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Abstract

Finetuning large language models (LLMs) on instructions leads to vast performance
improvements on natural language tasks. We apply instruction tuning using code,
leveraging the natural structure of Git commits, which pair code changes with
human instructions. We compile COMMITPACK: 4 terabytes of Git commits across
350 programming languages. We benchmark COMMITPACK against other natural
and synthetic code instructions (xP3x, Self-Instruct, OASST) on the 16B parameter
StarCoder model, and achieve state-of-the-art performance among models not
trained on OpenAI outputs, on the HumanEval Python benchmark (46.2% pass@1).
We further introduce HUMANEVALPACK, expanding the HumanEval benchmark to
a total of 3 coding tasks (Code Repair, Code Explanation, Code Synthesis) across
6 languages (Python, JavaScript, Java, Go, C++, Rust). Our models, OCTOCODER
and OCTOGEEX, achieve the best performance across HUMANEVALPACK among
all permissive models, demonstrating COMMITPACK’s benefits in generalizing to a
wider set of languages and natural coding tasks. Code, models and data are freely
available at https://github.com/bigcode-project/octopack.

import numpy as np
import matplotlib.pyplot as plt

# generate sample data
x_data = np.linspace(-5, 5, 20)
y_data = np.random.normal(0.0, 1.0, x_data.size)

plt.plot(x_data, y_data, 'o')
plt.show()
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Commit
Message

Code After

Change to sin() function with noise

import math
import numpy as np
import matplotlib.pyplot as plt

# generate sample data
x_data = np.linspace(-math.pi, math.pi, 30)
y_data = np.sin(x_data) + np.random.normal(0.0, 0.1, x_data.size)

plt.plot(x_data, y_data, 'o')
plt.show()

1) CommitPack

2) HumanEvalPack

Figure 1: OCTOPACK Overview. 1) Sample from our 4TB dataset, COMMITPACK. 2) Performance
of OCTOCODER, OCTOGEEX and other code models including non-permissive ones (WizardCoder,
GPT-4) on HUMANEVALPACK spanning 3 coding tasks and 6 programming languages.

Workshop on Instruction Tuning and Instruction Following at NeurIPS 2023.

mailto:n.muennighoff@gmail.com
https://github.com/bigcode-project/octopack


1 Introduction

Finetuning large language models (LLMs) on a variety of language tasks explained via instructions
(instruction tuning) has been shown to improve model usability and general performance (Wei et al.,
2022; Sanh et al., 2022; Min et al., 2022; Ouyang et al., 2022). The instruction tuning paradigm has
also proven successful for models trained on visual (Liu et al., 2023a; Li et al., 2023a), audio (Zhang
et al., 2023b) and multilingual (Muennighoff et al., 2022b; Wang et al., 2022b) data.

In this work, we instruction tune LLMs on the coding modality. While Code LLMs can already
be indirectly instructed to generate desired code using code comments, this procedure is brittle
and does not work when the desired output is natural language, such as explaining code. Explicit
instructing tuning of Code LLMs may improve their steerability and enable their application to
more tasks. Concurrently to our work, three instruction tuned Code LLMs have been proposed:
PanGu-Coder2 (Shen et al., 2023), WizardCoder (Luo et al., 2023) and InstructCodeT5+ (Wang et al.,
2023c). These models rely on more capable and closed models from the OpenAI API1 to create
their instruction training data. This approach is problematic as (1) closed-source APIs keep changing
and have unpredictable availability (Pozzobon et al., 2023; Chen et al., 2023a), (2) it relies on the
assumption that a more capable model exists (3) it can reinforce model hallucination (Gudibande
et al., 2023) and (4), depending on legal interpretation, OpenAI’s terms of use2 forbid such models:
“...You may not...use output from the Services to develop models that compete with OpenAI...”. Thus,
we consider models trained on OpenAI outputs not usable for commercial purposes in practice and
classify them as non-permissive in this work.

We focus on more permissively licensed data and avoid using a closed-source model to generate
synthetic data. We benchmark four popular sources of code instruction data: (1) xP3x (Muennighoff
et al., 2022b), which contains data from common code benchmarks, (2) Self-Instruct (Wang et al.,
2023a) data we create using a permissive Code LLM, (3) OASST (Köpf et al., 2023), which contains
mostly natural language data and few code examples and (4) COMMITPACK, our new 4TB dataset of
Git commits. Instruction tuning’s primary purpose is to expand models’ generalization abilities to a
wide variety of tasks and settings. Thus, we extend the code synthesis benchmark, HumanEval (Chen
et al., 2021; Zheng et al., 2023), to create HUMANEVALPACK: A code benchmark covering code
synthesis, code repair, and code explanation across six programming languages.

Instruction tuning StarCoder (Li et al., 2023b) on a filtered variant of COMMITPACK and OASST
leads to our best model, OCTOCODER, which surpasses all other openly licensed models (Figure 1),
but falls short of the much larger GPT-4 (OpenAI, 2023). GPT-4 is close to maximum performance on
the code synthesis variant, notably with a pass@1 score of 86.6% on Python HumanEval. However,
it performs significantly worse on the code fixing and explanation variants of HUMANEVALPACK,
which we introduce. This suggests that the original HumanEval benchmark may soon cease to be
useful due to models reaching close to the maximum performance. Our more challenging evaluation
variants provide room for future LLMs to improve on the performance of the current state-of-the-art.

In summary, we contribute:

• COMMITPACK and COMMITPACKFT: 4TB of permissively licensed code commits across
350 programming languages for pretraining and a filtered variant containing high-quality
code instructions for finetuning

• HUMANEVALPACK: A benchmark for Code LLM generalization, spanning three scenarios
(Code Repair, Code Explanation, Code Synthesis) and 6 programming languages (Python,
JavaScript, Java, Go, C++, Rust)

• OCTOCODER and OCTOGEEX: The best permissive Code LLMs

2 COMMITPACK: Code Instruction Data

Prior work has shown that models can generalize to languages included in pretraining, but absent
during instruction tuning (Muennighoff et al., 2022b). However, they also show that including such
languages during instruction tuning boosts their performance further. We hypothesize that code data

1https://openai.com/blog/openai-api
2https://openai.com/policies/terms-of-use
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Figure 2: Overview of COMMITPACK and COMMITPACKFT. Top: Language distribution
of the full commit data (COMMITPACK) and the variant filtered for high-quality instructions
(COMMITPACKFT). See Appendix C for the full distribution. Bottom: Task distribution of commits
on the Python subset of COMMITPACKFT (59K samples) according to GPT-4.

Table 1: Statistics of code instruction data we consider. We display the number of programming
languages, total samples, and fraction of samples that contain code for permissive instruction datasets.
For finetuning on these datasets, we use small subsets with around 5,000 samples each.

Base dataset Subset

Dataset (↓) Lang. Samples Code fraction Lang. Samples Code fraction

xP3x 8 532,107,156 0.67% 8 5,000 100%
StarCoder Self-Instruct 12 5,003 100% 12 5,003 100%
OASST 49 161,443 0.9% 28 8,587 2.5%
COMMITPACKFT 350 742,273 100% 6 5,000 100%

exhibits the same behavior. To improve performance on code-related tasks, we thus construct a code
instruction dataset leveraging the natural structure of Git commits.

COMMITPACK To construct the dataset, we use commit metadata from the GitHub action dump
on Google BigQuery.3 We apply several quality filters, filter for commercially-friendly licenses, and
discard all commits that affect more than a single file to ensure commit messages are very specific
and to avoid additional complexity from dealing with multiple files. We use the filtered metadata
to scrape the affected code files prior to and after the commit from GitHub. This leads to close to
4 terabytes of data covering 350 programming languages (COMMITPACK). As instruction tuning
does not necessarily require so much data (Zhou et al., 2023a; Touvron et al., 2023), we apply several
strict filters to reduce the dataset to 2 gigabytes (COMMITPACKFT). These strict filters include

3https://www.gharchive.org/
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filtering for samples where the commit message has specific words in uppercase imperative form at
the start (e.g. "Verify ..."), consists of multiple words and does not contain external references. All
filters are detailed in Appendix D. Figure 2 depicts the distribution of both datasets and the tasks
contained in COMMITPACKFT. For instruction tuning our models, we select 5,000 random samples
from COMMITPACKFT across the 6 programming languages that we evaluate on.

Alternatives We consider three additional datasets for instruction tuning presented in Table 1.
xP3x: xP3x is a large-scale collection of multilingual instruction data with around 532 million
samples (Muennighoff et al., 2022b). We focus only on the code subset of xP3x, excluding Neural-
CodeSearch (Li et al., 2019) which is not licensed permissively, and select 5,000 samples.
Self-Instruct: Using the Self-Instruct method (Wang et al., 2022a) and the StarCoder model (Li et al.,
2023b), we create 5,003 synthetic instructions and corresponding answers.
OASST: OASST is a diverse dataset of multi-turn chat dialogues (Köpf et al., 2023). While most
dialogues center around natural language, some also contain code. We reuse a filtered variant of
OASST from prior work (Dettmers et al., 2023) and additionally filter out moralizing assistant
answers (Appendix D) leading to 8,587 samples.

3 HUMANEVALPACK: Evaluating Instruction Tuned Code Models

Languages: Python, JavaScript, Java, Go, C++, Rust
Subtasks: HumanEvalFix, HumanEvalExplain, HumanEvalSynthesize

Write a Python function `has_close_elements(numbers: List[float],
threshold: float) -> bool` to solve the following problem:
Check if in given list of numbers, are any two numbers closer to
each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

HumanEvalPack

from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:
    """ Check if in given list of numbers, are any two numbers closer
to each other than given threshold.
    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
    False
    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
    True
    """
    for idx, elem in enumerate(numbers):
        for idx2, elem2 in enumerate(numbers):
            if idx != idx2:
                distance = abs(elem - elem2)
                if distance < threshold:
                    return True

    return False

from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:for idx, elem in enumerate(numbers):
        for idx2, elem2 in enumerate(numbers):
            if idx != idx2:
                distance = abs(elem - elem2)
                if distance < threshold:
                    return True

    return False

Provide a concise natural language description of the function using
at most 213 characters.

Check if in given list of numbers, are any two numbers closer to
each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

Check if in given list of numbers, are any...
...
Write functional code in Python according to the description.

Fix Code Explain Code Synthesize Code

Model Input

Metric: Pass@k
Creation: Humans

Target Output

from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:
    for idx, elem in enumerate(numbers):
        for idx2, elem2 in enumerate(numbers):
            if idx != idx2:
                distance = elem - elem2
                if distance < threshold:
                    return True

    return False

def check(has_close_elements):
    assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) ==
True
    assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) ==
False
    assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True
    assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False
    assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) ==
True
    assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True
    assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False

check(has_close_elements)

Fix bugs in has_close_elements.

from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:
    for idx, elem in enumerate(numbers):
        for idx2, elem2 in enumerate(numbers):
            if idx != idx2:
                distance = abs(elem - elem2)
                if distance < threshold:
                    return True

    return False

from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:
    for idx, elem in enumerate(numbers):
        for idx2, elem2 in enumerate(numbers):
            if idx != idx2:
                distance = abs(elem - elem2)
                if distance < threshold:
                    return True

    return False

Figure 3: HUMANEVALPACK overview. The first HumanEval problem is depicted across the three
scenarios for Python. The bug for HUMANEVALFIX consists of a missing "abs" statement.

When instruction tuning LLMs using natural language (NL) data, the input is an NL instruction with
optional NL context and the target output is the NL answer to the task (Wei et al., 2022). When
instruction tuning with code (C) data, code may either appear only in the input alongside the NL
instruction (NL+C→NL, e.g. code explanation), only in the output (NL→C, e.g. code synthesis), or
in both input and output (NL+C→C, e.g. code modifications like bug fixing). While prior benchmarks
commonly only cover variants of code synthesis, users may want to use models in all three scenarios.
Thus, we expand the code synthesis benchmark HumanEval (Chen et al., 2021; Zheng et al., 2023) to
cover all three input-output combinations for six languages (Figure 3).
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HUMANEVALFIX (NL+C→C) Given an incorrect code function with a subtle bug and accom-
panying unit tests, the model is tasked to fix the function. We manually add a bug to each of the
164 HumanEval solutions across all 6 languages (984 total bugs). For a given sample, the bugs
are as similar as possible across the 6 languages enabling meaningful comparison of scores across
languages. Bugs are written such that the code still runs but produces an incorrect result leading to
at least one unit test failing. Bug statistics and examples are in Appendix K. We also evaluate an
easier variant of this task where instead of unit tests, models are provided with the correct function
docstring as the source of truth to fix bugs, see Appendix I.

HUMANEVALEXPLAIN (NL+C→NL) Given a correct code function, the model is tasked to
generate an explanation of the code. Subsequently, the same model is tasked to regenerate the code
given only its own explanation. The second step allows us to score this task via code execution and
measure pass@k (Chen et al., 2021) instead of evaluating the explanation itself using heuristic-based
metrics like BLEU (Papineni et al., 2002) or ROUGE (Lin, 2004) which have major limitations (Reiter,
2018; Schluter, 2017; Eghbali and Pradel, 2022; Zhou et al., 2023b). To prevent models from copying
the solution into the description, we remove any solution overlap of at least 20 characters from
the description. We further enforce a character length limit on the model-generated explanation
equivalent to the length of the docstring describing the function. This limit is specified in the prompt
for the model. Note that the function docstring itself is never provided to the model for this task.

HUMANEVALSYNTHESIZE (NL→C) Given a natural language docstring or comment describing
the desired code, the model is tasked to synthesize the correct code. This task corresponds to the
original HumanEval benchmark (Chen et al., 2021). For instruction tuned models, we add an explicit
instruction to the input explaining what the model should do. For models that have only gone through
language model pretraining, we follow Chen et al. (2021) and provide the model with the function
header and docstring to evaluate its completion of the function.

For all tasks we execute the code generations to compute performance using the pass@k metric (Chen
et al., 2021): a problem is considered solved if any of k code generations passes every test case. We
focus on the simplest version of pass@k, which is pass@1: the likelihood that the model solves
a problem in a single attempt. Like Chen et al. (2021), we use a sampling temperature of 0.2 and
topp = 0.95 to estimate pass@1. We generate n = 20 samples, which is enough to get reliable
pass@1 estimates (Li et al., 2023b). For GPT-4, we generate n = 1 samples. Using n = 1 instead of
n = 20 for GPT-4 only changes scores by around 2% while providing 20x cost savings.

Python HumanEval is the most commonly used code benchmark, thus many training datasets have
already been decontaminated for HumanEval to enable fair evaluation. By reusing HumanEval and
manually expanding it to more scenarios and languages, we ensure that existing decontamination
remains valid. This enables a fair comparison across a large variety of models.

