
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROTOCODE: PROTOTYPE-DRIVEN INTERPRETABIL-
ITY FOR CODE GENERATION IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Since the introduction of Large Language Models (LLMs), they have been widely
adopted for various tasks such as text summarization, question answering, speech-
to-text translation, and more. In recent times, the use of LLMs for code generation
has gained significant attention, with tools such as Cursor and Windsurf demon-
strating the ability to analyze massive code repositories and recommend relevant
changes. Big tech companies have also acknowledged the growing reliance on
LLMs for code generation within their codebases. Although these advances sig-
nificantly improve developer productivity, increasing reliance on automated code
generation can proportionally increase the risk of suboptimal solutions and in-
secure code. Our work focuses on automatically sampling In-Context Learning
(ICL) demonstrations which can improve model performance and enhance the in-
terpretability of the generated code. Using AST-based analysis on outputs from
the MBPP test set, we identify regions of code most influenced by the chosen
demonstrations. In our experiments, we show that high-quality ICL demonstra-
tions not only make outputs easier to interpret but also yield a positive perfor-
mance improvement on the pass@10 metric. Conversely, poorly chosen ICL
demonstrations affected the LLM performance on the pass@10 metric negatively
compared to the base model. Overall, our approach highlights the importance
of efficient sampling strategies for ICL, which can affect the performance of the
model on any given task.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have gained significant traction in the fields of
code completion and code filling. This growth has been fueled by the availability of large-scale
open-source datasets such as The vault Manh et al. (2023), CodeSearchNet Husain et al. (2020),
CodeXGlue Lu et al. (2021) and many others. Alongside these datasets, we have also witnessed
the emergence of open-source models designed specifically for code-related tasks, including the
CodeLlama series Rozière et al. (2024), Qwen Coder Hui et al. (2024) series, and StarCoder se-
ries Li et al. (2023a). In parallel, closed-source models such as GPT-4o OpenAI et al. (2024) and
Claude Code Anthropic (2025) have been widely adopted by various big tech companies for gen-
erating production-ready code. Despite these advancements, most of these models remain difficult
to interpret in the context of code generation. While a variety of interpretability methods have been
developed to interpret the outputs generated by LLMs and foster trust in their usage across domains,
many of these approaches are generic and not specifically tailored for code generation tasks. Some
methods, however, are focused on interpretability in code generation. For instance, Code-Q Pala-
cio et al. (2025) identifies influential tokens that guide the model’s output, but it requires repeated
sampling and generation, which introduces significant computational overhead during inference.

Another method, ASTrust Palacio et al. (2024), leverages Abstract Syntax Trees (ASTs) by us-
ing model-generated token probabilities. Tokens are mapped to code level subsets, which are then
grouped into terminal and non-terminal nodes within the AST. Each non-terminal node is repre-
sented by the aggregated confidence of its associated terminal nodes. However, this approach re-
quires storing the probability distribution over the entire vocabulary at every step of generation,
which scales poorly as the output length increases. To address these challenges, we propose a
manifold-based sampling strategy that automatically samples a set of ICL demonstrations from a
given dataset. These demonstrations enable interpretability by combining attribution and AST-based

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

analysis. Our method segments the generated code into interpretable regions, such as Iterations,
Data structures, etc., allowing users to understand which regions of the generated code are most
affected by the sampled demonstrations. To the best of our knowledge, we are the first to unify
prototype-driven ICL sampling with AST-grounded attribution for code interpretability.

• Prototype Sampling via Joint Manifold and Metric Learning: Our method introduces
a principled approach to sample In-Context Learning (ICL) demonstrations by combin-
ing piecewise-linear manifold learning and proxy anchor–based metric learning. This
joint formulation ensures that the sampled prototypes are not only geometrically faith-
ful—capturing the local data structure—but also semantically discriminative.

• Prototype-Gradient Attribution for AST-Grounded Interpretability: We propose a
novel attribution mechanism using the gradient of similarity between prototype and token
embeddings to estimate token-level influence. These scores are then propagated through
the Abstract Syntax Tree (AST) to produce faithful, syntax-aware confidence maps, en-
abling both local (node-level) and global (category-level) interpretability of generated
code—while avoiding the memory overhead of storing token probabilities.

2 RELATED WORK

According to Bilal et al. (2025), explainability techniques in AI systems can be broadly divided into
three categories: (1) post hoc explanations, (2) intrinsic interpretability, and (3) human-centered ex-
planations. Post hoc explanation methods aim to interpret a model’s decisions after predictions have
been made. Common approaches include Local Interpretable Model-Agnostic Explanations (LIME)
Ribeiro et al. (2016), Shapley Additive Explanations (SHAP) Lundberg & Lee (2017). LIME pro-
vides local explanations by identifying the most important features for a single prediction. Similarly,
SHAP evaluates the contribution of each feature by measuring changes in the prediction when fea-
tures are systematically removed. In addition, gradient-based methods such as SmoothGrad Smilkov
et al. (2017) and Integrated Gradients Sundararajan et al. (2017) calculate model gradients with re-
spect to input features to determine the sensitivity of the model’s output to each feature.

Intrinsic interpretability, in contrast, focuses on designing model architectures so that their behavior
is inherently explainable. One example is concept bottleneck models Koh et al. (2020), which were
extended to large language models (LLMs) by Sun et al. (2025) for sentence classification task. Their
approach generates concepts for each class, making the classification process directly interpretable.
However, this approach faces limitations in generating suitable concepts for diverse tasks and does
not scale well to text generation. Another related method, Proto-lm Xie et al. (2023) , extends
prototype networks to text classification. Instead of generating concepts like concept bottlenecks, it
learns trainable prototypes and maps them to the nearest training samples for interpretability.

A particularly influential method within intrinsic interpretability is Chain-of-Thought (CoT) Wei
et al. (2023), which generates intermediate reasoning steps. CoT has been shown to improve both
plausibility and task performance compared to demonstrations that provide only the final answers
Wei et al. (2023) Cobbe et al. (2021). Building upon this, Self-Consistency Wang et al. (2023)
was proposed as an extension of CoT. This method prompts the model to produce multiple reason-
ing chains and answers, and then selects the final output using a majority vote across the answers.
Although effective, Self-Consistency only ensures correctness of the final prediction, without ver-
ifying whether the reasoning chains themselves are valid or faithful. To address this, SEA-CoT
Wei Jie et al. (2024) was introduced. SEA-CoT evaluates generated reasoning chains based on the
implication with the task context and the overlap of the token level, ensuring that both the reasoning
process and the final answer align more closely with the task requirements. However, as stated by
Jacovi & Goldberg (2020), the reasoning chains from LLM often appear plausible to humans but are
not necessarily faithful to the true decision-making process of the LLM. Plausibility refers to how
convincing the interpretation is to humans, while faithfulness measures the degree to which it truly
represents the internal reasoning of the LLM.

Most of the above methods are designed for generic tasks, with a limited focus on code-specific ap-
plications. The method ASTrust was developed specifically for interpretability in code generation. It
builds Abstract Syntax Trees (ASTs) to align with program structure and assigns confidence scores
to non-terminal nodes by aggregating probabilities from their terminal nodes. These scores are de-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

rived from token-level probabilities output by the model. Ma et al. (2024) demonstrates that LLMs
already possess strong syntactic awareness, rivaling AST-based static code analysis. However, the
method ASTrust has key limitations: its token sampling method is not well justified. Greedy sam-
pling ignores the advantages of stochastic approaches, while stochastic sampling requires storing
probabilities for all vocabulary tokens at every step an impractical, memory-intensive process. In
contrast, our method avoids this heavy storage by relying on attribution-based prototype influence,
which captures the effect of sampled demonstrations without requiring full vocabulary distributions.
As a result, our approach preserves the benefits of stochastic sampling Shi et al. (2024) while re-
maining significantly more scalable and practical for code generation interpretability.

3 METHODOLOGY

Prototype-based approaches provide an interpretable mechanism to associate each class with repre-
sentative examples, commonly referred to as prototypes. A simple baseline is to define prototypes
using statistics such as class means or medoids in the embedding space. However, these statistical
summaries fail to capture the intrinsic geometry of the representation space: they are vulnerable
to outliers, insensitive to intra-class multimodality, and often yield prototypes that are statistically
central yet semantically uninformative.

