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Abstract

Different languages have distinct phonetic sys-001
tems and vary in their prosodic features mak-002
ing it challenging to develop a Text-to-Speech003
(TTS) model that can effectively synthesise004
speech in multilingual settings. Furthermore,005
TTS architecture needs to be both efficient006
enough to capture nuances in multiple lan-007
guages and efficient enough to be practical for008
deployment. The standard approach is to build009
transformer based model such as SpeechT5 and010
train it on large multilingual dataset. As the011
size of these models grow the conventional fine-012
tuning for adapting these model becomes im-013
practical due to heavy computational cost. In014
this paper, we proposes to integrate parameter-015
efficient transfer learning (PETL) methods such016
as adapters and hypernetwork with TTS archi-017
tecture for multilingual speech synthesis. No-018
tably, in our experiments PETL methods able to019
achieve comparable or even better performance020
compared to full fine-tuning with only ∼2.5%021
tunable parameters1.022

1 Introduction023

Multilingual speech synthesis, generating speech024

in multiple languages from text input, represents025

a major advancement in speech processing with026

wide-reaching implications for global communi-027

cation (Tan et al., 2021; Mehrish et al., 2023b).028

Unlike single-language systems, multilingual archi-029

tectures break linguistic barriers, transforming edu-030

cation, entertainment, healthcare, and customer ser-031

vice by facilitating seamless communication across032

languages (Marais et al., 2020; Seong et al., 2021;033

Le et al., 2024; Panda et al., 2020).034

Current multilingual TTS architectures face chal-035

lenges (Nuthakki et al., 2023; Kaur and Singh,036

2023), including the complexity of modeling di-037

verse linguistic structures, phonetic variations, and038

1The code and samples are available at: https://
anonymous.4open.science/r/multilingualTTS-BA4C

prosodic features across languages. Resource con- 039

straints, such as the availability of multilingual cor- 040

pora and linguistic expertise, can impede model 041

development, particularly for low-resource lan- 042

guages or underrepresented dialects (Tan et al., 043

2021; Mehrish et al., 2023b). Addressing these 044

challenges requires concerted efforts in data collec- 045

tion, model development, and evaluation. 046

The advancement of architectural designs, cou- 047

pled with pre-training models such as SpeechT5 048

(Ao et al., 2021), reflects challenges similar to 049

those encountered in NLP. Achieving optimal per- 050

formance through fine-tuning these models for di- 051

verse downstream tasks or domain adaptations re- 052

quires substantial task-specific datasets. Moreover, 053

fine-tuning all model parameters necessitates sig- 054

nificant memory resources allocated to each task. 055

With limited data available for various underrepre- 056

sented languages, full fine-tuning can further leads 057

to poor generalization. Researchers have sought so- 058

lutions to these challenges through the exploration 059

of PETL methods (Li et al., 2023; Oh et al., 2023; 060

Chen et al., 2023; Sathyendra et al., 2022; Vander- 061

reydt et al., 2023; Le et al., 2021). However, their 062

investigation remains limited for TTS adaptation. 063

In this paper, we extends PETL approaches to 064

the multilingual TTS, focusing on adapter (Houlsby 065

et al., 2019) and Hyper-Network (Üstün et al., 066

2022). We pioneer the hyper-networks for mul- 067

tilingual TTS adaptation and introduces the Multi- 068

Conditioned HyperGenerator for multilingual TTS. 069

Our major contributions includes: (1) Regular & 070

Dynamic Adapters: We embed language-specific 071

parameters into SpeechT5 using regular adapters 072

and explore a hyper-network to generate these pa- 073

rameters, referred to as HyperGenerator. (2) Pa- 074

rameter Efficiency: We achieve comparable or su- 075

perior performance to full fine-tuning using only 076

about 2.44% of the parameters. (3) Improved Zero- 077

shot Performance: HyperGenerator outperforms 078

full finetuning and regular adapters on an unseen 079
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Figure 1: (a) SpeechT5 TTS architecture. (b) Encoder/decoder architecture with adapter. (c) HyperGenrator architecture.

