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Abstract

Continual learning aims to incrementally acquire new concepts in data streams
while resisting forgetting previous knowledge. With the rise of powerful pre-trained
models (PTMs), there is a growing interest in training incremental learning systems
using these foundation models, rather than learning from scratch. Existing works
often view PTMs as a strong initial point and directly apply parameter-efficient
tuning (PET) in the first session for adapting to downstream tasks. In the following
sessions, most methods freeze model parameters for tackling forgetting issues.
However, applying PET directly to downstream data cannot fully explore the in-
herent knowledge in PTMs. Additionally, freezing the parameters in incremental
sessions hinders models’ plasticity to novel concepts not covered in the first session.
To solve the above issues, we propose a Slow And Fast parameter-Efficient tuning
(SAFE) framework. In particular, to inherit general knowledge from foundation
models, we include a transfer loss function by measuring the correlation between
the PTM and the PET-applied model. After calibrating in the first session, the
slow efficient tuning parameters can capture more informative features, improv-
ing generalization to incoming classes. Moreover, to further incorporate novel
concepts, we strike a balance between stability and plasticity by fixing slow effi-
cient tuning parameters and continuously updating the fast ones. Specifically, a
cross-classification loss with feature alignment is proposed to circumvent catas-
trophic forgetting. During inference, we introduce an entropy-based aggregation
strategy to dynamically utilize the complementarity in the slow and fast learners.
Extensive experiments on seven benchmark datasets verify the effectiveness of our
method by significantly surpassing the state-of-the-art. Code will be available at
https://github.com/MIFA-Lab/SAFE.

1 Introduction

Continual Learning (CL) requires deep learning models to incrementally incorporate new concepts
from open-world data streams, while retaining previously learned knowledge. This presents a more
challenging yet practical setting compared to traditional deep learning, which typically recognizes
only closed-set categories. A variety of methods have been proposed for continual learning, in-
cluding regularization-based [17, 20, 47], rehearsal-based [5, 14, 31], and dynamic network-based
approaches [1, 43, 44]. These methods often assume that the model is trained from scratch, resulting
in a substantial performance gap when compared to the joint training upper-bound.
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Figure 1: Comparisons of (a) prevailing PTM-based CL methods [2, 23, 52] and our Slow And Fast
parameter-Efficient tuning (SAFE). The right part (b) illustrates several parameter-efficient tuning
(PET) blocks: Adapter [6], Scale & Shift (SSF) [21], and Visual Prompt Tuning (VPT) [16].

Most recently, with the emergence of powerful pre-trained models, there has been growing interest in
utilizing these foundational models as starting points for continual learning [23, 49, 52]. Pre-Trained
Models (PTMs) which are often trained on vast datasets, encapsulate a wealth of general knowledge,
effectively enhancing the performance of deep learning models in continual learning scenarios. As
shown in the left part of Fig. 1(a), for adapting PTMs from pre-training datasets to continual learning
datasets, prevailing works resort to parameter-efficient tuning (PET) techniques [6, 16, 21] in the first
session. To restrain catastrophic forgetting, in incremental sessions, these works set parameters of
the adapted model frozen [2, 15, 23, 52] and only update the classification weights in a training-free
manner (i.e., without gradient updates) to accommodate novel classes.

However, the above methods have two main limitations. First, direct parameter-efficient tuning in the
first session will largely lose the general knowledge inherent in PTMs. This is because PTMs are
pre-trained on a multitude of datasets while the dataset in the first session only contains relatively
limited samples. Without proper transfer mechanisms, the knowledge from PTMs may be overwritten
by the adapted model, which impedes the model’s generalizability to unseen classes. Second, freezing
parameters in the following sessions will hinder the plasticity of the model to further absorb new
concepts not learned in the first session, resulting in a sub-optimal solution. Although several efforts
have been made to mitigate the second limitation, existing works still face certain constraints such as
additional storage requirement [35, 49], inferior online branch performance [8] and linearly increased
model complexity [54].

Based on the above observations, in this paper, we propose Slow And Fast parameter-Efficient tuning
(SAFE) to address existing challenges. In particular, SAFE demonstrates a unified framework that
effectively inherits the generalizability of PTMs using slow parameter-efficient tuning (S-PET) and
provides sufficient plasticity to learn task-specific knowledge in each incremental session using the
fast one (F-PET). Meanwhile, SAFE does not require storing class distributions for data replay and
only incurs constant-level additional computation and memory costs.

To achieve the above goals, SAFE employs distinct strategies for the first and subsequent sessions.
In the first session, we focus on explicitly transferring general knowledge from pre-trained models
(PTMs) by introducing a knowledge transfer loss. This involves computing a correlation matrix
between feature embeddings from the PTM and the model with parameter-efficient tuning (PET).
The diagonal elements of this matrix are maximized to ensure that the features remain consistent
across both models, effectively aligning the PET-applied model’s performance with that of the
PTM. Simultaneously, minimizing the off-diagonal elements reduces redundancy in the embeddings,
enhancing feature discriminability. After this tuning process, parameters can retain generalizable
knowledge from the PTM. To prevent forgetting this knowledge, these trained parameters are
subsequently frozen, with only the classification weights being updated, thus designating this model
as the slow learner.
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In the incremental sessions, to address the plasticity limitations of the slow learner, we introduce
a fast learner capable of continuously integrating new concepts. Given the persistent challenge of
catastrophic forgetting in continual learning, the slow learner guides the training of the fast learner.
Concretely, we employ a feature alignment loss to minimize the distance between the embeddings
of both learners on a hypersphere. Additionally, a cross-classification loss is proposed to ensure
compatibility between the features of the fast learner and the classification weights of the slow learner,
and vice versa. This approach allows the fast learner to assimilate new knowledge without storing
exemplars or distributions, while also mitigating forgetting. For robust predictions, an entropy-based
aggregation strategy is implemented during inference to dynamically leverage the complementary
strengths of the slow and fast learners.

