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ABSTRACT

Weather nowcasting is an essential task that involves predicting future radar echo
sequences based on current observations, offering significant benefits for disas-
ter management, transportation, and urban planning. Current prediction meth-
ods are limited by training and storage efficiency, mainly focusing on 2D spatial
predictions at specific altitudes. Meanwhile, 3D volumetric predictions at each
timestamp remain largely unexplored. To address such a challenge, we introduce
a comprehensive framework for 3D radar sequence prediction in weather now-
casting, using the newly proposed SpatioTemporal Coherent Gaussian Splatting
(STC-GS) for dynamic radar representation and GauMamba for efficient and ac-
curate forecasting. Specifically, rather than relying on a 4D Gaussian for dynamic
scene reconstruction, STC-GS optimizes 3D scenes at each frame by employing
a group of Gaussians while effectively capturing their movements across consec-
utive frames. It ensures consistent tracking of each Gaussian over time, making
it particularly effective for prediction tasks. With the temporally correlated Gaus-
sian groups established, we utilize them to train GauMamba, which integrates a
memory mechanism into the Mamba framework. This allows the model to learn
the temporal evolution of Gaussian groups while efficiently handling a large vol-
ume of Gaussian tokens. As a result, it achieves both efficiency and accuracy in
forecasting a wide range of dynamic meteorological radar signals. The experi-
mental results demonstrate that our STC-GS can efficiently represent 3D radar
sequences with over 16× higher spatial resolution compared with the existing 3D
representation methods, while GauMamba outperforms state-of-the-art methods
in forecasting a broad spectrum of high-dynamic weather conditions.

1 INTRODUCTION

Weather nowcasting is a critical component of meteorological forecasting that focuses on predicting
short-term weather conditions based on real-time observations. It supports many meteorological
applications, such as precipitation forecasting Shi et al. (2017); Yu et al. (2024), extreme weather
warnings Zhang et al. (2023), and hurricane prediction Li et al. (2022), and plays a vital role in
various applications, including disaster management, transportation safety, and urban planning. Ac-
curate nowcasting relies on timely and precise predictions of rapidly changing weather patterns.
One of the key pathways for weather nowcasting is radar sequence prediction, which focuses on
forecasting future radar echo frames from current observations.

Recent advancements have primarily concentrated on predicting 2D radar sequences at specific alti-
tudes Wang et al. (2017); Gao et al. (2022b); Wang et al. (2023); Gao et al. (2023); Yu et al. (2024).
However, the atmospheric system develops in three spatial dimensions, where the intensity of echoes
from low-altitude clouds is closely linked to surface convective activity, while higher-altitude clouds
indicate potential severe weather. Relying solely on 2D radar echoes at specific altitudes overlooks
the dependencies between different heights and fails to capture the complete structure of the system.
As shown in Fig. 1, a straightforward way is to extend the 2D predictive model to 3D. However, this
transition requires the model to receive higher-dimensional features, leading to increased memory
usage and computational complexity, which further restricts high-resolution scaling.
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Figure 1: Comparisons between 2D and 3D radar sequence prediction frameworks. (a) Current
2D methods mainly focus on 2D spatial predictions at specific altitudes. Limited by training and
storage efficiency, it is challenging to extend these methods to 3D architectures directly. (b) The
size of the storage occupied by a single frame input is calculated according to the resolution of
two datasets. The resolution of MOSAIC is 36 × 384 × 512, 2D input is 384 × 512, 3D input is
36 × 384 × 512, and the size of 3D Gaussians is 49, 152 × 11. The resolution of NEXRAD is
36× 512× 512 with 6 channels, the inputs are 6× 512× 512, 6× 36× 512× 512 and 49, 152× 16.

To address such an issue, we present a comprehensive framework for effective 3D radar sequence
prediction. This framework utilizes the newly proposed SpatioTemporal Coherent Gaussian Splat-
ting (STC-GS) for dynamic radar representation and incorporates GauMamba for accurate and effi-
cient forecasting. Specifically, our STC-GS differs from traditional methods that rely on 4D Gaus-
sians for daily dynamic scene reconstruction, where only the main subjects are dynamic and most
objects are treated as locally static. In contrast, radar observations of clouds are continuously in
motion and changing, without adhering to any rigid body or morphological constraints. STC-GS
begins by reconstructing the initial frame utilizing a group of 3D Gaussians (Kerbl et al., 2023),
which are then employed as anchors. By monitoring and aggregating changes to these anchors as
subsequent frames are pre-reconstructed, STC-GS effectively captures the underlying motion trends
of the radar sequence. The initial Gaussians from the first frame, combined with the series of mo-
tion trends extracted from subsequent frames, establish a clear temporal continuity. Such a scheme
ensures the consistent tracking of each 3D Gaussian over time, thereby enhancing its efficacy in
predictive tasks. In practice, we develop a bidirectional reconstruction pipeline for STC-GS that
accurately models the growth and dissipation of radar echoes. This pipeline incorporates dual-scale
constraints to preserve the temporal coherence of Gaussian movements across both global trends
and local details in the data.

Once we establish temporally correlated Gaussian groups across all of the frames, we adopt them
to train the proposed GauMamba. It integrates a memory mechanism into the Mamba framework,
allowing it to model the temporal evolution of Gaussian groups while efficiently managing a large
volume of Gaussian tokens. This capability is crucial for effectively forecasting a wide range of
dynamic meteorological radar signals. Overall, our framework not only enhances the accuracy of 3D
radar sequence predictions but also improves computational efficiency, making it a robust solution
for weather nowcasting applications. By leveraging the strengths of STC-GS and GauMamba, we
aim to advance the state-of-the-art in meteorological forecasting, providing timely and accurate
information for various practical applications.