4 OCTOCODER: Best Commercially Licensed Code LLM

4.1 Ablating instruction data choices
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Figure 4: Comparing permissively licensed instruction datasets by instruction tuning StarCoder.
Models are evaluated on the Python subset of HUMANEVALPACK.
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We instruction tune the pretrained StarCoder model (Li et al., 2023b) on different combinations of
our instruction datasets (§2). We evaluate all models on the Python subset of HUMANEVALPACK
as depicted in Figure 4. Similar to prior work (Taori et al., 2023), we format all instructions into a
consistent schema to distinguish question and answer (see Figure 17).

COMMITPACKFT enables CodeLLMs to fix bugs COMMITPACKFT is critical for the perfor-
mance boost on code repair (HUMANEVALFIX), where instruction tuning on only OASST or other
variants results in a significantly lower score. This is likely due to COMMITPACKFT including around
20% of bug fixes among other code-related tasks (Figure 2).

Importance of samples with natural language targets The pretrained StarCoder model, as well
as the Self-Instruct variant, perform poorly on code explanation (HUMANEVALEXPLAIN). This is
because both models are only conditioned to write code instead of natural language. We find that to
perform well at explaining code, it is necessary to include samples with natural language as the target
output during instruction tuning. Only relying on data with code as the target, such as the Self-Instruct
data, will lead to models always outputting code even if the question requires a natural language
output. Thus, we mix all other ablations with OASST, which contains many natural language targets.
While the xP3x subset also contains samples with natural language output, many of its target outputs
are short, which leads to models with a bias for short answers. This is impractical for the explanation
task leading to the comparatively low score of mixing xP3x with OASST.

COMMITPACKFT+OASST yields best performance All instruction datasets provide similar
boosts for code synthesis (HUMANEVALSYNTHESIZE), which has been the focus of all prior work on
code instruction models (Wang et al., 2023c; Luo et al., 2023; Muennighoff et al., 2022b). We achieve
the best average score by instruction tuning on COMMITPACKFT mixed with our filtered OASST data
yielding an absolute 23% improvement over StarCoder. Thus, we select COMMITPACKFT+OASST
for our final model dubbed OCTOCODER. Using the same data, we also instruction tune the 6 billion
parameter CodeGeeX2 (Zheng et al., 2023) to create OCTOGEEX.

4.2 Comparing with other Models

We benchmark OCTOCODER and OCTOGEEX with state-of-the-art Code LLMs on HUMANEVAL-
PACK in Table 2. For all models, we use the prompt put forward by the model creators if applicable
or else a simple intuitive prompt, see Appendix N.

OCTOCODER performs best among permissive models OCTOCODER has the highest average
score across all three evaluation scenarios among all permissive models. With just 6 billion parameters,
OCTOGEEX is the smallest model benchmarked, but still outperforms all prior permissive Code
LLMs. GPT-4 (OpenAI, 2023) performs best among all models benchmarked with a significant
margin. However, GPT-4 is closed-source and likely much larger than all other models evaluated.

Instruction tuning generalizes to unseen programming languages Trained primarily on natu-
ral language, not code, BLOOMZ (Muennighoff et al., 2022b) performs worse than other models
despite having 176 billion parameters. Go and Rust are not contained in BLOOMZ’s instruction
data, yet it performs much better than the random baseline of 0.0 for these two languages across
most tasks. This confirms our hypothesis that models are capable of generalizing instructions to
programming languages only seen at pretraining, similar to crosslingual generalization for natural
languages (Muennighoff et al., 2022b). To improve programming language generalization fur-
ther, we tune OCTOCODER and OCTOGEEX on many languages from COMMITPACKFT, and this
generalization improvement is reflected in the performance on HUMANEVALPACK’s new languages.

Pretraining weight correlates with programming language performance after instruction tuning
Prior work has shown that the performance on natural languages after instruction tuning is correlated
with the weight of these languages during pretraining (Muennighoff et al., 2022b). The more weight
during pretraining, the better the performance after instruction tuning. We find the same to be
the case for programming languages. Python, Java, and JavaScript collectively make up around
30% of the pretraining data of StarCoder (Li et al., 2023b). After instruction tuning StarCoder to
produce OCTOCODER, we see the best performance among these three languages, especially for
HUMANEVALSYNTHESIZE. OCTOCODER performs weakest on Rust, which is the lowest resource
language of StarCoder among the languages we benchmark (1.2% of pretraining data).
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Table 2: Zero-shot pass@1 (%) performance across HUMANEVALPACK. InstructCodeT5+,
WizardCoder, StarChat-β, StarCoder and OCTOCODER have 16B parameters. CodeGeeX2 and
OCTOGEEX have 6B parameters. BLOOMZ has 176B parameters. In this work, we call models
"permissive" if weights are freely accessible and usable for commercial purposes. ∗: Commercial
license available after submitting a form. †: Trained on data that may not be used “to develop models
that compete with OpenAI” thus we classify them as non-permissive in this work (see §1).

Model (↓) Python JavaScript Java Go C++ Rust Avg.

HUMANEVALFIX

Non-permissive models

InstructCodeT5+† 2.7 1.2 4.3 2.1 0.2 0.5 1.8
WizardCoder† 31.8 29.5 30.7 30.4 18.7 13.0 25.7
GPT-4 47.0 48.2 50.0 50.6 47.6 43.3 47.8

Permissive models

BLOOMZ 16.6 15.5 15.2 16.4 6.7 5.7 12.5
StarChat-β 18.1 18.1 24.1 18.1 8.2 3.6 11.2
CodeGeeX2∗ 15.9 14.7 18.0 13.6 4.3 6.1 12.1
StarCoder 8.7 15.7 13.3 20.1 15.6 6.7 13.4
OCTOGEEX∗ 28.1 27.7 30.4 27.6 22.9 9.6 24.4
OCTOCODER 30.4 28.4 30.6 30.2 26.1 16.5 27.0

HUMANEVALEXPLAIN

Non-permissive models

InstructCodeT5+† 20.8 0.0 0.0 0.0 0.1 0.0 3.5
WizardCoder† 32.5 33.0 27.4 26.7 28.2 16.9 27.5
GPT-4 64.6 57.3 51.2 58.5 38.4 42.7 52.1

Permissive models

BLOOMZ 14.7 8.8 12.1 8.5 0.6 0.0 7.5
StarChat-β 25.4 21.5 24.5 18.4 17.6 13.2 20.1
CodeGeeX2∗ 0.0 0.0 0.0 0.0 0.0 0.0 0.0
StarCoder 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OCTOGEEX∗ 30.4 24.0 24.7 21.7 21.0 15.9 22.9
OCTOCODER 35.1 24.5 27.3 21.1 24.1 14.8 24.5

HUMANEVALSYNTHESIZE

Non-permissive models

InstructCodeT5+† 37.0 18.9 17.4 9.5 19.8 0.3 17.1
WizardCoder† 57.3 49.5 36.1 36.4 40.9 20.2 40.1
GPT-4 86.6 82.9 81.7 72.6 78.7 67.1 78.3

Permissive models

BLOOMZ 15.6 14.8 18.4 8.4 6.5 5.5 11.5
StarChat-β 33.5 31.4 26.7 25.5 26.6 14.0 26.3
CodeGeeX2∗ 35.9 32.2 30.8 22.5 29.3 18.1 28.1
StarCoder 33.6 30.8 30.2 17.6 31.6 21.8 27.6
OCTOGEEX∗ 44.7 33.8 36.9 21.9 32.3 15.7 30.9
OCTOCODER 46.2 39.2 38.2 30.4 35.6 23.4 35.5
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Models struggle with small targeted changes HUMANEVALFIX is the most challenging task
for most models. They commonly regenerate the buggy function without making any change (e.g.
WizardCoder in Figure 33) or they introduce new bugs (e.g. GPT-4 in Figure 32). We analyze model
performance by bug type in Appendix L and find bugs that require removing excess code are the most
challenging. OCTOCODER performs comparatively well across all languages. Instruction tuning on
COMMITPACKFT has likely taught OCTOCODER to make small, targeted changes to fix bugs.

Models struggle switching between code and text Some models fail at HUMANEVALEXPLAIN,
as they do not generate natural language explanations. We manually inspect explanations for the first
ten samples of the Python split and disqualify a model if none of them are explanations. This is the
case for StarCoder and CodeGeeX2, which generate code instead of natural language explanations.
BLOOMZ and InstructCodeT5+ also occasionally generate code. Other models exclusively generate
natural language explanations, not containing any code for inspected samples.

Models struggle adhering to a specified output length HUMANEVALEXPLAIN instructs models
to fit their explanation within a given character limit (§3). Current models appear to have no
understanding of how many characters they are generating. They commonly write very short and
thus underspecified explanations (e.g. BLOOMZ in Figure 34) or excessively long explanations that
end up being cut off (e.g. StarChat-β in Figure 37). Future work could investigate how to enable
models to be aware of their generated output length to improve HUMANEVALEXPLAIN performance.

HumanEval code synthesis is close to saturation Pure code synthesis on HUMANEVALSYN-
THESIZE is the easiest task for all models. With a pass rate of 86.6% for a single solution, GPT-4
is close to fully saturating the Python subset. GPT-4 was originally found to score 67% on Python
HumanEval (OpenAI, 2023) and 81% in later work (Bubeck et al., 2023). Our score for GPT-4
is significantly higher, possibly due to improvements made to the API by OpenAI, contamination
of HumanEval in GPT-4 training, or slightly different prompting and evaluation. An example of
our prompt is depicted in Figure 3 (right). We perform very careful evaluation to ensure every
generation is correctly processed. We reproduce the HumanEval score of WizardCoder (Luo et al.,
2023; Xu et al., 2023a) and find it to also perform well across other languages. For BLOOMZ and
InstructCodeT5+ our evaluation leads to a higher Python score than they reported, likely because
of our more careful processing of generations. OCTOCODER has the highest performance for every
language among permissively licensed models. With a pass@1 of 46.2% on the original Python split,
OCTOCODER improves by a relative 38% over its base model, StarCoder.

5 Related Work

5.1 Code Models

There has been extensive work on code models tailored to a specific coding task, such as code
summarization (Iyer et al., 2016; Ahmad et al., 2020; Zhang et al., 2022a; Shi et al., 2022) or code
editing (Drain et al., 2021; Zhang et al., 2022c; He et al., 2022; Zhang et al., 2022b; Wei et al., 2023;
Prenner and Robbes, 2023; Fakhoury et al., 2023; Skreta et al., 2023) (also see work on edit models
more generally (Reid and Neubig, 2022; Schick et al., 2022; Dwivedi-Yu et al., 2022; Raheja et al.,
2023)). These works use task-specific heuristics that limit the applicability of their methods to other
tasks. In contrast, we aim to build models applicable to all kinds of tasks related to code and beyond.

Through large-scale pretraining more generally applicable code models have been developed (Nijkamp
et al., 2022, 2023; Xu et al., 2022a; Christopoulou et al., 2022; Gunasekar et al., 2023; Li et al.,
2023b; Bui et al., 2023; Scao et al., 2022a,b). However, these models only continue code making
them hard to use for tasks such as explaining code with natural language (HUMANEVALEXPLAIN).
Teaching them to follow human instructions is critical to make them applicable to diverse tasks.

5.2 Instruction Models

Training models to follow instructions has led to new capabilities in text (Ouyang et al., 2022; Wang
et al., 2022b; Chung et al., 2022) and visual modalities (Xu et al., 2023b; OpenAI, 2023). Prior work
has shown its benefits for traditional language tasks (Sanh et al., 2022; Wei et al., 2022; Longpre
et al., 2023a; Iyer et al., 2022), multilingual tasks (Muennighoff et al., 2022b; Yong et al., 2022), and
helpfulness in dialog (Köpf et al., 2023; Bai et al., 2022; Ganguli et al., 2022). For coding applications,
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PanGu-Coder2 (Shen et al., 2023), WizardCoder (Luo et al., 2023) and InstructCodeT5+ (Wang et al.,
2023c) are recent models trained with coding instructions. However, they all use the CodeAlpaca
dataset (Chaudhary, 2023), which is synthetically generated from OpenAI models. Using data from
powerful closed-source models provides a strong advantage, but limits the model use and has other
limitations highlighted in §1. CoEditor (Wei et al., 2023) proposes an “auto-editing” task, trained on
1650 python commit history repositories. Our work expands this proposal to more general coding
tasks (using instructions), more languages, and orders of magnitude more commit data.

5.3 Code Benchmarks

Many code synthesis benchmarks have been proposed (Wang et al., 2022d,c; Yu et al., 2023; Lai et al.,
2023; Du et al., 2023). HumanEval (Chen et al., 2021; Liu et al., 2023b) has emerged as the standard
for this task. Prior work has extended HumanEval to new programming languages via automatic
translation mechanisms (Athiwaratkun et al., 2022; Cassano et al., 2023; Orlanski et al., 2023). These
approaches are error-prone and only translate tests, not the actual solutions, which are needed for
tasks like code explanation. Thus, we rely only on humans to create all parts of HUMANEVALPACK
including test cases, correct solutions, buggy solutions, and other metadata across 6 languages.

Code repair is commonly evaluated on Quixbugs (Lin et al., 2017; Prenner and Robbes, 2021; Ye
et al., 2021; Xia and Zhang, 2023; Jiang et al., 2023; Sobania et al., 2023) or Python bugs (He et al.,
2022; Bradley et al., 2023). The latter does not support code execution, which limits its utility. While
Quixbugs supports execution with unit tests, it only contains 40 samples in Python and Java. Further,
the problems in Quixbugs are generic functions, such as bucket sort. This makes them easy to solve
and hard to decontaminate training data for. Our benchmark, HUMANEVALFIX, contains 164 buggy
functions for six languages with solutions and unit tests. Further, our coding problems, derived from
HumanEval, are very specific, such as keeping track of a bank account balance (see Figure 14).

Prior work on evaluating code explanations (Lu et al., 2021; Cui et al., 2022) has relied on metrics
such as METEOR (Banerjee and Lavie, 2005) or BLEU (Papineni et al., 2002). By chaining code
explanation with code synthesis, we can evaluate this task using the execution-based pass@k metric
overcoming the major limitations of BLEU and other heuristics-based metrics (Reiter, 2018).

Large-scale benchmarking has proven useful in many areas of natural language processing (Wang
et al., 2019; Kiela et al., 2021; Srivastava et al., 2022; Muennighoff et al., 2022a). By producing 18
scores (6 languages across 3 tasks) for 9 models, we take a step towards large-scale benchmarking of
code models. However, we lack many models capable of generating code (Black et al., 2021; Fried
et al., 2022; Black et al., 2022; Wang and Komatsuzaki, 2021; Biderman et al., 2023b). Future work
may consider more models or extending HUMANEVALPACK to new languages or tasks, such as code
efficiency (Madaan et al., 2023a; Yetistiren et al., 2022) or code classification (Khan et al., 2023).