To summarize, the contributions of our paper are three-fold:

• To inherit the generalizable knowledge in PTMs that has been overlooked in existing continual
learning works, we propose to explicitly transfer knowledge from the PTM to a slow learner. Once
trained, the slow learner can generalize well to classes in incremental sessions.

• For improving the plasticity of CL models, we include a fast learner with guidance from the slow
learner to continuously incorporate novel concepts. Moreover, by aggregating both slow and fast
learners into a unified framework SAFE, robust predictions can be further made.

• The superiority of SAFE is validated on seven continual learning datasets where our method
consistently achieves remarkable state-of-the-art performance. For example, our method surpasses
the second-best result on ImageNet-A over 4%.

2 Related Work

Continual Learning. Traditional continual learning (CL) aims at continuously updating models with
data streams from scratch. Existing strategies involve regularization-based approaches [17, 20, 47, 51]
which prevent forgetting by regularizing network weights or predictions, rehearsal-based approaches
which replay historical data stored in a fixed-sized buffer [4, 9, 14, 25, 31], and architecture-based
approaches [1, 43, 44, 55] which dynamically expand models for novel classes. Among these
methods, a recent attempt to preserve knowledge based on slow and fast complementary theory
has been proposed [3, 22, 45]. Nevertheless, these approaches typically require adjusting all model
parameters, which increases the computational burden of the learning process. Contrarily, our
Slow And Fast parameter-Efficient tuning (SAFE) framework only requires much fewer learnable
parameters as well as fewer resources, while obtaining more favorable performance.

Continual Learning with Pre-Trained Models. With the emergence of powerful pre-trained
models (PTMs), it has become a hot topic to integrate pre-trained models with CL [29, 53] for better
performance. Prompt-based methods [30, 33, 39, 41, 42] utilize prompt tuning to adapt PTMs to new
tasks. However, these methods are tailored for Transformers [7, 37] and require an expanding prompt
pool with the arrival of new data. First session adaptation methods [2, 23, 52] adapt PTMs solely in the
first session and then freeze the model afterward to suppress forgetting [26, 32]. Nevertheless, these
works lack plasticity for classes in subsequent sessions. Contrarily, another line of works focuses
on continual adjustment [8, 35, 49, 54] to accommodate evolving information. However, the above
approaches either require storing data distributions [35, 49] for replay, only obtain inferior online
branch performance [8], or linearly increase complexity with incremental sessions [54]. Compared to
existing works, our method provides a flexible framework that boosts generalizability by inheriting
PTM’s knowledge in the first session and maintains plasticity for incremental classes with constant
complexity in a replay-free manner.

3 Method

3.1 Problem Definition

Following previous works [8, 23, 49, 52], in this paper, we mainly consider PTM-based CL under a
class-incremental learning setting. Formally, the model is trained sequentially on a series of incre-
mental sessions, where Dt = {(xti, yti)}

Nt
i=1 ⊂ {X t,Yt} represents the t-th training set composed

of Nt samples, for t ∈ {1, 2, . . . , T}. The sample and label space of Dt are denoted by X t and Yt,
where Yt is disjoint between different sessions, i.e., ∀i, j and i ̸= j, Yi ∩ Yj = ∅. We follow the
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Figure 2: An overview of our SAFE framework. In the first session, PTM transfers knowledge to the
slow learner for better generalization. In sessions t > 1, the fast learner is guided by the slow learner
for enhanced plasticity. During inference, robust predictions are made by dynamic aggregation.

replay-free setting, where only Dt is accessible in session t. After training in the t-th session, the
model is evaluated on all the seen classes so far: Y1:t = Y1 ∪ Y2 · · · ∪ Yt. In addition, we also
validate our method on domain-incremental learning setting, where the data distribution between
sessions shifts significantly, i.e., ∀i, j and i ̸= j, P (X i) ̸= P (X j), Yi = Yj .

3.2 Overall Architecture

For tackling the stability-plasticity dilemma in CL, we draw inspiration from the complementary learn-
ing systems theory [19] to develop a Slow And Fast parameter-Efficient tuning (SAFE) framework,
as depicted in Fig. 2. In the first session, the slow learner is tuned to inherit the general knowledge
from PTM and is frozen afterward. In the following sessions, the slow learner only updated its classi-
fication head using imprinted weights [28], which acts like the neocortex to slowly incorporate novel
knowledge without forgetting. Complementary to this, the fast learner with learnable parameters
rapidly encodes novel information as the hippocampus for adapting to new classes.

Formally, features extracted from PTM, slow learner and fast learner are denoted as fl = ϕl(x) ∈ Rd,
where l ∈ {PTM, slow, fast} and d is the feature dimension. To leverage the knowledge of PTMs
with few learnable parameters and resources, feature extractors for the slow and fast learners are
trained using parameter-efficient tuning (PET) [6, 16, 21] which are referred to as S-PET and F-PET,
respectively. Consistent with prior works [23, 52, 54], we mainly consider three types of PETs:
Adapter [6], SSF [21], and VPT [16], shown in the right part of Fig. 1.