The main contributions of this work can be summarized as follows. (1) To our best knowledge, this
is the first work for 3D-based weather nowcasting by predicting high-dynamic radar sequences. Our
framework introduces a novel 3D Gaussian representation termed STC-GS that adeptly captures
radar data dynamics, paired with a memory-augmented network, GauMamba, which learns tempo-
ral evolution from these representations to forecast radar changes. (2) We propose a bidirectional
Gaussian reconstruction pipeline, which is designed to precisely track the motion trajectory of 3D
Gaussians along the sequential frames. It incorporates dual-scale constraints to ensure coherence
at both global trends and local details, effectively preserving the temporal consistency of Gaus-
sian movements. (3) In addition, we collect and organize a novel high-dynamic 3D radar sequence
dataset named MOSAIC and reorganize a dataset named NEXRAD. Our experiments demonstrate
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that GauMamba effectively predicts future 3D radar data with 16× resolution, achieving a 19.7%
and 50% reduction in Mean Absolute Error (MAE), and a notable improvement in predicting regions
with significant radar signals.

2 RELATED WORK

2.1 3D GAUSSIAN REPRESENTATION

Recently, Gaussian Splatting-based representations offer real-time rendering with high training effi-
ciency and garner considerable research interestsTang et al. (2023); Diolatzis et al. (2024); Mallick
et al. (2024); Zhou et al. (2024). Motivated by the success of 3D Gaussian Splatting, numerous stud-
ies have extended it to real-time dynamic scene reconstruction and rendering. Incremental transla-
tion methods Luiten et al. (2023); Sun et al. (2024) tackle this challenge by initializing each frame
based on the preceding one, leveraging motion constraints to enforce temporal coherence. Other
approaches extend Gaussian representations to 4D space-time Yang et al. (2024a) or model global
scene deformations with neural networks or polynomial Wu et al. (2024); Yang et al. (2024b); Li
et al. (2024), enabling efficient reconstructions. Despite these advancements, such methods face
limitations in accurately capturing complex or discontinuous scene dynamics. Moreover, they often
rely on fixed color and opacity settings to ensure consistency.

Recent studies Shen et al. (2024); Yi et al. (2024); Ziwen et al. (2024); Zhang et al. (2025) have
explored integrating Mamba Gu & Dao (2023); Dao & Gu (2024) or Transformer architectures with
3D Gaussian representations, focusing on reconstructing 3D Gaussians from single or multi-view
images. However, these approaches are limited in their ability to model spatiotemporal dynamics, as
the lack of memory mechanisms. Our method leverages sequences of 3D Gaussians to represent the
temporal evolution of 3D radar echo data and employs a Memory-Augmented GauMamba model to
effectively integrate information from preceding frames.

2.2 SPATIO-TEMPORAL PREDICTION

Spatio-temporal prediction is crucial in meteorological forecasting, requiring models to capture both
spatial patterns and temporal dynamics. U-Net architectures using 2D or 3D CNNs have been ap-
plied to tasks like precipitation nowcasting, Arctic Sea ice prediction, and ENSO forecasting Veil-
lette et al. (2020); Andersson et al. (2021); Ham et al. (2019), though they struggle with tempo-
ral dependencies. To improve this, methods such as ConvLSTM Shi et al. (2015), ConvGRU Shi
et al. (2017), and PredRNN Wang et al. (2017; 2023) integrate memory mechanisms to better han-
dle spatio-temporal correlations. E3D-LSTM Wang et al. (2019) combines 3D CNNs with LSTM
for long-term forecasting, while PhyDNet Guen & Thome (2020) embeds physical constraints into
models. SimVP Gao et al. (2022a) simplifies prediction using convolutional encoders and decoders,
while transformer-based models Pathak et al. (2022); Bai et al. (2022); Gao et al. (2022b) capture
long-range dependencies. However, deterministic models often struggle with prediction blur and
fail to capture the stochastic nature of weather systems. To address this, diffusion-based models
Gao et al. (2023); Yu et al. (2024) have been introduced to estimate spatio-temporal uncertainty.

3 METHODOLOGY

3.1 PRELIMINARY

3D Gaussian Splatting (3DGS). Gaussian Splatting Kerbl et al. (2023) uses a collection of 3D
Gaussians to represent 3D objects or scenes. Each Gaussian is characterized by a position p ∈ R3,
a scaling factor s ∈ R3, and a rotation quaternion q ∈ R4. For rendering RGB images, an opacity
value α ∈ R and a color feature c ∈ RC are also included, with optional spherical harmonics for
modeling view-dependent effects. In this way, a group of Gaussians can be represented as Θ, where
Θi = {pi, si, qi, αi, ci} denotes the parameters of the i-th Gaussian.

The rasterization stage involves calculating the Gaussian’s contribution to individual pixels. Initially,
each Gaussian is projected into the camera’s coordinate. Following this, the renderer divides the
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Figure 2: Overview of our 3D prediction framework based on STC-GS and GauMamba. (a)
STC-GS can effectively compress the size of 3D data while fully representing it. GauMamba is a
memory-augmented predictive model that leverages STC-GS for effective and accurate predictions.
The STC-GS at Frame t is input into the GauMamba to predict a set of DiffGaussians, ∆Gt+1,
representing the differences between Gt+1 and G0. This process is applied iteratively from Frame
0 to Frame Tin + Tout − 1. (b) In the process of radar reconstruction, dual-scale constraints are
implemented to capture both the global trends and the local details present in the Gaussian motions.

screen into tiles and culls the Gaussians that fall outside the view frustum. Lastly, the renderer
conducts alpha blending in a depth-sorted order within the view space for each pixel.

3.2 THE OVERALL FRAMEWORK

As illustrated in Fig. 2, we introduce a comprehensive framework for the prediction of 3D radar
echo sequences in weather nowcasting. The overall framework includes two main components.
The first part is the newly proposed SpatioTemporal Coherent Gaussian Splatting (STC-GS) for
dynamic radar data representation. The second is the GauMamba, a memory-augmented Mamba
network, coupled with STC-GS representations, for efficient and precise forecasting. In practice,
unlike 3DGS, which is designed for rendering real-world RGB scenes, our STC-GS is specifically
tailored for radar observations, whose definition is provided in Sec. ??.

Given the high-resolution 3D radar sequence, we first require to re-represent each frame Fi ∈
RH×W×C into a group of 3D Gaussians, where H and W donate the vertical and horizontal spa-
tial resolution, and C denotes the number of measurement channels. Unlike the traditional 3DGS
technology used for scene reconstruction, our goal is to obtain a new representation of 3D radar data
based on reconstruction to further accomplish downstream prediction tasks. Therefore, the proposed
STC-GS should maintain the spatiotemporal coherence based on reconstruction. In this way, we in-
troduce a bi-directional reconstruction scheme to achieve it, where a backward pre-reconstruction is
first conducted to preliminarily retain the growth and dissipation of the Gaussians along the temporal
dimension, and the forward reconstruction is carried out by using the pre-reconstruction results as
the reference to enhance the accuracy. Please refer to Sec. 3.3.2 for more details.