6 Conclusion

This work studies training and evaluation of Code LLMs that follow instructions. We introduce
COMMITPACK, a 4TB dataset of Git commits covering 350 programming languages. We filter this
large-scale dataset to create COMMITPACKFT, 2GB of high-quality code with commit messages
that assimilate instructions. To enable a comprehensive evaluation of instruction code models,
we construct HUMANEVALPACK, a human-written benchmark covering 3 different tasks for 6
programming languages. We ablate several instruction datasets and find that COMMITPACKFT
combined with natural language data leads to the best performance. While our models, OCTOCODER
and OCTOGEEX, are the best permissively licensed Code LLMs available, they are outperformed
by closed-source models such as GPT-4. In addition to improving the instruction tuning paradigm,
future work should consider training more capable base models.
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B Artifacts

Table 3: Used and produced artifacts.

Model Public Link

Other models

Diff Codegen 2B (Bradley et al., 2023) https://hf.co/CarperAI/diff-codegen-2b-v2
InstructCodeT5+ (Wang et al., 2023c) https://hf.co/Salesforce/instructcodet5p-16b
BLOOMZ (Muennighoff et al., 2022b) https://hf.co/bigscience/bloomz
StarChat-β (Tunstall et al., 2023) https://hf.co/HuggingFaceH4/starchat-beta
CodeGeeX2 (Zheng et al., 2023) https://github.com/THUDM/CodeGeeX2
SantaCoder (Allal et al., 2023) https://hf.co/bigcode/santacoder
StarCoder (Li et al., 2023b) https://hf.co/bigcode/starcoder
WizardCoder (Luo et al., 2023) https://hf.co/WizardLM/WizardCoder-15B-V1.0
GPT-4 (OpenAI, 2023) https://openai.com/gpt-4

Data Ablations (Appendix J) - Data

Filtered xP3x code REDACTED FOR REVIEW
StarCoder Self-Instruct REDACTED FOR REVIEW
Filtered OASST REDACTED FOR REVIEW
Manual selection (Appendix J) REDACTED FOR REVIEW

Data Ablations (Appendix J) - Data

Filtered xP3x code https://hf.co/datasets/bigcode/xp3x-octopack
StarCoder Self-Instruct https://hf.co/datasets/codeparrot/self-instruct-starcoder
Filtered OASST https://hf.co/datasets/bigcode/oasst-octopack
Manual selection (Appendix J) https://hf.co/datasets/bigcode/co-manual

Data Ablations (Appendix J) - Models

Self-Instruct (SI) https://hf.co/bigcode/starcoder-s
OASST (O) https://hf.co/bigcode/starcoder-o
SI + O https://hf.co/bigcode/starcoder-so
xP3x + O https://hf.co/bigcode/starcoder-xo
COMMITPACKFT + O (Formatting) https://hf.co/bigcode/starcoder-co-format
COMMITPACKFT + O (Target loss) https://hf.co/bigcode/starcoder-co-target
COMMITPACKFT + O (Manual) https://hf.co/bigcode/starcoder-co-manual
COMMITPACKFT + xP3x + O https://hf.co/bigcode/starcoder-cxo
COMMITPACKFT + xP3x + SI + O https://hf.co/bigcode/starcoder-cxso

SantaCoder ablations (Appendix G, Appendix H)

Commit format Pretraining https://hf.co/bigcode/santacoderpack
Commit format Finetuning https://hf.co/bigcode/santacoder-cf
Line diff format Finetuning https://hf.co/bigcode/santacoder-ldf

Other datasets

COMMITPACK Metadata https://hf.co/datasets/bigcode/commitpackmeta

Main artifacts

COMMITPACK https://hf.co/datasets/bigcode/commitpack
COMMITPACKFT https://hf.co/datasets/bigcode/commitpackft
HUMANEVALPACK https://hf.co/datasets/bigcode/humanevalpack
OCTOGEEX https://hf.co/bigcode/octogeex
OCTOCODER https://hf.co/bigcode/octocoder
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https://hf.co/Salesforce/instructcodet5p-16b
https://hf.co/bigscience/bloomz
https://hf.co/HuggingFaceH4/starchat-beta
https://github.com/THUDM/CodeGeeX2
https://hf.co/bigcode/santacoder
https://hf.co/bigcode/starcoder
https://hf.co/WizardLM/WizardCoder-15B-V1.0
https://openai.com/gpt-4
https://hf.co/datasets/bigcode/xp3x-octopack
https://hf.co/datasets/codeparrot/self-instruct-starcoder
https://hf.co/datasets/bigcode/oasst-octopack
https://hf.co/datasets/bigcode/co-manual
https://hf.co/bigcode/starcoder-s
https://hf.co/bigcode/starcoder-o
https://hf.co/bigcode/starcoder-so
https://hf.co/bigcode/starcoder-xo
https://hf.co/bigcode/starcoder-co-format
https://hf.co/bigcode/starcoder-co-target
https://hf.co/bigcode/starcoder-co-manual
https://hf.co/bigcode/starcoder-cxo
https://hf.co/bigcode/starcoder-cxso
https://hf.co/bigcode/santacoderpack
https://hf.co/bigcode/santacoder-cf
https://hf.co/bigcode/santacoder-ldf
https://hf.co/datasets/bigcode/commitpackmeta
https://hf.co/datasets/bigcode/commitpack
https://hf.co/datasets/bigcode/commitpackft
https://hf.co/datasets/bigcode/humanevalpack
https://hf.co/bigcode/octogeex
https://hf.co/bigcode/octocoder


C COMMITPACK and COMMITPACKFT Languages

Table 4: Programming language distribution of COMMITPACK and COMMITPACKFT. Short-
cuts: MB=Megabytes, owl=web-ontology-language, pir=parrot-internal-representation, dcl=digital-
command-language, mms=module-management-system, gf=grammatical-framework

COMMITPACK COMMITPACKFT
Language (↓) MB Samples % (MB) MB Samples % (MB)