The classification weights in session t for the slow and fast learners are symbolized byWl ∈ Rd×|Y1:t|,
l ∈ {slow, fast}, where |Y1:t| is the number of classes seen so far from session 1 to session t. For the
slow learner, Wslow is learned in the first session and expanded using feature centroids of training
samples within the same classes [28] afterward to preserve learned general knowledge. Contrarily,
Wfast is trainable as CL progresses for the plasticity purpose.

In the following sections, we provide the details of slow and fast learner training in Section 3.3 and
Section 3.4. After that, discussions about model inference are presented in Section 3.5.

3.3 Slow Learner

Benefiting from pre-training on large-scale resources, pre-trained models (PTMs) inherently possess
strong generalizability for downstream tasks. Previous works [23, 35, 52] typically view the PTM as
a preferable starting point for continual learning. To bridge the distribution gap between pre-training
datasets and downstream datasets, these methods often directly apply PET to PTMs.
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However, without proper transfer mechanisms, models directly tuned on downstream data cannot
effectively inherit the general knowledge from PTMs. More seriously, the intrinsic knowledge in
PTM may be overwritten during adaptation to the recent dataset, since it often contains relatively
limited samples. To solve the above issues, we propose to effectively squeeze out information from
PTMs and explicitly transfer it to adapted models.

Concretely, in the first session, we calculate the cross-correlation matrix M ∈ Rd×d between the
features of the slow learner and the PTM:

M i,j =
1

Nb

Nb∑
k=1

[ϕPTM(xk)]i · [ϕslow(xk)]j , (1)

where Nb is the batch size, d is the feature dimension and “·” denotes element-wise multiplication1.
Moreover, i and j index the dimensions of the features and matrices. In fact, the correlation matrix
characterizes the relationship between feature embeddings of PTM and the slow learner. The i-th row
and j-th column of M measures the correlation between the i-th feature dimension (also termed as
channel or pattern in the literature) of the PTM and the j-th feature dimension of the slow learner.

To encourage the PET-applied model to mimic the performance of the PTM, we maximize the
elements in the diagonal. This maximizing term ensures the slow learner can learn invariant feature
components that match the statistics of the PTM:

Ldiag =
1

d

d∑
i=1

(1−M i,i)
2. (2)

Additionally, we reduce the redundancy between patterns in embeddings to enhance discriminability.
This can obtained by decreasing the off-diagonal elements in M with Lrdn:

Lrdn =
1

d · (d− 1)

d∑
i=1

∑
j ̸=i

M2
i,j . (3)

Combined with the classification loss Lcls using cross-entropy (CE):

Lcls =
1

Nb

Nb∑
i=1

CE(W⊤
slow ⊙ ϕslow(xi), yi), (4)

where “⊙” denotes matrix multiplication, the overall loss function during the first training session is
defined as:

Lslow = Lcls + λdiag · Ldiag + λrdn · Lrdn. (5)

In Eq. (5), λdiag and λrdn are the balancing hyper-parameters. Intuitively, the joint optimization of
three losses makes the adapted model simultaneously acquire distribution-specific knowledge based
on Lcls and inherit general knowledge of the PTM using Ldiag and Lrdn. As a result, the slow model
can better generalize to incoming classes even unseen in the first training session.

3.4 Fast Learner

Although solely using the slow learner with general features already obtains competitive performance,
the plasticity of the model is hindered due to its frozen parameters in the following sessions. To
strike a balance between stability and plasticity, we adopt the fast learner to continuously learn
episodic information for novel classes. However, updating representations without data reply will
lead to semantic drift [35, 46, 49], causing catastrophic forgetting of previously learned knowledge.
Existing works to address this problem either store additional data distributions [35, 49] or require
sophisticated drift estimations after each session [35, 46]. Compared to previous works, our method
imposes no such constraints, and aligns the models before and after updates in a single embedding
space, essentially addressing semantic drift.

1Following [14], in this paper, we use l2 normalization to map features and classification weights onto a
hypersphere before element-wise or matrix multiplication. Normalization is omitted to simplify notation.
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First, the fast learner is trained with guidance from the slow learner using feature alignment to
preserve prior representations. Specifically, the distance of feature embedding from both models is
minimized on a hypersphere to alleviate forgetting:

Lcos =
1

Nb

Nb∑
i=1

(1− cos(ϕslow(xi), ϕfast(xi))) , (6)

where Nb is the batch size and cos denotes cosine similarity of two vectors.

Furthermore, we utilize cross-classification which contains a fast-to-slow loss and a slow-to-fast loss
to maintain previous decision boundaries. For fast-to-slow calibration, we feed features from the
fast learner to the classification layer of the slow learner. This objective makes features from the fast
model compatible with the decision boundaries of the slow one to suppress semantic drift. Moreover,
since the classification weight vector of each class can be viewed as a prototype of that class [28, 34],
we also use these vectors as inputs for further preserving knowledge from previous sessions:

Lf2s =
1

Nb

Nb∑
i=1

CE(W⊤
slow ⊙ ϕfast(xi), yi) +

1

|Y1:t−1|

|Y1:t−1|∑
j=1

CE(W⊤
slow ⊙W

(j)
fast, j), (7)

where W (j)
fast ∈ Rd denotes the j-th column of Wfast, which is also the prototype for class j in the

fast learner. Similarly, slow-to-fast loss Ls2f can be derived by swapping the fast and slow terms in
Eq. (7). After that, the cross-classification loss can be defined as Ls↔f = Lf2s + Ls2f .