Next, the prediction based on 3D radar can be transformed to predict the variation of STC-Gaussians
along frames. We coupled the memory mechanism with Mamba to achieve linear time training and
inference based on Gaussian Groups and the capacity to model the temporal evolution of Gaussian
groups. Our proposed GauMamba takes parameters of t-th frame Gaussians Gt as inputs and predicts
the difference between the Gt+1 and G0, see 3.4 for more details.

3.3 SPATIOTEMPORAL COHERENT GAUSSIAN REPRESENTATION

The goal of reconstructing 3D radar data into a set of 3D Gaussians is to obtain a feature-dense repre-
sentation that can nearly losslessly represent the original 3D radar data. To achieve this, we propose
a differentiable reconstruction pipeline motivated by 3D Gaussians Splatting (3DGS) method Kerbl
et al. (2023). Instead of relying on Structure from Motion (SfM) in 3DGS, our STC-GS randomly
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samples points from the original 3D radar data to initialize the positions and radar features of the
3D Gaussians. We then design a differentiable radar profile renderer capable of rendering radar
cross-sections from any angle, including horizontal, vertical, and oblique views. Readers can refer
to Appx. A for more details.

3.3.1 DEFINITION OF 3D RADAR GAUSSIAN IN STC-GS

Given the specific location x ∈ R3 of the radar frame, we use the slightly perturbated coordinates
indices of the corresponding pixels as the initial positions of the 3D Gaussians, to avoid falling
into saddle points in the optimization space. Unlike using RGB values to reconstruct real-world
scenes, reconstructing radar observation data requires N dimensional features f ∈ RN , which
indicates radar echo intensity, horizontal reflectivity factor, spectrum width, etc. The number of
radar features N depends on the specific radar dataset. Additionally, defining a 3D Gaussian requires
an optimizable full 3D covariance matrix Σ. It can be decomposed into a rotation matrix R and a
scaling matrix S for by:

Σ = RSSTRT

In practice, the rotation matrix R and the scaling matrix S are represented as a rotation quaternion
q ∈ R4 and a scaling factor s ∈ R3, respectively. In summary, for the i-th Gaussian, the optimizable
attributes are given by Θ̂i = {xi,fi, si, qi}. We then optimize each Gaussian by minimizing the
error between the rendered results and the radar profiles from the origin 3D radar data.

3.3.2 BIDIRECTION RECONSTRUCTION SCHEME.

Adding or removing Gaussians during reconstruction disrupts spatiotemporal consistency, making it
impossible to track Gaussians throughout the sequence. However, simply disabling adaptive density
control significantly degrades reconstruction quality, impairing the capture of cloud dynamics in
radar sequences. To address these issues, we propose a bidirectional reconstruction strategy that
preserves spatiotemporal consistency without altering the Gaussian set. This approach effectively
captures frame-by-frame motion trends from raw data while accurately modeling the growth and
dissipation of clouds in highly dynamic radar sequences.

The bidirectional reconstruction strategy that consists of two stages: backward reconstruction and
forward reconstruction. In the backward reconstruction stage, we pre-reconstruct from timestamp
T to timestamp 0. Only the position of the Gaussians are optimized using the local detail and
global trend constraints. Components that persist or gradually dissipate over time are preserved,
and each Gaussian’s position is updated according to cloud motion at each timestamp. By the time
backward reconstruction reaches timestamp 0, it effectively incorporates information from future
frames, bringing this information back to the initial frame. In the forward reconstruction stage,
we iteratively reconstruct each frame from timestamp 0 to timestamp T . We uniformly sample from
the Gaussians obtained during the backward reconstruction and the original 3D data at timestamp
0 to initialize a new set of Gaussians. In the coarse reconstruction stage, we optimize the positions
using the local detail and global constraints, then optimize all Gaussian parameters by additional
reconstruction loss.

Achieving a spatiotemporally coherent representation requires each Gaussian to precisely track the
motion of the region it reconstructs. Besides, radar sequences often exhibit complex and diverse dy-
namics, including motion, deformation, growth, and dissipation. Reconstructing such high-dynamic
sequences necessitates simultaneous adjustments to all attributes of the Gaussians. Identifying which
parameters to modify for optimal error minimization becomes a significant challenge. Thus, the pre-
diction based on 3D Gaussians introduces new challenges for the optimization process during the
reconstruction phase. To address this, we propose a local detail constraint (3D flow constraint) and
a global trend constraint (global energy constraint), which introduce 3D motion priors and optimal
position distribution priors estimated from the original 3D radar data.

Local Detail Constraint. To introduce 3D motion priors from original 3D radar data and achieving
a spatiotemporally coherent for each Gaussian, we introduce a 3D optical flow constraint, as shown
in Fig. 2(b). First, we utilize a pre-trained 2D optical flow model, RAFT Teed & Deng (2020), to
estimate the motion of radar observations across the xoy, xoz, and yoz planes. These 2D flows are
then fused into a pseudo 3D flow within an xyz grid to approximate motion in 3D space. We take
the 3D flow grid closest to each Gaussian as the reference flow, and constrain the distance between
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Figure 3: The overall architecture of the GauMamba. (a) Main architecture of GauMamba which
consists of multiple stacked MambaGRU Block. (b) Detailed architecture design of MambaGRU.

the displacement of the Gaussians ∆x ∈ R3 and the reference 3D flow ∆flow to ensure that the
Gaussians move in tandem with the corresponding cloud formations:

Llocal = ∥∆x−∆flow∥2.
However, since the 3D optical flow is estimated and fused from 2D images, it may not always be
accurate. Moreover, employing an optical flow model pre-trained on real-world image sequences to
estimate the flow of radar sequences could introduce inductive bias, which may accumulate over iter-
ations. As a result, while the 3D flow constraint helps ensure that the Gaussians generally align with
the direction of actual cloud motion, it cannot guarantee that each Gaussian is optimally positioned
in every iteration.