language with the same parameter count.080

2 Related work081

Research on PETL methods for large multilingual082

pretrained models like XLSR (Vanderreydt et al.,083

2023) has gained significant attention, notably in084

Automatic Speech Recognition (ASR) (Fu et al.,085

2023; Zhang et al., 2023; Yu et al., 2023; Yang086

et al., 2023; Shi and Kawahara, 2024). Li et al. (Li087

et al., 2023) propose a benchmark utilizing XLSR-088

53 (Conneau et al., 2020), employing PETL such as089

regular adapters (Pfeiffer et al., 2020), prefix tuning090

(Li and Liang, 2021), and LoRA (Hu et al., 2021).091

Le et al. (Le et al., 2021) and Zhao et al. (Zhao092

et al., 2022) explore multilingual neural machine093

translation, focusing on lightweight adapter tuning.094

Morioka et al. (Morioka et al., 2022) advocate095

for integrating regular adapters with TTS models096

for few-shot speaker adaptation, while Mehrish et097

al. (Mehrish et al., 2023a) introduce a mixture of098

experts for low-resource speaker adaptation.099

3 Methodology100

3.1 Base Model Architecture: SpeechT5101

SpeechT5 (Ao et al., 2021) merges NLP and speech102

synthesis techniques, extending the transformer-103

based T5 architecture (Raffel et al., 2020). It in-104

tegrates self-attention mechanisms and CNNs to105

capture both temporal dependencies and spectral106

features in speech. By pre-training on large-scale107

speech corpora and fine-tuning on specific datasets,108

SpeechT5 excels in tasks such as speech recogni-109

tion, TTS, and speech translation.110

3.2 Adapter 111

In this work, we integrate language-specific param- 112

eters using adapter modules, commonly employed 113

in the NLP for multilingual or multi-task scenar- 114

ios (Ansell et al., 2021). Following the formulation 115

of (Houlsby et al., 2019), we insert one adapter 116

block after each convolutional block of every trans- 117

former module in the SpeechT5 model as shown in 118

Figure 1. Each adapter module, with fewer parame- 119

ters compared to the main network (SpeechT5), 120

down-projects the input to a lower-dimensional 121

space, applies a non-linearity, and then up-projects 122

back to the original dimensions. A residual connec- 123

tion is added to produce the final output. During 124

language adaptation, only the adapter parameters 125

are updated while keeping the main network frozen. 126

127

3.3 HyperGenerator 128

HyperGenerator consists of a hyper network (Üstün 129

et al., 2022) that generates the weights of all adapter 130

modules. As depicted in Figure 1, a single hyper- 131

network is employed to create adapters for multiple 132

languages and layers, with conditioning on (s, l, p), 133

where s denotes speaker embeddings, l represents 134

the target language, and p indicates the encoder or 135

decoder layer ID. This method, unlike traditional 136

adapters, promotes cross-language and cross-layer 137

information sharing, enabling the hyper-network 138

to efficiently distribute its capacity among them. 139

By adapting parameters based on speaker charac- 140

teristics and language specifics, the hyper-network 141

augments the effectiveness of adapters. Further- 142
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Model
de fr fi hu nl avg Params

MCD CER MCD CER MCD CER MCD CER MCD CER MCD CER

Finetune Multilingual w/o Pretrain 4.88 7.19 4.91 14.40 4.76 15.16 4.93 16.29 5.46 10.56 4.99 12.72 144M(100%)

Finetune Multilingual w/ Pretrain 4.87 6.66 4.95 11.82 4.82 12.64 5.00 15.52 5.51 10.28 5.03 11.38 144M(100%)
Adapter Multilingual w/ Pretrain 4.75 6.30 4.93 11.81 4.75 9.58 4.92 16.11 5.40 10.37 4.95 10.83 3.56M(2.47%)
HyperAdapter Multilingual w/ Pretrain 4.78 6.52 5.04 15.50 4.67 7.05 4.87 13.13 5.36 10.96 4.94 10.63 3.52M(2.44%)

Finetune Monolingual w/ Pretrain 4.86 6.44 4.85 10.80 4.67 15.09 4.90 15.54 5.53 8.47 4.96 11.27 144M(100%)
Adapter Monolingual w/ Pretrain 4.77 6.82 4.82 14.32 4.63 9.41 4.94 14.53 5.36 14.22 4.90 11.86 3.56M(2.47%)
HyperAdapter Monolingual w/ Pretrain 4.71 7.94 4.82 14.66 4.77 13.47 4.93 14.00 5.40 13.21 4.93 12.66 3.52M(2.44%)

Table 1: Evaluation results for seen languages along with the percentage of parameters updated during training.