To overcome these shortcomings, we turn to the manifold perspective. The manifold hypothe-
sis Cayton (2005) posits that high-dimensional representations lie on low-dimensional manifolds.
Leveraging this structure allows prototypes to be sampled from regions that faithfully capture the
local geometry of the data, rather than from globally averaged or distorted positions in embedding
space. While classical manifold learning techniques such as t-SNE van der Maaten & Hinton (2008),
UMAP McInnes et al. (2020), and LLE Roweis & Saul (2000) emphasize neighborhood preserva-
tion, they often distort local dependencies or fail to maintain global structure. We therefore adopt
a piecewise-linear manifold learning strategy, which decomposes nonlinear manifolds into locally
linear regions.

While geometry preserves structural fidelity, it does not guarantee that prototypes are discrimina-
tive across classes. To enforce both intra-class compactness and inter-class separation, we integrate
metric learning objectives. Traditional formulations such as triplet or contrastive loss require pre-
specified prototypes and extensive mining, making them inefficient and unstable. Instead, we em-
ploy Proxy-Anchor loss, which introduces learnable class-level proxy vectors to directly optimize
intra-class cohesion and inter-class margins. After training, each learned proxy vector is mapped to
its nearest training instance using euclidean distance.

As highlighted in Rodriguez-Cardenas et al. (2023), in the context of ICL, the selection of demon-
strations plays a crucial role in model performance. In our approach, we dedicate considerable effort
to identifying the most suitable prototypes (ICL examples) for each LLM. Our method can be di-
vided into two main components. In the first stage, we initialize a simple neural network hθ and
train it on Dataset D to jointly optimize manifold learning and metric learning objectives. Once the
training is complete, the learned proxy vectors are employed to sample prototypes.

3.1 DATASET

We have used the Magicoder-OSS-Instruct-75K Wei et al. (2024) for sampling the prototypes. This
dataset consists of 75,000 synthetic instruction-following examples generated using OSS-Instruct; it
contains 9 programming languages. For every query, it has a programming language id, the query,
and the code solution. For every sample in the dataset, we have used the following prompt structure
to format all the samples in the dataset.

Prompt Structure: "This is the query being assigned:"+" "+ [/Q]+" "+"The following is the code
solution to the query"+" "+[/S]". Where the placeholders [/Q] and [/S] are for query and code solu-
tion respectively. After formatting the prompts, we use the respective Large Language model(M) to
encode the final prompts into the latent representations (z). We simultaneously label encode the pro-
gramming language ID for using them as class labels; this method gives us 9 different classes, and
for each sample in the dataset, we will be storing the encoded label (l) and the latent representation
(z) as pairs in dataset D.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 TRAINING OVERVIEW

As mentioned in 3, our method consists of two stages. In the first stage of our method, we initialize
a simple neural network hθ Tab 3 and train it on Dataset D to jointly optimize manifold learning
3 and metric learning objectives 1. The neural network hθ learns to map the high-dimensional
encoded representations into lower dimensions. Before the training process, we initialize the proxies
θq and θm. Here both the proxies are unique for each class and initialized randomly with θq = θm.
The proxy vector θq is updated via back-propagation, and the proxy vector θm is updated via the
Momentum update He et al. (2020) where γ is the momentum constant, [θk ← γθk + (1− γ)θq]

During training, for every mini-batch B we build linear piecewise manifolds as outlined in 3.3. For
every point in B, we then compute the manifold-based similarity following the procedure in 3.4.
This similarity measure is used to compute the manifold point-to-point loss Lmanifold. At the same
time, we compute the Proxy Anchor loss LPA using randomly initialized class proxies θq and latent
representations z in batch B. The final loss is computed as, Ltotal = LPA + Lmanifold.

While the manifold loss preserves local geometric structure, the Proxy-Anchor loss promotes intra-
class compactness and inter-class separation, thereby facilitating the discriminative learning of pro-
totypes. Across epochs, the network parameters are updated via backpropagation. After training,
the momentum-updated proxies θm are used to select the nearest training instance as the prototype
for each class, yielding a single prototype per class for the subsequent stage.

After the completion of the training process, we proceed to the second stage, where we generate the
code completions using the prototypes. After that, we utilize the encoded latent representations of
the prototypes to calculate the confidence score per token for AST analysis. For each code com-
pletion, we compute a prototype attribution-based score to quantify the influence of the prototypes
on the generated code. Specifically, influence is measured by the attribution between the sampled
demonstrations and the code completions. Finally, we perform an AST analysis to analyze how the
prototypes impact the syntactic structure of the generated code.

3.3 MANIFOLD CONSTRUCTION

Based on the Manifold hypothesis, we can assume that the encoded latent representations z, which
are inherently complex and non-linear, can be locally approximated into smaller chunks of linear
regions. Our approach leverages this structural assumption to automatically identify representative
prototypes that capture the essential characteristics of each action class.

To efficiently approximate the structure of the linear data manifolds, we adopt a piecewise linear
manifold learning method which constructs localized m-dimensional linear submanifolds around
selected anchor points. Given a mini batch B containing N data points, we randomly select n
of them to serve as anchors. For each anchor point hθ(zi), we initially collect its m−1 nearest
neighbors in the encoded representation space based on Euclidean distance to form the neighborhood
set Xi.

The manifold expansion process proceeds iteratively by attempting to add the m-th nearest neighbor
to Xi. After each addition, we recompute the best-fit m-dimensional submanifold using PCA and
assess whether all points in Xi can be reconstructed with a quality above a threshold T%. If the
reconstruction quality remains acceptable, the new point is retained in Xi; otherwise, it is excluded.
This evaluation is repeated for subsequent neighbors N(hθ(xi))j for j ∈ {m+1, . . . , k}, gradually
constructing a local linear approximation of the manifold.

The final set Xi comprises all points in the anchor’s neighborhood that lie well within an m-
dimensional linear submanifold. A basis for this submanifold is computed by applying PCA to Xi

and extracting the top m eigenvectors. We choose PCA for this task as it can effectively construct
the lower-dimensional manifolds for the locally linear regions.

3.4 TRAINING OBJECTIVES

Proxy Anchor Loss: We use a modified version of proxy anchor loss with Euclidean distance
instead of cosine similarity:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

LPA =
1

|Θ+|
∑

θq∈Θ+

log

1 +
∑

z∈Z+
θq

exp (−α · (∥hθ(z)− θq∥2 − ϵ))

 (1)

+
1

|Θ|
∑
θq∈Θ

log

1 +
∑

z∈Z−
θq

exp (α · (∥hθ(z)− θq∥2 − ϵ))

 (2)

Here, Θ denotes the set of all proxies, where each proxy θq ∈ Θ serves as a representative vector for
a class. The subset Θ+ ⊆ Θ includes only those proxies that have at least one positive embedding
in the current batch B. For a given proxy θq , the latent representations Z in B (where z ∈ Z)
are partitioned into two sets: Z+

θq
, the positive embeddings belonging to the same class as θq , and

Z−
θq

= Z \ Z+
θq

, the negative embeddings. The scaling factor α controls the sharpness of optimiza-
tion by amplifying hard examples when large (focusing gradients on difficult pairs) or smoothing
training when small (spreading weight across all pairs). The margin ϵ enforces a buffer zone be-
tween positives and negatives by requiring positives to be closer to their proxies and negatives to be
sufficiently farther away.