Global Trend Constraint. From the original sparse 3D radar observation data, we can infer an
optimal distribution of a group of Gaussians that accurately reconstructs the 3D data. Intuitively, the
probability of Gaussians existing should be high in non-null regions of the 3D radar data, gradually
decreasing to zero from the boundary areas between non-null and null regions to fully null regions,
as shown in Fig. 2(b). We approximate the unnormalized optimal distribution of Gaussians using
a smoothed function with threshold suppression. Specifically, we apply a Gaussian kernel-based
smooth convolution to the original radar data and clamp values that exceed a predefined threshold τ ,
the estimated unnormalized optimal distribution P(F ) can be expressed mathematically as follows:

P(F ) = min(F ∗ K(·), τ).
Here, F is the original radar data, ∗ denotes the convolution operator and K(·) is the Gaussian ker-
nel. For the current group of 3D Gaussians, we can derive their corresponding position probability
densities by reusing the differentiable renderer. Specifically, each 3D Gaussian is treated as a normal
distribution centered at its current location, and reuse the renderer to obtain the position probabil-
ity densities of the current Gaussians. Then, utilizing the energy function in energy-based learning
LeCun et al. (2006), we can define a simple yet effective method to measure the similarity between
two distributions:

Lglobal = ∥RP(G)− P(F )∥2.
Here, RP denotes the reused randerer for distribution estimation and RP(G) is the estimated distri-
bution based on current Gaussians G. By minimizing this energy function, we can ensure that each
Gaussian in the current set is positioned at a more optimal initial location.

3.4 MEMORY AUGMENTED MAMBA PREDICTIVE MODEL

We now introduce our proposed Mamba-based predicion model termed GauMamba, incorporated
with the spatiotemporal coherent Gaussian representation for high-dynamic 3D radar sequence pre-
diction. After reconstructing the raw radar data into a sequence of Gaussian groups, we aim to train
the predictive model based on the 3D Gaussian representations.

Thanks to STC-GS, the prediction of 3D radar sequence can be transfromed into the prediction of
variation of Gaussian group along the temporal dimension. We leverage the standard Mamba Gu &
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Dao (2023); Dao & Gu (2024) and incorporate GRU memory mechanism to predict parameters of fu-
ture Gaussians. The former can effectively handle a large number of Gaussian tokens as input, while
the latter can effectively learn the spatiotemporal relationships between adjacent Gaussian Groups.
As shown in Figure 3(a), the proposed GauMamba consists of multiple stacked MambaGRU blocks.
The l-th layer MambaGRU block at timestamp t takes two inputs: the output embedding from the
previous layer Cl−1

t and the hidden state used for memory from the previous timestamp Hl
t−1. The

block then outputs the updated Gaussian embeddings Cl
t, along with the updated memory hidden

state Hl
t to be passed to the next timestamp.

Training objective. In our 3D Gaussians prediction training, we parameterize our model fθ to
predict DiffGaussian ∆Gt = Gt − G0 for t = 1, 2, · · · , Tin + Tout, using:

Lpred =

Tin+1∑
t=1

∥fθ(Gt−1,Ht−1)− Gt∥2 +
Tout∑

t=Tin+2

∥fθ(Ĝt−1,Ht−1)− Gt∥2

Here, Tin is the length of given observation sequence, Tout is the length of predicted sequence, and
Ĝt−1 = G0 ⊕ ∆Ĝt−1. Notably, since we only have access to true states of the first Tin Gaussian
Groups, there is no true value for timestamps beyond Tin+1 to be used as input for prediction. Thus,
for t ≤ Tin+2, Ĝt−1 is estimated based on the predicted result ∆Ĝt−1 from the previous timestamp
and the initial state G0. Specifically, we tokenize G0 to obtain its embedding, and then combine it
with the embedding of ∆Ĝt−1, which is produced by the final MambaGRU block from the previous
time step. This summation results in the estimated embedding for timestamp t− 1.

4 EXPERIMENT

More details of datasets, implementation, metrics, and experimental setup are in Appendix C.

4.1 DATASET
Frame 0 Frame 10 Frame 20 Frame 25 Detail

3DGStream

4DGS

Deform-3DGS

Ours

GT

Figure 4: Qualitative results of reconstruction.

The datasets used in this study include
NEXRAD and MOSAIC. NEXRAD1 com-
prises radar observations of severe storms in
the U.S., with 3D reflectivity data sampled at
5-minute intervals. Seven radar features, such
as reflectivity, azimuthal shear, differential re-
flectivity, and so on, are included. MOSAIC
records radar observations of storms in Guang-
dong, China, with 6-minute intervals, focusing
solely on intensity data of radar echoes. Both
datasets are preprocessed to ensure consistent
vertical spacing and are divided into training,
validation, and test sets. The prediction task in-
volves forecasting up to 20 future frames based
on 5 observed frames. For further information,
please refer to the supplementary material C.1.

4.2 EXPERIMENT RESULTS

Resconstruction. First, we verify the effectiveness of our proposed re-represent method on the high-
dynamic 3D radar dataset and compare it with other state-of-the-art methods designed for dynamic
scene reconstruction. Table 1 presents the quantitative evaluation result on reconstructing hight-
dynamic 3D radar sequences. The competing methods adhere to their original configurations, with
certain parameters fixed during optimization. In contrast, our approach allows all parameters to be
freely optimized, posing a significantly more challenging task. Despite this, our method achieves
superior performance across all metrics. As illustrated in Figure 4, our proposed method preserves
more details and maintains consistent accuracy throughout the entire sequence.

1https://huggingface.co/datasets/Ziyeeee/3D-NEXRAD
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Table 1: Comparision of reconstruction in NEXRAD

Model MAE↓
×10 PSNR(dB)↑ SSIM↑ LPIPS↓ LPIPSRadar

↓

3DGStream Sun et al. (2024) 0.019 38.133 0.954 0.091 0.902
4DGS Wu et al. (2024) 0.028 35.731 0.933 0.135 0.623
Deform-3DGS Yang et al. (2024b) 0.029 35.027 0.931 0.141 0.578

Ours 0.014 40.262 0.970 0.057 0.123
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Figure 5: Memory usage of different
methods with various input resolutions.