Along with the classification loss Lcls in Eq. (4) applied to the fast learner, the optimization objective
in the incremental phase is defined as:

Lfast = Lcls + Ls↔f + λcos · Lcos, (8)

where λcos is the balancing hyper-parameter. The loss function Lfast smoothly adapts the fast learner
to new knowledge while enforcing consistency with previously acquired knowledge, which boosts
the plasticity of the model without severe forgetting.

3.5 Model Inference

Since the slow learner inherits general knowledge and the fast learner contains task-adaptive knowl-
edge, we can obtain robust predictions by utilizing the complementarity of them. We first introduce
the inference using a single learner and then provide aggregation strategy based on both learners.

Single-learner-based Inference. Following previous work [23, 26], instead of directly using the
classification weights Wl and features ϕl(x), l ∈ {slow, fast} for prediction, we take advantage
of second-order statistics and prototype information for better performance. Formally, given a test
sample x, the predicted logits of each learner zl are calculated as:

zl = W̃⊤
l ⊙ (G+ βI)−1 ⊙ hl(x) ∈ R|Y1:t|, (9)

where β is a hyper-parameter for regularization, hl(x) ∈ RM is projected feature of x and classifi-
cation weights W̃l ∈ RM×|Y1:t| is composed of summations of projected features with same class
labels. Gram matrix G ∈ RM×M is cumulated based on training data from session 1 to t:

G =

t∑
s=1

Nt∑
i=1

hl(x
s
i )⊙ hl(xsi )⊤, hl(xsi ) = ψ(W⊤

rand ⊙ ϕl(xsi )). (10)

In Eq. (10), Wrand ∈ Rd×M is the projection matrix with each column sampled from N (0, σ2I), ψ
is a nonlinear activation function and I denotes the identity matrix. Mathematically, Eq. (9) defines a
more general form of regular linear prediction. When Wrand is I and ψ is not applied, it degrades to
a ridge regression [13]. Moreover, if G is removed, the classifier further reduces to NCM [24].

Aggregation-based Inference. As discussed in the above sessions, slow and fast learners excel in
handling classes from different sessions. Due to its plasticity, the fast learner can better recognize
categories from the latest several sessions but shows limited performance on the old ones caused by
potential forgetting. Contrarily, despite limited novel concept adaptation, the slow learner can capture
historical knowledge thanks to its stability. Intuitively, when dealing with proficient categories, the

6



model exhibits higher confidence in predictions. Motivated by this, we use entropy to measure the
confidence and dynamically aggregate the logits for robust predictions.

Given a test sample, we compute the entropy of predictions using H = −
∑

i pi log pi for each
learner, obtaining Hslow and Hfast, where p = softmax(z) is predicted probability. As lower
entropy indicates less uncertainty in predictions, the confidence of each learner can be represented
by [αslow, αfast] = softmax([−γ · Hslow,−γ · Hfast]), where γ is a scalar to control the peakiness of
output distributions. After that, the aggregated logits zaggregate automatically assign higher weights
to predictions with higher confidence, and can be obtained using a convex combination:

zaggregate = αslow · zslow + αfast · zfast. (11)

Finally, the prediction is obtained using the index of the max element in zaggregate in session t > 1,
while using zslow instead in session 1 since the fast learner is not available in that session.

4 Experiments

In this section, we first introduce the implementation details of our proposed method SAFE and then
compare it to the state-of-the-art on seven popular benchmark datasets. After that, detailed ablative
experiments are conducted to validate the effectiveness of each component.

4.1 Experimental Setups

Datasets and Evaluation. Following previous methods [23, 52, 54], our evaluations are conducted
on seven benchmark datasets: CIFAR100 [18], ImageNet-R (IN-R) [11], ImageNet-A (IN-A) [12],
CUB200 [38], Omnibenchmark (OB) [50], VTAB [48] and DomainNet [27]. Previous state-of-
the-art PTM-based CL methods are chosen for comparison, including L2P [42], DualPrompt [41],
CODAPrompt [33], ADaM [52], RanPAC [23], SSIAT [35], and SLCA [49]. We adopt final accuracy
AccT and average accuracy Accavg = 1

T

∑T
t=1 Acct as evaluation metrics.

Implementation Details. Consistent to existing works [23], we adopt ViT-B/16-IN1K and ViT-
B/16-IN21K as the PTM and apply Adapter [6], SSF [21] or VPT [16] for parameter-efficient tuning
(Appendix A). In each session, we train the model for 20 epochs using SGD optimizer, weight
decay of 0.0005, momentum of 0.9, and a cosine annealing schedule where learning rate starts from
0.01 and decays to 0. The batch size is set to 48. In addition, β in Eq. (9) is selected based on the
performance on the training data similar to [23]. For other hyper-parameters used in our method,
we find λdiag = 0.1, λrdn = 100, λcos = 50, γ = 1 is a reasonable set of default choices. Detailed
hyper-parameter sensitivity analyses are provided in Appendix D.