Manifold Point-to-Point Loss: This loss helps in estimating the point to point similarities pre-
serving the geometric structure:

Lmanifold =
∑
i,j

(δ · (1− s(zi, zj))− ∥hθ(zi)− hθ(zj)∥2)2 (3)

where s(zi, zj) is the manifold similarity computed as:

s(zi, zj) =
s′(zi, zj) + s′(zj , zi)

2

with s′(zi, zj) = α(zi, zj) · β(zi, zj), where:

α(zi, zj) =
1

(1 + o(zi, zj)2)
Nα

β(zi, zj) =
1

(1 + p(zi, zj))
Nβ

In equation 3, hθ is a simple neural network with a structure specified in Table 3 and δ is a scaling
factor that determines the maximum separation between dissimilar points. The loss encourages
Euclidean distances in the embedding space to match manifold-based dissimilarities 1 − s(zi, zj),
ensuring that the learned metric space respects the underlying manifold structure. o(zi, zj) is the
orthogonal distance from point zi to the manifold of point zj , and p(zi, zj) is the projected distance
between point zj and the projection of zi on the manifold. The parameters Nα and Nβ control
how rapidly similarity decays with distance, with Nα > Nβ ensuring that similarity decreases more
rapidly for points lying off the manifold than for points on the same manifold.

Distance Calculation. For each point pair (zi, zj), the distances o(zi, zj) and p(zi, zj) are cal-
culated using the manifold basis vectors Pj associated with point zj . The projection of zi onto
Pj is computed as projPj

(zi) = zj +
∑

k⟨zi − zj , vk⟩vk, where vk are the basis vectors of Pj .
The orthogonal distance is then o(zi, zj) = ∥zi − projPj

(zi)∥2, and the projected distance is
p(zi, zj) = ∥projPj

(zi) − zj∥2. This process is repeated for all point pairs, capturing the full
geometric structure of the data manifold.

4 RESULTS

We evaluated the effectiveness of different sampling methods by applying them as in-context learn-
ing (ICL) examples on the MBPP test set Austin et al. (2021). To demonstrate the effectiveness of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across different models and methods on the MBPP dataset

Model→
Method ↓

Qwen3-0.6B Llama3.2-1B Falcon3-1B Starcoder-1B-base Qwen2.5coder-0.5B Codellama-7B

pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

base 0.011 0.048 0.007 0.042 0.010 0.063 0.008 0.040 0.041 0.116 0.021 0.116

diversity 0.0076 0.037 0.012 0.061 0.010 0.042 0.002 0.011 0.021 0.063 0.007 0.035

similarity 0.009 0.050 0.013 0.050 0.011 0.050 0.007 0.032 0.023 0.069 0.018 0.079

mbpp 0.006 0.024 0.007 0.042 0.002 0.018 0.005 0.004 0.021 0.095 0.009 0.039

prototypes(ours) 0.019 0.059 0.010 0.058 0.020 0.068 0.012 0.050 0.048 0.122 0.030 0.122

Table 2: Performance comparison across different models and methods on the MBPP+ Dataset

Model→
Method ↓

Qwen3-0.6B Llama3.2-1B Falcon3-1B Starcoder-1B-base Qwen2.5coder-0.5B Codellama-7B

pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

base 0.0078 0.0396 0.005 0.037 0.009 0.058 0.008 0.037 0.031 0.100 0.015 0.090

diversity 0.0067 0.031 0.007 0.045 0.007 0.034 0.002 0.011 0.017 0.048 0.006 0.026

similarity 0.0061 0.037 0.008 0.054 0.007 0.042 0.006 0.029 0.017 0.055 0.013 0.067

mbpp 0.002 0.016 0.005 0.042 0.001 0.013 0.004 0.032 0.016 0.077 0.006 0.040

prototypes(ours) 0.016 0.050 0.007 0.050 0.015 0.050 0.010 0.046 0.039 0.108 0.024 0.103

our method we have used 2 sets of models for experimentation, the first set consisting of generic
models of Qwen3 Yang et al. (2025), Llama-3.2 AI (2024),Falcon-3 Team (2024) and for the second
set we have used code heavy pre-trained models Starcoder-base Li et al. (2023b), Qwen2.5-Coder
Hui et al. (2024), Codellama Rozière et al. (2024).

The results are reported on a scale from [0, 1], where 0 is the lowest and 1 is the highest (For instance,
0.1 can be interpreted as 10%). While the numerical margins may appear small at first glance, even
modest gains in code completion represent substantial improvements. For context, GPT-4-1106
ope (2023), which is estimated to be at least 1000× larger than the models used for our experiments,
achieves a score of 0.786 on the MBPP test set. This comparison highlights an important distinction:
in many benchmarks, partial overlap between a generated solution and the reference solution may
yield a nonzero score even if the final answer is incorrect. In contrast, code benchmarks are more
stringent, as each generated program is independently evaluated against unit test cases. Therefore,
even incremental improvements in Pass@k metrics are highly significant for code generation tasks.

The Qwen2.5-coder model, despite having fewer parameters than Codellama, achieves comparable
performance on both the Pass@1 and Pass@10 metrics across the MBPP and MBPP+ test sets.
Among all comparisons, the similarity-based sampling method surpasses our approach only for the
Llama3.2 model; in every other case, our method consistently outperforms alternative strategies
across all models. As noted by Rodriguez-Cardenas et al. (2023), within the ICL setting, the quality
of selected demonstrations can also negatively affect model performance.

For the Qwen3 and Qwen2.5-coder models, using demonstrations sampled from methods other than
the prototype-based approach leads to a decline in performance on both MBPP and MBPP+. A
similar trend is observed for the Starcoder and Codellama models. These results suggest that the
Qwen family of models, as well as code-pretrained models in general, are particularly sensitive to
the choice of ICL demonstrations. An unsuitable set of demonstrations can reduce performance
compared to the base model, underscoring the importance of effective sampling strategies for ICL.

5 AST ANALYSIS

We perform an Abstract Syntax Tree (AST) analysis to identify which syntactic regions of the gen-
erated code are most influenced by the sampled prototypes. In the ASTrust framework, the authors
employ token-level probabilities produced by the model M as the confidence scores in the token
set. For a sequence of tokens w1, w2, . . . , wi, the probability of generating the next token wi+1 is
defined as equation 4 where M denotes the Large Language Model and M(w1:i) represents the
non-normalized log probabilities output by the model for the given context.

P (wi+1 | w1:i) = Softmax
(
M(w1:i)

)
, (4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 1: Conceptual working of AST analysis

As discussed in Section 2 2, this method suffers from high memory overhead when combined with
stochastic sampling strategies. To mitigate this limitation, we instead leverage attribution-based
scores between the sampled prototypes and the generated code samples, and use these scores as
token-level confidence in AST analysis. Concretely, for a model-generated code snippet C, we
extract the tokens wi along with their latent representations zwi . Let the latent representation of a
sampled prototype p be zp. We compute the mean prototype vector za as za =

∑
i∈P zi. Next,

we compute the dot product between za and each zwi , and compute its gradient with respect to zwi .
The normalized gradients∇zwi

(equation 5) are then used as confidence scores per token in the AST
analysis.

∇zwi
=

d(za · zwi
)

dzwi

(5)

5.1 SYNTAX GROUNDED EXPLANATIONS

Figure 2: Alignment & Clustering Interactions. The δ function aligns tokens wi to terminal nodes
λ. Terminal and Non-terminal nodes λ, α ∈ υ are clustered by Syntax Categories Λ

AST analysis involves using the prototype-based attribution scores as token confidence scores ex-
plained in 5. We then compute the average confidence over tokens corresponding to each AST
node, and report these averages as performance values grouped by manually defined syntax cate-
gories. The process follows three steps, illustrated in Fig.1 1. In Step1, for every generated code
snippet, the tokenizer splits the code into tokens wi (forming the token set τ D.1), and the model
assigns a confidence score to each token as described in 5. In Step2, the token-level predictions are
aligned with the respective Abstract Syntax Tree (AST) terminal nodes. Terminal nodes retain the
raw confidences, whereas non-terminal nodes hierarchically store aggregated values. Together, ter-
minal and non-terminal nodes form the subcategory set υ D.1. For instance, the token ’if_’ from the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

token set aligns with a terminal AST node but is grouped under the non-terminal node ’if_statement’.
Finally, in Step 3, the analysis introduces eight syntax categories to summarize model predictions.
These categories aggregate subcategories into broader, human-interpretable groups. The Syntax
Categories form a fixed Category Set Λ D.1, providing more intuitive elements for interpretation.