Prediction. The large and cumbersome 3D tensors
presents a significant challenge in extending radar echo
predictions from 2D to 3D, thereby limiting the scal-
ability of models for high-resolution predictions. Fig.
5 illustrates the GPU memory requirements for feature
extraction and prediction using methods based on 3D
data, including ConvGRU, PhyDNet, SimVP, and Dif-
fCast, alongside our proposed feature-dense 3D Gaus-
sian prediction approach. Scaling these radar echo pre-
diction methods, which use raw 3D data as input, to
high-resolution training and deployment is both difficult
and impractical, as the time and space complexity scales
quadratically, i.e., O(N2), with respect to the horizontal
resolution of N×N. In contrast, the memory usage of our
proposed Gaussian-based method is independent of the input or output resolution, scaling linearly
only with the number of Gaussian primitives. As shown in Fig. 5, the memory usage of our Gau-
Mamba method is evaluated with a fixed number of Gaussian primitives tailored for high-resolution
images, balancing computational efficiency and reconstruction precision. When predict at lower
resolutions, e.g., N ≤ 256, fewer Gaussian primitives are required, leading to reduced memory
consumption.

With the available computational resources of 4 A100 80G GPUs, methods that use raw 3D data
as input cannot be effectively trained at a horizontal resolution of 512 × 512. To facilitate a fair
comparison with our proposed GauMamba, we trained ConvGRU, PhyDNet, SimVP, and DiffCast
at a horizontal resolution of 128 × 128, and trained GauMamba at 512 × 512, while maintaining
a consistent vertical resolution. Then, we upsampled the predictions from ConvGRU, PhyDNet,
SimVP, and DiffCast to 512× 512 for a fair evaluation.

The quantitative performance metrics of two 3D radar datasets are presented in Table 2 and 3 re-
spectively. In general, our proposed GauMamba with STC-GS as input outperforms all existing
models based on raw 3D radar data, even if predicting in an actual higher resolution. The Gau-
Mamba achieves 12.1%, 69.0% and 4.8%, 101.1% improvements in CSI-20 and CSI-30 with 4× 4
pooling in MOSAIC and NEXRAD dataset, respectively. We also present the qualitative results in
Fig. 6. The prediction results of our proposed method contain more details and the high values
of the significant regions are preserved. This is because the re-represented Gaussian with signif-
icant features more prioritized to be tracked and predicted in order to minimize our optimization
objective. In addition, the results of Mamba and our GauMamba demonstrate that the approaches
and experiments developed within our proposed framework, which redefine the 3D prediction task
by first re-representing the sequences with 3D Gaussians and then predicting their future evolution,
significantly outperforms traditional methods, highlighting the effectiveness and robustness of our
reformulation.

4.3 ABLATION STUDY

4.3.1 RECONSTRUCTION

Reconstruction w/o local details. The flow constraint introduces a pseudo-3D motion flow that
guides the reconstruction process. Its absence leads to dynamic Gaussians that struggle to accurately
track the movement of the reconstructed elements. This deficiency results in a 32.6% increase in

8
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Figure 6: Qualitative results of 3D radar prediction. (a) The prediction results in MOSAIC
dataset. (b) The prediction results in NEXRAD dataset. Detail comparisons are plotted in the last
column, respectively. Our proposed framework can more effectively predict local changes in detail,
which may determine specific weather change trends.

Table 2: Experiment results in MOSAIC

Model MAE↓ SSIM↑ LPIPS↓ LPIPSRadar
↓ CSI-20↑

Pool4 CSI-30↑
Pool4 CSI-40↑

Pool4

ConvGRU 1.728 0.621 0.303 4.837 - - -
PhyDNet 0.910 0.810 0.244 1.451 0.294 0.108 0.002
SimVP 0.890 0.835 0.270 3.516 0.264 0.075 -
DiffCast 1.878 0.355 0.433 2.216 0.305 0.126 0.006

Mamba 0.750 0.894 0.164 0.777 0.293 0.166 0.055
GauMamba 0.714 0.897 0.157 0.741 0.342 0.213 0.062

the MAE score. Reconstruction w/o global trends. The energy-based constraint plays a crucial
role during the initial stages by ensuring that the set of Gaussians achieves a more appropriate
coarse-level spatial distribution. This constraint also helps mitigate error accumulation that can
arise from inaccurate flow estimations. After removing the energy-based iteration phase, we keep
the total number of iterations constant. Reconstruction w/o bidirectional reconstruction. Before
the forward reconstruction phase, a backward reconstruction is conducted to optimize the spatial
distribution of the Gaussians. Omitting this reverse pre-reconstruction stage results in the loss of
the ability to propagate information about areas that emerge in the future back to the first frame.
Consequently, the initialization of Gaussian positions becomes inadequate, leading to a significant
decrease in accuracy.

4.3.2 PREDICTION

GauMamba w/o Mermory. Removing the memory mechanism results in a vanilla Mamba, which
is not suitable for the current prediction task. To evaluate the effectiveness of the memory mech-
anism, we incorporate DLinear Zeng et al. (2023), a simple yet effective prediction method that
does not rely on memory. Specifically, we split a vanilla Mamba into two symmetric parts: an en-
coder and a decoder. The encoder generates embeddings from historical observations, which are
subsequently fed into DLinear to predict future embeddings. The decoder then produces the pre-
dicted parameters of Gaussian. However, Mamba with DLinear does not surpass our method with
a 20.2% increment of MAE score. Our memory mechanism can be updated temporally while con-
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Table 3: Experiment results in NEXRAD

Model MAE↓ SSIM↑ LPIPS↓ LPIPSRadar
↓ CSI-20↑

Pool4 CSI-30↑
Pool4 CSI-40↑

Pool4

ConvGRU 0.006 0.819 0.205 1.621 0.306 - -
PhyDNet 0.017 0.373 0.320 2.058 0.311 0.089 0.002
SimVP 0.066 0.379 0.481 2.925 0.085 0.088 0.018
DiffCast 0.157 0.004 0.932 4.057 0.049 0.021 0.021