Total 3709175.78 57700105 100.0 1545.02 702062 100.0

json 583293.82 3495038 15.73 86.74 39777 5.61
xml 279208.68 1923159 7.53 23.68 9337 1.53
text 270662.6 1389525 7.3 66.66 46588 4.31
javascript 262824.84 5401937 7.09 125.01 52989 8.09
objective-c++ 239009.3 32227 6.44 0.38 86 0.02
python 234311.56 6189601 6.32 132.68 56025 8.59
c 200876.8 2779478 5.42 21.08 8506 1.36
c++ 186585.26 2402294 5.03 14.14 4992 0.92
markdown 171849.95 7645354 4.63 131.15 62518 8.49
java 127103.45 3744377 3.43 56.28 20635 3.64
html 105305.28 2366841 2.84 48.42 20214 3.13
yaml 100466.64 2592787 2.71 190.88 114320 12.35
go 86444.62 1183612 2.33 12.13 5004 0.79
csv 82946.19 79268 2.24 0.53 375 0.03
php 74961.64 2555419 2.02 60.22 24791 3.9
jupyter-notebook 66854.08 94000 1.8 0.1 48 0.01
gettext-catalog 62296.88 168327 1.68 0.13 72 0.01
sql 56802.76 132772 1.53 3.74 2069 0.24
unity3d-asset 39535.01 17867 1.07 0.16 101 0.01
typescript 39254.8 572136 1.06 14.28 5868 0.92
owl 36435.46 7458 0.98 0 0 0.0
ruby 35830.74 2928702 0.97 195.29 69413 12.64
c# 33669.65 923157 0.91 26.84 9346 1.74
nix 33547.92 221281 0.9 3.84 1593 0.25
shell 25109.95 1017977 0.68 66.86 31217 4.33
perl 21148.93 374266 0.57 4.99 2288 0.32
tex 17471.11 89283 0.47 0.56 307 0.04
css 16306.63 548818 0.44 9.36 5049 0.61
restructuredtext 15613.89 494037 0.42 15.73 6560 1.02
rust 15011.3 296214 0.4 7.24 2996 0.47
groff 12020.19 32923 0.32 0.4 192 0.03
ini 8375.16 297100 0.23 21.04 11360 1.36
scala 8325.96 316064 0.22 11.18 5040 0.72
coffeescript 6795.14 292446 0.18 16.96 5513 1.1
haskell 6306.12 217325 0.17 3.31 1389 0.21
swift 5902.72 319289 0.16 16.27 4849 1.05
lua 5763.12 139091 0.16 1.85 920 0.12
svg 5645.44 27095 0.15 0.25 169 0.02
gas 5585.38 15121 0.15 0.34 193 0.02
ocaml 5355.4 81360 0.14 0.7 333 0.05
erlang 5043.32 93685 0.14 1.19 480 0.08
makefile 4238.51 343379 0.11 2.53 960 0.16
asciidoc 4138.59 96671 0.11 1.86 523 0.12
emacs-lisp 3988.65 83228 0.11 1.97 1015 0.13
scss 3944.94 288190 0.11 13.21 6829 0.86
clojure 3523.41 158674 0.09 5.07 2403 0.33
org 3126.22 30198 0.08 0.27 136 0.02
common-lisp 2954.9 74628 0.08 1.45 778 0.09
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diff 2586.05 21021 0.07 1.48 680 0.1
groovy 2569.14 110057 0.07 4.17 1486 0.27
html+erb 2450.68 225379 0.07 23.1 10910 1.5
nesc 2439.56 473 0.07 0.02 7 0.0
dart 2395.8 56873 0.06 1.96 765 0.13
powershell 2289.28 55381 0.06 2.06 991 0.13
f# 2289.24 66840 0.06 0.66 254 0.04
dm 2223.14 55584 0.06 0.15 16 0.01
kotlin 2219.25 124266 0.06 5.37 2214 0.35
pascal 2194.68 42511 0.06 0.05 25 0.0
jsx 2124.74 139148 0.06 5.5 2199 0.36
viml 1948.21 74062 0.05 1.96 1063 0.13
actionscript 1844.15 28819 0.05 0.12 49 0.01
cython 1736.59 25927 0.05 0.31 123 0.02
turtle 1698.95 3882 0.05 0.05 21 0.0
less 1616.56 88634 0.04 3.72 1360 0.24
mathematica 1475.04 925 0.04 0.01 1 0.0
xslt 1441.46 27956 0.04 0.26 99 0.02
scheme 1249.24 30546 0.03 0.42 213 0.03
perl6 1223.16 12167 0.03 0.27 122 0.02
edn 1186.94 2289 0.03 0.09 48 0.01
fortran 1178.55 13463 0.03 0.14 70 0.01
java-server-pages 1173.07 53574 0.03 0.45 173 0.03
standard-ml 1133.48 20097 0.03 0.15 72 0.01
cmake 1132.07 58446 0.03 2.27 981 0.15
json5 1108.2 1827 0.03 0.08 33 0.01
vala 1104.51 14822 0.03 0.12 50 0.01
vue 1093.8 68967 0.03 1.38 587 0.09
freemarker 1032.33 36216 0.03 1.03 510 0.07
graphql 1004.84 2009 0.03 0.03 17 0.0
twig 958.96 39588 0.03 3.96 1610 0.26
tcl 869.83 16407 0.02 0.29 103 0.02
pod 859.02 14922 0.02 0.15 54 0.01
dockerfile 849.73 259379 0.02 0.1 39 0.01
yacc 845.7 8230 0.02 0.01 3 0.0
postscript 800.73 903 0.02 0.02 9 0.0
racket 796.64 16615 0.02 0.2 117 0.01
eagle 785.68 2237 0.02 0.01 4 0.0
haxe 772.9 28447 0.02 0.34 174 0.02
julia 752.07 22695 0.02 0.31 180 0.02
handlebars 740.82 49842 0.02 3.29 1429 0.21
smarty 720.94 41065 0.02 1.59 737 0.1
visual-basic 681.52 10511 0.02 0.15 48 0.01
literate-haskell 673.74 10729 0.02 0.02 7 0.0
smalltalk 665.89 11741 0.02 0.46 284 0.03
isabelle 655.82 8359 0.02 0.01 2 0.0
nimrod 652.86 12023 0.02 0.24 67 0.02
zig 621.38 4290 0.02 0.01 4 0.0
m4 603.58 12465 0.02 0.26 101 0.02
max 603.56 2259 0.02 0 0 0.0
elixir 558.12 35473 0.02 2.35 1150 0.15
mako 543.01 8943 0.01 0.76 170 0.05
arduino 534.18 32350 0.01 0.46 225 0.03
jade 531.4 46993 0.01 2.35 1119 0.15
haml 502.01 74792 0.01 10.74 4415 0.7
elm 481.97 18542 0.01 0.62 265 0.04
purebasic 474.28 36 0.01 0.02 5 0.0
coldfusion 470.78 9263 0.01 0.02 9 0.0
lean 470.03 7507 0.01 0.02 3 0.0
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r 454.32 12858 0.01 0.23 121 0.01
cuda 437.67 11450 0.01 0.07 25 0.0
textile 425.12 18491 0.01 0.18 61 0.01
robotframework 421.61 9211 0.01 0.21 85 0.01
abap 409.62 1955 0.01 0.01 1 0.0
rdoc 397.03 38760 0.01 0.55 270 0.04
llvm 382.2 10727 0.01 1.6 780 0.1
ada 380.7 13258 0.01 0.73 265 0.05
batchfile 372.16 43674 0.01 2.98 1466 0.19
qml 361.45 19360 0.01 0.94 368 0.06
jasmin 359.82 4782 0.01 0.05 9 0.0
assembly 343.62 8126 0.01 0.17 105 0.01
g-code 334.96 3690 0.01 0.04 7 0.0
cucumber 331.38 26677 0.01 2.59 976 0.17
html+php 323.35 18381 0.01 0.33 150 0.02
kicad 321.94 759 0.01 0 0 0.0
api-blueprint 317.85 4765 0.01 0.06 23 0.0
eiffel 311.48 373 0.01 0.01 2 0.0
toml 292.68 63517 0.01 5.58 3424 0.36
modelica 284.62 2611 0.01 0.04 15 0.0
bitbake 277.58 43239 0.01 4.46 1308 0.29
lex 275.96 705 0.01 0 0 0.0
stylus 273.06 21967 0.01 0.95 480 0.06
protocol-buffer 254.12 9202 0.01 0.52 181 0.03
unknown 252.23 30570 0.01 3.05 1597 0.2
nit 244.54 4951 0.01 0.02 3 0.0
factor 241.19 15378 0.01 0.36 113 0.02
xs 239.04 3215 0.01 0.02 7 0.0
sass 230.65 23144 0.01 1.36 705 0.09
pir 230.2 6231 0.01 0.08 23 0.01
html+django 217.04 10535 0.01 0.85 399 0.06
mediawiki 214.32 10188 0.01 0.08 33 0.01
logos 212.3 1733 0.01 0.04 19 0.0
genshi 209.3 956 0.01 0.02 3 0.0
coldfusion-cfc 208.16 4410 0.01 0.05 20 0.0
xtend 179.54 7775 0.0 0.13 55 0.01
sqf 168.66 7778 0.0 0.09 45 0.01
vhdl 155.95 2185 0.0 0.02 5 0.0
antlr 143.55 3651 0.0 0.03 15 0.0
systemverilog 140.19 3944 0.0 0.08 35 0.01
hcl 136.75 13379 0.0 0.91 421 0.06
asp 136.1 4286 0.0 0.09 22 0.01
nsis 129.12 4048 0.0 0.06 15 0.0
inform-7 120.19 184 0.0 0.01 2 0.0
slim 119.04 18726 0.0 2.06 1052 0.13
groovy-server-pages 117.37 6695 0.0 0.07 25 0.0
ceylon 116.14 7256 0.0 0.1 49 0.01
fish 111.28 15351 0.0 1.33 813 0.09
processing 108.58 5912 0.0 0.07 35 0.0
component-pascal 105.5 43 0.0 0 0 0.0
lasso 104.17 67 0.0 0 0 0.0
glsl 99.49 9478 0.0 0.34 164 0.02
saltstack 98.2 12314 0.0 1.41 617 0.09
xbase 94.42 1670 0.0 0.01 3 0.0
autohotkey 94.22 1452 0.0 0.02 15 0.0
liquid 93.79 2651 0.0 0.09 30 0.01
purescript 92.41 5024 0.0 0.17 80 0.01
agda 92.06 4956 0.0 0.02 10 0.0
inno-setup 91.36 3014 0.0 0.06 16 0.0
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oz 90.48 1551 0.0 0.03 8 0.0
chapel 89.62 26447 0.0 0.04 20 0.0
arc 87.21 758 0.0 0.01 2 0.0
opencl 86.43 2489 0.0 0.05 23 0.0
graphviz-dot 85.8 1525 0.0 0.07 35 0.0
pawn 85.42 580 0.0 0.01 3 0.0
jsoniq 75.15 1343 0.0 0.01 6 0.0
bluespec 72.38 2500 0.0 0.01 2 0.0
smali 71.38 174 0.0 0 0 0.0
krl 69.87 1879 0.0 0.02 4 0.0
maple 68.28 1311 0.0 0.01 2 0.0
unrealscript 67.67 585 0.0 0.01 1 0.0
ooc 63.19 3416 0.0 0.04 15 0.0
pure-data 62.62 603 0.0 0.01 1 0.0
xquery 61.96 2237 0.0 0.08 39 0.01
dcl 59.64 833 0.0 0.04 19 0.0
moonscript 59.21 1951 0.0 0.02 10 0.0
awk 57.18 2206 0.0 0.1 52 0.01
pike 52.87 1262 0.0 0.02 6 0.0
livescript 51.23 5194 0.0 0.13 63 0.01
solidity 50.86 3689 0.0 0.08 37 0.01
monkey 48.26 1367 0.0 0.02 4 0.0
jsonld 48.01 462 0.0 0.02 6 0.0
zephir 42.68 1265 0.0 0.02 4 0.0
crystal 41.92 4217 0.0 0.35 182 0.02
rhtml 41.02 4551 0.0 0.35 135 0.02
stata 40.68 1344 0.0 0.02 10 0.0
idris 39.9 3025 0.0 0.13 38 0.01
raml 39.39 948 0.0 0.03 9 0.0
openscad 37.73 2178 0.0 0.05 21 0.0
red 35.26 1108 0.0 0.01 1 0.0
c2hs-haskell 34.47 1021 0.0 0.01 2 0.0
cycript 33.96 197 0.0 0 0 0.0
applescript 33.51 1304 0.0 0.04 19 0.0
mupad 32.49 178 0.0 0.02 4 0.0
literate-agda 31.38 567 0.0 0.01 1 0.0
boo 31.17 26289 0.0 0.01 2 0.0
sourcepawn 29.53 717 0.0 0.01 3 0.0
qmake 29.51 3632 0.0 0.32 140 0.02
ragel-in-ruby-host 28.3 888 0.0 0.01 4 0.0
io 27.95 1247 0.0 0.01 4 0.0
desktop 27.65 5021 0.0 0.36 186 0.02
propeller-spin 26.77 625 0.0 0.01 1 0.0
thrift 26.75 1007 0.0 0.08 28 0.01
volt 25.05 1660 0.0 0.02 9 0.0
xproc 24.21 914 0.0 0.02 3 0.0
igor-pro 23.75 388 0.0 0.01 1 0.0
lolcode 23.74 24861 0.0 0 0 0.0
html+eex 21.41 2100 0.0 0.29 135 0.02
logtalk 20.43 1035 0.0 0.06 21 0.0
mirah 20.1 706 0.0 0.04 16 0.0
gnuplot 19.68 889 0.0 0.03 17 0.0
literate-coffeescript 19.02 1041 0.0 0.05 19 0.0
jflex 18.61 555 0.0 0.01 1 0.0
emberscript 18.39 1024 0.0 0.02 7 0.0
cobol 17.0 24953 0.0 0 0 0.0
yang 16.94 597 0.0 0.02 6 0.0
rebol 16.47 239 0.0 0.01 3 0.0
linker-script 16.08 1604 0.0 0.08 37 0.01
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cartocss 15.92 555 0.0 0.01 3 0.0
urweb 13.07 304 0.0 0.02 6 0.0
rmarkdown 13.03 750 0.0 0 0 0.0
darcs-patch 13.01 80 0.0 0 0 0.0
csound 12.85 229 0.0 0.01 4 0.0
squirrel 12.84 531 0.0 0.01 4 0.0
apl 12.56 586 0.0 0.02 7 0.0
hlsl 12.17 1529 0.0 0.03 11 0.0
latte 11.89 1380 0.0 0.02 7 0.0
pony 11.84 624 0.0 0.05 16 0.0
ioke 10.86 373 0.0 0.04 25 0.0
hy 10.51 879 0.0 0.04 12 0.0
uno 10.36 628 0.0 0.01 2 0.0
pan 10.34 637 0.0 0.05 23 0.0
xojo 10.31 642 0.0 0 0 0.0
papyrus 10.26 130 0.0 0 0 0.0
stan 10.25 540 0.0 0 0 0.0
slash 9.9 640 0.0 0.01 4 0.0
supercollider 9.8 318 0.0 0.01 2 0.0
vcl 9.46 747 0.0 0.04 18 0.0
smt 9.03 117 0.0 0.01 3 0.0
glyph 8.95 7 0.0 0 0 0.0
wisp 8.74 262 0.0 0.01 3 0.0
renpy 8.3 421 0.0 0.02 3 0.0
clips 7.73 450 0.0 0 0 0.0
dns-zone 7.56 54 0.0 0.01 2 0.0
sas 7.54 269 0.0 0.01 1 0.0
rouge 7.2 396 0.0 0.1 41 0.01
ec 7.03 94 0.0 0 0 0.0
dylan 6.82 280 0.0 0.01 2 0.0
tcsh 6.52 748 0.0 0.02 10 0.0
aspectj 6.33 451 0.0 0.02 8 0.0
netlogo 6.3 140 0.0 0 0 0.0
gap 6.1 46 0.0 0 0 0.0
fancy 5.95 675 0.0 0.02 8 0.0
coq 5.74 80 0.0 0 0 0.0
click 5.74 9 0.0 0 0 0.0
capn-proto 5.64 330 0.0 0.04 12 0.0
flux 5.57 47 0.0 0.01 3 0.0
forth 5.51 265 0.0 0.01 2 0.0
ats 5.42 383 0.0 0.01 3 0.0
netlinx 5.17 144 0.0 0.01 1 0.0
clean 5.07 171 0.0 0.01 1 0.0
parrot-assembly 4.66 227 0.0 0.01 2 0.0
alloy 4.64 203 0.0 0 0 0.0
lfe 4.58 287 0.0 0.02 6 0.0
gdscript 4.49 460 0.0 0.03 9 0.0
augeas 4.44 395 0.0 0.04 13 0.0
sparql 4.4 1036 0.0 0.04 23 0.0
lilypond 4.31 265 0.0 0.01 6 0.0
scilab 4.09 375 0.0 0.02 10 0.0
autoit 4.06 279 0.0 0 0 0.0
myghty 3.86 105 0.0 0 0 0.0
blitzmax 3.74 220 0.0 0.01 1 0.0
creole 3.42 337 0.0 0.01 2 0.0
harbour 3.34 107 0.0 0.01 1 0.0
piglatin 3.17 513 0.0 0.02 11 0.0
opa 3.16 211 0.0 0 0 0.0
sage 3.03 414 0.0 0.01 1 0.0
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ston 2.85 414 0.0 0.01 6 0.0
maxscript 2.8 47 0.0 0 0 0.0
lsl 2.68 74 0.0 0.01 3 0.0
gentoo-ebuild 2.58 601 0.0 0.06 16 0.0
nu 2.38 170 0.0 0.01 2 0.0
bro 2.34 333 0.0 0.01 3 0.0
xc 2.02 88 0.0 0 0 0.0
j 1.81 142 0.0 0 0 0.0
metal 1.72 151 0.0 0.02 4 0.0
mms 1.54 91 0.0 0.01 1 0.0
webidl 1.51 96 0.0 0.05 6 0.0
tea 1.47 29 0.0 0 0 0.0
redcode 1.27 149 0.0 0 0 0.0
shen 1.2 71 0.0 0 0 0.0
pov-ray-sdl 1.14 104 0.0 0.01 5 0.0
x10 1.01 33 0.0 0 0 0.0
brainfuck 0.96 167 0.0 0.01 2 0.0
ninja 0.95 187 0.0 0.03 14 0.0
golo 0.9 115 0.0 0 0 0.0
webassembly 0.86 83 0.0 0 0 0.0
self 0.82 15 0.0 0 0 0.0
labview 0.81 61 0.0 0 0 0.0
octave 0.8 12 0.0 0 0 0.0
pogoscript 0.8 74 0.0 0 0 0.0
d 0.8 20 0.0 0 0 0.0
http 0.74 140 0.0 0.03 19 0.0
ecl 0.66 48 0.0 0.01 4 0.0
chuck 0.58 99 0.0 0 0 0.0
gosu 0.52 60 0.0 0 0 0.0
parrot 0.52 17 0.0 0 0 0.0
opal 0.47 69 0.0 0 0 0.0
objective-j 0.46 37 0.0 0 0 0.0
kit 0.41 48 0.0 0 0 0.0
gams 0.38 18 0.0 0 0 0.0
prolog 0.28 35 0.0 0 0 0.0
clarion 0.27 13 0.0 0 0 0.0
mask 0.25 37 0.0 0.01 4 0.0
brightscript 0.24 28 0.0 0 0 0.0
scaml 0.18 31 0.0 0.01 1 0.0
matlab 0.16 29 0.0 0 0 0.0
idl 0.15 1 0.0 0 0 0.0
ags-script 0.12 31 0.0 0 0 0.0
lookml 0.12 10 0.0 0 0 0.0
apacheconf 0.11 59 0.0 0.01 2 0.0
oxygene 0.1 9 0.0 0 0 0.0
txl 0.1 3 0.0 0 0 0.0
gf 0.09 39 0.0 0 0 0.0
renderscript 0.06 54 0.0 0 0 0.0
mtml 0.05 13 0.0 0.01 2 0.0
unified-parallel-c 0.05 6 0.0 0 0 0.0
dogescript 0.04 10 0.0 0 0 0.0
gentoo-eclass 0.04 6 0.0 0 0 0.0
zimpl 0.04 7 0.0 0 0 0.0
irc-log 0.04 9 0.0 0 0 0.0
fantom 0.03 11 0.0 0 0 0.0
numpy 0.03 1 0.0 0 0 0.0
cirru 0.02 4 0.0 0 0 0.0
xpages 0.02 7 0.0 0.01 1 0.0
nginx 0.02 6 0.0 0.01 2 0.0
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objdump 0.02 1 0.0 0 0 0.0
python-traceback 0.02 10 0.0 0 0 0.0
realbasic 0.01 1 0.0 0 0 0.0
befunge 0.01 2 0.0 0 0 0.0
bison 0.01 1 0.0 0 0 0.0
m 0.01 1 0.0 0 0 0.0
omgrofl 0.01 1 0.0 0 0 0.0

D Dataset Creation

COMMITPACK We use the GitHub archive available on GCP which contains metadata from
GitHub commits up to 2016.4 It contains around 3TB of GitHub activity data for more than
2.8 million GitHub repositories including more than 145 million unique commits, over 2 billion
different file paths and the contents of the latest revision for 163 million files.5 We apply the filters
in Table 5 to this dataset. The resulting dataset containing only metadata is uploaded at https:
//hf.co/datasets/bigcode/commitpackmeta. As the activity dataset only contains commit ids
without the actual code changes, we scrape the code from GitHub. We use the metadata and the GitHub
API to scrape the changed file prior and after the respective commit. Some repositories referenced in
the activity data are no longer accessible, thus we discard them. This results in COMMITPACK with
approximately 4 terabytes uploaded at https://hf.co/datasets/bigcode/commitpack.

Table 5: COMMITPACK filters.
Description Details
License Only keep samples licensed as MIT, Artistic-2.0, ISC, CC0-1.0, EPL-1.0, MPL-

2.0, Apache-2.0, BSD-3-Clause, AGPL-3.0, LGPL-2.1, BSD-2-Clause or with-
out license.

Length Only keep code where the commit message has at least 5 and at most 10,000
characters

Noise Remove code where the lowercased commit message is any of ’add files via
upload’, "can’t you see i’m updating the time?", ’commit’, ’create readme.md’,
’dummy’, ’first commit’, ’heartbeat update’, ’initial commit’, ’mirroring from
micro.blog.’, ’no message’, ’pi push’, ’readme’, ’update’, ’updates’, ’update
_config.yaml’, ’update index.html’, ’update readme.md’, ’update readme’, ’up-
dated readme’, ’update log’, ’update data.js’, ’update data.json’, ’update data.js’,
’pi push’ or starts with ’merge’

Single file Remove samples that contain changes across multiple files
Opt-out Remove samples from repositories owned by users that opted out of The

Stack (Kocetkov et al., 2022)

COMMITPACKFT Prior work has shown the importance of careful data filtering to maintain quality
(Yin et al., 2018; Dhole et al., 2021; Laurençon et al., 2022; Longpre et al., 2023b). To create a smaller
version focused on commits that resemble high-quality instructions, we further filter COMMITPACK to
create COMMITPACKFT using the steps outlined in Table 6. We also checked for any contamination
with HumanEval (Chen et al., 2021) but did not find any solution or docstring present in COMMIT-
PACKFT. This is likely because our commit data only goes up to 2016, which is several years prior to
the release of HumanEval. Our filters reduce the dataset by a factor of around 1000 resulting in close to
2 gigabytes. To gain a deeper understanding of the rich content within COMMITPACKFT, we analyze
commits on its Python subset (56K samples). We first collect the most prevalent commit domain by
prompting GPT-4 with: "I’d like to know the main types of commits on Github and
aim to cover as comprehensively as possible.". Subsequently, we use GPT-4 to classify
each sample using the prompt in Figure 5. The task distribution is visualized in Figure 2.

