directly deploying existing Pareto methods, we adopt
the relaxation technique to adapt the continuous Pareto optimization to the discrete chemical
space. We provide a convergence analysis demonstrating that our approach, with our relaxation, still
converges to the Pareto optimal solutions approximately within only a few iterations. This means our
method can effectively increase the likelihood of successfully generating high quality molecules with
sample efficiency. Our key contributions are summarized below:

• We propose a novel dual-path InversionGNN for multi-objective molecular optimization,
which leverages the acquired property prediction knowledge to facilitate molecular opti-
mization. It is effective and sample-efficient.

• To capture trade-offs among conflicting or correlated properties, we adpot relaxation tech-
nique that adapts gradient-based Pareto optimization to the discrete chemical space.

• We empirically verify that InversionGNN is both effective and sample-efficient in various
real-world discrete multi-objective settings including drug discovery.

2 RELATED WORK

Molecular Optimization. Recent years have witnessed the success of applying deep generative
models and molecular graph representation learning in drug discovery. Most of the existing works
can be categorized into two classes: Constrained Generative Model (CGM) and Combinatorial
Optimization (CO) algorithm. CGMs model the molecular distribution with deep generative networks
such as VAE (Gómez-Bombarelli et al., 2018; Liu et al., 2018; Jin et al., 2018; 2019; Skalic et al.,
2019; Fu et al., 2020; Griffiths & Hernández-Lobato, 2020; Wang et al., 2023), GAN (Guimaraes
et al., 2017; De Cao & Kipf, 2018; Abbasi et al., 2022), Flow (Shi et al., 2020), Energy (Liu et al.,
2021) and Diffusion-based model (Lee et al., 2023), projecting input molecules into a latent space.
However, obtaining the ideal smooth and discriminative latent space has proven to be a challenge
in practice (Brown et al., 2019; Huang et al., 2021). Another research line based on CO directly
searches for desired molecules in the explicit discrete space, e.g., Reinforcement Learning (You et al.,
2018; Ståhl et al., 2019; Zhou et al., 2019; Jin et al., 2020b; Gottipati et al., 2020; Jain et al., 2023;
Popova et al., 2018; Jin et al., 2020a; Wu et al., 2021), Evolutionary Algorithms (Jensen, 2019; Nigam
et al., 2020; Chen et al., 2021), Markov Chain Monte Carlo (Xie et al., 2021; Fu et al., 2021), Tree
Search (Fu et al., 2022) and Bayesian Optimization (Korovina et al., 2020; Moss et al., 2020). CO
algorithms require massive numbers of oracle calls, which is computationally inefficient during the
inference time. However, they are still challenged in dealing with conflicting or correlated properties.

Gradient-Based Pareto Optimization. The Pareto optimal solution is highly valuable for multi-
objective optimization since identifying solutions that simultaneously maximizing all objectives is
often impractical. In order to efficiently find Pareto optimal solutions, MGDA (Désidéri, 2012) is
proposed to identify Pareto optimal solutions for low-dimensional data. Sener & Koltun (2018) extend
MGDA to high-dimensional multi-objective scenarios. Subsequently, several efficient methods (Lin
et al., 2019; Zhang & Golovin, 2020; Ma et al., 2020; Mahapatra & Rajan, 2020) have been proposed
to explore the Pareto set, due to the fact that MGDA cannot find Pareto optimal solutions specified
by exact objective preference. However, most efforts of Pareto optimization focus on continuous
parameter space, ignoring the complex discrete chemical space.
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3 PRELIMINARIES

3.1 PARETO OPTIMALITY

In this work, we consider m tasks described by f(x) := [fi(x)], where each fi(x), i ∈ [m]
represents the performance of the i-th task to be maximized. Given an desired target y ∈ Rm, we set
a non-negative objective function L(f(x),y) = [l1, . . . , lm]T, where li for i ∈ [m] is the objective
function of the i-th task. Hence, maximizing the performance f(x) is equivalent to minimizing the
objective function. For any two points x,x′ ∈ Rn, x dominates x′, denoted by Lx′

⪰ Lx, implies
lx

′

i − lxi ≥ 0,∀i ∈ [m]. A point x∗ is said to be Pareto optimal if x∗ is not dominated by any other
points in Rn. The set of all Pareto optimal solutions is denoted by P . The set of multi-objective
values of the Pareto optimal solutions is called Pareto front, denoted by F . In Multi-Objective
Optimization, the ideal goal is to identify a set of Pareto solutions that cover all the possible trade-offs
among objectives. For a formal definition of Pareto concept, please refer to Appendix A.

3.2 DIFFERENTIABLE SCAFFOLDING TREES

A scaffolding tree (Jin et al., 2018), Tx, is a spanning tree whose nodes are substructures. It is a high-
level representation of molecular graph x ∈ X . For a scaffolding tree with K nodes and substructure
set S, it is represented by Tx = {N,A,w}: (i) node indicator matrix defined by N ∈ {0, 1}K×|S|,
and each row of N is a one-hot vector, indicating the substructure of the node; (ii) adjacency matrix
denoted by A ∈ {0, 1}K×K , where Aij = 1 indicates the i-th node and the j-th node are connected
while 0 indicates unconnected; and (iii) node weight vector w = [1, . . . , 1]⊤ ∈ RK , indicates
the K nodes are equally weighted. Fu et al. (2022) add a virtual expansion node set Vexpand =
{uv | v ∈ VTx} , |Vexpand| = Kexpand = K to the scaffolding tree for structure modification. Tx
can be converted to a K + Kexpand nodes differentiable scaffolding tree T̃x = {Ñ, Ã, w̃}. The
differentiable scaffolding tree facilitates the substructure addition, deletion, and replacement.

4 METHOD

In this study, we explore an InversionGNN framework to address the problem of (1) finding Pareto
optimal molecules conditioned on desired weight and (2) finding diverse Pareto optimal molecules
with all possible trade-offs. We illustrate the pipeline of InversionGNN in Figure 1:

• A Dual-Path Network: InversionGNN. We introduce a dual-path graph neural network (GNN)
to incorporate complicated chemical knowledge in the direct prediction path (Section 4.2). In
the inversion generation path, we leverage the gradient w.r.t the molecule structure to guide the
molecular optimization process.

• Gradient-Based Pareto Inversion. In order to inverse the complicated multi-property knowledge,
we relax the discrete molecule optimization into a locally differentiable Pareto optimization problem.
We reorganize the gradients into a non-dominating gradient (Section 4.3).

4.1 PROBLEM FORMULATION

Definition 4.1 (Multi-Objective Molecular Optimization (MOMO)). Given the Chemical Space X ,
oracle function f(x), objective function L, the target property score y ∈ Rm of m properties, the
goal of MOMO is to find candidate molecules x∗ ∈ X that minimize all objectives:

x∗ = argminx∈XL(f(x),y). (1)

When these objectives [l1, . . . , lm] are conflicting, there is no single x∗ which simultaneously
maximizes all objectives. Consequently, multi-objective optimization adopts the concept of Pareto
optimality, which describes a set of solutions P that provide optimal trade-offs among the objectives.