Mamba 0.004 0.899 0.129 0.699 0.309 0.165 0.074
GauMamba 0.003 0.900 0.126 0.665 0.326 0.179 0.078

Table 4: Ablation Study in Reconstruction

Method MAE↓
×100 PSNR(dB)↑ SSIM↑ LPIPS↓

Reconstruct w/o flow (local details) 1.947 37.521 0.953 0.089
Reconstruct w/o energy (global trends) 1.497 40.049 0.969 0.059
Reconstruct w/o bi-direction 3.245 32,746 0.921 0.152

Full Model 1.468 40.262 0.970 0.057

Table 5: Ablation Study in Prediction

GauMamba ME→0 MAE↓ SSIM↑ LPIPS↓ CSI-20↑
Pool4 CSI-30↑

Pool4 CSI-40↑
Pool4

w/o Memory -0.445 0.858 0.883 0.170 0.224 0.122 0.035
w/o GRU -0.374 0.743 0.895 0.161 0.289 0.165 0.052
w/o Sort -0.532 0.880 0.883 0.183 0.179 0.085 0.025

Full Model -0.103 0.714 0.897 0.157 0.342 0.213 0.062

sidering global embeddings. In contrast, DLinear infers future embeddings based solely on local
embeddings. GauMamba w/o GRU. We removed the reset gate and update gate from the GRU,
while retaining the memory mechanism. The hidden states, which store historical information, are
directly concatenated with the current Gaussian embeddings. In this configuration, the MAE score
increases by 4.1%, which is lower than that of GauMamba w/o Mermory, highlighting the effective-
ness of the memory mechanism. However, removing GRU reduces the flexibility in updating the
memory. GauMamba w/o Sort. Morton sorting aggregates spatially adjacent points in the 1D se-
quence. Without Morton sorting, the Gaussians are input into GauMamba in their original unsorted
order, as determined during the reconstruction stage. Although each Gaussian maintains its position
consistently across frames, a significant performance degradation is observed. This suggests that
spatially unstructured sequences negatively impact the feature extraction capabilities.

5 CONCLUSION

In this work, we introduced a novel framework for 3D radar sequence prediction in weather fore-
casting, addressing the limitations of current 2D spatial prediction methods. Our proposed Spa-
tioTemporal Coherent Gaussian Splatting (STC-GS) and GauMamba effectively capture dynamic
radar signals while maintaining high efficiency and accuracy. Experimental results demonstrate
that STC-GS achieves superior reconstruction accuracy compared to existing 3D representations,
while GauMamba outperforms state-of-the-art models in predicting dynamic weather conditions.
In general, we provide a general solution framework for 3D prediction, paving the way for future
advancements in this domain. However, the current scope of our approach is specialized, focusing
primarily on radar-based weather nowcasting, with limited exploration of broader applications. We
are actively working to enhance its generalization and simplify the pipeline for broader applicability
to dynamic 3D scenarios.
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A 3D RADAR CROSS-SECTION RENDERING

3D Radar Cross-Section Rendering aims to project 3D Gaussians from the world coordinate system
onto the virtual camera imaging plane to render specific cross-section results. First, we apply a trans-
formation matrix to convert the 3D Gaussians from the world coordinates to the camera coordinates.
Then, we discard any Gaussians that exceed a predefined threshold distance from the virtual imaging
plane. Finally, the remaining Gaussians are rendered in order of their distances to the imaging plane,
from nearest to farthest. The 3D Gaussian’s contribution to the pixel can be calculated by:

F =
∑
i∈Np

fi · e−
1
2 (xp−xgi)

TΣ−1
i (xp−xgi)

where Np is the number of Gaussians overlapping with the given pixel, fi is the radar features of
i-th Gaussian, xp and xgi are the centered positions of the pixel and i-th gaussian respectively, Σ−1

i
is the 3D covariance matrix of i-th Gaussian. The rasterization strategy, similar to the origin 3DGS,
is fully differentiable, enabling to take full use of the GPU acceleration framework to optimize
parameters of Gaussians using stochastic gradient descent.

B MEMORY MECHANISM.

The core of the Gated Recurrent Unit (GRU) is based on two primary gates: the reset gate and the
update gate, which control the flow of information. Unlike LSTM, GRU combines the forget and
input gates into a single update gate, simplifying the architecture. When a new input Ct is received
at time step t, the reset gate rt controls how much of the previous hidden state Ht−1 should be
ignored when computing the candidate hidden state Ĥt. A smaller reset gate value causes the model
to ”forget” parts of the previous hidden state, effectively resetting the memory. The update gate zt
determines how much of the previous hidden state Ht−1 should be retained, controlling the balance
between preserving past information and incorporating new data. the update gate zt controls the
final hidden state Ht, which is a combination of the previous hidden state Ht−1 and the candidate
hidden state Ĥt. The advantages of GRU’s gating mechanism is that it allows efficient control over
information flow and help to mitigate the vanishing gradient problem by maintaining long-term
dependencies more effectively.

As illustrated in Fig. 3, incorporating Mamba and GRU preserves the linear-time complexity of
Mamba and introduces a long-range memory mechanism that allows mamba-based models to predict
the next Gaussians based on the previous Gaussians. The key equations are shown in below:

rt = σ(WcrCt +WhrHt−1 + br)

zt = σ(WczCt +WhzHt−1 + bz)

Ĥt = WchCt +Whh(rt ◦ Ht−1) + bh

Ĉt = BiMamba(Ĥt)

Ht = zt ◦ Ht−1 + (1− z) ◦ Ĉt

C EXPERIMENT SETTING

C.1 DATASET

NEXRAD: The 3D gridded radar reflectivity data used in this study were collected by the U.S.
NEXRAD WSR-88D radar network. These data are sourced from the ds841.6 dataset product avail-
able through the National Center for Atmospheric Research (NCAR) Research Data Archive De-
partment of Atmospheric Sciences, Texas AM University & School of Meteorology, University of
Oklahoma (2021). Due to constraints on storage and GPU resources, radar observations of severe
storm events in 2022 with a longitude and latitude grid size ranging from 512 to 1024 are selected
from different geographical coverage.