For example, the sub-categories ’if_statement’ and ’if’ are grouped under the syntax category ’De-
cisions’ 2. Ultimately, ASTrust outputs an averaged score for each category to provide global
explanations, along with an AST tree visualization that embeds confidence scores at every node
for local explanations. In essence, we argue that syntax elements encode semantic information that
contextualizes token-level confidence scores, though this semantic value differs depending on the
granularity of the elements. For instance, tokens alone convey less interpretable meaning compared
to higher-level categories. AST analysis thus serves as a post-hoc explanation framework at both
local and global levels. Local explanations focus on breaking down a single code snippet into AST
elements to interpret its generation, while global explanations rely on multiple generated snippets to
provide a holistic view of the model through Syntax Categories (SCs) D.1.

5.2 CODE SYNTACTIC ANALYSIS

To assess the attribution-based confidence score of each Syntax Category (SC) for the 6 LLMs, we
present an AST analysis. 3 illustrates the AST interpretability performance segregated by Syn-
tax Categories (SCs) for each model type. The Qwen2.5 Coder and Qwen3 3 (a) models exhibit
highly consistent confidence across all syntax categories, with nearly identical values. Both mod-
els demonstrate their strongest performance in Scope, Data Structures, and Functions, indicating
reliability in handling structured data, variable and function scoping, and modular code organiza-
tion. Moderate confidence is observed for Iteration, Decisions, Operators, and Data Types, while the
lowest confidence is consistently assigned to Exception handling, suggesting potential limitations in
generating or reasoning about robust error-handling constructs. Overall, these results suggest that
both Qwen2.5 Coder and Qwen3 are best suited for structured programming tasks, while being less
dependable for control-flow–intensive or exception-heavy code generation.

The Llama models 3 (b) exhibit broadly similar confidence trends across syntax categories, with
CodeLlama consistently showing a slight advantage over Llama-3.2. Both models demonstrate their
highest reliability in Data Structures, Functions, and Iteration, suggesting strong capabilities in tasks
that require structured data handling, modular code organization, and loop-based constructs. Moder-
ate confidence is observed in Scope, Decisions, Operators, and Data Types, indicating stable but less
pronounced strengths. In contrast, Exception handling remains the weakest category for both mod-
els, highlighting a shared limitation in generating or reasoning about robust error-handling logic.
Collectively, these results suggest that while the Llama models are well-suited for structured pro-
gramming tasks, they are less dependable for exception-heavy scenarios.

The Falcon and StarCoder models 3 (c) display distinct differences in their syntax-grounded confi-
dence. StarCoder consistently achieves higher confidence across nearly all categories compared to
Falcon, indicating stronger overall reliability. Both models perform best in Scope, Data Structures,
and Functions, suggesting robustness in structured programming tasks and modular code organiza-
tion. StarCoder further extends this strength to Iteration and Decisions, where it shows clear im-
provements over Falcon, highlighting its ability to handle control flow more effectively. In contrast,
Exception handling remains the weakest category for both models, underscoring a shared limitation
in generating robust error-handling constructs. Taken together, these results indicate that while Fal-
con is moderately capable across most categories, StarCoder offers broader syntactic reliability and
is better suited for tasks requiring control flow and structured data handling.

6 FUTURE WORKS

In our experiments, prototypes were sampled exclusively from the Magicoder dataset. While this
choice provided a consistent basis for evaluation, extending the analysis to additional datasets could
offer a broader understanding of prototype quality. In fact, our method can naturally be applied as a
global metric for ranking datasets with respect to their ability to yield effective prototypes. Another
limitation arises from differences in model stability. For example, Llama3.2 5 exhibited high sen-
sitivity to changes in nearly all hyperparameters, which led to inconsistent results on the Pass@k

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Scope Data structures Functions Iteration Decisions operations Exception Data types
0

0.2

0.4

0.6

Qwen models (a)

qwencoder2.5 qwen3

Scope Data structures Functions Iteration Decisions operations Exception Data types
0

0.2

0.4

0.6

0.8

Llama models (b)

codellama llama3.2

Scope Data structures Functions Iteration Decisions operations Exception Data types
0

0.2

0.4

0.6

Falcon + Starcoder (c)

falcon3 starcoder

Figure 3: AST analysis on 6 LLMs

metric. In contrast, the Qwen2.5 Coder model 5 displayed only marginal sensitivity, with the excep-
tion of the α parameter, resulting in more stable and reliable performance. Finally, while our current
approach uses sampled prototypes as in-context learning demonstrations, the framework can be ex-
tended toward pre-hoc interpretability by design. In particular, prototype steering could be explored
as a mechanism for influencing model behavior, offering new avenues for both interpretability and
controllability in LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Performance of common benchmarks. https://opencompass.readthedocs.io/en/
stable/user_guides/corebench.html, 2023. Accessed: 2025-09-24.

Meta AI. Llama 3.2 connect 2024: Vision for edge mo-
bile devices, 2024. URL https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/.

Anthropic. Claude code. https://claude.com/product/claude-code, 2025. Ac-
cessed: 2025-09-24.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Shubhang Bhatnagar and Narendra Ahuja. Piecewise-linear manifolds for deep metric learning,
2024. URL https://arxiv.org/abs/2403.14977.

Ahsan Bilal, David Ebert, and Beiyu Lin. Llms for explainable ai: A comprehensive survey, 2025.
URL https://arxiv.org/abs/2504.00125.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Lawrence Cayton. Algorithms for manifold learning. 07 2005.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-
context learning, 2024. URL https://arxiv.org/abs/2301.00234.

Hila Gonen, Srini Iyer, Terra Blevins, Noah Smith, and Luke Zettlemoyer. Demystifying prompts in
language models via perplexity estimation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 10136–10148,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
findings-emnlp.679. URL https://aclanthology.org/2023.findings-emnlp.
679/.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant map-
ping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pp. 1735–1742, 2006. doi: 10.1109/CVPR.2006.100.

10

https://opencompass.readthedocs.io/en/stable/user_guides/corebench.html
https://opencompass.readthedocs.io/en/stable/user_guides/corebench.html
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://claude.com/product/claude-code
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2403.14977
https://arxiv.org/abs/2504.00125
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2301.00234
https://aclanthology.org/2023.findings-emnlp.679/
https://aclanthology.org/2023.findings-emnlp.679/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning, 2020. URL https://arxiv.org/abs/1911.
05722.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xu-
ancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL
https://arxiv.org/abs/2409.12186.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Code-
searchnet challenge: Evaluating the state of semantic code search, 2020. URL https:
//arxiv.org/abs/1909.09436.

Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable nlp systems: How should we
define and evaluate faithfulness?, 2020. URL https://arxiv.org/abs/2004.03685.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning, 2021. URL https:
//arxiv.org/abs/2004.11362.

Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric
learning, 2020. URL https://arxiv.org/abs/2003.13911.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models, 2020. URL https://arxiv.org/abs/2007.
04612.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023a. URL https://arxiv.org/abs/2305.06161.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you! 2023b.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang,
and Xipeng Qiu. Unified demonstration retriever for in-context learning. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 4644–4668, Toronto, Canada,
July 2023c. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.256.
URL https://aclanthology.org/2023.acl-long.256/.

11

https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/2004.03685
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2003.13911
https://arxiv.org/abs/2007.04612
https://arxiv.org/abs/2007.04612
https://arxiv.org/abs/2305.06161
https://aclanthology.org/2023.acl-long.256/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for GPT-3? In Eneko Agirre, Marianna Apidianaki, and Ivan
Vulić (eds.), Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on
Knowledge Extraction and Integration for Deep Learning Architectures, pp. 100–114, Dublin,
Ireland and Online, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.deelio-1.10. URL https://aclanthology.org/2022.deelio-1.10/.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B.
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code understanding
and generation. CoRR, abs/2102.04664, 2021.

Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions, 2017. URL
https://arxiv.org/abs/1705.07874.

Wei Ma, Shangqing Liu, Zhihao Lin, Wenhan Wang, Qiang Hu, Ye Liu, Cen Zhang, Liming Nie,
Li Li, and Yang Liu. Lms: Understanding code syntax and semantics for code analysis, 2024.
URL https://arxiv.org/abs/2305.12138.