4https://www.gharchive.org/
5https://github.blog/2016-06-29-making-open-source-data-more-available/
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Table 6: COMMITPACKFT filters applied to COMMITPACK. With the commit message we refer
to the commit message subject only, not the body.

Description Details
Length Remove samples where the before code has more than 50,000 characters
Length Remove samples where the after code has 0 characters
Difference Remove samples where the before and after code are the same (e.g. file name

changes)
Difference Remove samples that contain a hashtag (to avoid references to issues)
Extension Remove samples where the filename of the code after has an atypical extension

for the programming language (e.g. only keep ’.py’ for Python)
Filename Remove samples where the filename is contained in the commit message (as we

do not use the filename in finetuning)
Length Only keep samples where the commit message has more than 10 and less than

1000 characters
Words Only keep samples where the commit message can be split into more than 4 and

less than 1000 space-separated words
Clean Remove any appearances of ’[skip ci]’, ’[ci skip]’, sequences at the beginning

or end that are in brackets, sequences at the beginning that end with ’:’ and strip
whitespace at the beginning or end

Capitalized Only keep samples where the message starts with an uppercase letter
Tokens Only keep samples where the concatenation of the code before, a special token

and the code after has at least 50 tokens and at most 768 tokens according to
the StarCoder tokenizer

Instructions Only keep samples where the lowercased commit message starts with any of
the words in Table 7

Noise Remove samples where the lowercased commit message contains any of ’auto
commit’, ’update contributing’, ’<?xml’, ’merge branch’, ’merge pull request’,
’signed-off-by’, "fix that bug where things didn’t work but now they should",
"put the thingie in the thingie", "add a beter commit message", "code review",
"//codereview", "work in progress", "wip", "https://", "http://", "| leetcode",
"cdpcp", " i ", "i’ve" , "i’m" or both "thanks to" and "for"

Regex Remove samples where the lowercased commit message has a match
for any of the regular expressions (?:v)?\d+\.\d+\.\d+(?=$|\S),
^[a-f0-9]+(?:-[a-f0-9]+)*$, ([a-f0-9]{40}), issue\s*\d+,
bug\s*\d+ or feature\s*\d+

Downsample With 90% probability remove samples where the commit message starts with
"Bump", "Set version" or "Update version"

xP3x We use a subset of xP3x (Muennighoff et al., 2022b) focusing on code datasets consisting of
APPS (Hendrycks et al., 2021), CodeContests (Li et al., 2022b), Jupyter Code Pairs,6 MBPP (Austin
et al., 2021), XLCoST (Zhu et al., 2022), Code Complex (Jeon et al., 2022), Docstring Corpus
(Barone and Sennrich, 2017), Great Code (Hellendoorn et al., 2019) and State Changes.7

OASST We reuse a filtered variant of OASST (Köpf et al., 2023) from prior work (Dettmers et al.,
2023) and apply additional filters to remove responses that refuse to comply with the user request. To
compute the programming languages and code fraction for OASST depicted in Table 1, we count all
responses containing e.g. ‘‘‘python or ‘‘‘py for the Python programming language. There are
code samples that are not enclosed in backticks or do not specify the language, thus we are likely
underestimating the actual fraction of code data for OASST in Table 1.

6https://hf.co/datasets/codeparrot/github-jupyter-text-code-pairs
7https://hf.co/datasets/Fraser/python-state-changes
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Table 7: Commit message starting words allowed in COMMITPACKFT.
"abort’, ’accelerate’, ’access’, ’accumulate’, ’add’, ’address’, ’adjust’, ’advance’, ’align’, ’al-
lot’, ’allow’, ’amplify’, ’annotate’, ’append’, ’apply’, ’archive’, ’arrange’, ’attach’, ’augment’,
’automate’, ’backup’, ’boost’, ’break’, ’bring’, ’brush up’, ’build’, ’bump’, ’call’, ’change’,
’check’, ’choose’, ’clarify’, ’clean’, ’clear’, ’clone’, ’comment’, ’complete’, ’compress’, ’con-
catenate’, ’configure’, ’connect’, ’consolidate’, ’convert’, ’copy’, ’correct’, ’cover’, ’create’,
’customize’, ’cut’, ’deal with’, ’debug’, ’decipher’, ’declare’, ’decommission’, ’decomplexify’,
’decompress’, ’decrease’, ’decrypt’, ’define’, ’delete’, ’deploy’, ’designate’, ’destroy’, ’detach’,
’determine’, ’develop’, ’diminish’, ’disable’, ’discard’, ’disentangle’, ’dismantle’, ’divide’,
’document’, ’downgrade’, ’drop’, ’duplicate’, ’edit’, ’embed’, ’emphasize’, ’enable’, ’encrypt’,
’enforce’, ’enhance’, ’enlarge’, ’enumerate’, ’eradicate’, ’escalate’, ’establish’, ’exclude’,
’exit’, ’expand’, ’expedite’, ’expire’, ’extend’, ’facilitate’, ’fix’, ’format’, ’gather’, ’generalize’,
’halt’, ’handle’, ’hasten’, ’hide’, ’implement’, ’improve’, ’include’, ’increase’, ’increment’,
’indent’, ’index’, ’inflate’, ’initialize’, ’insert’, ’install’, ’integrate’, ’interpolate’, ’interrupt’,
’introduce’, ’isolate’, ’join’, ’kill’, ’leverage’, ’load’, ’magnify’, ’maintain’, ’make’, ’man-
age’, ’mark’, ’mask’, ’mend’, ’merge’, ’migrate’, ’modify’, ’monitor’, ’move’, ’multiply’,
’normalize’, ’optimize’, ’orchestrate’, ’order’, ’package’, ’paraphrase’, ’paste’, ’patch’, ’plug
’, ’prepare’, ’prepend’, ’print’, ’provision’, ’purge’, ’put’, ’quit’, ’raise’, ’read’, ’reannotate’,
’rearrange’, ’rebase’, ’reboot’, ’rebuild’, ’recomment’, ’recompile’, ’reconfigure’, ’reconnect’,
’rectify’, ’redact’, ’redefine’, ’reduce’, ’refactor’, ’reformat’, ’refresh’, ’reimplement’, ’rein-
force’, ’relocate’, ’remove’, ’rename’, ’reorder’, ’reorganize’, ’repackage’, ’repair’, ’rephrase’,
’replace’, ’reposition’, ’reschedule’, ’reset’, ’reshape’, ’resolve’, ’restructure’, ’return’, ’revert’,
’revise’, ’revoke’, ’reword’, ’rework’, ’rewrite’, ’rollback’, ’save’, ’scale’, ’scrub’, ’secure’,
’select’, ’send’, ’set’, ’settle’, ’simplify’, ’solve’, ’sort’, ’speed up’, ’split’, ’stabilize’, ’standard-
ize’, ’stipulate’, ’stop’, ’store’, ’streamline’, ’strengthen’, ’structure’, ’substitute’, ’subtract’,
’support’, ’swap’, ’switch’, ’synchronize’, ’tackle’, ’tag’, ’terminate’, ’test’, ’throw’, ’tidy’,
’transform’, ’transpose’, ’trim’, ’troubleshoot’, ’truncate’, ’tweak’, ’unblock’, ’uncover’,
’undo’, ’unify’, ’uninstall’, ’unplug’, ’unpublish’, ’unravel’, ’unstage’, ’unsync’, ’untangle’,
’unwind’, ’update’, ’upgrade’, ’use’, ’validate’, ’verify’, ’watch’, ’watermark’, ’whitelist’,
’withdraw’, ’work’, ’write"

Please categorize the following commit message, which may fall into more than one category.

### Category
Bug fixes, New features, Refactoring/code cleanup, Documentation, Testing, User interface,
Dependencies, Configuration, Build system/tooling, Performance improvements, Formatting/Linting,
Security, Technical debt repayment, Release management, Accessibility, Deprecation, Logging/In-
strumentation, Internationalization

### Commit Message
Add the blacklist checking to the bulk

### Classification
Bug fixes, New features

### Commit Message
{COMMIT_MESSAGE}
### Classification

Figure 5: GPT-4 1-shot prompt for classifying commits in COMMITPACKFT.
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E Comparing Data Before and After Filtering

In Table 8 we compare word statistics prior to and after filtering COMMITPACK to create COMMIT-
PACKFT. The mean commit subject and message length increases suggesting that messages are more
informative in COMMITPACKFT. The code lengths decrease significantly as we limit the number of
allowed tokens in the filters in Table 6. Notably, the percentage of code changed between pre- and
post-commit is 77.6/59.1 = 1.31 (a 31% increase) as opposed to 3269.8/3269.9 = 1.007 (a 0.7%
increase). Thus, the filtered data carries significantly more signal per token with fewer repetitions of
the code prior to the commit.

Table 8: The effect of data filters on subject, message, and code lengths. We compare differences
in word statistics of COMMITPACK and COMMITPACKFT.

Metric Before Filter After Filter Difference

Subject Length (words) 5.7±0.02 6.9±0.01 +1.28
Message Length (words) 8.7±0.06 9.9±0.05 +1.34
Pre-Commit Code Length (words) 3269.9±298.8 59.1±0.19 -3210.9
Post-Commit Code Length (words) 3269.8±299.5 77.6±0.23 -3214.2

F Comparing COMMITPACK and The Stack

In Table 9 we provide statistics on repositories and usernames of COMMITPACK and The Stack (Ko-
cetkov et al., 2022). COMMITPACK contains a total of 1,934,255 repositories. Around half (49.3%) of
them are also in The Stack. However, The Stack only provides the raw code files of these repositories
from some fixed point in time. COMMITPACK contains the changes made to the code files in the form
of commits. Thus, the same code file may appear multiple times in COMMITPACK for each change
that was made to it. Therefore, The Stack only contains 3 terabytes of data, while COMMITPACK
contains close to 4.

Table 9: Overlap in repositories and usernames of COMMITPACK and The Stack.

Statistic (↓) COMMITPACK The Stack 1.2 Shared Shared (%)

Repositories 1,934,255 18,712,378 954,135 49.3%
Usernames 825,885 6,434,196 663,050 80.3%

G Pretraining on COMMITPACK

Due to the scale of COMMITPACK, it is also adequate as a large-scale pretraining dataset. Parts of
COMMITPACK were included during the pretraining of StarCoder (Li et al., 2023b) in the format
of <commit_before>code_before<commit_msg>message<commit_after> code_after. We
also pretrain a new model, named SANTACODERPACK, with the same architecture as SantaCoder (Al-
lal et al., 2023) on COMMITPACK using this format. We filter COMMITPACK for our six evaluation
languages and samples that fit within 8192 tokens leaving us a total of 35B tokens. Following prior
work (Muennighoff et al., 2023), we train on this data repeated close to 4 times for a total of 131B
tokens taking 14 days. Detailed hyperparameters are in Appendix M.

In Table 10, we benchmark StarCoder and SANTACODERPACK on HUMANEVALFIX using the
above-detailed commit format. We find that the commit format leads to very strong performance
for StarCoder often surpassing the instruction tuned OCTOCODER from Table 2. However, this
pretraining format is not suitable for HUMANEVALEXPLAIN limiting its universality. For SAN-
TACODERPACK, we find performance comparable to SantaCoder, including checkpoints at 131B
and 236B tokens. SANTACODERPACK performs slightly worse on Python than SantaCoder. We
hypothesize that this discrepancy is due to a multilingual tax, as SANTACODERPACK needs to
accommodate three additional coding languages (Go, C++ and Rust). SantaCoder has thus more
capacity allocated to Python, JavaScript, and Java.
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SANTACODERPACK may also be bottlenecked by its small model size of 1.1B parameters. More
research into what exactly happens during pretraining (Xia et al., 2022; Biderman et al., 2023a) and
how to unify pretraining and instruction tuning are needed. Prior work has also found that including
raw code data during pretraining benefits some natural language tasks (Muennighoff et al., 2023).
Future work may consider the effects of including code commit data on natural language tasks.

Table 10: Zero-shot pass@1 (%) performance on HUMANEVALFIX of pretraining experiments.

Model (↓) Python JavaScript Java Go C++ Rust Avg.
SantaCoder (131B tokens) Instruct Format 6.5 4.2 2.9 - - - -
SantaCoder (236B tokens) Instruct Format 7.1 4.2 1.8 - - - -
SANTACODERPACK (131B tokens) Commit Format 3.2 4.9 1.8 3.6 4.2 1.7 3.3

StarCoder Commit Format 32.7 33.6 33.0 31.9 31.6 20.2 30.5

H Line Diff Format for Fixing Code

We finetune SantaCoder to experiment with different formatting strategies for fixing bugs comparing
full code generation and code diff generation. When fixing a code bug, usually only a small part of
the code needs to change. Only generating the code diff corresponding to the necessary change can
make inference significantly more efficient by avoiding repeated characters in the output generation.
We finetune SantaCoder on the Python, Java and JavaScript subset of COMMITPACKFT. We exclude
other languages as SantaCoder has only been pretrained on these three languages (Allal et al., 2023).

Commit Format For full code generation, we reuse the format that we employed for com-
mits in StarCoder pretraining from Appendix G: <commit_before>code_before<commit_msg>
message<commit_after>code_after. However, SantaCoder has not seen this format during pre-
training and does not have special tokens like StarCoder for the delimiters. Thus, for SantaCoder e.g.
<commit_before> is tokenized as [’<’, ’commit’, ’_’, ’before’, ’>’].

Unified diff format For code diff generation, a simple solution is using the unified diff format,8
which is a standard way to display changes between code files in a compact and readable format
(Lehman et al., 2022; Jung, 2021; Xu et al., 2022b; Monperrus et al., 2021). We depict an example of
this format in Figure 6. However, the unified diff format still requires the model to output several
unchanged lines below and after the actual modification. Thus, its efficiency gains are limited and
there is still unnecessary duplication of the input.

Line diff format To address the inefficiencies of the unified diff format, we propose the line diff
format for representing code differences. There are two requirements for our format: (1) The diff
can be unambiguously applied to the code before the commit to generate the code after the commit,
and (2) the code diff should be as short as possible to maximize efficiency by avoiding the inclusion
of unchanged code. In Figure 7, we show how our format addresses these. The line diff format
keeps track of each change sequentially line-by-line to ensure the code can be correctly modified.
By focusing only on the lines that change, we reduce the number of characters in the diff by 70%
compared to the unified diff representation in Figure 6.