4.2 Comparisons with State-of-The-Arts

In this section, we compare the proposed method SAFE with several state-of-the-art approaches
across seven datasets: CIFAR100, ImageNet-R, ImageNet-A, Omnibenchmark, CUB200, VTAB and
DomainNet. For fairness, all methods are implemented with the same ViT [7] backbones.

Table 1: Performance on DomainNet.

Method Final Acc.

L2P [42] 40.2
S-iPrompts [40] 50.6
ADaM [52] 50.3
RanPAC [23] 66.6

Slow learner 67.04
Fast learner 67.49
SAFE (ours) 67.82

The class-incremental learning results from the final session
are reported in Table 2. As shown in Table 2, our method
consistently achieves the best performance among all bench-
marks. Notably, we significantly surpass the second-best
result on ImageNet-A by 4.4%. When compared to methods
storing additional data distributions for replay [35, 49], our
method is replay-free and can still outperform these methods
by a significant margin. In addition, we improve the average
accuracy over six datasets by 2.1% compared to the previ-
ous best approach [23]. The aforementioned superiority can
contribute to the generalizability and plasticity of our method
within a unified framework.

For domain-incremental learning, results on DomainNet with 6 different domains are summarized in
Table 1. Our method SAFE can outperform the second-best result by 1.2%, demonstrating that the
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proposed framework is applicable to scenarios where the data distribution of the first task diverges
significantly from that of subsequent tasks.

Table 2: Performance comparisons on six class-incremental learning datasets. The final accuracy (%)
of each dataset is reported in the table, and the last column presents the averaged accuracy over all
the datasets. Methods with/without data replay are noted using “w/” and “w/o”, respectively.

Method Replay CIFAR IN-R IN-A CUB OB VTAB Avg

SLCA [49] w/ 91.5 77.0 59.8 84.7 73.1 89.2 79.2
SSIAT [35] 91.4 79.6 62.2 88.8 - 94.5 -

L2P [42]

w/o

84.6 72.5 42.5 65.2 64.7 77.1 67.8
DualPrompt [41] 81.3 71.0 45.4 68.5 65.5 81.2 68.8
CODAPrompt [33] 86.3 75.5 44.5 79.5 68.7 87.4 73.7
ADaM [52] 87.6 72.3 52.6 87.1 74.3 84.3 76.4
EASE [54] 87.8 76.2 55.0 86.8 74.9 93.6 79.1
RanPAC [23] 92.2 78.1 61.8 90.3 79.9 92.6 82.5

SAFE (ours) w/o 92.8 81.0 66.6 91.1 80.9 95.0 84.6

4.3 Ablation Study

To investigate the factors contributing to the success of SAFE, we validate the effectiveness of our
key components: the slow learner (SL) in Section 3.3, the fast learner (FL) in Section 3.4, and the
entropy-based aggregation in Section 3.5. Experiments are primarily conducted on IN-A dataset.

Effectiveness of the Slow Learner. We assess the effectiveness of the slow learner from three
perspectives. Firstly, as depicted in Table 3, when the slow learner is added to the baseline [23],
the final accuracy increases by 3.2% and the average accuracy increases by 2.1%. This observation
verifies that the slow learner can generalize well to the incremental classes.

(a) Baseline (b) Ours

Centroids
Old Classes
New Classes

Figure 3: Comparisons with T-SNE visualization.

Secondly, we expect the slow learner to inherit
generalizability from the PTM. To dive deeper
into this aspect, we visualize the embeddings
of five unseen classes and five seen classes by
T-SNE [36] after the first session adaptation.
As shown in Fig. 3, the embedding space of
the slow learner exhibits distinct separation be-
tween the seen and unseen classes. Note that
the feature distributions with SL in the grey el-
lipse become more separable compared with the
baseline method. This illustrates the successful
integration of generalization capabilities from
the PTM into the slow learner.

Furthermore, we explore other alternatives for transferring generalizability, including feature align-
ment (FA) by distilling PTM’s features, logits alignment (LA) by distilling PTM’s predictions, and
second-order statistics alignment (SSA) by distilling PTM’s covariance. Table 5 presents the average
and final accuracy of the substitutions on IN-A, with the best results highlighted in bold. It is observed
that our slow learner can consistently outperform these variations, validating its superiority.

Effectiveness of the Fast Learner. As shown in the third row of Table 3, compared to the slow
learner, using only the fast learner can obtain 1.1% improvements in the final accuracy. This indicates

Table 3: Overall ablation study on IN-A.

Method Final Avg

Baseline 62.21 72.31
Slow Learner 65.44 74.41
Fast Learner 66.49 74.50
Slow & Fast Learner (SAFE) 66.56 74.71

Table 4: Ablation study of aggregation.

Method Final Avg

Features Concatenate 65.59 73.22
Logits Add 65.90 73.31
Logits Max 66.03 73.46
Entroy-based Aggregate 66.56 74.71
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Table 5: Ablation study of the slow learner.

Method Final Avg

Baseline 62.21 72.31
Baseline + FA 62.81 73.35
Baseline + LA 64.06 73.70
Baseline + SSA 63.20 73.00
Baseline + Lslow (Slow Learner) 65.44 74.41

Table 6: Ablation study of the fast learner.