4.2 A DUAL-PATH NETWORK: INVERSIONGNN

In this section, we introduce a dual-path network, InversionGNN, consists of a direct prediction path
and a inversion generation path for multi-objective molecular optimization.
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Figure 1: (1) InversionGNN. A surrogate oracle GNN is trained to incorporate complicated chemical
knowledge. In the direct prediction path, a molecule xt is fed to the GNN to obtain the objective
function at the tth iteration. In the inversion path, we calculate the non-dominating gradient to find
local Pareto-optimal molecules Pt conditioned on given weight vector λ. (2) Pareto Front Search.
Exploring the full Pareto front approximately with various weight vectors, improving the Pareto
diversity of generated molecules.

Direct prediction path. We aim to develop a pretrained GNN f(x; θ) to capture knowledge from
the ground truth oracle O. We imitate the oracle function O using a multi-head architecture to
individually predict m property scores ŷ ∈ Rm:

ŷ = f(x; θ) ≈ [O1(x),O2(x), · · · ,Om(x)]T = y, (2)

where θ is the learnable parameters. We adopt the Graph Convolutional Network (GCN) (Kipf
& Welling, 2016) to extract the representations of molecules. The updating rule for the l-th layer
is H(l) = RELU

(
B(l) +A

(
H(l−1)U (l)

))
, where B(l) ∈ RK×d/U (l) ∈ Rd×d are bias/weight

parameters and A is adjacency matrix. We leverage the weighted average as the readout function of
the last layer’s node embeddings, followed by multi-head MLP to yield the prediction of m properties
ŷ = MLP

(
1∑K

k=1 wk

∑K
k=1 wkH

(L)
k

)
. We train the model by minimizing the discrepancy between

the prediction ŷ and the ground truth y:

θ∗ = argmin
θ

L (y, ŷ) , (3)

where L is the loss function, e.g. binary cross entropy. The parameters of the surrogate oracle model
are pretrained at once and freezed in the inversion generation path.

Inversion generation path. Instead of using the GNN model as a simple predictor, we decode
the stored chemical knowledge in the GNN model and use its gradient w.r.t the input molecule to
guide molecular optimization. Let gi = ∇li represent the gradient of the i-th property objective
function. Consequently, we obtain G = ∇L = [g1, . . . , gm] by back-propagating the derivatives
from the target properties. In order to ensure the molecular learnable, InversionGNN requires a
differentiable molecular representation in chemical space. However, compared to the widely used non-
differentiable discrete scaffolding tree Tx, the currently only available differentiable representation is
the differentiable scaffolding tree proposed by Fu et al. (2022). Hence, we employ the differentiable
scaffolding tree, denoted as T̃x, as the representation of molecular x in InversionGNN.

Compared to InversionGNN, vanilla GCN is often used for prediction tasks, and its inference
prediction process is the direct prediction path in InversionGNN. In contrast, InversionGNN contains
an additional inversion path for generation tasks, which allows the inverse of the gradients to the
input molecules. Therefore, InversionGNN is able to update the input molecules with gradients.

4.3 GRADIENT-BASED PARETO INVERSION

In this section, to capture possible trade-offs among conflicting or correlated properties, we adopt
the relaxation technique and reformulate the discrete molecule Pareto optimization into a locally
differentiable problem. At the t-th iteration, given one molecule xt, we aim to find local Pareto
optimal molecules set Pt from the neighborhood set N (xt):

xt+1 ∈ Pt ⊆ N (xt) (4)
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Algorithm 1: InversionGNN
Input: Input molecule x0 ∈ X , weight vector λ ∈ Rm, and step size η > 0.
Output: Generated Molecule xT .

1 Initialization.
2 Train surrogate oracle according to Eq. 3.
3 for t = 1, . . . , T do
4 Convert molecule xt to differentiable scaffolding tree T̃ 1

xt ;
5 for k = 1, . . . ,K do
6 Compute gradients of target objectives w.r.t. T̃ k

xt : G = ∇L = [g1, . . . , gm];
7 Determine β∗ by solving QP problem as Eq. 5;
8 Calculate non-dominating gradient dnd = Gβ∗;
9 Update the differentiable scaffolding tree: T̃ k+1

xt = T̃ k
xt − ηdnd;

10 end
11 Sample discrete Txt+1 from continuous T̃ K

xt and assemble it to molecule xt+1.
12 end

where N (xt) is the set of all the possible molecules obtained by (1) imposing one local editing
operation (expand, remove or replace one substructure) to scaffolding tree and (2) assembling the
edited trees into molecules.

Identifying the Non-Dominating Gradient. To approach the Pareto front, Désidéri (2012) demon-
strated that the descent direction d can be found within the convex hull of the gradients, i.e.,
d ∈ CHx := {Gβ}, where β ∈ Sm belongs to the m-dimensional simplex. In order to identify the
Non-Dominating Descent Direction dnd = Gβ∗, inspired by continuous Pareto optimization (Mahap-
atra & Rajan, 2020), we solve the following Quadratic Programming (QP) problem:

β∗ =argmin
∥β∥1⩽1

∥∥G⊤Gβ − a
∥∥2

s.t. β⊤G⊤gj ⩾ 0 ∀j ∈ J =

{
J∗ KL (L ⊙ λ|1) ⩽ ϵ
[m] KL (L ⊙ λ|1) > ϵ

,

where J∗ =

{
j ∈ [m] | j = arg max

j′∈[m]
lj′λj′

} (5)

is the index set of the maximum relative objective values, and λ ∈ Rm is a predefined weight vector
that indicates the importance of each property. Then, we calculate the non-dominating direction
dnd = Gβ∗ and update the differentiable scaffolding tree with T̃x = T̃x − ηdnd. Therefore, we can
yield a solution T̃ ∗

xt that is not dominated by T̃xt in its neighborhood set N (T̃xt).

Molecular Search in Discrete Chemical Space. At the t-th iteration, we begin with a molecule xt

and convert it to differentiable scaffolding tree T̃xt . Subsequently, we identify the local Pareto optimal
solution T̃ ∗

xt within the neighborhood set N (T̃xt) by performing K rounds of gradient descent against
the non-dominating direction dnd. From T̃ ∗

xt , we can sample the discrete scaffolding tree T ∗
xt and

assemble it to molecules, denoted as xt+1 in the following iteration. Our proposed InversionGNN is
summarized in Algorithm 1.

4.4 CONVERGENCE ANALYSIS.

In this section, we provide the theoretical analysis of InversionGNN, discussing its convergence
properties in the discrete chemical space.