Both the unified diff format and our line diff format require the model to predict line numbers.
This is very challenging when training on raw code as models need to count and keep track of line
numbers. To simplify line number prediction, we automatically add line numbers to the raw code in
the finetuning dataset for the line diff format. This allows the model to simply copy the line number
into the output simplifying the diff generation. However, it diminishes efficiency slightly by adding
additional input tokens that the model needs to process.

As summarized in Table 11, finetuning SantaCoder using the line diff format significantly improves
performance compared to prior finetuning on HUMANEVALFIX across all languages. It also out-
performs finetuning using the commit format, which only provides gains on JavaScript and Java
compared to no finetuning. However, finetuning on the diff format may converge slower than the
commit format as the diff format significantly differs from the raw code seen during pretraining.

8https://en.wikipedia.org/wiki/Diff#Unified_format
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from typing import List

def has_close_elements(numbers: List[float
], threshold: float) -> bool:
for idx , elem in enumerate(numbers):

for idx2 , elem2 in enumerate(
numbers):
if idx != idx2:

distance = elem - elem2
if distance < threshold:

return True

return False

from typing import List

def has_close_elements(numbers: List[float
], threshold: float) -> bool:
for idx , elem in enumerate(numbers):

for idx2 , elem2 in enumerate(
numbers):
if idx != idx2:

distance = abs(elem -
elem2)

if distance < threshold:
return True

return False

@@ -4,7 +4,7 @@
for idx , elem in enumerate(numbers):

for idx2 , elem2 in enumerate(numbers):
if idx != idx2:

- distance = elem - elem2
+ distance = abs(elem - elem2)

if distance < threshold:
return True

Figure 6: The first problem from the HUMANEVALFIX Python split and the necessary change
to fix the bug in unified diff format. Top: Code with and without the bug from Figure 11. Bottom:
Necessary change to fix the bug in unified diff format.

- 7 distance = elem - elem2
+ 7 distance = abs(elem - elem2)

Figure 7: The line diff format for the problem from Figure 6.

Figures 8, 9, 10 show line diff generations of our model. A limitation of our current line diff im-
plementation is that it does not handle code insertion well. The inserted lines may change the line
numbers of all following lines, which can result in problems when applying the diff. Further, the
diff format is not useful for HUMANEVALEXPLAIN and HUMANEVALSYNTHESIZE. Future work
could consider training models that can both be instructed to use the line diff format, such as for
HUMANEVALFIX, but also explain or synthesize code without producing a diff.

Table 11: Zero-shot pass@1 (%) performance on HUMANEVALFIX of SantaCoder formatting
experiments.

Model Python JavaScript Java
SantaCoder 7.1 4.2 1.8
SantaCoder + Commit format finetuning 3.8 5.3 9.2
SantaCoder + Line diff format finetuning 9.9 9.7 10.0
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- 3 let depth = 0, max_depth = 0;
+ 3 let depth = 0, max_depth = 1;
- 12 return max_depth;
+ 12 return max_depth - 1;
- 14 return paren_string.split(’␣’)
- 15 .filter(x => x != ’’)
- 16 .map(x => parseParenGroup(x));
- 17 }
+ 14 let paren_list = paren_string.split(’␣’);
+ 15 let nested_parens = paren_list.map(x => parseParenGroup(x));
+ 16 return nested_parens.reduce ((prev , curr) => {
+ 17 if (prev == 0) {
+ 18 return curr;
+ 19 } else {
+ 20 return curr - 1;
+ 21 }
+ 22 });
+ 23 }

Figure 8: A line diff generation of our model on a JavaScript HUMANEVALFIX problem.

- 18 if (current_depth < 0) {
+ 18 if (current_depth < 0 && current_string.length () > 0) {

Figure 9: A line diff generation of our model on a Java HUMANEVALFIX problem.

- 2 for i, l1 in enumerate(l):
- 3 for j in range(i, len(l)):
+ 2 for i in range(0, len(l)):
+ 3 for j in range(i+1, len(l)):

Figure 10: A line diff generation of our model on a Python HUMANEVALFIX problem.
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I Results on HUMANEVALFIXDOCS

The default version of HUMANEVALFIX does not include docstrings, but only provides the unit tests
to the model alongside the buggy function. An alternative is providing docstrings as the source of
ground truth for the model to fix the buggy function. Solving from docstrings is generally easier for
models than from tests, as models can also solve it via pure code synthesis without looking at the
buggy function at all. We provide results of some models on this variant in Table 12. For StarCoder,
we distinguish two prompting formats: An instruction to fix bugs like in Figure 3 or the commit
format it has seen during pretraining (Appendix G). OCTOCODER performs very strongly on this
variant. Diff Codegen 2B (Bradley et al., 2023) performs poorly as its predicted code diffs are often
irrelevant to the actual bug, see Figure 38.

Table 12: Zero-shot pass@1 (%) performance on HUMANEVALFIXDOCS.

Model Python JavaScript Java Go C++ Rust Avg.

Non-permissive models

GPT-4 88.4 80.5 82.9 81.1 82.3 68.9 80.7

Permissive Models

Diff Codegen 2B 0.0 0.1 0.0 0.3 0.0 0.2 0.1
StarCoder Commit Format 43.5 29.3 45.7 31.9 28.1 19.4 27.1
StarCoder Instruct Format 41.7 30.7 44.3 34.5 28.7 14.0 26.5
OCTOCODER 53.8 48.1 54.3 54.9 49.2 32.1 48.7

J Full Instruction Data Ablations

We provide tabular results of the ablations from Figure 4 in Table 13. We
try some additional mixtures, however, none of them perform better than COM-
MITPACKFT + OASST. We experiment with changing the formatting to be
<commit_before>old code<commit_msg>message<commit_after>new code for COM-
MITPACKFT and <commit_before><commit_msg>input<commit_after>output for OASST
referred to as the "Formatting" ablation. We hypothesized that aligning the formatting during
instruction tuning with the commit format that we used during pretraining (Appendix G) would
improve performance. While it seems to improve performance for HUMANEVALFIX compared to
our default formatting (see Figure 17), it reduces performance on the other tasks leading to a worse
average score of 35.3 in Table 13. "Target Loss" refers to an ablation where we mask loss for inputs
as is commonly done during instruction tuning (Muennighoff et al., 2022b). While this leads to the
best performance on HUMANEVALSYNTHESIZE, its average performance is worse compared to
COMMITPACKFT + OASST, where the loss is computed over the full sequence. We also perform an
ablation where we manually select 1178 high-quality samples (725 from OASST and 89, 61, 86, 72,
70 and 75 from COMMITPACKFT for Python, JavaScript, Java, Go, C++ and Rust, respectively).
However, this manual selection did not outperform random selection for OCTOCODER. It performed
better for OCTOGEEX, however, hence we used it for OCTOGEEX. We hypothesize that our models
could achieve significantly better performance by further improving the quality of the instruction
data beyond. This may necessitate very careful human selection of samples and manual editing of the
data to ensure a uniform style in the outputs. We leave such explorations to future work.
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Table 13: Zero-shot pass@1 (%) performance across the Python split of HUMANEVALPACK for
StarCoder instruction tuning data ablations.

HUMANEVALPACK Python
Instruction Tuning Dataset (↓) Fix Explain Synthesize Average
Without instruction tuning 8.7 0.0 33.6 14.1

Self-Instruct (SI) 23.6 0.6 43.0 22.2
OASST 23.1 34.5 46.4 34.7
SI + OASST 24.9 28.7 46.2 33.3
xP3x + OASST 28.4 28.4 45.0 33.9
COMMITPACKFT + OASST 30.4 35.1 46.2 37.2
COMMITPACKFT + OASST (Formatting) 31.1 28.9 45.8 35.3
COMMITPACKFT + OASST (Target loss) 29.8 31.2 47.8 36.3
COMMITPACKFT + OASST (Manual) 27.2 29.6 45.8 34.2
COMMITPACKFT + xP3x + OASST 30.9 29.5 45.9 35.4
COMMITPACKFT + SI + xP3x + OASST 31.4 33.8 46.0 37.1

K HUMANEVALFIX Bug Types

Table 14 contains an overview of bugs that were manually added by one of the authors to HumanEval
solutions for the construction of HUMANEVALFIX. Figures 11-16 contain an example of each type
from the Python split. The bug type for each problem is the same across all programming languages
in HUMANEVALFIX, but for a few samples it affects a different part of the solution due to the code
solutions not being perfectly parallel across languages.

Table 14: HUMANEVALFIX bug types.
Bug type Subtype Explanation Example Count

Missing logic Misses code needed to solve the problem Figure 11 33
Excess logic Contains excess code leading to mistakes Figure 12 31

Wrong logic

Value misuse An incorrect value is used Figure 13 44
Operator misuse An incorrect operator is used Figure 14 25
Variable misuse An incorrect variable is used Figure 15 23
Function misuse An incorrect function is used Figure 16 8

Total 164
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from typing import List

def has_close_elements(numbers: List[
float], threshold: float) -> bool:
""" Check if in given list of

numbers , are any two numbers
closer to each other than

given threshold.
>>> has_close_elements ([1.0, 2.0,

3.0], 0.5)
False
>>> has_close_elements ([1.0, 2.8,

3.0, 4.0, 5.0, 2.0], 0.3)
True
"""
for idx , elem in enumerate(numbers):

for idx2 , elem2 in enumerate(
numbers):
if idx != idx2:

distance = abs(elem -
elem2)

if distance < threshold:
return True

return False

from typing import List

def has_close_elements(numbers: List[
float], threshold: float) -> bool:
""" Check if in given list of

numbers , are any two numbers
closer to each other than

given threshold.
>>> has_close_elements ([1.0, 2.0,

3.0], 0.5)
False
>>> has_close_elements ([1.0, 2.8,

3.0, 4.0, 5.0, 2.0], 0.3)
True
"""
for idx , elem in enumerate(numbers):

for idx2 , elem2 in enumerate(
numbers):
if idx != idx2:

distance = elem - elem2
if distance < threshold:

return True

return False

Figure 11: Missing logic bug example. The buggy code (right) misses the ’abs’ statement.

def truncate_number(number: float) ->
float:
""" Given a positive floating point

number , it can be decomposed
into

and integer part (largest integer
smaller than given number) and
decimals

(leftover part always smaller than
1).

Return the decimal part of the
number.

>>> truncate_number (3.5)
0.5
"""
return number % 1.0

def truncate_number(number: float) ->
float:
""" Given a positive floating point

number , it can be decomposed
into

and integer part (largest integer
smaller than given number) and
decimals

(leftover part always smaller than
1).

Return the decimal part of the
number.

>>> truncate_number (3.5)
0.5
"""
return number % 1.0 + 1.0

Figure 12: Excess logic bug example. The buggy code (right) incorrectly adds 1 to the result.
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from typing import List , Tuple

def sum_product(numbers: List[int]) ->
Tuple[int , int]:
""" For a given list of integers ,

return a tuple consisting of a
sum and a product of all the
integers in a list.

Empty sum should be equal to 0 and
empty product should be equal
to 1.

>>> sum_product ([])
(0, 1)
>>> sum_product ([1, 2, 3, 4])
(10, 24)
"""
sum_value = 0
prod_value = 1

for n in numbers:
sum_value += n
prod_value *= n

return sum_value , prod_value

from typing import List , Tuple

def sum_product(numbers: List[int]) ->
Tuple[int , int]:
""" For a given list of integers ,

return a tuple consisting of a
sum and a product of all the
integers in a list.

Empty sum should be equal to 0 and
empty product should be equal
to 1.

>>> sum_product ([])
(0, 1)
>>> sum_product ([1, 2, 3, 4])
(10, 24)
"""
sum_value = 0
prod_value = 0

for n in numbers:
sum_value += n
prod_value *= n

return sum_value , prod_value

Figure 13: Value misuse bug example. The buggy code (right) incorrectly initializes the product to
0.

from typing import List

def below_zero(operations: List[int]) ->
bool:

""" You’re given a list of deposit
and withdrawal operations on a
bank account that starts with

zero balance. Your task is to detect
if at any point the balance of
account fallls below zero , and

at that point function should return
True. Otherwise it should

return False.
>>> below_zero ([1, 2, 3])
False
>>> below_zero ([1, 2, -4, 5])
True
"""
balance = 0

for op in operations:
balance += op
if balance < 0:

return True

return False

from typing import List

def below_zero(operations: List[int]) ->
bool:

""" You’re given a list of deposit
and withdrawal operations on a
bank account that starts with

zero balance. Your task is to detect
if at any point the balance of
account fallls below zero , and

at that point function should return
True. Otherwise it should

return False.
>>> below_zero ([1, 2, 3])
False
>>> below_zero ([1, 2, -4, 5])
True
"""
balance = 0

for op in operations:
balance += op
if balance == 0:

return True

return False

Figure 14: Operator misuse bug example. The buggy code (right) incorrectly checks for equality
with 0.
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from typing import List

def mean_absolute_deviation(numbers:
List[float]) -> float:
""" For a given list of input

numbers , calculate Mean
Absolute Deviation

around the mean of this dataset.
Mean Absolute Deviation is the

average absolute difference
between each

element and a centerpoint (mean in
this case):

MAD = average | x - x_mean |
>>> mean_absolute_deviation ([1.0 ,

2.0, 3.0, 4.0])
1.0
"""
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in

numbers) / len(numbers)

from typing import List

def mean_absolute_deviation(numbers:
List[float]) -> float:
""" For a given list of input

numbers , calculate Mean
Absolute Deviation

around the mean of this dataset.
Mean Absolute Deviation is the

average absolute difference
between each

element and a centerpoint (mean in
this case):

MAD = average | x - x_mean |
>>> mean_absolute_deviation ([1.0 ,

2.0, 3.0, 4.0])
1.0
"""
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in

numbers) / mean

Figure 15: Variable misuse bug example. The buggy code (right) incorrectly divides by the mean.

def flip_case(string: str) -> str:
""" For a given string , flip

lowercase characters to
uppercase and uppercase to
lowercase.

>>> flip_case(’Hello ’)
’hELLO ’
"""
return string.swapcase ()

def flip_case(string: str) -> str:
""" For a given string , flip

lowercase characters to
uppercase and uppercase to
lowercase.

>>> flip_case(’Hello ’)
’hELLO ’
"""
return string.lower ()

Figure 16: Function misuse bug example. The buggy code (right) incorrectly uses the ’lower()’
function.
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L Performance Breakdown by HUMANEVALFIX Bug Type

All bugs in HUMANEVALFIX are categorized into bug types as described in Appendix K. In Table 15,
we break down the HUMANEVALFIX performance of select models from Table 2 by bug type.
We find that models struggle most with bugs that require removing excess logic (e.g. Figure 12).
WizardCoder is only able to solve 11% of excess logic bugs while solving about four times more
bugs that relate to value misuse. The performance of OCTOGEEX and OCTOCODER is more stable
than WizardCoder across the different bug types, possibly due to the diversity of COMMITPACKFT
as displayed in Figure 2. GPT-4 performs best across all bug types.