Dung Nguyen Manh, Nam Le Hai, Anh TV Dau, Anh Minh Nguyen, Khanh Nghiem, Jin Guo, and
Nghi DQ Bui. The vault: A comprehensive multilingual dataset for advancing code understanding
and generation. arXiv preprint arXiv:2305.06156, 2023.

Costas Mavromatis, Balasubramaniam Srinivasan, Zhengyuan Shen, Jiani Zhang, Huzefa Rangwala,
Christos Faloutsos, and George Karypis. Which examples to annotate for in-context learning?
towards effective and efficient selection, 2023. URL https://arxiv.org/abs/2310.
20046.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction, 2020. URL https://arxiv.org/abs/1802.03426.

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-
Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol,
Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Con-
neau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Kho-
rasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit,
Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming
Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun,

12

https://aclanthology.org/2022.deelio-1.10/
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/2305.12138
https://arxiv.org/abs/2310.20046
https://arxiv.org/abs/2310.20046
https://arxiv.org/abs/1802.03426

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won
Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim
Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Ja-
cob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James
Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei,
Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe
Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay,
Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld,
Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang,
Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood,
Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel
Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Work-
man, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka,
Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas
Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens,
Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall,
Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty,
Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese,
Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang,
Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail
Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat
Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers,
Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Fe-
lix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum,
Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen
Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum,
Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe
Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Ran-
dall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza
Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
dani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmat-
ullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino,
Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez
Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia,
Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir
Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal
Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas
Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom
Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi,
Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda
Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim,
Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov.
Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

David N. Palacio, Daniel Rodriguez-Cardenas, Alejandro Velasco, Dipin Khati, Kevin Moran, and
Denys Poshyvanyk. Towards more trustworthy and interpretable llms for code through syntax-
grounded explanations, 2024. URL https://arxiv.org/abs/2407.08983.

David N. Palacio, Dipin Khati, Daniel Rodriguez-Cardenas, Alejandro Velasco, and Denys Poshy-
vanyk. On explaining (large) language models for code using global code-based explanations,
2025. URL https://arxiv.org/abs/2503.16771.

Chengwei Qin, Aston Zhang, Chen Chen, Anirudh Dagar, and Wenming Ye. In-context learn-
ing with iterative demonstration selection, 2024. URL https://arxiv.org/abs/2310.
09881.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis,
2020. URL https://arxiv.org/abs/2009.10297.

13

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2407.08983
https://arxiv.org/abs/2503.16771
https://arxiv.org/abs/2310.09881
https://arxiv.org/abs/2310.09881
https://arxiv.org/abs/2009.10297

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?": Explaining the
predictions of any classifier, 2016. URL https://arxiv.org/abs/1602.04938.

Daniel Rodriguez-Cardenas, David N. Palacio, Dipin Khati, Henry Burke, and Denys Poshyvanyk.
Benchmarking causal study to interpret large language models for source code, 2023. URL
https://arxiv.org/abs/2308.12415.

Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear em-
bedding. Science, 290(5500):2323–2326, 2000. doi: 10.1126/science.290.5500.2323. URL
https://www.science.org/doi/abs/10.1126/science.290.5500.2323.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.),
Proceedings of the 2022 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 2655–2671, Seattle, United States,
July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.191.
URL https://aclanthology.org/2022.naacl-main.191/.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 815–823. IEEE, June 2015. doi: 10.1109/cvpr.2015.7298682. URL
http://dx.doi.org/10.1109/CVPR.2015.7298682.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
thorough examination of decoding methods in the era of llms, 2024. URL https://arxiv.
org/abs/2402.06925.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise, 2017. URL https://arxiv.org/abs/1706.03825.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objec-
tive. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf.

Taylor Sorensen, Joshua Robinson, Christopher Rytting, Alexander Shaw, Kyle Rogers, Alexia
Delorey, Mahmoud Khalil, Nancy Fulda, and David Wingate. An information-theoretic ap-
proach to prompt engineering without ground truth labels. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 819–862, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.60. URL
https://aclanthology.org/2022.acl-long.60/.

Chung-En Sun, Tuomas Oikarinen, Berk Ustun, and Tsui-Wei Weng. Concept bottleneck large
language models, 2025. URL https://arxiv.org/abs/2412.07992.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks, 2017.
URL https://arxiv.org/abs/1703.01365.

Eshaan Tanwar, Subhabrata Dutta, Manish Borthakur, and Tanmoy Chakraborty. Multilingual
LLMs are better cross-lingual in-context learners with alignment. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 6292–6307, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.346. URL
https://aclanthology.org/2023.acl-long.346/.

14

https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/2308.12415
https://www.science.org/doi/abs/10.1126/science.290.5500.2323
https://arxiv.org/abs/2308.12950
https://aclanthology.org/2022.naacl-main.191/
http://dx.doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/abs/2402.06925
https://arxiv.org/abs/2402.06925
https://arxiv.org/abs/1706.03825
https://proceedings.neurips.cc/paper_files/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://aclanthology.org/2022.acl-long.60/
https://arxiv.org/abs/2412.07992
https://arxiv.org/abs/1703.01365
https://aclanthology.org/2023.acl-long.346/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Falcon-LLM Team. The falcon 3 family of open models, December 2024. URL https:
//huggingface.co/blog/falcon3.

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for non-
linear dimensionality reduction. Science, 290(5500):2319–2323, 2000. doi: 10.1126/science.290.
5500.2319. URL https://www.science.org/doi/abs/10.1126/science.290.
5500.2319.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Ma-
chine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large lan-
guage models are latent variable models: Explaining and finding good demonstrations for in-
context learning, 2024. URL https://arxiv.org/abs/2301.11916.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct, 2024. URL https://arxiv.org/abs/2312.02120.

Yeo Wei Jie, Ranjan Satapathy, Rick Goh, and Erik Cambria. How interpretable are reasoning expla-
nations from prompting large language models? In Findings of the Association for Computational
Linguistics: NAACL 2024, pp. 2148–2164. Association for Computational Linguistics, 2024. doi:
10.18653/v1/2024.findings-naacl.138. URL http://dx.doi.org/10.18653/v1/2024.
findings-naacl.138.

Patrick H. Winston. Learning and reasoning by analogy. Commun. ACM, 23(12):689–703, Decem-
ber 1980. ISSN 0001-0782. doi: 10.1145/359038.359042. URL https://doi.org/10.
1145/359038.359042.

Sean Xie, Soroush Vosoughi, and Saeed Hassanpour. Proto-lm: A prototypical network-based
framework for built-in interpretability in large language models, 2023. URL https://arxiv.
org/abs/2311.01732.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exem-
plars for in-context learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 39818–39833. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/ye23c.html.

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 9134–9148, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.622. URL https://aclanthology.org/2022.emnlp-main.622/.

15

https://huggingface.co/blog/falcon3
https://huggingface.co/blog/falcon3
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/2301.11916
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2312.02120
http://dx.doi.org/10.18653/v1/2024.findings-naacl.138
http://dx.doi.org/10.18653/v1/2024.findings-naacl.138
https://doi.org/10.1145/359038.359042
https://doi.org/10.1145/359038.359042
https://arxiv.org/abs/2311.01732
https://arxiv.org/abs/2311.01732
https://arxiv.org/abs/2505.09388
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html
https://aclanthology.org/2022.emnlp-main.622/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A RELATED WORKS

A.1 MANIFOLD LEARNING

The manifold hypothesis is a well-established principle in Machine Learning, which suggests that
Cayton (2005):

Although data points often appear to have very high dimensionality, with thou-
sands of observed features, they can typically be represented by a much smaller
set of underlying parameters. In essence, the data resides on a low-dimensional
manifold embedded within a high-dimensional space.

Based on the Manifold hypothesis Manifold learning focuses on uncovering low-dimensional struc-
tures in high dimensional data. Manifold learning techniques like TSNE van der Maaten & Hinton
(2008),UMAP McInnes et al. (2020), LLE Roweis & Saul (2000) and Isomap Tenenbaum et al.
(2000) utilize information derived from the linearized neighborhoods of points to construct low
dimensional projections of non-linear manifolds in high dimensional data.