Figure 2: Multilingual Masked Text Pretraining. Where
Lmlm and Ltts is mask language modeling and recon-
struction loss respectively.

more, to ensure network efficiency, we utilize a143

shared hyper-network to generate adapter param-144

eters across all layers within the TTS backbone,145

further conditioning it with the layer ID p.146

4 Experimental Setup147

4.1 Baseline and Dataset148

We developed a baselines with the following 3 con-149

figurations for comparing the performance of the150

adapter and HyperGenerator with full fine-tuning.151

Monolingual: We finetune the SpeechT5 individu-152

ally for each language, uniquely optimizing its pa-153

rameters to enhance speech synthesis performance.154

Multilingual: We finetune the SpeechT5 with di-155

verse speech data from multiple languages. This156

improves the model’s ability to understand and gen-157

erate speech across various linguistic contexts, cap-158

turing cross-lingual patterns, phonetic variations,159

and language-specific features.160

Multilingual Masked Text Pretraining: Multilin-161

gual models like multilingual BERT (Devlin et al.,162

2018) have demonstrated strong cross-lingual trans-163

fer capabilities in NLP tasks. Leveraging multilin-164

gual pre-training improves generalization to other165

languages without specific target data. In this set-166

tings, we extend MLM pre-training to SpeechT5 to167

enhance pronunciation and prosody transfer. The 168

left side of Figure 2 illustrates the unsupervised 169

pre-training of SpeechT5’s text encoder and de- 170

coder using text-only data Dtext with MLM. The 171

pre-trained text encoder is then integrated into the 172

TTS pipeline, as shown on the right side of Figure 173

2, and trained on paired speech-text data Dpaired. 174

For fine-tuning using monolingual and multi- 175

lingual configuration, as discussed in Section 4.1, 176

we leverage German (de), French (fr), Finnish (fi), 177

Hungarian (hu), and Dutch (nl)—as the five seen 178

European languages from the CSS10 dataset (Park 179

and Mulc, 2019). To evaluate zero-shot perfor- 180

mance, we use Spanish (es) as an unseen language. 181

For Multilingual Masked Text Pretraining, we uti- 182

lize transcripts from VoxPopuli (Wang et al., 2021), 183

M-AILABS (Bakhturina et al., 2021), and CSS10 184

(Park and Mulc, 2019) to pre-train the SpeechT5 185

text encoder-decoder for a character-based masked 186

language modeling task. 187

4.2 Training and Evaluation 188

We follow the data partition outlined in (Saeki et al., 189

2023). We use pretrained chekcpoint2 of SpeechT5 190

for all experiments. Speaker embeddings3 are set 191

at a dimension of 256, while language embed- 192

dings are initialized using pretrained weights from 193

lang2vec (Littell et al., 2017). The layer embedding 194

dimension is set at 64. The bottleneck dimension 195

for adapters is 128, whereas for HyperGenerator, 196

is 32 for ensuring the same number of parame- 197

ters across both architectures. We employed MCD 198

(Kominek et al., 2008) and assess intelligibility us- 199

ing Character Error Rates (CERs) computed with 200

the multilingual ASR (Radford et al., 2023)4 as 201

objective metrics. Furthermore, to evaluate natural- 202

ness, we conducted listening tests to calculate the 203

MOS of synthesized speech. We recruited five na- 204

tive speaker via Amazon Mechanical Turk (AMT) 205

2https://huggingface.co/microsoft/speecht5_tts
3Pretrained speaker verification model (Wan et al., 2018).
4https://github.com/openai/whisper
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Figure 3: Subjective evaluation on naturalness: MOS score

for each of the languages.

Model
es

MCD CER

Finetune Multilingual w/o Pretrain 5.75 39.32

Finetune Multilingual w/ Pretrain 5.87 34.80
Adapter Multilingual w/ Pretrain 5.39 45.94
HyperAdapter Multilingual w/ Pretrain 5.28 18.79

Table 2: Evaluation results for unseen language (es).