Method FT Ls↔f Lcos Final Avg

Baseline 62.21 72.31
Finetune directly ✓ 8.16 30.73
Finetune w/ Ls↔f ✓ ✓ 65.31 73.88
Finetune w/ Lcos ✓ ✓ 66.07 74.20
Fast Learner ✓ ✓ ✓ 66.49 74.50

更大字号

Figure 4: Validations on the necessity of the aggregation on IN-R. We provide detailed classification
accuracy of test samples from different sessions. Results of the slow learner, the fast learner and
SAFE are presented for comparison.

that the fast learner is properly guided by the slow learner, and thus can continuously adapt to novel
classes with suppressed forgetting.

Subsequently, we present the necessity of each regularization term in the fast learner. As shown
in Table 6, without Ls↔f and Lcos, the performance drops to lower than 10% due to catastrophic
forgetting. To alleviate forgetting, both Ls↔f and Lcos are applied. Specifically, solely using Ls↔f

results in an improvement of 3.1% compared to the baseline, while using only Lcos yields a gain of
3.9% over the baseline. Moreover, with all the proposed loss functions, the fast learner can obtain the
best performance, validating the effectiveness of each regularization term.
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Figure 5: Aggregation weights for the
slow learner and fast learner on IN-R.

Effectiveness of Aggregation. As shown in the last row
of Table 3, the combination of the slow and fast learners
presents the best result. This observation is consistent
with the complementary learning systems theory [19] that
memory necessitates the presence of both a slow learner
and a fast learner for improved performance.

To gain deeper insights into the necessity of both learners,
we elaborate on their final accuracy of classes from each
session. In Fig. 4, the slow learner, mimicking the neocor-
tex, initially stores structured information and performs
well on relatively old classes (0-119). Conversely, the
fast learner, resembling the hippocampus, swiftly adapts
novel concepts and excels in more recent classes (120-199).
From this perspective, combining these two complemen-
tary learners leverages their strengths across the training
process, resulting in superior model performance.

In addition, Fig. 5 illustrates how the aggregated model dynamically leverages the strengths of
both learners. Concretely, the horizontal axis represents the class indices to which each test sample
belongs, while the vertical axis shows the average aggregation weights of each learner assigned to
these test samples. It is observed from Fig. 5 that, for classes 120-199, the fast learner consistently
shows higher weights, which is consistent with its superior classification accuracy in these classes as
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depicted in Fig. 4. For classes 0-119, the slow learner obtains higher weights, generally aligning with
its demonstrated stability and better performance on these classes shown in Fig. 4. By adaptively
balancing the contributions of both learners, our method achieves a harmonious trade-off between
stability and adaptability.

Moreover, we undertake detailed comparisons to other merging strategies to validate the effectiveness
of our aggregation choice. As depicted in Table 4, we compare our entropy-based aggregation with
three alternatives: feature concatenation, logits addition, and logits max. We report the final and
average accuracy, where the results elucidate that the entropy-based aggregation fully leverages both
learners and achieves the best performance.

4.4 Memory Usage

Final Accuracy
Parameter Size

Methods (parameter size from small to large)

Figure 6: Memory usage comparison.

In this section, we investigate the number of
learnable parameters in different methods and
report the parameter-performance comparison.
Since no exemplars are stored in our method,
the primary storage cost is attributed to the train-
able model parameters introduced by parameter-
efficient tuning (PET). Although PET entails
additional parameters, it is still small relative to
the overall size of the pre-trained model (PTM).
Moreover, as the parameter-performance trade-
off shown in Fig. 6, our method SAFE utilizes
a similar scale of parameters as existing PTM-
based methods while achieving substantial per-
formance improvements.

5 Conclusion

In this paper, we introduced SAFE, a Slow And Fast parameter-Efficient tuning framework for
continual learning. Our approach leverages the inherent knowledge in pre-trained models (PTMs)
while maintaining model plasticity for novel concepts. By incorporating a transfer loss function, we
ensure the preservation of general knowledge from PTMs. In the first session, we calibrate slow
efficient tuning parameters to enhance the model’s ability to generalize to new classes. To balance
stability and plasticity, we fix the slow efficient tuning parameters and continuously update the fast
ones, employing a cross-classification loss with feature alignment to prevent catastrophic forgetting.
During inference, we introduce an entropy-based aggregation strategy for dynamic utilization of
the complementarity between the slow learner and the fast learner. Extensive experiments on seven
benchmark datasets demonstrate that our method significantly surpasses the state-of-the-art, validating
the effectiveness of our approach.

Limitations: Our approach is built upon RanPAC [23], and as such, it shares some of the same
limitations. For instance, our method relies on a strong feature extractor to effectively inherit
generalizability from PTMs, making it less suitable for scenarios where training needs to be per-
formed from scratch or starting from rather small tasks. Additionally, our method introduces three
hyper-parameters to balance the loss functions during training, as previously discussed. While
our experiments demonstrate that a set of default values works well across the benchmark datasets
evaluated in our work, we acknowledge that these choices might not be optimal when applied to
datasets with essentially different statistical characteristics. Furthermore, slowly updating the slow
learner periodically, rather than keeping it fixed in subsequent sessions, may further enhance the
model’s adaptability and could be a promising direction for future research.
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Appendices

A Parameter-Efficient Tuning (PET)

Trained on vast amounts of data, models with billions of parameters exhibit remarkable performance
across various tasks. However, the expansive scale and computation pose considerable challenges
when customizing them for downstream deployment. From this perspective, parameter-efficient
tuning (PET) provides a practical solution by effectively adapting the large pre-trained models with
limited additional parameters.