The selected storm events are observed at 5-minute intervals with a horizontal resolution of ap-
proximately 0.021 degrees. A total of 6255 3D radar observation are considered in this study. To
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preprocess the raw radar data, a quality control procedure is applied, following the methodology
outlined in Homeyer & Bowman (2022). Subsequently, a central 512 × 512 longitude/latitude grid
is cropped from each event observation. In the vertical dimension, there are 28 levels, spanning
from 0.5 km to 7 km with 0.5 km intervals, and from 7 km to 22 km with 1 km intervals. To ensure
consistent vertical spacing of features, we interpolate the original data to obtain 44 vertical layers
with 0.5 km intervals spanning from 0.5 km to 22 km. The 3D radar data from these storm events
include seven channels: (1) ZH , the horizontal reflectivity factor, which indicates the intensity of
radar returns from precipitation; (2) SW , the spectrum width, representing the variability of Doppler
velocities within the radar pulse volume; (3) AzShr, the azimuthal shear, a measure of wind shear
in the horizontal plane often used to detect rotation within storm systems; (4) Div, the divergence,
which reflects the horizontal divergence or convergence of wind fields; (5) ZDR, the differential
reflectivity, used to differentiate precipitation types by comparing horizontal and vertical polariza-
tions; (6) KDP , the specific differential phase, providing information on phase shifts of the radar
signal, useful for estimating rainfall rates; and (7) rHV , the correlation coefficient between horizon-
tal and vertical polarizations, which assesses the uniformity of precipitation particles and identifies
non-meteorological targets.

Given the objective of predicting up to 20 future frames (100 minutes) based on 5 observed frames
(25 minutes), we sample 25 continuous frames with a stride of 10 from each event. These sequences
are then divided into training, validation, and test sets in a 9:0.5:0.5 ratio.

MOSAIC The MOSAIC dataset records radar echoes over several years within Guangdong, China,
with a time interval of 6 minutes between consecutive frames. To ensure efficient training while
considering GPU and storage limitations, we excluded radar data that did not capture meteorological
events, focusing on severe storm events in 2022. This resulted in a total of 24,542 radar observations.
The raw data have a horizontal resolution of 880 × 1050 pixels, with 21 vertical layers ranging from
0.5 km to 6 km with 0.5 km intervals, from 6 km to 10 km with 1 km intervals, and additional layers
at 12 km, 14 km, 15.5 km, 17 km, and 19 km. To achieve consistent vertical spacing of features,
we interpolate the original data to obtain 38 vertical layers with 0.5 km intervals spanning from 0.5
km to 19 km. The central 768 × 1024 region is cropped and downsampled to 384 × 512, resulting
in radar observation data of dimensions 38 × 384 × 512. Unlike the NEXRAD dataset, MOSAIC
includes only the intensity data of radar echoes. For the task of predicting up to 20 future frames
(120 minutes) based on 5 observed frames (30 minutes), we sample 25 continuous frames with a
stride of 20 from each event. These sequences are then divided into training, validation, and test sets
in a 9:0.5:0.5 ratio.

C.2 IMPLEMENTATION DETAILS

We define the prediction task as predicting 20 frames future frames based on 5 initial frames, fol-
lowing Yu et al. (2024). For reconstruction, we random sample 10% points from non-null regions
to initialize the Gaussians. To maintain a constant total number of Gaussians, additional points are
randomly sampled from the null regions, bringing the final count to 49,152 Gaussians. During the
reverse pre-reconstruction stage, we perform 5,000 iterations to adjust the positions of the Gaussians,
applying 3D flow and energy constraints. In the forward reconstruction stage, we first optimize the
positions of the Gaussians in the same manner for the first 5,000 iterations. Afterward, all Gaussian
parameters are optimized, incorporating the 3D flow, energy constraints, and reconstruction loss.
The initial learning rate is set to 0.002, which is gradually reduced to 0.0002 by the end of train-
ing. For the prediction task, we train our framework for 50 epochs using the Adam optimizer with
a learning rate of 0.0005. For baseline methods, their 2D operators are extended to 3D to handle
3D radar prediction tasks, with their configurations adjusted accordingly for different datasets. All
experiments are conducted under the same settings using 4 A100 GPUs.

C.3 METRICS

To evaluate the accuracy of predictions, we calculate the Mean Error (ME) and Mean Absolute
Error (MAE) to assess the overall numerical discrepancy between the predicted results and the
ground truth. A ME value closer to zero indicates better accuracy; a ME greater than zero sig-
nifies that the predictions generally exceed the ground truth, while a ME less than zero indicates
the opposite. To evaluate the visual quality of the predictions, we employ the Structural Similarity
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Table 6: Extended Experiment results in NEXRAD

Model MAE↓ SSIM↑ LPIPS↓ LPIPSRadar
↓ CSI-20↑

Pool4 CSI-30↑
Pool4 CSI-40↑

Pool4

ConvGRU 0.006 0.836 0.194 1.632 0.326 - -
PhyDNet 0.017 0.366 0.323 2.114 0.348 0.097 0.002
SimVP 0.008 0.817 0.176 1.483 0.227 0.002 0.000
DiffCast 0.152 0.005 0.925 4.005 0.051 0.023 0.044

Mamba 0.004 0.902 0.125 0.625 0.304 0.158 0.075
GauMamba 0.003 0.907 0.122 0.600 0.361 0.205 0.089

Index (SSIM)Wang et al. (2004), Peak Signal-to-Noise Ratio (PSNR) and Learned Perceptual Image
Patch Similarity (LPIPS)Zhang et al. (2018). Here, we use the pretrained AlexNet as the evaluator
of LPIPS. Besides, we pretrained a BiGAN model on radar data in a self-supervised manner. The
LPIPS score calculated with the encoder of BiGAN is marked as LPIPSRadar. The results in Table
2 and 3 demonstrate that LPIPSRadar is well-aligned with the original LPIPS results. More impor-
tantly, it highlights perceptual differences that were undetected by the original LPIPS and robust to
noise. In Table 2, the scores for ConvGRU and DiffCast show discrepancies between LPIPS and
LPIPSRadar. Referring to Figure 6 left, it can be clearly observed that ConvGRU fails to predict
the next few frames accurately, instead providing a smoothed average result. In contrast, DiffCast
produces results that are closer to the ground truth but with some noise. The higher LPIPS score
for DiffCast indicates that LPIPS lacks robustness to noise in radar data, while LPIPSRadar more
accurately reflects the perceptual differences between the two methods.