The method Piecewise-Linear Manifolds for Deep Metric Learning Bhatnagar & Ahuja (2024) aims
to train a neural network to learn a semantic feature space where similar items are close together and
dissimilar items are far apart, in an unsupervised manner. This method is based on using linearized
neighborhoods of points to construct a piecewise linear manifold, which helps estimate a continuous-
valued similarity between data points.

A.2 METRIC LEARNING

Metric learning aims to learn an embedding space where semantically similar samples are close
and dissimilar ones are far apart. Common loss functions include Contrastive loss Hadsell et al.
(2006),aims at making representations of positive pairs closer to each other, while pushing negative
pairs further away than a positive margin. It is commonly used in tasks such as face verification or
representation learning with Siamese networks. Here (zi, z

′
i) are embeddings of a pair, yi ∈ {0, 1}

indicates similarity, and m is the margin.

L =
1

N

N∑
i=1

[
yi ∥zi − z′i∥22 + (1− yi) max

(
0,m− ∥zi − z′i∥2

)2]
Triplet loss Schroff et al. (2015) is another metric learning objective that enforces relative similarity
by ensuring that an anchor xa is closer to a positive sample xp (same class) than to a negative
sample xn (different class) by at least a margin. Unlike contrastive loss, which only considers
pairwise distances, triplet loss leverages relative comparisons, making it more effective in learning
discriminative embeddings for tasks such as face recognition and image retrieval, here f(·) is the
embedding function, m is the margin, xa is the anchor, xp is a positive sample, and xn is a negative
sample.

L =
1

N

N∑
i=1

max
(
0, ∥f(xi

a)− f(xi
p)∥22 − ∥f(xi

a)− f(xi
n)∥22 +m

)
Multi-class N-pair loss Sohn (2016) generalizes triplet loss by comparing one positive sample
against multiple negative samples simultaneously. This encourages more efficient optimization than
triplet loss, which only considers a single negative at a time, leading to better embedding separation
for tasks such as image classification, retrieval, and verification. Here f(·) is the embedding func-
tion, xi

a is the anchor, xi
p is the positive sample of the same class, and {xj

n} are negatives from other
classes.

L =
1

N

N∑
i=1

log

1 +
∑
j ̸=i

exp
(
f(xi

a)
⊤f(xj

n)− f(xi
a)

⊤f(xi
p)
)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Supervised contrastive loss Khosla et al. (2021) extends contrastive loss by leveraging label in-
formation to pull together embeddings from all samples of the same class, rather than relying only
on pairwise similarity. Unlike contrastive loss, which is limited to positive and negative pairs, su-
pervised contrastive loss uses class supervision to exploit multiple positives per anchor, leading to
richer and more discriminative representations. Here P (i) is the set of indices of positives shar-
ing the same class as anchor xi, τ is a temperature scaling parameter, and f(·) is the embedding
function.

L =

N∑
i=1

−1
|P (i)|

∑
p∈P (i)

log
exp

(
f(xi)

⊤f(xp)/τ
)∑N

a=1 1[a ̸=i] exp (f(xi)⊤f(xa)/τ)

Proxy-Anchor Loss: Proxy-Anchor Loss Kim et al. (2020) replaces anchors with learnable class
representatives (proxies), removing the need for anchor sampling as in contrastive, triplet, or N-pair
losses. Instead of comparing individual samples, embeddings are optimized against proxies, which
serve as stable anchors for each class.

LPA =
1

|Θ+|
∑

θq∈Θ+

log

1 +
∑

z∈Z+
θq

exp (−α · (s(z, θq)− ϵ))


+

1

|Θ|
∑
θq∈Θ

log

1 +
∑

z∈Z−
θq

exp (α · (s(z, θq)− ϵ))


A.3 IN CONTEXT LEARNING

In-context learning (ICL) Brown et al. (2020), is a paradigm that enables language models to perform
tasks using only a few demonstrations without explicit parameter updates. Since demonstrations are
expressed in natural language, ICL provides an interpretable interface for interacting with large lan-
guage models (LLMs). Furthermore, ICL resembles the human decision-making process of learning
through analogy Winston (1980). Unlike supervised training, ICL is a training-free framework that
allows models to generalize to new tasks without additional computational costs for fine-tuning.

Based on Dong et al. (2024), several unsupervised strategies have been proposed to sample effective
demonstrations for ICL. A simple yet effective method is to select the nearest neighbors of the input
instance based on similarity measures (Liu et al. (2022), Tanwar et al. (2023), Qin et al. (2024)).
Common distance metrics include L2 distance and cosine similarity derived from sentence embed-
dings. Beyond distance-based approaches, mutual information Sorensen et al. (2022) and perplexity
Gonen et al. (2023) have also been shown to be useful for selecting prompts without labeled data or
model-specific assumptions.

Although off-the-shelf retrievers provide convenient solutions for a wide range of NLP tasks, they
are often heuristic and sub-optimal due to the absence of task-specific supervision. To overcome this
limitation, supervised retriever-based methods have been introduced (Rubin et al. (2022) Ye et al.
(2023) Wang et al. (2024) Zhang et al. (2022)). For instance, Rubin et al. (2022) proposed EPR, a
two-stage framework for training dense retrievers to identify suitable demonstrations. Building on
this, Li et al. (2023c) developed a unified retriever capable of selecting demonstrations across diverse
tasks, while Mavromatis et al. (2023) introduced AdaICL, a model-adaptive method that leverages
LLMs to predict outcomes for unlabeled data and assign uncertainty scores to guide demonstration
selection.

Rodriguez-Cardenas et al. (2023) emphasized the sensitivity of demonstration selection by compar-
ing two different prompt groups in a controlled experiment. One group exhibited a positive causal
effect, improving the Average Treatment Effect (ATE) by 5.1% on Chatgpt, while the other group
showed a negative causal effect, decreasing ATE by 3.3% relative to the control group. Here, ATE
quantifies the average causal influence of a treatment (i.e., the chosen prompt group) on model
performance. These findings highlight the critical role of demonstration quality: poorly chosen ex-
amples may reduce performance, sometimes performing worse than LLMS that do not use ICL at

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

all. Throughout the paper, we use the terms demonstrations and examples interchangeably in the
context of ICL.

B METHODOLOGY

B.1 EVALUATION DATASET AND METRIC

MBPP dataset consists of 973 python programming questions. Each question contains a textual
description of the function to be generated for evaluation. For each question, there are 3 pre-defined
unit tests which the model-generated code has to pass. The samples also contain a reference code.
The MBPP testset is a sampled set of 378 questions for evaluation. The MBPP+ dataset is also
similar in terms to MBPP dataset except it was created by Liu et al. (2023) and here each question
has more than 3 unit tests per question for evaluation.

We employed the sampled prototypes as ICL demonstrations to generate code completions on the
MBPP test set Austin et al. (2021), and evaluated the code completions using pass@1 Chen et al.
(2021) and pass@10 Chen et al. (2021) metrics. We used the evalplus Liu et al. (2023) library
for code post-processing and calculating the pass@1 and pass@10 metrics. The pass@k metric
assesses the functional correctness of generated code by checking performance against predefined
unit tests. Unlike CodeBLEU Ren et al. (2020), which only reflects surface-level similarity, pass@k
is more reliable for evaluating functional correctness since it directly verifies whether at least one
generated program passes the test cases.

In pass@k metric, n is the total no.of problems, k (n ≥ k) is the no.of code samples generated
per problem, c (c ≤ n) represents the count of correct samples which pass unit tests. A problem
is considered solved if any sample passes the unit tests, and the total fraction of problems solved is
reported.

pass@k = Eproblems

[
1−

(
n−c
k

)(
n
k

)]

The below is the architecture of hθ neural network we used. It is a Single-layer network 3 with
intermediate normalizations. For most of the LLMs the prototype size is set to 50. All of the layers
of hθ are used during training and updated via backpropagation.

Table 3: Model Architecture

Layer Layer Parameters
Linear (latent size z, Prototype size)
InstanceNorm1d Prototype size z
ReLU -

B.2 TRAINING PARAMETERS

In the first stage of our framework, dedicated to prototype sampling, the network hθ is trained for
200 epochs on the training dataset D. Training utilizes two independent Adam optimizers: one
for the network parameters and another for the proxy parameters. Both optimizers are initialized
with a learning rate of 1e-3, combined with a scheduler that decays the learning rate by a factor
of ηt = 0.97. The dimensionality of the encoded vector z is determined by the underlying Large
Language Model (M). A mini-batch size of 128 samples is maintained throughout training.