Theorem 4.2 (Approximation Guarantee). Under the assumptions stated in Sec. B, Given an initial
molecule x0 and weight vector λ, InversionGNN guarantees the following approximation when
performing T optimization rounds:

LT ∈ A :=
{
L ∈ O | L ⪯ (γλ̌∗ + (1− γ)λ̌0) · λ−1

}
, (6)

5
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Figure 2: Pareto front (black solid curve) for two loss functions l1,l2 and solutions (circles) and Oracle
calls (computational cost) for different weights α = λ1

λ2
(dashed rays). The weight λ conditioned

Pareto optimal solution is the intersection points between the Pareto front and λ−1 rays.

where γ = 1−αT

(1−α)N , λ−1 is (1/λi, . . . , 1/λm), λ̌∗ and λ̌0 is the maximum relative objective value

λ̌t := max
{
ltjλj | j ∈ [m]

}
of x∗ and x0.

Remark. This theorem tells that InversionGNN can generate desired Pareto optimal molecules
approximately within a few steps, and it is thus sample-efficient. Moreover, it implies that the Pareto
optimal molecules is conditioned on the given weight vector, enabling chemical experts to design
molecules that meet specific practical drug design requirements. Consequently, we can obtain an
approximate set of Pareto optimal molecules that encompasses all possible trade-offs with various
weight vectors. For more details about the proof, please refer to Appendix B.

Time Complexity. We did computational analysis in terms of inversion calls and computational
complexity per iteration. (1) Inversion Calls. InversionGNN requires O(TM) oracle calls, where
T is the number of iterations. M is the number of generated molecules, we have M ≤ NJ ,
N is the number of nodes in the scaffolding tree, for small molecule, N is very small. J is the
number of enumerated candidates in each node. (2) Computational Complexity per Iteration. The
computation of GTG has runtime O(m2n), where n is the dimension of the gradients. With the
current best QP solver (Zhang et al., 2021), we have a runtime of O(m3). Thus, the per-iteration
time complexity is O(m2n+m3). Since in deep networks, usually n ≫ m, InversionGNN does not
significantly increase the computational cost in computing non-dominating gradient. The comparison
of computational complexity between different methods is included in Appendix C.

5 EXPERIMENTS

In this section, we present our empirical findings which aim to answer the following questions:

Q1: Can InversionGNN identify the Pareto optimal solution conditioned on desired weight?

Q2: Can InversionGNN explore the full Pareto front approximately?

5.1 SYNTHETIC TASK

This section evaluates the InversionGNN via a commonly used synthetic objective in multi-objective
optimization from Lin et al. (2019). Different from the previous works in continuous space, we
optimize the problem in discrete space. We aim to minimize two non-convex objective functions,
denoted as:

l1(x) = 1− e
−
∥∥∥x− 1√

n

∥∥∥2

2 , l2(x) = 1− e
−
∥∥∥x+ 1√

n

∥∥∥2

2 , (7)

where x represents a point in discrete Euclidean space, with its dimension set to n = 20. For these
two objective functions, we are able to obtain the ground truth of the Pareto front.

Metrics. We use the standard metrics in multi-objective optimization: Hypervolume (HV) (Zitzler
& Thiele, 1999) measures the volume in the objective space spanned by a set of non-dominated
solutions and also represents Pareto diversity. We set the reference point as (1, 1) in this task.
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Table 2: Weight Conditioned Molecular Optimization.

Method Nov(↑) Div(↑) APS(↑) NU(↓)
MOEA/D 100% n/a 0.279±0.018 0.088±0.010

NSGA-III 100% n/a 0.351±0.024 0.102±0.017

MOGFN-PC 100% 0.507±0.024 0.393±0.036 0.088±0.014

HN-GFN 100% 0.571±0.032 0.418±0.022 0.072±0.015

I-LS 100% 0.541±0.007 0.529±0.006 0.049±0.002

InversionGNN 100% 0.435±0.009 0.648±0.012 0.026±0.001

Table 1: Hypervolume in Synthetic Task.

Method HV (↑)
I-LS 0.071±0.003

GAN-GA 0.202±0.017

HN-GFN 0.187±0.022

InversionGNN 0.328±0.001

Pareto Optimization Conditioned on Desired
Weight(Q1). To address this question, we adopt 5 weight
vectors (λ−1Ray). Our goal is to find the intersection
points between the Pareto front and the weight λ−1 ray.
We provide the details for generating weight vectors in
Appendix D.3. For fair comparison, we incorporate Linear
Scalarization into our framework as a baseline and term it
as I-LS, refer to Appendix D.2. Due to the incompatibility
of Genetic Algorithms and Bayesian Optimization with
our framework, we adopted optimization techniques from
two state-of-the-art drug discovery approaches, GAN-GA (Abbasi et al., 2022) and MOGFN-AL (Jain
et al., 2023), as baselines. InversionGNN and I-LS are optimized from random initialization for each
weight vector. For GAN-GA, we evolve 300 iterations with population size of 40 and 10 offsprings.
For MOGFN-AL, we start with 1000 points and running 100 optimization loops. We show the whole
optimization process and oracle calls in Figure 2. It illustrates that our InversionGNN framework not
only captures the trade-offs among objective based on given weight vectors but also achieves the
highest efficiency with 500 oracle calls. In contrast, other baselines result in biased solutions.
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(a) InversionGNN
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Figure 3: Pareto Front Search.

Exploring Full Pareto Front (Q2).
To address this question, we utilized
50 weight vectors to scan the entire
Pareto front for InversionGNN and I-
LS. As shown in Figure 3, our pro-
posed InversionGNN can explore al-
most the full Pareto front. In contrast,
the solutions of I-LS tend to cluster
at the ends of the Pareto front, leav-
ing certain regions unexplored. The
results of GAN-GA and MOGFN-AL
are shown in Figure 2, they merely
find a small subset of the Pareto opti-
mal solution. We also report HV and
oracle calls in Table 1, which shows that InversionGNN is able to cover the full Pareto front compared
with baseline methods. GAN-GA and MOGFN-AL cost 12000 and 3000 oracle calls respectively,
but still achieve suboptimal performance.

5.2 MULTI-OBJECTIVE MOLECULAR OPTIMIZATION

In this section, we address the two questions by evaluating InversionGNN in discrete chemical space.

Dataset. We train the model on ZINC 250K dataset (Sterling & Irwin, 2015), which consists of
250K drug-like molecules extracted from the ZINC database. We select the substructures that appear
more than 1000 times as the vocabulary set S, which consists of 82 frequent substructures. We
remove molecules containing out-of-vocabulary substructures, resulting in a remaining dataset of
195K molecules.