In addition, the Critical Success Index (CSI) is used to quantify the degree of pixel-wise agreement
between the prediction and the ground truth. CSI is defined as Hits

Hits + Misses + False Alarms , where Hits
(truth=1, pred=1), Misses (truth=1, pred=0), and False Alarms (truth=0, pred=1) are counted after
binarizing the continuous values of predictions and ground truth into 0/1 values at thresholds [20,
30, 40] dBz. Following Ravuri et al. (2021); Gao et al. (2023); Yu et al. (2024), we report the CSI at
pooling scale 4× 4, which relax the pixel-wise matching to evaluate the accuracy on neighborhood
aggregations.

C.4 PREDICTION

The existing prediction models used for comparison are originally designed for 2D sequence pre-
diction. Therefore, adjustments must be made to adapt them for 3D radar sequence prediction. Two
feasible modifications can be considered. The first involves treating the newly introduced third di-
mension, which represents the vertical axis, as a channel dimension. However, this approach would
limit the model’s ability to predict changes along the vertical axis as effectively as it does in the hor-
izontal plane. Instead, we opted to extend these models from 2D to 3D, enabling them to natively
handle 3D prediction. Specifically, we expanded 2D CNNs to 3D CNNs and similarly extended
modules such as ConvGRU and ConvLSTM included in PhyDNet and DiffCast from 2D to 3D.
Additionally, the 2D PDE constraint in PhyDNet is also adapted for 3D prediction.

D EXTENDED EXPERIMENTS

We conduct extended experiments using the NEXRAD dataset spanning three years (2020–2022)
under the same training epochs, aiming to investigate the impact of increased dataset diversity and
size on model performance. As shown in Table 6, most metrics of these models exhibit slight
improvements when trained on the extended dataset. This performance gain can be attributed to the
enhanced data diversity and the increased number of iteration steps enabled by the larger dataset.
Notably, our model continues to outperform others, demonstrating its robustness and effectiveness
even under extended experimental conditions.
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E QUALITATIVE RESULTS

Reconstruction. The full reconstructed results are shown in Fig. 7, 8 and 9.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8 Frame 9 Frame 10

3DGStream

4DGS

Deform-3DGS

Ours

GT

Figure 7: Qualitative results of 3D radar reconstruction from frame 1 to frame 10.

Frame 11 Frame 12 Frame 13 Frame 14 Frame 15 Frame 16 Frame 17 Frame 18 Frame 19 Frame 20

3DGStream

4DGS

Deform-3DGS

Ours

GT

Figure 8: Qualitative results of 3D radar reconstruction from frame 11 to frame 20.

Prediction. The full predicted results are shown in Fig. 10, Fig. 11, Fig. 12, and Fig. 13

F DISCUSSION

Training objective of GauMamba. It is possible to directly predict Gt based on Gt−1. However,
we found that this approach often leads to poor convergence. The difficulty arises because directly
predicting Gt requires the model to estimate both the overall trend of G and its exact position. In
contrast, predicting ∆Gt simplifies the problem by focusing only on the changes from the initial
timestamp 0 to timestamp t, thus reducing the solution space and making it more compact. Another
viable alternative is to predict the difference between consecutive timestamps, i.e., ∆Ĝt = Gt−Gt−1.
However, this method suffers from the drawback of error accumulation during inference, where the
iterative predictions lead to increasingly compounded errors over time.
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Frame 21 Frame 22 Frame 23 Frame 24 Frame 25 Detail

3DGStream

4DGS

Deform-3DGS

Ours

GT

Figure 9: Qualitative results of 3D radar reconstruction from frame 21 to frame 25 and details of
frame 25.

ConvGRU

PhyDNet

SimVP

DiffCast

GauMamba

GT

Frame 6 Frame 7 Frame 8 Frame 9 Frame 10 Frame 11 Frame 12 Frame 13 Frame 14 Frame 15

Figure 10: Qualitative results of 3D radar prediction from frame 6 to frame 15 in MOSAIC dataset.

Discussion of convergence issue in reconstruction. To accurately reconstruct highly dynamic
radar sequences, all parameters of the 3D Gaussians need to be optimized. Following this setting the
existing dynamic Gaussian reconstruction methods faces significant challenges to convergence. The
fixed parameters serve as efficient anchors, allowing each Gaussian to lock onto a corresponding re-
gion of the object being reconstructed, thereby consistently tracking changes in the object. When all
parameters become adjustable, this crucial prior constraint is lost, leading to incoherent movement
of the Gaussians with the reconstructed parts, and resulting in a vague and suboptimal optimization
objective. In a extreme case, 3D Gaussians exhibiting random Brownian motion can still reconstruct
dynamic scenes and achieve a suboptimal outcome, as long as the deformation function or neural
network used for reconstruction has sufficient capacity and enough iterations. Furthermore, each
Gaussian influences only a very small region of the space, which theoretically limits the effective
area for gradient descent. A small perturbation introduced by randomly initialized neural networks
or polynomial functions can cause the Gaussian to jump out of its original reconstruction region,
hindering the gradient flow from the corresponding ground truth area from properly affecting the
disturbed Gaussian and trapping it in an unrelated region, leading to significant convergence issues.
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ConvGRU

PhyDNet
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Frame 16 Frame 17 Frame 18 Frame 19 Frame 20 Frame 21 Frame 22 Frame 23 Frame 24 Frame 25

Figure 11: Qualitative results of 3D radar prediction from frame 16 to frame 25 in MOSAIC dataset.
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PhyDNet
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Frame 6 Frame 7 Frame 8 Frame 9 Frame 10 Frame 11 Frame 12 Frame 13 Frame 14 Frame 15

Figure 12: Qualitative results of 3D radar prediction from frame 6 to frame 15 in NEXRAD dataset.
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ConvGRU
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Frame 16 Frame 17 Frame 18 Frame 19 Frame 20 Frame 21 Frame 22 Frame 23 Frame 24 Frame 25

Figure 13: Qualitative results of 3D radar prediction from frame 16 to frame 25 in NEXRAD
dataset.
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