Table 15: Breakdown of HUMANEVALFIX Python pass@1 (%) performance by bug type for
select models. Statistics for each bug type are in Table 14.

Bug type Subtype OCTOGEEX OCTOCODER WizardCoder GPT-4

Missing logic 24.2 24.4 31.2 45.5
Excess logic 16.3 16.9 11.0 38.7

Wrong logic

Value misuse 33.2 34.7 45.1 50.0
Operator misuse 32.8 42.0 34.4 56.0
Variable misuse 35.7 33.7 30.4 43.5
Function misuse 25.0 37.5 37.5 50.0

Overall 28.1 30.4 31.8 47.0

M Hyperparameters

StarCoder finetuning (OCTOCODER) For all experiments finetuning StarCoder, we use a learning
rate of 5e-4 with a cosine schedule and linear warmup. We use a batch size of 32 and train for up to
one epoch, as we did not observe benefits from more steps. We use LoRA (Hu et al., 2021) as we did
not observe a significant difference from full finetuning. OCTOCODER was trained for 35 steps with
a sequence length of 2048 and packing corresponding to 2.2 million total finetuning tokens.

CodeGeeX finetuning (OCTOGEEX) To create OCTOGEEX, we finetune CodeGeeX2 for 35
steps with a batch size of 48 and a learning rate of 5e-5 largely following the OCTOCODER setup.

SantaCoder finetuning For all experiments finetuning SantaCoder, we use a learning rate of 5e-5
with a cosine schedule and linear warmup. We finetune SantaCoder using a batch size of 64 for up to
200,000 steps.

SantaCoder pretraining (SANTACODERPACK) We follow the setup from Allal et al. (2023) to
pretrain on COMMITPACK except for using a sequence length of 8192 and the StarCoder tokenizer,
which has special tokens for the commit format delimiters (see Appendix G). SANTACODERPACK
utilizes Multi Query Attention (MQA) (Shazeer, 2019) but removes Fill-in-the-Middle (FIM) (Bavar-
ian et al., 2022). We conducted pretraining on 32 A100 GPUs, totaling 250k training steps, with a
global batch size of 64. Other hyperparameter settings follow SantaCoder, including using Adam
with β1 = 0.9, β2 = 0.95, ϵ = 10−8, and a weight decay of 0.1. The learning rate is set to 2× 10−4

and follows a cosine decay after warming up for 2% of the training steps.

N Prompts

The prompting format can significantly impact performance. In the spirit of true few-shot learn-
ing (Perez et al., 2021) we do not optimize prompts and go with the format provided by the respective
model authors or the most intuitive format if none is provided. For each task, we define an instruction,
an optional context and an optional function start (16). The function start is provided to make sure the
model directly completes the function without having to search for the function in the model output.
These three parts are then combined in slightly different ways for each model (Figures 17-23). We
implement our evaluation using open-source frameworks (Ben Allal et al., 2022; Gao et al., 2021).

41



Table 16: Instructions and function examples used. If no function start or no context is present,
that part is not added to the prompt (and the preceding newline is also removed).

HUMANEVALFIX

Instruction Fix bugs in has_close_elements.

Context from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:
for idx , elem in enumerate(numbers):

for idx2 , elem2 in enumerate(numbers):
if idx != idx2:

distance = elem - elem2
if distance < threshold:

return True

return False

Function start from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:

HUMANEVALEXPLAIN

Instruction
(Describe)

Provide a concise natural language description of the code using at most
213 characters.

Context
(Describe)

from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:
for idx , elem in enumerate(numbers):

for idx2 , elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem - elem2)
if distance < threshold:

return True

return False

Instruction
(Synthesize)

Write functional code in Python according to the description.

Context
(Synthesize)

{Description generated by the model}

Function start
(Synthesize)

from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:

HUMANEVALSYNTHESIZE

Instruction Write a Python function ‘has_close_elements(numbers: List[float], thresh-
old: float) -> bool‘ to solve the following problem:
Check if in given list of numbers, are any two numbers closer to each other
than given threshold.
»> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
»> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

Function start from typing import List

def has_close_elements(numbers: List[float], threshold: float) ->
bool:
""" Check if in given list of numbers , are any two numbers

closer to each other than given threshold.
>>> has_close_elements ([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements ([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""
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Question: {instruction}
{context}

Answer:
{function_start}

Figure 17: OCTOCODER and OCTOGEEX prompting format

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}
{context}

### Response:
{function_start}

Figure 18: WizardCoder prompting format from their codebase.9

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}
{context}

### Response:{function_start}

Figure 19: InstructCodeT5+ decoder prompting format from their codebase.10 The encoder
receives the same prompt without the function start.

9https://github.com/nlpxucan/WizardLM/blob/9c6fb34d012d60dc4f31348ee0a8e35335c04564/
WizardCoder/src/humaneval_gen.py#L38

10https://github.com/salesforce/CodeT5/blob/main/CodeT5%2B/humaneval/generate_
codet5p.py#L89

11https://huggingface.co/HuggingFaceH4/starchat-beta
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<|system|>
<|end|>
<|user|>
{instruction}
{context}<|end|>
<|assistant|>
{function_start}

Figure 20: StarChat-β prompting format from their documentation.11

{context}
{instruction}
{function_start}

Figure 21: Default prompting format (StarCoder, BLOOMZ). Used for Figure 3.

{context}
{instruction}

Figure 22: GPT-4 prompting format. Same as Figure 21 but excluding the function start, as we
found the model would not continue from the provided function start, likely due to the chat mode.

{context}
{instruction}
Start your code with:
{func_start}

Figure 23: GPT-4 prompting format for HUMANEVALEXPLAIN (Synthesize). We include the
function start for the synthesize part of HUMANEVALEXPLAIN in case the function name is not
included in the code description generated by GPT-4.

<NME> {filename}
<BEF> {context}
<MSG> {instruction}
<DFF>

Figure 24: Prompting format for Diff Codegen 2B evaluated in Appendix I.
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O Examples

O.1 OCTOCODER

Input:

Question: Fix bugs in sum_product.
#include <stdio.h>
#include <vector >
using namespace std;
#include <algorithm >
#include <math.h>
#include <stdlib.h>
vector <int > sum_product(vector <int > numbers){

int sum=0,product =0;
for (int i=0;i<numbers.size();i++)
{

sum+= numbers[i];
product *= numbers[i];

}
return {sum ,product };

}

Answer:
#include <stdio.h>
#include <vector >
using namespace std;
#include <algorithm >
#include <math.h>
#include <stdlib.h>
vector <int > sum_product(vector <int > numbers){

OCTOCODER:

int sum=0,product =1;
for (int i=0;i<numbers.size();i++)
{

sum+= numbers[i];
product *= numbers[i];

}
return {sum ,product };

}

Figure 25: Correct solution from OCTOCODER to a HUMANEVALFIX C++ problem. The
corresponding Python problem is depicted in Figure 13.
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Input:

Question: Write a Java function ‘public String decodeShift(String s)‘ to solve the following problem:
takes as input string encoded with encodeShift function. Returns decoded string.
Answer:
import java.util .*;
import java.lang .*;

class Solution {
/**
returns encoded string by shifting every character by 5 in the alphabet.
*/

public String encodeShift(String s) {
StringBuilder sb = new StringBuilder ();
for (char ch : s.toCharArray ()) {

sb.append ((char) (’a’ + ((ch + 5 - ’a’) % 26)));
}
return sb.toString ();

}

/**
takes as input string encoded with encodeShift function. Returns decoded string.
*/

public String decodeShift(String s) {

OCTOCODER:

StringBuilder sb = new StringBuilder ();
for (char ch : s.toCharArray ()) {

sb.append ((char) (’a’ + ((ch - ’a’ - 5) % 26)));
}
return sb.toString ();

}
}

Figure 26: Incorrect solution from OCTOCODER to a HUMANEVALSYNTHESIZE Java problem.
The correct solution would be to add 21 to ch instead of subtracting 5 from it.
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Input:

Question: Provide a concise natural language description of the code using at most 671 characters.
func FruitDistribution(s string ,n int) int {

split := strings.Split(s, "␣")
for _, i := range split {

atoi , err := strconv.Atoi(i)
if err != nil {

continue
}
n = n - atoi

}
return n

}

Answer:

OCTOCODER:

The function FruitDistribution takes two arguments, a string s and an integer n. The function splits
the string s into a slice of strings using the space character as the delimiter. The function iterates over
the slice and converts each string to an integer using the strconv.Atoi function. If the conversion is
successful, the integer is subtracted from n. The function returns the value of n after all conversions
have been performed.

Input (without previous input):

Question: Write functional code in Go according to the description.
The function FruitDistribution takes two arguments, a string s and an integer n. The function splits
the string s into a slice of strings using the space character as the delimiter. The function iterates over
the slice and converts each string to an integer using the strconv.Atoi function. If the conversion is
successful, the integer is subtracted from n. The function returns the value of n after all conversions
have been performed.
Answer:
func FruitDistribution(s string ,n int) int {

OCTOCODER:

fruits := strings.Split(s, "␣")
for _, fruit := range fruits {

if num , err := strconv.Atoi(fruit); err == nil {
n -= num

}
}
return n

}

Figure 27: Correct solution from OCTOCODER to a HUMANEVALEXPLAIN Go problem. Given
its own description OCTOCODER writes a correct solution to the problem. Its solution is more
compact and efficient than the original solution.
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O.2 GPT-4

User:

Write a Go function ‘func RescaleToUnit(numbers []float64) []float64‘ to solve the following problem:
Given a list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 1
>>> RescaleToUnit([1.0, 2.0, 3.0, 4.0, 5.0])
[0.0, 0.25, 0.5, 0.75, 1.0]

GPT-4:

Here is a Go function that solves the problem:

package main

import (
"fmt"
"math"

)

func RescaleToUnit(numbers [] float64) [] float64 {
min := numbers [0]
max := numbers [0]

// Find the min and max values in the list
for _, number := range numbers {

if number < min {
min = number

}
if number > max {

max = number
}

}

// Apply the linear transform to each number in the list
for i, number := range numbers {

numbers[i] = (number - min) / (max - min)
}

return numbers
}

func main() {
fmt.Println(RescaleToUnit ([] float64 {1.0, 2.0, 3.0, 4.0, 5.0}))

}

This function first finds the minimum and maximum values in the list of numbers. Then it applies
the linear transformation to each number in the list. The transformation is ‘(number - min) / (max -
min)‘, which scales the number such that ‘min‘ becomes 0 and ‘max‘ becomes 1. The transformed
numbers are returned in a new list.

Figure 28: Incorrect solution from GPT-4 to a HUMANEVALSYNTHESIZE Go problem. GPT-4
includes an import that it does not use (math) which leads to a compilation error in Golang and thus
the function does not pass the test cases.
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User:

Provide a concise natural language description of the code using at most 246 characters.
def truncate_number(number: float) -> float:

return number % 1.0

GPT-4:

The code defines a function that takes a float as input and returns its fractional part by using the
modulus operator with 1.0.

User (without previous conversation history):

The code defines a function that takes a float as input and returns its fractional part by using the
modulus operator with 1.0.
Write functional code in Python according to the description.
Start your code with:
def truncate_number(number: float) -> float:

GPT-4:

def truncate_number(number: float) -> float:
return number % 1.0

Figure 29: Correct solution from GPT-4 to a HUMANEVALEXPLAIN Python problem. GPT-4
writes a description that is significantly shorter than the docstring and thus within the character limit.
It then generates the perfect solution from its own description. The docstring for this problem can be
seen in Figure 12.
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User:

fn has_close_elements(numbers:Vec <f32 >, threshold: f32) -> bool{
for i in 0.. numbers.len(){

for j in 1.. numbers.len(){

if i != j {
let distance:f32 = numbers[i] - numbers[j];

if distance < threshold{
return true;

}

}

}
}

return false;

}

def check(has_close_elements):
assert has_close_elements ([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True
assert has_close_elements ([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False
assert has_close_elements ([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True
assert has_close_elements ([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False
assert has_close_elements ([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True
assert has_close_elements ([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True
assert has_close_elements ([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False

check(has_close_elements)

Fix bugs in has_close_elements.

GPT-4:

The function has_close_elements is supposed to check if there are any two elements in the vector that
are closer than a given threshold. However, there are a few issues with the current implementation:
1. The distance calculation is not correct. It should be the absolute difference between the two
numbers, not just the difference.
2. The second loop should start from i+1, not 1. This is because we only need to compare each
number with the numbers after it, not the numbers before it.
Here is the corrected function:
fn has_close_elements(numbers:Vec <f32 >, threshold: f32) -> bool{

for i in 0.. numbers.len(){
for j in i+1.. numbers.len(){

let distance:f32 = (numbers[i] - numbers[j]).abs();
if distance < threshold{

return true;
}

}
}
return false;

}

This function will now correctly check if there are any two elements in the vector that are closer than
the given threshold.

Figure 30: Correct solution from GPT-4 to a HUMANEVALFIX Rust problem. GPT-4 correctly
fixes the bug by adding the necessary ’abs’ statement to compute the absolute value. It additionally
improves the efficiency of the function by starting the inner loop from ’i+1’ instead of 1 like in the
original solution. As some problems in HUMANEVALPACK are not perfectly efficient, evaluating
the ability of models to improve the efficiency of the solutions is another interesting benchmarking
direction (Yetistiren et al., 2022).
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User:

def car_race_collision(n: int):
return n**3

def check(car_race_collision):
assert car_race_collision (2) == 4
assert car_race_collision (3) == 9
assert car_race_collision (4) == 16
assert car_race_collision (8) == 64
assert car_race_collision (10) == 100

check(car_race_collision)

Fix bugs in car_race_collision.

GPT-4:

The function car_race_collision seems to be working fine as it is. It takes an integer ’n’ as input and
returns the cube of ’n’. There don’t seem to be any bugs in this function.

However, if the function is supposed to calculate something specific related to a car race
collision and it’s not doing that correctly, we would need more information about the expected
behavior to fix it.

Figure 31: Incorrect solution from GPT-4 to a HUMANEVALFIX Python problem. GPT-4 does
not catch that the test cases expect the function to square, not cube n. OCTOCODER correctly modifies
the 3 to 2 in 6 out of n = 20 generations.
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User:

def rounded_avg(n, m):
if m < n:

return -1
summation = 0
for i in range(n, m+1):

summation += i
return bin(round(summation /(m - n)))

def check(rounded_avg):

# Check some simple cases
assert rounded_avg (1, 5) == "0b11"
assert rounded_avg (7, 13) == "0b1010"
assert rounded_avg (964 ,977) == "0b1111001010"
assert rounded_avg (996 ,997) == "0b1111100100"
assert rounded_avg (560 ,851) == "0b1011000010"
assert rounded_avg (185 ,546) == "0b101101110"
assert rounded_avg (362 ,496) == "0b110101101"
assert rounded_avg (350 ,902) == "0b1001110010"
assert rounded_avg (197 ,233) == "0b11010111"

# Check some edge cases that are easy to work out by hand.
assert rounded_avg (7, 5) == -1
assert rounded_avg (5, 1) == -1
assert rounded_avg (5, 5) == "0b101"

check(rounded_avg)

Fix bugs in rounded_avg.