Implementation Details. We implemented InversionGNN using Pytorch on an AMD EPYC 7763
CPU. Both the size of substructure embedding and hidden size of GCN are d = 100. The depth of
GNN L is 3. In each generation, we keep C = 10 molecules for the next iteration. The learning rate
is 1e-3 in training and inference procedure. We set the iteration T to a large enough number and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 3: Multi-Objective Drug Discovery.

Method GSK3β + JNK3 GSK3β+JNK3+QED+SA
Nov(↑) Div(↑) APS(↑) Oracle(↓) Nov(↑) Div(↑) APS(↑) Oracle(↓)

LigGPT 100% 0.845 0.271 100K+0 100% 0.902 0.378 100K+0
GCPN 100% 0.578 0.293 0+200K 100% 0.596 0.450 0+200K
MolDQN 100% 0.605 0.348 0+200K 100% 0.597 0.365 0+200K
GA+D 100% 0.657 0.608 0+50K 97% 0.681 0.632 0+50K
RationaleRL 100% 0.700 0.795 25K+67K 99% 0.720 0.675 25K+67K
MARS 100% 0.711 0.789 0+50K 100% 0.714 0.662 0+50K
ChemBO 98% 0.702 0.747 0+50K 99% 0.701 0.648 0+50K
BOSS 99% 0.564 0.504 0+50K 98% 0.561 0.504 0+50K
LSTM 100% 0.712 0.680 0+50K 100% 0.706 0.672 0+50K
Graph-GA 100% 0.634 0.825 0+25K 100% 0.723 0.714 0+25K
DST 100% 0.750 0.827 10K+5K 100% 0.755 0.752 20K+5K
MOGFN-AL 100% 0.673 0.742 50K+20K 100% 0.711 0.621 50K+20K
RetMol 100% 0.688 0.769 50K+5K 100% 0.691 0.642 50K+5K
HN-GFN 100% 0.784 0.725 50K+20K 100% 0.733 0.638 50K+20K
I-LS 100% 0.693 0.823 10K+5K 100% 0.704 0.734 20K+5K
InversionGNN 100% 0.768 0.841 10K+5K 100% 0.769 0.773 20K+5K

tracked the result. When oracle calls budget is used up, we stop it. All results in the tables are from
experiments up to T = 50 iterations.

Properties and Oracles. (1) QED ranging in [0, 1] that provides a quantitative assessment of a
molecule’s drug-likeness. (2) SA evaluates the ease of synthesizing a molecule, and is normalized to
[0, 1] (Gao & Coley, 2020). (3) JNK3 is a member of the mitogen-activated protein kinase family,
with scores ranging in [0, 1]. (4) GSK3β is an enzyme encoded by the GSK3β gene in humans,
and also has a range of [0, 1]. We utilize the RDKit package to evaluate QED and SA and evaluate
GSK3β and JNK3 by Li et al. (2018) and Jin et al. (2020b).

Metrics. We use standard metrics in molecular optimization. (1) Novelty (Nov) represents the
proportion of generated molecules not in the training set. (2) Top-K Diversity (Div) (Bengio et al.,
2021; Fu et al., 2022) of generated molecules is defined as the average pairwise Tanimoto distance
between the Morgan fingerprints. (3) Top-K Average Property Score (APS) (Bengio et al., 2021;
Fu et al., 2022) refers to the average score of the top-100 molecules. (4) Oracle Calls is represented
as “A+B” which means allocate A oracle call budget for pretraining and B for optimization.

0.16 0.51 1.00 1.96 6.31
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Figure 4: The distribution of Top-100 JNK3 scores.

Molecular Optimization Conditioned on
Desired Weight (Q1). In this task, our
goal is to evaluate that if InversionGNN
can generate molecules conditioned on
desired weight. Here we select two
properties, GSK3β and JNK3 and the 5
different weight vectors to serve as in-
dependent trials. MOEA/D (Zhang &
Li, 2007) and NSGA-III (Deb & Jain,
2013) are two multi-objective Genetic Al-
gorithms that also incorporate weight. We
perform Genetic Algorithms over the la-
tent space learned by JTVAE (Jin et al.,
2018). In addition, we also report the
Non-Uniformity (NU) that evaluates the
distance between properties and weights
vector. For MOEA/D and NSGA-III, we
report the performance of the molecule
with the lowest Non-Uniformity. MOGFN-
PC (Jain et al., 2023) is a multi-objective molecular optimization method that scalarizes reward
functions. HN-GFN (Zhu et al., 2024) is a multi-objective drug discovery method based on Bayesian
optimization. For HN-GFN, I-LS, and InversionGNN, we calculate the performance of the top-20
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molecules in terms of Non-Uniformity per weight. For each weight, we compute the results separately
and report the average results across all 5 trials. The results are shown in Table 2. InversionGNN
outperforms most baselines by a significant margin. Our proposed InversionGNN achieves better
uniformity and higher APS. We find that the diversity of InversionGNN is lower than that of HN-
GFN and MOGFN-AL. A reasonable explanation is that the molecules produced by InversionGNN
concentrate more around weight with a lower diversity. This superior performance is attributed to
InversionGNN’s ability to identify solutions that are more specifically related to the weight vector. We
follow HN-GFN (Zhu et al., 2024) and visualize the top-100 JNK3 scores of the molecules generated
by weight-based methods (InversionGNN, HN-GFN, and MOGFN-PC) conditioned on the 5 weight
vectors in Figure 4. Even though all methods increase as the weight vector increases, InversionGNN
outperforms the existing methods by a large margin.

Table 4: Hypervolume in Multi-Objective Drug Discovery.

