
Medical Imaging with Deep Learning – Under Review 2024 Short Paper – MIDL 2024 submission

Boost Your Medical Deep-Learning Training By
Lazy Loading

Chenglong Wang1 clwang@phy.ecnu.edu.cn
1 Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, China

Chengxiu Zhang1 cxzhang@phy.ecnu.edu.cn
Yun Liu2 yunl@nvidia.com
2 NVIDIA Corp.

Guang Yang1 gyang@phy.ecnu.edu.cn

Editors: Under Review for MIDL 2024

Abstract

In recent years, the growing volume size of medical datasets has posed a significant chal-
lenge for deep learning training pipelines, often leading to inefficiencies stemming from
data I/O bottlenecks. Addressing this issue, we present a simply yet effective trick, lazy
loading strategy, leveraging memory-mapping mechanisms to boost training processes. By
dynamically loading only the target slices of large medical datasets into active memory,
our method minimizes the reading time and conserves memory. This paper mainly aims
to remind community to realize the advantages of the lazy loading strategy, which could
substantially boost the efficiency of deep learning training process in the medical domain.

Keywords: Deep-Learning Efficiency, Memory-Mapping, I/O Optimization

1. Introduction

With the demonstrable success of large foundation models, it is clear that leveraging exten-
sive training datasets can produce superior performance improvements. This trend towards
grand-scale data not only holds promise but also introduces notable challenges, particularly
for the training of medical imaging models. Medical datasets are generally large due to the
high-resolution nature of medical images, requiring a significant amount of computational
resources for efficient data handling and processing.

To address these challenges, innovations have been made to enhance medical image data
input/output (I/O) operations. Frameworks such as MONAI (Cardoso et al., 2022) have
developed specialized datasets - CacheDataset, PersistentDataset, and SmartCacheDataset
among others - that aim to optimize data loading efficiency and resource utilization. How-
ever, these approach still face limitations when dealing with exceptionally large datasets
when computational resources are constrained. Other approach such as “GPUDirect Stor-
age” (GDS) technique aims to accelerate the data loading through a direct memory access
from GPU, avoiding a bounce buffer through the CPU. Nevertheless, the efficiency of GDS
is still compromised when training with substantial volumes of data.

Due to the typically large size of medical images, random cropping strategy is frequently
adopted. Traditional eager loading strategies, wherein entire data is loaded into memory,
can lead to substantial system strain and efficiency gap. For many patch-based training
tasks, having the entire dataset in memory tends to be unnecessary. To mitigate these

© 2024 CC-BY 4.0, C. Wang, C. Zhang, Y. Liu & G. Yang.

https://creativecommons.org/licenses/by/4.0/


Wang Zhang Liu Yang

Figure 1: Simple illustration of lazy loading using memory-mapping technique.

limitations, this work presents a lazy loading approach that utilizes memory-mapping to
optimize data loading during training. In the context of medical deep learning, where
datasets comprise high-resolution images requiring considerable memory demand. Memory-
mapping permits sections of a dataset to be selectively read into memory, improving not
only memory utilization but also training speed. Lazy loading could be a fundamental
approach in enhancing the efficiency of deep learning training routines in medical imaging,
ensuring an optimization in performance without compromising the quality and integrity
of the learning process.

2. Method

To address the challenge of handling sizable medical datasets during deep learning training,
our method employs a tailored lazy loading strategy using memory-mapping techniques.
Memory-mapping technique has been widely used in many field, its application in accel-
erating the loading of medical images is a highly suitable use case. Simple workflow of
lazy-loading strategy is illustrated in Figure 1.

In the lazy loading strategy, instead of loading the entire image into memory, we directly
map the image file into the memory, enabling fast access to image data stored in local
storage. Detailed steps are described in Algorithm 2. For each image, memory-mapped
object is firstly created. Then, necessary metadata is extracted from memory-mapped
object without reading the complete file, and calculate ROIs based on the meta information
with given patch size. We then retrieve the actual data corresponding to each ROI directly
from local storage.

Memory-mapping technique not only reduces memory constraints but also decrease I/O
operation time, thereby accelerating the training pipeline. The complexity of lazy-loading is
in managing memory-mapping to function as an optimized data retrieval process, specifically
designed for 3D medical images. Fortunately, third-party libraries like NumPy (Harris et al.,
2020) and NiBabel (Brett et al., 2024) offer various memory-map APIs, which effectively
aid in implementing this strategy. The pre-release version is publicly avaiable on Github1.

3. Results

We evaluated the efficiency of lazy-loading for spleen segmentation from 3D CT scans
(MSD challenge), and lung nodule detection from the LIDC public dataset. For spleen
segmentation, we trained on 32 CT images with randomly cropped patches of 96× 96× 96

1. https://github.com/Project-Strix/MONAI

2



Lazy loading

Algorithm 1 Lazy Loading (Random)

Input: D, medical image paths; s patch size
Output: P, output patches
Function Main:

P← ∅
foreach d in D do

mmapped obj ← mmap(d) ; // Get memory-map object to address space

meta← GetMetaInfo(mmapped obj) ; // Get meta info of data

ROIs← RandomSample(meta, s) ; // Random ROIs generation

foreach ROI in ROIs do
p← mmap(mmapped obj,ROI); // Retrieve ROI data from mmapped obj

P← P ∪ {p}
end

end
return P

Figure 2: Training time of spleen segmentation (left) and lung nodule detection (right).

for 600 epochs on a single NVIDIA RTX 3090 GPU, comparing three loading strategies:
no-caching loading, fully cached loading, and lazy-loading. Lung nodule detection training
employed 830 CT images with 128×128×64 crops for 300 epochs on a single NVIDIA A100
GPU, where we only compared the baseline with lazy-loading since the entire dataset is too
large too be fully cached. The results are shown in Figure 2. Comparing to the baseline
no-caching loading, our lazy-loading achieved 3.2x and 1.5x speedup of segmentation and
detection task, respectively. It should be noted that acceleration rates may vary according
to the specific tasks and configurations involved..

4. Conclusion

Lazy-loading strategy could be a better fundamental loading strategy in patch-based medical
deep-learning training routines than the traditional no-caching loading. However, when
sufficient physical memory is available, full caching loading remains the optimal choice.
The integration of the lazy-loading strategy with the GDS technique is one of future works
that could further optimize training efficiency.

3



Wang Zhang Liu Yang

References

Matthew Brett, Christopher J. Markiewicz, Michael Hanke, Marc-Alexandre Côté,
et al. nipy/nibabel: 5.2.1, February 2024. URL https://doi.org/10.5281/zenodo.

10714563.

M. Jorge Cardoso, Wenqi Li, Richard Brown, et al. MONAI: An open-source framework
for deep learning in healthcare, 2022.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, et al. Array
programming with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/
s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

4

https://doi.org/10.5281/zenodo.10714563
https://doi.org/10.5281/zenodo.10714563
https://doi.org/10.1038/s41586-020-2649-2

	Introduction
	Method
	Results
	Conclusion