For the initial set of experiments, the hyperparameters for manifold construction and manifold point-
to-point loss estimation are configured as follows: T = 90%, δ = 2, m = 3, Nα = 4, and
Nβ = 0.5. The momentum constant for updating θm is set to γ = 0.99. For Proxy Anchor loss, we
employ α = 32 and ϵ = 0.1. These settings serve as the baseline configuration; subsequently, an
ablation study is conducted on the above parameters for LLMs that exhibited comparatively lower
performance than competing methods.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

All experiments were conducted on an NVIDIA RTX A6000 GPU. In the first stage of our method,
we train a lightweight neural network hθ to sample prototypes, which requires approximately 640
MB of GPU memory and about 7 hours of training time without parallelization. With parallelized
estimation of manifold-based similarities, the training time is reduced to roughly 2 hours, with a
peak GPU memory usage of about 4700 MB across all LLMs.

Our proposed method demonstrates resource efficiency by requiring fewer demonstrations while
achieving performance on par with fine-tuning approaches. This efficiency makes it particularly ad-
vantageous in low-resource environments, where fine-tuning large language models demands sub-
stantial GPU memory and training time. Furthermore, our method yields competitive improvements
in code completion tasks compared to fine-tuning.

B.3 SAMPLING STRATEGIES

• Similarity-based sampling: The test query was encoded following the same procedure as in the
Magicoder dataset. Demonstrations were then selected from each programming language class
based on the closest Euclidean distance to the test query. This method would be sampling 9
distinct prototypes from each class.

• Diversity-based sampling: We computed the mean vector for each class using the latent repre-
sentations z and selected the sample closest to each class mean using Euclidean distance. This
method would be sampling 9 distinct prototypes from each class.

• Base model: For the LLMs being tested no ICL demonstrations were provided, only the test query
was provided.

• MBPP Few shots: The authors of the MBPP test set used and experimented with the samples
at indexes 2, 3, 4 as ICL examples. In our experiments, we also use the same set of samples for
comparison.

• Prototype: This term represents our method, where after finishing training we project the learned
proxy vectors onto nearest training samples and use them as ICL demonstrations for code com-
pletion. This method would be sampling 9 distinct prototypes from each class.

B.4 CODE COMPLETION PROMPTS

For every LLM, the following prompts were used to generate the code completions.

ICL_examples = [(q1,s1), (q2,s2), ...]
where qi is the code query and si is the code solution

icl_prompt = ’’
if ICL_examples is not None:

for query, sol in ICL_examples:
icl_prompt += f"You are an expert programmer, and here is your

task: {prob}\n[BEGIN]\n{sol}\n[DONE]\n\n"

icl_prompt += f"You are an expert Python programmer, and here is your
task: {test_problem}\n[BEGIN]\n"

B.5 MODEL ANALYSIS

The table presents the token lengths of sampled prototypes along with the 99th percentile, 95th
percentile, and average token lengths across the MBPP dataset for combined query and solution
inputs. Since each input consists of the sampled prototypes used as demonstrations together with
the MBPP test queries, we estimate the overall input token lengths to assess whether all prototypes
can be accommodated. These token length statistics are reported separately for each LLM.

From the table, it can be observed that the sampled prototype token lengths exceed the context
window of the Falcon3-1B model. Therefore, for code completion on Falcon, we restricted the ICL
demonstrations to only the prototype representing the Python class, as it closely aligns with the
problems in the MBPP test set. The same procedure was applied across all sampling strategies for
the Falcon3 model.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Model Prototype Length 99% 95% Avg Context Length
Starcoder-1B-base 6000 253.8 186 80.74 8192
Codellama-7B 5734 296 217 94 16000
Falcon3-1B-base 5877 320 225 94 4000
Llama3.2-1B 4288 228 163 74 128000
Qwen2.5coder-0.5B 3054 228 166 73 32000
Qwen3-0.6B 5069 229 166 73 32000

Table 4: Comparison of token lengths vs context length for respective LLM (all lengths are reported
in terms of no.of tokens)

The table also shows that the Codellama model, being code-specific, produces a higher number of
tokens compared to the Llama3.2 model. This highlights the optimized tokenization techniques
of the Llama3.2 series, as Codellama is derived from the Llama2 family of models. In contrast,
the Qwen series follows an opposite trend, where the code-specific model generates fewer tokens
relative to its general-purpose counterpart.

All reported scores in this paper have been independently recomputed across every model and sam-
pling method. The results for the base model (without ICL) may differ from those documented in
the official technical reports, which can be attributed to several factors. Based on our experimental
findings, we outline the potential reasons that may have influenced performance aside from the ICL
demonstrations.

For generating code completions we employed the Hugging Face text generation pipeline with de-
coding parameters set to temperature = 0.6 and top-p = 0.9. Our experiments revealed
that even minor adjustments to these parameters, with only two variations, led to improved perfor-
mance across all models and sampling methods. Notably, most technical reports for benchmark eval-
uations do not specify the decoding strategies employed, which contributes to variability in reported
results. This observation underscores the importance of performing hyperparameter optimization
during the decoding stage of generation.

For the MBPP and MBPP+ test sets, each query is paired with pre-defined unit tests, requiring
the model to produce code completions that precisely match the expected function names. While
one way to ensure success would be to include the reference solution as a demonstration for each
query, such an approach risks data leakage, as the model would be exposed to the ground-truth
answers rather than generating them independently. To mitigate this issue, we deliberately excluded
reference code solutions from the input queries.

It can be inferred that code sanitization procedures also play a crucial role in determining benchmark
performance. In our experiments, we employed the evalplus library to sanitize the generated code
completions. However, despite this sanitization, certain residual tokens were not removed, which
in turn impacted the execution outcomes and consequently affected the reported performance. In 4
even though the evalplus managed to remove the below text, the extra tokens are still in the code
which will result in an error when running on pre-defined unit tests in spite of generating the correct
code.

C ABLATION STUDY

As outlined in Section B.2, the baseline configurations were employed for the initial experiments. To
further investigate performance limitations, we conducted an ablation study focusing on LLMs that
demonstrated comparatively weaker results. Specifically, under the baseline settings, the Llama3.2
and Qwen3 models underperformed relative to other methods. Consequently, we performed an
extensive hyperparameter ablation on these models to better understand their sensitivities and per-
formance dynamics.

C.1 EFFECT OF m

The parameter m denotes the dimension of the linear submanifold Xi, which locally approximates
the data manifold around a point hθ(z). To examine its effect, we vary m in the range [2, 8] with

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

def square_of_list(
my_list):

"""Return the square of each
element in my_list."""

return [lambda x: x**2 for x in
my_list]

END
[END]
The function should return a list

of squares of each element in
my_list. You should use lambda
function to calculate squares.

Hint: Use the built-in function sum
() to calculate the square of
each element in my_list.

def square_of_list(
my_list):

"""Return the square of each
element in my_list."""

return [lambda x: x**2 for x in
my_list]

END
[END]

Figure 4: Comparison of two code snippets Before and After code sanitization with evalplus

a step size of 1. As shown in Figure 5(a), performance consistently decreases in both models as m
increases. This trend arises because Xi is intended to approximate the immediate neighborhood of
a point, which is inherently low-dimensional. Larger values of m may lead to overfitting, since only
a limited number of nearby samples are available within a batch to reliably estimate Xi, thereby
degrading performance. Furthermore, we observe that the computational overhead for prototype
sampling increases with larger m, underscoring the trade-off between accuracy and efficiency.

C.2 EFFECT OF γ

The parameter γ denotes the momentum constant used to update the proxy vector θm during pro-
totype sampling. Following He et al. (2020), higher values of γ are expected to yield improved
performance, as the proxy updates become smoother and more stable. Consistent with this observa-
tion, Figure 5(b) shows that in both models, performance improves as γ increases, highlighting the
importance of stable momentum updates for effective representation learning.