Method HV (↑)
GSK3β + JNK3 GSK3β+JNK3+QED+SA

MOGFN-AL 0.567±0.057 0.377±0.046

HN-GFN 0.592±0.042 0.374±0.039

I-LS 0.475±0.028 0.308±0.022

InversionGNN 0.763±0.031 0.519±0.038

Multi-Objective Drug Discov-
ery (Q2). In this task, we use a
set of weights to scan the Pareto
front and evaluate the effective-
ness of InversionGNN in synthe-
sizing diverse molecules. We
compare our InversionGNN with
following baselines: (1) LigGPT
(string-based distribution learn-
ing model) (Bagal et al., 2021);
(2) GCPN (Graph Convolutional Policy Network) (You et al., 2018); (3) MolDQN (Molecule Deep
Q-Network) (Zhou et al., 2019); (4) GA+D (Genetic Algorithm with Discriminator network) (Nigam
et al., 2020); (5) MARS (Markov Molecular Sampling) (Xie et al., 2021); (6) RationaleRL (Jin
et al., 2020b); (7) ChemBO (Chemical Bayesian Optimization) (Korovina et al., 2020); (8) BOSS
(Bayesian Optimization over String Space) (Moss et al., 2020); (9) LSTM (Long short term mem-
ory) (Brown et al., 2019); (10) Graph-GA (graph level genetic algorithm) (Brown et al., 2019);
(11) DST (Differential Scaffolding Tree) (Fu et al., 2022);(12) MOGFN-AL (weight-conditional
GFlowNets) (Jain et al., 2023); (13) RetMol (Retrieval-Based Generation) (Wang et al., 2023); (14)
HN-GFN (Zhu et al., 2024). For I-LS and InversionGNN, we collect all the solutions of all weights
and report the final results. The results are detailed in Table 3. InversionGNN exhibits superior
performance compared to the majority of baselines. Diversity and APS is a common trade-off. Some
methods encounter difficulties in simultaneously achieving high diversity scores and APS, due to their
limited capacity to explore the chemical space. Despite LigGPT’s achievement of high diversity, the
notably low APS indicates its inability to effectively handle this trade-off. In contrast, InversionGNN
shows superior performance on both metrics. We follow the recent multi-objective method HN-GFN
(Zhu et al., 2024) and report the Hypervolume (HV) of the molecules generated by recent advanced
MOMO approaches in Table 4, including HN-GFN and MOGFN-AL. Higher HV indicates wider
coverage of the objective space and higher Pareto diversity. The results show InversionGNN’s ability
to capture all trade-offs among different properties.

5.3 ABLATION STUDY

Optimization Process. We demonstrate the optimization process in Figure 5(a), where we begin
with an initial molecule x0 and a weight vector [1, 3]. For clarity, we focus on two properties, JNK3
and GSK3β. At each step, we greedily add one substructure and display the corresponding molecular
graphs, property scores, and the loss ratio: ratio = lJNK3

lGSK3β
in Figure 5(b). As substructures are

added, the property scores obtained by InversionGNN gradually increase and become more aligned
with weight vector. However, the I-LS significantly deviates from the weight vector. It demonstrates
that InversionGNN is capable of finding Pareto optimal molecules conditioned on weight vector.

Search Efficiency. To understand the search efficiency of InversionGNN, we search the Pareto front
with the weight vectors number of (2, 5, 10, 15, 20). For GNK3β+JNK3, we allocate a 10K oracle
call budget for surrogate oracle pretraining, and Nweight × 1K oracle call budget for optimization.
For the optimization involving GNK3β+JNK3+QED+SA, the pretraining budget is fixed at 20K,
and Nweight × 1K oracle call budget for optimization. As illustrated in Figure 6 (c), APS increases
with growing weight vectors in multi-objective molecular optimization task.
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(a) Objective Space (b) Molecular Graphs

Figure 5: Optimization process of InversionGNN on JNK3 and GSK3β with the weight vector [1, 3].
(a) As substructures are added, the property scores obtained by InversionGNN increase and become
more aligned with the weight vector. (b) Visualization of corresponding molecular graph.
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Figure 6: Pareto front obtained by Inversion GNN on (a) Conflicting Objectives, and (b) Correlated
Objectives. (c) Search Efficiency in Multi-Objective Drug Discovery. The number of weights
represents the search scope and the number of oracle calls grows with the number of weights.

Conflicting and Correlated Objectives. For fair comparison, we follow Jain et al. (2023) and use the
synthetic sequence design task from Stanton et al. (2022). The task consists of generating strings with
the objectives given by occurrences of a set of d n-grams. We consider a vocabulary of size 4, with
3 characters [‘C’, ‘V’,‘ A’] and a special token to indicate the end of the sequence. The objectives
are defined by the number of occurrences of a given set of n-grams in the sequence. Therefore, for
conflicting objectives setting, we use 3 the Unigrams task [‘C’,‘ V’,‘ A’]. InversionGNN adequately
models the trade-off between conflicting objectives as illustrated by the generated Pareto front in
Figure 6 (a). For the 3 Bigrams task with correlated objectives [‘CV’,‘ VA’, ‘AC’], Figure 6 (b)
demonstrates InversionGNN can simultaneously maximize multiple correlated objectives.

6 CONCLUSION

In this work, we propose a novel dual-path InversionGNN for multi-objective molecular optimization,
which is effective and sample-efficient. In the direct prediction path, we incorporate complicated
chemical knowledge through pretraining a property prediction model. In the inversion generation
path, we decode the acquired knowledge and leverage the gradient w.r.t the molecule structure to
guide the molecular optimization process. In order to tackle the complicated multi-property knowl-
edge, we relax the discrete molecule optimization into a locally differentiable Pareto optimization
problem. Through extensive experimental evaluations, we have demonstrated the effectiveness and
sample efficiency of InversionGNN in multi-objective drug discovery. The code is available at
https://github.com/ICLR2025InversionGNN/InversionGNN.
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A PARETO OPTIMAL

In this work, we consider m tasks described by f(x) := [fi(x)] : Rn → Rm for any point x in
Solution Space Rn, where each fi(x) : Rn → R, i ∈ [m] represents the performance of the i-th
task to be maximized. Given an desired target y ∈ Rm, we set a non-negative objective function
L(f(x),y) = [l1, . . . , lm]T : Rm → Om to be a non-negative objective function mapping the Value
Space Rm to the Objective Space Om, where li for i ∈ [m] is the objective function of the i-th
task. Hence, maximizing the performance f(x) is equivalent to minimizing the objective function.
Consequently, we have lx

′

i − lxi ≥ 0 if fi(x′) ≤ fi(x) for two points x,x′ ∈ Rn.

For any two points x,x′ ∈ Rn, x dominates x′, denoted by Lx′
⪰ Lx, if and only if Lx′

−Lx ∈ Rm
+ ,

where Rm
+ := {L ∈ Om|li ≥ 0,∀i ∈ [m]}. The partial ordering Lx′

⪰ Lx implies lx
′

i − lxi ≥
0,∀i ∈ [m]. When x strictly dominates x′, denoted by Lx′

≻ Lx, it means there is at least one i for
which lx

′

i − lxi > 0. Geometrically, Lx′
≻ Lx means that Lx′

lies in the positive cone pivoted at
Lx, i.e. Lx′

∈ {Lx} + Rm
+ :=

{
Lx + L | L ∈ Rm

+

}
. A point x∗ is said to be Pareto optimal if

x∗ is not dominated by any other points in Rn. Similarly, x∗ is locally Pareto optimal if x∗ is not
dominated by any other points in the neighborhood of x∗, i.e. N (x∗). The set of all Pareto optimal
solutions is defined as:

P :=
{
x∗ ∈ Rn | ∀x ∈ Rn − {x∗} ,Lx∗

⪰̸ Lx
}
, (8)

where Lx∗
⪰̸ Lx represents x∗ is not dominated by other point x. The set of multi-objective values

of the Pareto optimal solutions is called Pareto front:

F :=
{
Lx∗

| x∗ ∈ P
}
. (9)

In Multi-Objective Optimization, the ideal goal is to identify a set of Pareto solutions that cover all
the possible preferences among objectives.

B THEORETICAL ANALYSIS

In this section, we discuss the theoretical properties of InversionGNN Algorithm.