Parameter-efficient tuning selectively adjusts a small proportion of the model parameters while
keeping the rest frozen. In this way, pre-trained models (PTMs) can partially keep the generalization
and deal with domain gaps at a low resource cost [10]. Motivated by this, PTM-based continual
learning models leverage PET in their paradigm to achieve desirable results [23, 52, 54]. Typically,
continual learning works leverage ViT-B/16-IN1K and ViT-B/16-IN21K as the backbones and fine-
tune the model mainly with three PET algorithms: Adapter [6], Scale & Shift (SSF) [21] and Visual
Prompt Tuning (VPT) [16], which are introduced in the following:

Adapter: Adapters are small additional layers inserted into the layers of a PTM. Each adapter
layer generally consists of three parts: a down-projection layer Wdown ∈ Rd×r which reduces the
input feature dimension, a non-linear activation function (e.g., ReLU), and an up-projection layer
Wup ∈ Rr×d which projects features back to the original dimension. Specifically, given an input
x ∈ RL×d, the output y ∈ RL×d is expressed as:

y = MLP(x) + ReLU(x⊙Wdown)⊙Wup, (12)

where L, d and r represent the length of the input feature sequence, original feature dimension and
projected feature dimension. In the above equation, “⊙” denotes matrix multiplication.

Scale & Shift (SSF): SSF involves two main operations: scaling, which multiplies each feature by a
learnable vector to adjust its spread, and shifting, which adds a trainable vector to each feature to
change its central position. In the context of fine-tuning PTMs, SSF helps to normalize the feature
distributions and adjust to new data. This improves performance and robustness by maintaining
consistency in distribution. Specifically,

y = γ · x+ β, (13)

where γ ∈ Rd and β ∈ Rd are the scaling and shifting vectors, respectively. Moreover, “·” represents
element-wise multiplication.

Visual Prompt Tuning (VPT): VPT extends original input features with lightweight learnable tokens
and the extended features will be fed into subsequent transformer blocks of ViT [7] to obtain the final
adapted embedding. Concretely, denote the learnable prompts as P ∈ RK×d, extended features can
be expressed as:

y = [P ,x] , (14)

where K is the length of the prompt and y ∈ R(K+L)×d is the extended feature.

B Effects of PET to SAFE

In the main paper, we report the remarkable performance of the proposed SAFE framework under the
same PET setting as [23]. In this section, we demonstrate that the proposed approach is a general
framework that is compatible with diverse PET modules. Specifically, we combine SAFE with
Adapter [6], Scale & Shift(SSF) [21] and Visual Prompt Tuning (VPT) [16]. As depicted in Table 7,
we report the final accuracy on six datasets compared with the baseline method [23].

As shown in Table 7, the proposed SAFE framework outperforms the baseline across various PET
modules by a substantial margin. It is worth noting that the proposed method consistently exceeds
the baseline on ImageNet-A by over 4% with different PET modules. We also achieve performance
improvements by 2.2% with Adapter, 3.1% with SSF, and 3.0% with VPT on ImageNet-R. These
results demonstrate the general applicability of our framework across PET algorithms.
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Table 7: Performances of SAFE and our baseline PanPAC [23] with three different parameter-efficient
tuning (PET) modules on six datasets. The rows in shadow show improvements compared to the
baseline. The best results are in bold.

Method PET CIFAR IN-R IN-A CUB OB VTAB Avg

Baseline
Adapter

92.2 77.8 59.9 90.3 79.6 92.6 82.1
SAFE (ours) 92.8 80.0 64.1 91.1 80.3 94.3 83.8
Improve +0.6 +2.2 +4.2 +0.8 +0.7 +1.7 +1.7

Baseline
SSF

90.3 77.9 62.4 89.9 78.8 92.2 81.9
SAFE (ours) 91.6 81.0 66.6 91.0 79.8 95.0 84.2
Improve +1.3 +3.1 +4.2 +1.1 +1.0 +2.8 +2.3

Baseline
VPT

90.0 76.7 61.2 89.7 79.9 91.6 81.5
SAFE (ours) 92.2 79.7 65.7 90.8 80.9 93.4 83.8
Improve +2.2 +3.0 +4.5 +1.1 +1.0 +1.8 +2.3

C Pseudo-code

For the detailed training procedure of the slow learner in Section 3.3 and the fast learner in Section 3.4,
we summarize the pseudo-code of our method SAFE training in Algorithm 1.

Algorithm 1 Model Training in Incremental Session t
Input: Model from session t− 1, training data Dt from session t.
Output: Updated model in session t.
1: Phase 1: Slow learner in session t = 1.
2: Freeze pre-trained model parameters θPTM.
3: Randomly initialize classification weights Wslow and efficient tuning parameters θS-PET.
4: while not done do
5: {(x, y)} ← sample a batch of data from D1.
6: Calculate the correlation matrix in Eq. (1) and losses Ldiag, Lrdn in Eq. (2), Eq. (3).
7: Calculate the overall loss function Lslow in Eq. (5).
8: Update {Wslow, θS-PET} with gradients∇Lslow.
9: end while