GPT-4:

The function rounded_avg is supposed to calculate the average of all numbers between n and m
(inclusive), round it, and then return the binary representation of the result.
There are several bugs in the function:
1. The function should return -1 if m < n, but it should also return -1 if m == n because in this case,
the denominator of the average calculation would be 0, which would cause a division by zero error.
2. The function calculates the average by summing all numbers between n and m and then dividing
by (m - n). However, this is incorrect because the number of integers between n and m (inclusive) is
(m - n + 1), not (m - n).
3. The function uses the bin function to convert the result to binary. However, the bin function returns
a string that starts with ’0b’ to indicate that it is a binary number. If the function is supposed to return
the binary representation as an integer, it should remove this prefix.
Here is the corrected function:
def rounded_avg(n, m):

if m <= n:
return -1

summation = 0
for i in range(n, m+1):

summation += i
average = round(summation / (m - n + 1))
return int(bin(average)[2:])

This function now correctly calculates the average, rounds it, and returns the binary representation as
an integer. If n is greater than or equal to m, it returns -1.

Figure 32: Incorrect solution from GPT-4 to a HUMANEVALFIX Python problem. The bug
consists of a "+1" missing after "m-n". GPT-4 correctly fixes that, however, it introduces two new
bugs: Retuning "-1" when m=n and removing the "0b", both of which evidently lead to the provided
unit tests failing.
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O.3 WizardCoder

Input:

Below is an instruction that describes a task. Write a response that appropriately completes the
request.
### Instruction: Fix bugs in bf.
def bf(planet1 , planet2):

planet_names = ("Mercury", "Venus", "Earth", "Mars", "Jupyter", "Saturn", "Uranus", "
Neptune")

if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:
return ()

planet1_index = planet_names.index(planet1)
planet2_index = planet_names.index(planet2)
if planet1_index < planet2_index:

return (planet_names[planet1_index + 1: planet2_index ])
else:

return (planet_names[planet2_index + 1 : planet1_index ])

def check(bf):

# Check some simple cases
assert bf("Jupiter", "Neptune") == ("Saturn", "Uranus"), "First␣test␣error:␣" + str(

len(bf("Jupiter", "Neptune")))
assert bf("Earth", "Mercury") == ("Venus",), "Second␣test␣error:␣" + str(bf("Earth",

"Mercury"))
assert bf("Mercury", "Uranus") == ("Venus", "Earth", "Mars", "Jupiter", "Saturn"), "

Third␣test␣error:␣" + str(bf("Mercury", "Uranus"))
assert bf("Neptune", "Venus") == ("Earth", "Mars", "Jupiter", "Saturn", "Uranus"), "

Fourth␣test␣error:␣" + str(bf("Neptune", "Venus"))

# Check some edge cases that are easy to work out by hand.
assert bf("Earth", "Earth") == ()
assert bf("Mars", "Earth") == ()
assert bf("Jupiter", "Makemake") == ()

check(bf)

### Response:
def bf(planet1 , planet2):

WizardCoder:

planet_names = ("Mercury", "Venus", "Earth", "Mars", "Jupyter", "Saturn", "Uranus", "
Neptune")

if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:
return ()

planet1_index = planet_names.index(planet1)
planet2_index = planet_names.index(planet2)
if planet1_index < planet2_index:

return (planet_names[planet1_index + 1: planet2_index ])
else:

return (planet_names[planet2_index + 1 : planet1_index ])

Figure 33: Incorrect solution from WizardCoder to a HUMANEVALFIX Python problem. The
bug consists of "Jupiter" being misspelled as "Jupyter" in the function. WizardCoder returns the same
function without making a single change leaving the bug. This is a particularly difficult bug that only
GPT-4 and OCTOCODER (only for 1 out of the n=20 generations) are able to solve.
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O.4 BLOOMZ

Input:

const generateIntegers = (a, b) => {
if (a > b) {

let tmp = a;
a = b;
b = tmp;

}
let y = []
for (let i = a; i <= b; i++) {

if (i == 2 || i == 4 || i == 6 || i == 8) { y.push(i) }
}
return y

}

Provide a concise natural language description of the code using at most 218 characters.

BLOOMZ:

Generate a list of integers from a to b.

Input (without previous input):

Generate a list of integers from a to b.
Write functional code in JavaScript according to the description.
const generateIntegers = (a, b) => {

BLOOMZ:

let integers = [];
for (let i = a; i <= b; i++) {

integers.push(i);
}
return integers;

}

Figure 34: Incorrect solution from BLOOMZ to a HUMANEVALEXPLAIN JavaScript problem.
BLOOMZ misses in its description that the function generates only the even digits between a and
b, in ascending order. Thus, its synthesized function based on its own description simply collects
all integers between a and b. BLOOMZ likely left out this part due to its bias for short and concise
answers. However, this bias backfires for this task.

O.5 StarCoder
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Input:

import java.util .*;
import java.lang .*;

class Solution {
public Map <String , Integer > histogram(String test) {

Map <String , Integer > dict1 = new HashMap <>();
List <String > list1 = Arrays.asList(test.split("␣" ));
int t = 0;
for (String i : list1) {

if (Collections.frequency(list1 , i) > t && !i.isEmpty ()) {
t = Collections.frequency(list1 , i);

}
}
if (t > 0) {

for (String i : list1) {
if (Collections.frequency(list1 , i) == t) {

dict1.put(i, t);
}

}
}
return dict1;

}
}

Provide a concise natural language description of the code using at most 423 characters.

StarCoder:

public class Solution {
public Map <String , Integer > histogram(String test) {

int t = 0;

}
}
if (t > 0) {

Write functional code in Java according to the description.

import java.util .*;
import java.lang .*;

class Solution {
public Map <String , Integer > histogram(String test) {

StarCoder:
Map <String , Integer > map = new HashMap <String , Integer >();
int t = 0;
for (int i = 0; i < test.length (); i++) {

if (test.charAt(i) == ’t’) {
t++;

}
}
map.put("t", t);
return map;

}
}

Figure 35: Incorrect solution from StarCoder to a HUMANEVALEXPLAIN Java problem. Star-
Coder is not capable of generating natural language descriptions and instead copies the solution.
However, our post-processing removes substrings from the solution (§3) leading to a useless descrip-
tion. Given this description it generates an irrelevant function. As StarCoder cannot generate natural
language explanations, we disqualify it from HUMANEVALEXPLAIN setting its score to 0 in Table 2.
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O.6 InstructCodeT5+

Input:

Below is an instruction that describes a task. Write a response that appropriately completes the
request.
### Instruction: Fix bugs in has_close_elements.
from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:
for idx , elem in enumerate(numbers):

for idx2 , elem2 in enumerate(numbers):
if idx != idx2:

distance = elem - elem2
if distance < threshold:

return True

return False

def check(has_close_elements):
assert has_close_elements ([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True
assert has_close_elements ([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False
assert has_close_elements ([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True
assert has_close_elements ([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False
assert has_close_elements ([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True
assert has_close_elements ([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True
assert has_close_elements ([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False

check(has_close_elements)

### Response:from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

InstructCodeT5+:

for idx , elem in enumerate(numbers):
for idx2 , elem2 in enumerate(numbers):

if idx != idx2:
distance = elem - elem2
if distance < threshold:

return True

return False

Figure 36: Incorrect solution from InstructCodeT5+ to a HUMANEVALFIX Python problem.
InstructCodeT5+ simply repeated the function without adding the missing "abs" statement to turn the
distance into an absolute value. This is one of the simplest bugs that most other models are able to fix.
For InstructCodeT5+ the prompt starts directly after "Response:" without a newline (Figure 19).

O.7 StarChat-β
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Input:

#include <stdio.h>
#include <math.h>
#include <vector >
#include <string >
#include <algorithm >
using namespace std;
#include <stdlib.h>
int specialFilter(vector <int > nums){

int num =0;
for (int i=0;i<nums.size();i++)
if (nums[i]>10)
{

string w=to_string(nums[i]);
if (w[0]%2==1 and w[w.length () -1]%2==1) num +=1;

}
return num;

}

Provide a concise natural language description of the code using at most 296 characters.

StarChat-β:

This code is a solution to the "Special Array" problem on LeetCode. It uses C++ and includes several
standard libraries, including vector, string, and algorithm.
The code starts by declaring some variables and importing the necessary libraries. It then defines a
specialFilter function that takes

Input (without previous input):

This code is a solution to the "Special Array" problem on LeetCode. It uses C++ and includes several
standard libraries, including vector, string, and algorithm.
The code starts by declaring some variables and importing the necessary libraries. It then defines a
specialFilter function that takes
Write functional code in C++ according to the description.
#include <stdio.h>
#include <math.h>
#include <vector >
#include <string >
#include <algorithm >
using namespace std;
#include <stdlib.h>
int specialFilter(vector <int > nums){

StarChat-β:

int n = nums.size();
int sum = 0;
for(int i = 0; i < n; i++){

sum += pow(nums[i], 2);
}
int target = (int)sqrt(sum);
vector <int > res;
for(int i = 0; i < n; i++){

if(nums[i] > target){
res.push_back(nums[i]);

}
}
return res;

}

Figure 37: Incorrect solution from StarChat-β to a HUMANEVALEXPLAIN C++ problem.
StarChat-β has a bias for excessively long answers. StarChat-β’s description includes irrelevant parts
like "..problem on LeetCode..includes several standard libraries.." (despite the problem not existing
on LeetCode). As the description exceeds the 296-character limit for the code, it is cut off at the end.
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O.8 Diff Codegen

Input:

<NME > truncate_number.py
<BEF > def truncate_number(number: float) -> float:

""" Given a positive floating point number , it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).

Return the decimal part of the number.
>>> truncate_number (3.5)
0.5
"""
return number % 1.0 + 1.0

<MSG > Fix bugs in truncate_number.
<DFF >

Diff Codegen 2B

@@ -4,7 +4,7 @@ def truncate_number(number: float) -> float:
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).

- Return the decimal part of the number.
+ Return

Figure 38: Incorrect solution from Diff Codegen 2B to a HUMANEVALFIXDOCS Python problem.
Diff Codegen 2B suggests an irrelevant diff modifying parts of the docstring. The model commonly
outputs diffs that modify the docstring or an import statement and rarely addresses the actual bug.

P Limitations and Future Work

Model Execution A promising avenue for improving performance on HUMANEVALFIX is letting
the model execute the given code or its own generated code and inspect its output (Chen et al., 2022,
2023c; Yasunaga and Liang, 2021; Li et al., 2022a; Gao et al., 2023; Dong et al., 2023; Zhang et al.,
2023c; Madaan et al., 2023b; Ni et al., 2023; Gou et al., 2023; Hu et al., 2023; Taylor et al., 2022;
Nye et al., 2021). This could allow the model to discover which unit tests are failing and for what
reason. The model could then simply iterate on the function until all unit tests are passing. We leave
explorations of this strategy to improve performance on HUMANEVALPACK to future work.

Multi-file changes For the creation of COMMITPACK, we have filtered out any commits that affect
multiple files to ensure commits are very specific and account for the fact that most current models
are only capable of operating on a single file. Allowing models to take multiple files as input and
modify multiple files given a single instruction is a promising direction for future work. There is
active research on using repository-level context (Ding et al., 2022; Shrivastava et al., 2023a,b; Zhang
et al., 2023a; Liu et al., 2023d) and the necessary long context windows (Dai et al., 2019; Press et al.,
2021; Sun et al., 2021; Dao et al., 2022; Peng et al., 2023; Liu et al., 2023c; Chen et al., 2023b).

Length-awareness Current Code LLMs including OCTOCODER struggle with awareness about the
length of their generated output. For HUMANEVALEXPLAIN, we instruct the models to limit their
output to a given number of characters. While it is trivial for humans to count characters and adhere
to the limit, all models tested frequently generate far too many characters. Prior work has shown that
human raters are biased towards preferring longer texts (Wu and Aji, 2023) regardless of content. All
models evaluated are instruction tuned on text that was at least indirectly assessed by human raters,
hence they may be biased towards generating longer texts even if it means including literary bloat.

Better evaluation Evaluating code instruction models is challenging for several reasons:
(1) Prompting: The prompt can significantly impact the performance of large language mod-
els (Brown et al., 2020; Zhou et al., 2022; Muennighoff, 2022; Babe et al., 2023). To ensure fair
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evaluation we use the prompting format put forth by the respective authors of the models and a simple
intuitive prompt for models without a canonical prompt (see Appendix N). However, this may put
models without a canonical prompt recommendation (e.g. BLOOMZ, GPT-4) at a slight disadvantage.
OCTOCODER and OCTOGEEX perform best when prompted using the same format we use during
training (Figure 17) and we recommend always using this format at inference.
(2) Processing: Models may accidentally impair otherwise correct code by e.g. including a natural
language explanation in their output. We largely circumvent this issue through the use of strict
stopping criteria and careful postprocessing (e.g. for GPT-4 we check if it has enclosed the code in
backticks, and if so, extract only the inner part of the backticks discarding its explanations).
(3) Execution: When executing code to compute pass@k, it is important that the generated code
matches the installed programming language version. Models may inadvertently use expressions
from a different version (e.g. they may use the Python 2 syntax of print "hi", which would fail in
a Python 3 environment). In our evaluation, we did not find this to be a problem, however, as models
become more capable, it may make sense to specify the version. Future prompts may include the
version (e.g. “use JDK 1.18.0”) or provide models with an execution environment that has the exact
version installed that will be used for evaluation.
(4) Comprehensiveness: Executing code can only reflect functional correctness lacking a comprehen-
sive understanding of quality. Compared to execution-based evaluation, the human judgment of code
quality can be considered more comprehensive as humans can consider factors beyond correctness.
Directly hiring human annotators can be inefficient and expensive, and therefore researchers have
explored approaches to automate human-aligned evaluation via LLMs (Fu et al., 2023; Liu et al.,
2023e; Zhuo, 2023). However, recent work (Wang et al., 2023b) suggests LLM-based evaluation
can be biased towards certain contexts. Future work on automating the human-aligned evaluation of
instruction tuned Code LLMs while avoiding such bias is needed.

Reward Models Our commit datasets, COMMITPACK and COMMITPACKFT, also lend themselves
well for learning human preferences. The changed code after a commit generally represents a human-
preferred version of the code (else the code would not have been modified). Thus, one could train a
reward model that given the code before and after a commit, learns that the code afterward is better.
Similar to prior work (Ouyang et al., 2022), this reward model could then be used to guide a language
model to generate code that is preferred by humans.
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