B.1 ASSUMPTIONS AND KEY LEMMAS

Assumption B.1 (Molecule Size Bound). The sizes (i.e., number of substructures) of all the scaffold-
ing trees generated are upper bounded by N .

We focus on small molecule optimization; the target molecular properties would decrease significantly
when the molecule size is too large (Bickerton et al., 2012), e.g., QED. To perform a convergence
analysis, we initially establish several assumptions to characterize the geometry of the objective
landscape.
Definition B.2 (Non-Uniformity). For any point x ∈ Rn, the Non-Uniformity of its objective values
L in relation to a given weight vector r ∈ Rm as:

µr(L) =
m∑
i=1

l̂i log

(
l̂i

1/m

)
= KL

(
L̂ | 1

m

)
, (10)

where L̂ = [l̂1, . . . , l̂m]T and l̂i is the weighted normalization l̂i =
rili∑m

i′=1
ri′ li′

.

The Kullback-Leibler (KL) divergence of L̂ from the uniform distribution
1

m
characterizes non-

uniformity. When the objective value fulfills the weight condition, we have µr(L) = 0; otherwise,
µr(L) > 0. Consequently, we prefer a lower µr(L).
Definition B.3 (Dominant Set). Given xt in chemical space X at the t-th iteration, we define a
Dominant Set V⪯Lt ⊂ Rm that contains all attainable multi-objective values that dominate the Lt as:

V⪯Lt =
{
L ∈ O | L ⪯ Lt

}
. (11)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Definition B.4 (Uniform Set). Given a molecule xt in the chemical space X at the t-th iteration and
a specified weight vector r ∈ Rm, we define a Uniform Set Mr

Lt ⊂ Rm that contains all attainable
multi-objective values demonstrating enhanced uniformity compared to Lt as:

Mr
Lt =

{
µr(L) ≤ µr(Lt)

}
. (12)

Definition B.5 (Admissible Set). Given a molecule xt in the chemical space X at the t-th iteration
and a specified weight vector r ∈ Rm, we define a bounded Admissible Set Ar

Lt ⊂ Rm as:

Ar
Lt =

{
L ∈ O | L ⪯ Ľt

}
, (13)

where Ľt = řt (1/r1, · · · , 1/rm), and řt = max
{
Lt
jrj | j ∈ [m]

}
.

Clearly, the admissible set contains all the points in O that dominate the Lt, i.e. V⪯Lt ⊂ Ar
Lt .

Moreover, when µr(L) > 0, it also contains points exhibiting superior uniformity compared to Lt,
i.e. Ar

Lt ∩Mr
Lt ̸= ∅. Consequently, the admissible set encompasses the desired solution for the

subsequent iteration, fulfilling both uniformity and dominating properties.

As illustrated by Mahapatra & Rajan (2020), a descent direction dnd will be oriented towards the
weight-specific Pareto front and within a confined admissible set. Since we perform K descents in
each iteration, we restructure properties for InversionGNN in the molecular optimization problem as
follows:
Lemma B.6 (Bounded Objective Space for the Next Iteration). There exists a step size η0 > 0,
such that for every η ∈ [0, η0], InversionGNN employs T̃xt = T̃xt − ηdnd to update differentiable
scaffolding tree until convergence. Subsequently, we greedily sample a molecule as xt+1 from T̃ K

xt by
adding a substructure, if the solution is nonempty. The multi-objective value Lt+1 of the new solution
point xt+1 lies in the t-th admissible set:

Lt+1 ∈ Ar
Lt . (14)

Following Theorem 2 in EPO (Mahapatra & Rajan, 2020), the empirical loss LT̃ of scaffolding tree
T̃ K
xt lies in the t-th admissible set Ar

Lt . Since we greedily sample a molecule as xt+1 from T̃ K
xt , thus

we have Lt+1 ⪯ LT̃ . Therefore, it follows that Lt+1 ∈ Ar
Lt . It demonstrates that for a molecule xt

at the t-th iteration, InversionGNN selects a molecule as xt+1 from xt’s neighborhood set N (xt),
moving towards improved uniformity and dominating properties. It provides a theoretical guarantee
for the quality of the solution.
Corollary B.7 (Convergence of Admissible Set). The sequence of relative maximum values řt

obtained by descending against the adjusted gradient dnd is monotonic with řt+1 ≤ řt, which means
Ar

Lt ⊂ Ar
Lt+1 , (15)

and the sequence of bounded sets {Ar
Lt+1} converges.

Since Lt+1 ∈ Ar
Lt , we naturally get řt+1 ≤ řt, thus we have Ar

Lt ⊂ Ar
Lt+1 . It demonstrates the

monotonicity of řt. Suppose InversionGNN selects a molecule as xt+1 from xt’s neighborhood
set N (xt), where the lowest řt+1 is precisely determined, i.e., finding a solution that maximizes∣∣řt+1 − řt

∣∣.
Assumption B.8 (Submodularity and Smoothness). Suppose xt−1,xt,xt+1 are generated succes-
sively by InversionGNN via growing a substructure on the scaffolding tree. We assume that the
corresponding objective gain (i.e., △řt) satisfies the diminishing returns property:

řt−1 − řt ≥ řt − řt+1, (submodularity) (16)
Submodularity plays the role of concavity/convexity in the discrete regime. On the other hand, we
specify the curvature ratio of the objective function L by assuming

řt − řt+1 ≥ α(řt−1 − řt), 0 < α < 1− 1

N
< 1. (curvature) (17)

The choice of submodularity as an assumption for our analysis was motivated by experimental
observations. For instance, in the optimization process, we noticed that the objective values, such
as QED, can rapidly increase to a high point with just a few iterations. However, as we added more
atoms with InversionGNN, the growth rate began to decrease, i.e. the return is diminishing when the
property scores are reaching the upper bound. This trend is observed in many properties and provides
insight into our assumption.
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B.2 THEOREM

Theorem B.9 (Approximation Guarantee). Under the assumptions stated in Sec. B, Given an initial
molecule x0 and weight vector r, InversionGNN guarantees the following approximation when
performing T optimization rounds:

LT ∈ A :=
{
L ∈ O | L ⪯ (γř∗ + (1− γ)ř0) · r−1

}
, (18)

where γ = 1−αT

(1−α)N , r−1 is (1/ri, . . . , 1/rm), ř∗ and ř0 is the maximum relative objective value
řt := max

{
ltjrj | j ∈ [m]

}
of x∗ and x0.

Proof. In the following steps of the proof, to simplify mathematical notation, we substitute rt for řt.
Starting from x0, suppose the path to optimum x∗ with the weight r is

x0 → x1 → x2 → · · · → xk = x∗, (19)

where each step, one substructure is added.