C.3 EFFECT OF Nα & Nβ

The parameters Nα and Nβ control the decay of similarity based on the orthogonal and projected
distances, respectively, of a point from the linear submanifold in the neighborhood of another point.
We vary Nα in the range [1, 6] with a step size of 1, and Nβ in the range [0.5, 3] with a step size
of 0.5. As shown in Figure 5(c), increasing Nβ leads to a slight performance gain in the Qwen2.5-
Coder model, while the Llama3.2 model exhibits larger fluctuations but follows an overall upward
trend. Similarly, Figure 5(d) shows that performance improves marginally with larger Nα in the
Qwen2.5-Coder model, whereas the Llama3.2 model demonstrates a clearer and more consistent
increase. This effect can be explained by the relationship between Nα and Nβ : as Nα approaches
Nβ , a point A at distance ε within the linear neighborhood of a point B (and thus sharing many
features with B and its neighbors) may be treated as equally dissimilar to B as another point C
located at an orthogonal distance ε from the neighborhood of B.

C.4 EFFECT OF T

The reconstruction threshold T determines the quality of points admitted into the linear submanifold
Xi. We vary T in the range [0.7, 0.95] with a step size of 0.05. As shown in Figure 5(e), both models
exhibit a clear upward trend in performance as T increases, underscoring the importance of ensuring
that only high-quality points are incorporated into Xi. While the Llama3.2 model follows this
overall increasing trend, it displays noticeable fluctuations compared to the more stable improvement
observed in the Qwen2.5-Coder model.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.5 EFFECT OF δ

The scaling factor δ regulates the maximum separation between dissimilar points. We vary δ in the
range [0.8, 3.2] with a step size of 0.4. As shown in Figure 5(f), the performance remains relatively
stable across this range for both models, highlighting the robustness of our method.

C.6 EFFECT OF α

The scaling factor α controls the sharpness of the exponential term in the Proxy Anchor loss. We
vary its value over 5, 10, 15, 20, 25, 30, 32. As shown in Figure 5(g), both models exhibit an overall
increasing trend in performance with larger α. However, the Qwen2.5-coder model displays higher
fluctuations compared to the more stable Llama3.2 model.

C.7 EFFECT OF ϵ

The margin parameter ϵ enforces that positive embeddings are pulled within this distance from
their corresponding class proxies. We vary its value across 0.001, 0.005, 0.05, 0.1, 0.2. As shown
in Figure 5(h), the Qwen2.5-coder model demonstrates stable performance across the range of ϵ,
whereas the Llama3.2 model exhibits a decreasing trend with noticeable fluctuations. This indicates
that larger values of ϵ impose overly strict constraints on the separation between positive and negative
proxies, thereby hindering the embeddings from effectively satisfying the margin requirement.

C.8 OVERALL EFFECT

From Figure 5, we observe that the Llama3.2 model exhibits high sensitivity to parameter variations,
displaying substantial fluctuations in performance. This trend aligns with the results reported in
Tables 1 and 2, where the similarity-based sampling method achieves the highest score for Llama3.2,
further highlighting its instability under different configurations. In contrast, the Qwen2.5-coder
model demonstrates relatively stable behavior, showing consistently increasing trends across most
parameters, with the notable exception of the scaling factor α.

D AST ANALYSIS

D.1 INTERPRETABLE SYNTAX SETS AND INTERACTIONS

Token Set τ, this set contains the code tokens wi derived from the generated code snippets C, where
each token’s confidence is computed as outlined in 5. Subcategory Set υ, this set consists of ele-
ments from Context-Free Grammars (CFGs), which are rules that capture the syntactic and structural
aspects of a programming language. Formally, a CFG is defined as G = (α, λ, ω, β), where α is the
finite set of non-terminal nodes, λ the finite set of terminal nodes, ω the finite set of production rules,
and β the start symbol. CFGs utilize terminal and non-terminal nodes (i.e., subcategories) to spec-
ify production rules ω for statements such as conditionals, assignments, or operators. Importantly,
terminal and non-terminal nodes serve distinct purposes. These nodes correspond to the elements of
the subcategory set υ, with λ, α ∈ υ.

The interaction between the token set τ and the subcategory set υ is governed by the Alignment
Function δ. This function establishes a many-to-one or one-to-one mapping from each token wi

in the token set τ to a terminal node λ in the subcategory set υ. For example, Fig.2 2 shows the
alignment of the token ’try_’ with the terminal node ’try’, where the character "_" is disregarded.
It is important to note that tokenization may produce sequences in which tokens do not align one-
to-one with terminal nodes. For instance, Fig.2 2 illustrates how the tokens ’flo_’ and ’at’ are both
aligned with the terminal node ’float’. Formally, this can be expressed as δ(′flo_′,′ at′)→ [′float′],
representing a many-to-one mapping. Thus, the alignment between code tokens and terminal nodes
is strictly many-to-one (which includes the special case of one-to-one), but never one-to-many or
many-to-many.

Category Set Λ. Step 3 in Fig.1 1 illustrates how λ and α are combined into a category c ∈ Λ.
The elements of the Category Set Λ are referred to as Syntax Categories (SCs). Based on tree-
sitter bindings for Python, we define eight distinct SCs. These categories represent semantic units

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2 4 6 8

4

6

8

·10−2

m

P
@
1
0

(a)P@10 vs m

0.4 0.6 0.8 1

4

6

8

·10−2

γ

P@
10

(b)P@10 vs γ

1 2 3

4

6

8

·10−2

Nβ

P
@
1
0

(c)P@10 vs Nβ

2 4 6

4

6

8

·10−2

Nα

P
@
1
0

(d)P@10 vs Nα

0.7 0.8 0.9

4

6

8

·10−2

T

P
@
1
0

(e)P@10 vs T

1 2 3

6

8

·10−2

δ

P
@
1
0

(f)P@10 vs δ

10 20 30

4

6

8

·10−2

α

P
@
1
0

(g)P@10 vs α

0 0.1 0.2

4

6

8

·10−2

ϵ

P
@
1
0

(h)P@10 vs ϵ

Figure 5: Ablation study of Qwen2.5-Coder-0.5B and Llama3.2-1B models. Qwen2.5-Coder-0.5B

Llama3.2-1B

that facilitate the syntax-level interpretability of LLMs. Consequently, AST analysis provides a
developer-oriented explanation of Token-Level confidence. In summary, each token in a sequence
s can be mapped to a category c ∈ Λ. Through AST analysis, developers can directly relate LLM
code predictions to meaningful structural attributes.

A clustering function ζ computes the confidence performance of λ and α nodes (subcategories)
within an AST by hierarchically aggregating Token-Level Confidences into a category c ∈ Λ. After
tokens are aligned to their respective nodes using δ, AST analysis groups them into either their cor-
responding category or non-terminal α node, following the AST structure. In some cases, terminal
λ nodes may be directly aggregated into a category without involving intermediate non-terminal α
nodes. The function ζ can be configured to use different aggregation strategies, such as average,
median, or maximum. In our experiments, we define the clustering function as ζ : υ → avg(w1:i)
for a subset of tokens w≤i. The 8 defined syntax categories are:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• Decisions
• Data Structures
• Exceptions

• Iterations
• Functional Programming
• Operators

• Scope
• Data Types

E LLM USAGE

LLM was used to improve the quality of writing, and to assist in the LaTeX code review; it was not
used during the ideation or experimentation phase.

24

	Introduction
	Related work
	Methodology
	Dataset
	Training overview
	Manifold Construction
	Training objectives

	Results
	AST analysis
	Syntax Grounded explanations
	Code Syntactic analysis

	Future Works
	Related Works
	Manifold learning
	Metric learning
	In context learning

	Methodology
	Evaluation Dataset and Metric
	Training Parameters
	Sampling Strategies
	Code Completion prompts
	Model Analysis

	Ablation Study
	Effect of m
	Effect of gamma
	Effect of Nalpha & Nbeta
	effect of T
	Effect of delta
	Effect of alpha
	Effect of epsilon
	Overall effect

	AST analysis
	Interpretable Syntax sets and interactions

	LLM usage