10: Replace Wslow with imprinted weights (i.e., feature centroids of each class in D1).
11: Freeze parameters {Wslow, θS-PET}.
12:
13: Phase 2: Fast Learner in session t > 1.
14: Expand Wslow(Rd×|Y1:t−1| → Rd×|Y1:t|) with imprinted weights using ϕslow and Dt.
15: Expand Wfast(Rd×|Y1:t−1| → Rd×|Y1:t|) with imprinted weights using ϕfast and Dt.
16: Initialize the fast learner’s efficient tuning parameters θF-PET from session t− 1.
17: while not done do
18: {(x, y)} ← sample a batch of data from Dt.
19: Calculate feature alignment loss Lcos in Eq. (6) and cross-classification loss Ls↔f in Eq. (7).
20: Calculate the overall loss function Lfast in Eq. (8).
21: Update {Wfast, θF-PET} with gradients ∇Lfast.
22: end while

D Further Ablations

Hyper-Parameters Sensitivity. Our framework SAFE includes 4 hyper-parameters: λdiag and λrdn
for the slow learner, λcos for the fast learner, and γ for aggregation. In this section, we supply detailed
hyper-parameter sensitivity analyses on ImageNet-A. Results for λdiag and λrdn are depicted in
Fig. 7, while the results for λcos are shown in Table 8. Moreover, Table 9 presents the experiment on
γ. It is observed that hyper-parameters remain relatively stable within a certain range. For example,
the slow learner can achieve satisfactory results with λdiag in the range from 0.1 to 1, and λrdn in the
range from 100 to 500. The fast learner can obtain good performance with λcos in the interval from
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50 to 100. Moreover, the aggregation module works well by simply setting γ to 1. As a result, we set
λdiag = 0.1, λrdn = 100, λcos = 50, γ = 1 as the default choices of hyper-parameters as stated in
Section 4.1 of our main paper.

Figure 7: Ablations of hyper-parameter sensitivity on λdiag and λrdn for the slow learner.

Table 8: Ablation of λcos on the fast learner.

λcos 0 0.1 1 10 50 100

FL 18.56 21.33 40.49 65.20 66.49 66.08

Table 9: Ablation of γ on the aggregated model.

γ 0 0.1 1 5 10 100

SAFE 65.90 66.36 66.56 66.50 66.24 66.03

Teacher Models for the Fast Learner. As discussed in Section 3.4, the fast learner is guided by the
slow learner during adapting to novel classes. In this section, we provide additional experiments on
the choice of the teacher model which guides the training of the fast learner. We conduct comparisons
on training the fast learner directly (None teacher), using the pre-trained model as a teacher (PTM)
and using the fast learner from the last session as a teacher (t− 1). As shown in Table 10, utilizing
the slow learner as a teacher model surpasses all the alternatives. This is because the slow learner can
provide generalizable knowledge to the fast learner and simultaneously alleviate forgetting.

Table 10: Ablation of the teacher model for the fast learner.

Teacher Fast learner
Final Avg

None 8.16 30.73
PTM 55.76 65.46
Fast learner (t− 1) 63.66 74.25
Slow learner 66.49 74.50

E Comparisons with RanPAC

While both the proposed SAFE and PanPAC [23] leverage PTMs for continual learning, they target
different components of the model. Specifically, RanPAC focuses on deriving decorrelated classifi-
cation weights for the classification head with frozen features, whereas our method emphasizes the
improvement of trainable feature embeddings within the feature extractor. Furthermore, there is a
distinct difference in the correlation matrices utilized by the two methods. The correlation coefficients
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Figure 8: Visualization of seven benchmark datasets.

matrix in RanPAC, as shown in Figure 2 of their paper, has dimensions RC×C , where C denotes
the number of classes in the classification head. In contrast, our method employs a cross-correlation
matrix of dimensions Rd×d, with d representing the feature dimension, as detailed in Eq. (1).

In addition, we would like to emphasize that our method is orthogonal to RanPAC. In fact, our
approach is built upon RanPAC, and as evidenced in Table 2 of our paper, our method consistently
outperforms RanPAC by a significant margin.

F Visualization of Datasets

In this section, we provide visualization results of the seven evaluated datasets: CIFAR100 [18],
ImageNet-R (IN-R) [11], ImageNet-A (IN-A) [12], CUB200 [38], Omnibenchmark (OB) [50],
VTAB [48] and DomainNet [27]. As shown in Fig. 8, SAFE can perform well on datasets with
various characteristics. It is noteworthy that SAFE is capable of scenarios where the data distribution
between tasks shifts significantly. For example, our method also shows superior performance on
VTAB and DomainNet which comprise 5 and 6 distinct tasks, respectively.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions and scope of
the paper, accurately reflecting the theoretical and experimental results presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a separate "Limitations" section (in Appendix) that dis-
cusses the potential weaknesses of the proposed approach.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results, hence this question is not
applicable.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of the experimental setup, including
datasets, hyperparameters, and evaluation metrics, allowing for reproducibility of the main
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Codes at https://github.com/MIFA-Lab/SAFE.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all necessary details about the training and testing processes,
including data splits, hyperparameters, and optimization methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not report error bars or other statistical significance measures
for the experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides information about the computational resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms to the NeurIPS Code of Ethics, ensuring ethical
considerations are met throughout the study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper does not discuss the potential societal impacts, either positive or
negative, of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The paper includes no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits the creators of existing assets used and specifies the
licenses and terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets, making this question not
applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve any research with human subjects, hence IRB
approval is not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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