For InversionGNN, we run T ∈ [k,N ] iterations, and the path produced by InversionGNN is

x̂0(x0) → x̂1 → x̂2 → · · · → x̂T , where T ≥ k. (20)

For the optimum x∗, based on the submodularity in Assumption B.8 we have

k
(
r0 − r1

)
≥

k∑
j=1

(rj−1 − rj) = r0 − rk = r0 − r∗. (21)

From assumption B.1, it follows that

r0 − r1 ≥ 1

k
(r0 − r∗) ≥ 1

N
(r0 − r∗). (22)

For the molecular zT found by InversionGNN, based on curvature ratio in Assumption B.8 we have

r̂T−1 − r̂T ≥ α
(
r̂T−2 − r̂T−1

)
≥ · · · ≥ αT−1

(
r̂0 − r̂1

)
. (23)

Then we have

r̂0 − r̂T =

T∑
j=1

(rj−1 − rj) ≥
T∑

j=1

αj−1(r̂0 − r̂1) =
1− αT

1− α

(
(r̂0 − r̂1)

)
. (24)

Since InversionGNN pick up a molecule as xt+1 from xt’s neighborhood set N (xt) with lowest
řt+1 is exactly solved, i.e. r̂1 ≤ r1, and r̂0 = r0. Thus we have

r̂0 − r̂1 ≥ r0 − r1. (25)

From Eq. 22, Eq. 24 and Eq. 25, it follows that

r0 − r̂T ≥ 1− αT

(1− α)N
(r0 − r∗). (26)

Thus we have:

r̂T ≤ 1− αT

(1− α)N
r∗ + (1− 1− αT

(1− α)N
)r0. (27)

Finally, it follows that

LT ∈ A :=
{
L ∈ O | L ⪯ (γr∗ + (1− γ)r0) · r−1

}
, (28)
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C THEORETICAL COMPARISON OF COMPUTATIONAL COMPLEXITY

The current multi-objective molecular optimization methods can be categorized into three classes:
(1) gradient-based Pareto search (InversionGNN), (2) multi-objective genetic algorithm, and (3)
multi-objective Bayesian optimization, as illustrated in Section 1. We provide a theoretical analysis
of their computational bottlenecks during one iteration:

• Gradient-based Pareto search: If we perform K gradient descent steps in each iteration, the
time complexity is O(K(m2n+m3)), where n is the dimension of the gradients and m is
the number of objectives, usually n ≫ m.

• Genetic Algorithm: The computational bottleneck lies in the non-dominated sorting, which
has a time complexity of O(mp2), where p is the population size and m is the number of
objectives.

• Bayesian Optimization: The computational bottleneck lies in training the Gaussian process,
which has a time complexity of O(q3), where q is the number of training data points.

D IMPLEMENTATIONS DETAILS

D.1 MOLECULAR REPRESENTATION

A molecular graph is a representation of a molecule, consisting of atoms as nodes and chemical
bonds as edges. Nonetheless, challenges such as chemical validity constraints, ring integrity, and
extensive calculations hinder the explicit reconstruction of potential connectivity. To tackle this, Jin
et al. (2018) introduced a scaffolding tree, a spanning tree that employs nodes as substructures to
model a higher-level representation of a molecule.

A scaffolding tree, denoted by Tx = {N,A,w}, serves as a high-level representation of a molecule
x ∈ X . Each node is a member of the substructure set S (also referred to as the vocabulary set). Tx
consists of three components: (i) the node indicator matrix defined as N ∈ {0, 1}K×|S|, where each
row of N is a one-hot vector indicating the substructure to which the node belongs; (ii) the adjacency
matrix denoted by A ∈ {0, 1}K×K , where Aij = 1 when the i-th and the j-th nodes are connected,
and 0 when they are unconnected; (iii) w = [1, . . . , 1]T ∈ RK , signifies that the K nodes are equally
weighted. We convert molecules to scaffolding tree for training the surrogate oracle.

To modify the scaffolding tree Tx, we employ its differentiable version, T̃x, as proposed by Fu
et al. (2022). The basic scaffolding tree, Tx, can be transformed into a tree containing K +Kexpand

nodes, denoted by T̃x = {Ñ, Ã, w̃}, through the addition of an expansion node set Vexpand =

{uv | v ∈ VTx}, where |Vexpand| = Kexpand = K. It is crucial to note that T̃x contains learnable
parameters, which can be interpreted as conditional probability. This conditional probability can be
utilized to sample a new tree through processes such as node shrinking, replacement, or expansion.
Each scaffolding tree corresponds to multiple molecules, as substructures can be combined in various
ways.

Assemble the Scaffolding Tree into Molecule. We conduct following steps: (a) Ring-atom
connection. When connecting atom and ring in a molecule, an atom can be connected to any possible
atoms in the ring. Ring-ring connection. (b) When connecting ring and ring, there are two general
ways, (1) one is to use a bond (single, double, or triple) to connect the atoms in the two rings. (2)
another is two rings share two atoms and one bond.

D.2 DETAILS OF I-LS

The baseline method with Linear Scalarization (LS) is summaried in Algorithm 2. LS dose not
compute the non-dominated gradient dnd but instead linearly weights the gradient using weights, i.e.,
d = Gr. We keep the remaining parts consistent with InversionGNN.
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Algorithm 2: Linear Scalarization (I-LS)
Input: Input molecule x0 ∈ X , weight vector r ∈ Rm, and step size η > 0.
Output: Generated Molecule x∗.

1 Initialization.
2 Train surrogate oracle according to Eq. 3.
3 for t = 0, . . . , T do
4 Convert molecule xt to scaffolding tree T̃ 0

xt ;
5 for k = 0, . . . ,K do
6 Compute gradients of each property objective w.r.t. T̃ k

xt : G = ∇L = [g1, . . . , gm];
7 Calculate the direction of descent dls = Gr;
8 Update the differentiable scaffolding tree using T̃ k+1

xt = T̃ k
xt − ηdls.

9 end
10 Sample discrete Txt+1 from continuous T̃ K

xt and assemble it to molecule xt+1;
11 end

D.3 WEIGHT VECTOR

In this section, we describe the detailed process for generating a weight vector uniformly distributed
in the objective space. We list the algorithm for 2, 3 and 4 objectives.

Algorithm 3: Generate Weight for Two Objective
1 Generate a uniformly distributed variable, u, ranging from 0 to 1.
2 Compute coordinates’ angle: θ = π

2u.
3 Compute Cartesian coordinates: r1 = cos θ, r2 = sin θ.

Algorithm 4: Generate Weight for Three Objective
1 Generate two uniformly distributed variables, u and v, ranging from 0 to 1.
2 Compute spherical coordinates’ inclination angle and azimuth angle: θ = π

2u, ϕ = arccos v.
3 Compute Cartesian coordinates: r1 = sinϕ cos θ, r2 = sinϕ sin θ, r3 = cosϕ.