206

5 Results207

5.1 Objective and Subjective Evaluation208

Table 1 shows that Finetune Multilingual with Pre-209

training outperforms Finetune Multilingual with-210

out Pretraining due to multilingual masked text211

pretraining. Both Adapter and HyperGenerator212

achieve similar or better performance than full213

fine-tuning with significantly fewer parameters.214

Full fine-tuning updates 144M parameters, while215

Adapter and HyperGenerator use only 3.56M and216

3.52M parameters, respectively, with HyperGener-217

ator showing superior performance in multilingual218

settings with text pretraining.219

While the performance gain for HyperGenerator220

with seen languages is modest, it shows promise221

for zero-shot multilingual speech synthesis. Table222

2 shows that HyperGenerator achieved a CER of223

18.79% for Spanish, significantly lower than the224

over 30% CER for Multilingual Fine-tuning and225

adapter-based approaches. This highlights Hyper-226

Generator’s dynamic adaptability and potential for227

efficient and accurate zero-shot synthesis. Figure228

4 further demonstrates this, as speech from the229

same language clusters together, indicating Hyper-230

Generator’s ability to adjust parameters based on231

language, unlike static adapters. 232

40 20 0 20 40

10

0

10

20

30

Figure 4: t-SNE plot of HyperGenerator parameters for
6 languages from the CSS10 test set, with same colors
denoting speech samples from the same language.

MOS results (Figure 3a and Figure 3b) indicate 233

that Adapters and HyperGenerator perform as well 234

as or better than full fine-tuning in multilingual 235

contexts. HyperGenerator consistently achieved 236

the highest scores, with values of 3.09 for de and 237

3.81 for hu, demonstrating superior naturalness. 238

Similar trends in monolingual scenarios highlight 239

HyperGenerator’s effectiveness in generating high- 240

quality speech across different languages. 241

6 Conclusion 242

In this paper, we advances multilingual speech syn- 243

thesis using PETL methods like adapter fine-tuning, 244

achieving SOTA performance with fewer param- 245

eters. Introducing regular and dynamic adapters 246

with a hyper-network enhances efficiency and zero- 247

shot performance. Future work could optimize 248

adapters for specific languages, improve cross- 249

lingual transfer learning, and reduce model com- 250

plexity while maintaining high performance 251
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Limitations252

While our proposed approach shows promise in253

advancing multilingual TTS synthesis, there are254

several limitations that must be acknowledged. Ad-255

dressing these challenges will be crucial for enhanc-256

ing the robustness and applicability of our methods257

across a wider range of languages and use cases.258

The key limitations are as follows:259

• The performance of hypernetworks and260

adapters can vary greatly depending on the261

hyperparameters used. Adjusting these set-262

tings for each language and task is often a263

complex and time-consuming process that re-264

quires significant computational resources.265

• Languages such as Russian and Greek use266

scripts that differ from the Latin alphabet, like267

Cyrillic and Greek scripts, respectively. These268

scripts have unique rules for how letters and269

sounds are represented. The current PETL270

methods might not fully address these differ-271

ences, resulting in lower quality speech syn-272

thesis for these languages.273

• Symbolic languages, such as Chinese and274

Japanese, have unique linguistic elements like275

Chinese logograms and Japanese kana, as276

well as complex grammatical structures in lan-277

guages like Russian and Greek. The proposed278

architecture in its current form can struggle279

to handle these diverse features effectively,280

which means modification to these adapta-281

tion techniques are needed to improve per-282

formance.283

Potential Risk284

While our research aims to advance multilingual285

TTS technology, it is crucial to acknowledge the286

potential risks associated with such systems. We287

will discuss some associated risks as follows :288

• Malicious Use and Disinformation: The abil-289

ity of TTS systems to generate highly realistic290

speech could be used to create disinformation.291

This could lead to the spread of false informa-292

tion, manipulation of opinion, and erosion of293

trust in digital content.294

• Our research utilizes the publicly available295

CSS10 dataset, however utilization of person-296

alized data to adapt these models can have297

the risk of privacy violations. Therefore it298

is important to follow best data management 299

practices that do not inadvertently compro- 300

mise privacy. 301

• TTS systems are vulnerable to adversarial at- 302

tacks where small perturbations to the input 303

can lead to significant changes in the output. 304

Although the proposed framework is robust 305

to noise, the necessary security measures and 306

continuous testing of the system against po- 307

tential attacks can enhance resilience. 308

Ethical Considerations 309

The TTS system could be used to produce mis- 310

leading or harmful content. For instance, synthe- 311

sized speech could be exploited to create fake audio 312

recordings that mimic real individuals, potentially 313

leading to misinformation or fraud. Additionally, 314

the accessibility of TTS technology might raise 315

concerns about the unauthorized use of voices, in- 316

fringing on personal privacy and intellectual prop- 317

erty rights. 318
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