D.4 INVERSIONGNN SETUP

Most of the settings follow the DST (Fu et al., 2022). We implemented InversionGNN using Pytorch
1.7.1, Python 3.7.9 on an AMD EPYC 7763 CPU. Both the size of substructure embedding and
hidden size of GCN (GNN) are d = 100. The depth of GNN L is 3. In each generation, we keep
C = 10 molecules for the next iteration. The learning rate is 1e-3 in training and inference procedure.
We set the iteration T to a large enough number and tracked the result. When oracle calls budget is
used up, we stop it. All results in the tables are from experiments up to T = 50 iterations. For LS,
We only replace the objective function in InversionGNN with Linear Scalarization, and other settings
are consistent with InversionGNN.

D.5 BASELINES

In this section, we describe the detailed experimental setting for baseline methods. Most of the
settings follow the original papers.

• LigGPT is a string-based distribution learning model with a Transformer as decoder (Bagal et al.,
2021), we trained it for 10 epochs using the Adam optimizer with a learning rate of 6e− 4.

• GCPN (Graph Convolutional Policy Network) (You et al., 2018) leveraged graph convolutional
network and policy gradient to optimize the reward function that incorporates target molecular
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Algorithm 5: Generate Weight for Four Objective
1 Generate two uniformly distributed variables, u, v and z, ranging from 0 to 1.
2 Compute spherical coordinates’ inclination angle and azimuth angle: θ = π

2u, ϕ = arccos v,
σ = arccos z.

3 Compute Cartesian coordinates: r1 = sinϕ cos θ sinσ, r2 = sinϕ sin θ sinσ, r3 = sinσ cosϕ,
r4 = cosσ.

properties and adversarial loss. we trained it using Adam optimizer with 1e-3 initial learning rate,
and batch size is 32.

• MolDQN (Molecule Deep Q-Networks) (Zhou et al., 2019) formulate the molecule generation
procedure as a Markov Decision Process (MDP) and use Deep Q-Network to solve it. Adam is
trained Adam optimizer with 1e-4 as the initial learning rate, ϵ is annealed from 1 to 0.01 in a
piecewise linear way.

• GA+D (Genetic Algorithm with Discriminator network) (Nigam et al., 2020) uses a deep neural
network as a discriminator to enhance exploration in a genetic algorithm and is trained using the
Adam optimizer with a learning rate of 1e− 3, β is set it to 10.

• MARS (Xie et al., 2021) leverage Markov chain Monte Carlo sampling (MCMC) on molecules
with an annealing scheme and an adaptive proposal. It is trained using Adam optimizer with 3e-4
initial learning rate.

• RationaleRL (Jin et al., 2020b) is a deep generative model that grows a molecule atom-byatom
from an initial rationale (subgraph). It is trained using Adam optimizer on both pre-training and
fine-tuning with initial learning rates of 1e-3, 5e-4, respectively. The annealing rate is 0.9.

• ChemBO (chemical Bayesian optimization) (Korovina et al., 2020) leverage Bayesian optimization.
It also explores the synthesis graph in a sample-efficient way and produces synthesizable candidates.
Following the default setting in the original paper, the number of steps of acquisition optimization
is set to 20. The initial pool size is set to 20, while the maximal pool size is 1000.

• BOSS (Bayesian Optimization over String Space) (Moss et al., 2020) builds a Gaussian process
surrogate model based on Sub-sequence String Kernel, which naturally supports SMILES strings
with variable length, and maximizing acquisition function efficiently for spaces with syntactical
constraints. The population size is set to 100, the generation (evolution) number is set to 100.

• DST (Differentiable Scaffolding Tree) (Fu et al., 2022) utilizes a learned knowledge network to
convert discrete chemical structures to locally differentiable ones. DST enables a gradient-based
optimization on a chemical graph structure by back-propagating.

• MOGFN-PC (weight-conditional GFlowNets) (Jain et al., 2023) is a Reward-conditional
GFlowNets based on Linear Scalarization. They introduce the Weighted-log-sum that can help
in scenarios where all objectives are to be optimized simultaneously, and the scalar reward from
Weighted-Sum can be dominated by a single reward.

• RetMol (Retrieval-Based Molecular Generation) (Wang et al., 2023) retrieves and fuses the
exemplar molecules with the input molecule, which is trained by a new selfsupervised objective
that predicts the nearest neighbor of the input molecule.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 MOLECULES GENERATED BY INVERSIONGNN

We provide several molecules synthesized via the InversionGNN approach.

(1) Molecules with JNK3 and GSK3β scores. Each score independently represents the respective
values for JNK3 and GSK3β, see Figure 8.

E.2 MOLECULES GENERATED BY LINEAR SCALARIZATION

We exhibit the molecular graphs produced through Linear Scalarization. Alongside these visual
representations, their corresponding property scores are included, and the loss ratio is calculated using
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the formula ratio = lJNK3

lGSK3β
. This supplementary information further elaborates on the experimental

results outlined in Section 6.3 of the paper, as illustrated in Figure 10. (2) Molecules with highest
average QED, normalized-SA, JNK3 and GSK3β scores. These four scores symbolize the values
for QED, normalized SA, JNK3, and GSK3β, respectively, see Figure 9.

E.3 MOLECULES GENERATED BY INVERSIONGNN

The Oracle requires realistic optimization tasks, which can often be time-consuming. To further
verify the oracle efficiency, we explore a special setting of molecule optimization where the budget
of oracle calls is limited to a fixed number (2K, 5K, 10K, 20K, 50K) and compare the optimization
performance. For GCPN, MolDQN, GA+D, and MARS, the number of learning iterations is
determined by the Oracle call budget. To ensure a fair comparison with DST, InversionGNN, and
I-LS utilize approximately 80% of the budget to label the dataset (i.e., for training the GNN), reserving
the remaining budget for de novo design. Specifically, for each budget (2K, 5K, 10K, 20K, and
50K), we allocate 1.5K, 4K, 8K, 16K, and 40K Oracle calls, respectively, for labeling the data used
in GNN training. Figure 7 illustrates the APS of the top 100 molecules across different Oracle
budgets. Notably, InversionGNN shows a significant advantage compared to all the baseline methods
in limited-budget settings.

2K 5K 10K 20K 50K
The number of Oracle calls

0.0

0.2

0.4

0.6

0.8

AP
S

JNK3+GSK3
DST
MARS
BOSS
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RationaleRL
ChemBO
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InversionGNN

Figure 7: (1) Oracle Efficiency Test.
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Figure 8: Generated molecules by InversionGNN. These four scores symbolize the values for JNK3
and GSK3β, respectively.

Figure 9: Generated molecules by InversionGNN. These four scores symbolize the values for QED,
normalized SA, JNK3, and GSK3β, respectively.

Figure 10: Generated molecules by I-LS, property scores and loss ratio.
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