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Abstract

Sign language segmentation is a crucial task
in sign language processing systems. It en-
ables downstream tasks such as sign recogni-
tion, transcription, and machine translation. In
this work, we consider two kinds of segmen-
tation: segmentation into individual signs and
segmentation into phrases, larger units compris-
ing several signs. We propose a novel approach
to jointly model these two tasks.

Our method is motivated by linguistic cues ob-
served in sign language corpora. We replace the
predominant IO tagging scheme with BIO tag-
ging to account for continuous signing. Given
that prosody plays a significant role in phrase
boundaries, we explore the use of optical flow
features. We also provide an extensive analysis
of hand shapes and 3D hand normalization.

We find that introducing BIO tagging is nec-
essary to model sign boundaries. Explicitly
encoding prosody by optical flow improves seg-
mentation in shallow models, but its contribu-
tion is negligible in deeper models. Careful
tuning of the decoding algorithm atop the mod-
els further improves the segmentation quality.

We demonstrate that our final models gener-
alize to out-of-domain video content in a dif-
ferent signed language, even under a zero-shot
setting. We observe that including optical flow
and 3D hand normalization enhances the ro-
bustness of the model in this context.

1 Introduction

Signed languages are natural languages used by
deaf and hard-of-hearing individuals to commu-
nicate through a combination of manual and non-
manual elements (Sandler and Lillo-Martin, 2006).
Like spoken languages, signed languages have their
own distinctive grammar, and vocabulary, that have
evolved through natural processes of language de-
velopment (Sandler, 2010).
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Figure 1: Per-frame classification of a sign language
utterance following a BIO tagging scheme. Each box
represents a single frame of a video. We propose a joint
model to segment signs (top) and phrases (bottom) at
the same time. B=beginning, I=inside, O=outside. The
figure illustrates continuous signing where signs often
follow each other without an O frame between them.

Sign language transcription and translation sys-
tems rely on the accurate temporal segmentation of
sign language videos into meaningful units such as
signs (Santemiz et al., 2009; Renz et al., 2021a) or
signing sequences corresponding to subtitle units1

(Bull et al., 2020b). However, sign language seg-
mentation remains a challenging task due to the
difficulties in defining meaningful units in signed
languages (De Sisto et al., 2021). Our approach
is the first to consider two kinds of units in one
model. We simultaneously segment single signs
and phrases (larger units) in a unified framework.

Previous work typically approached segmenta-
tion as a binary classification task (including seg-
mentation tasks in audio signal processing and com-
puter vision), where each frame/pixel is predicted
to be either part of a segment or not. However, this
approach neglects the intricate nuances of contin-
uous signing, where segment boundaries are not
strictly binary and often blend in reality. One sign
or phrase can immediately follow another, transi-
tioning smoothly, without a frame between them
being distinctly outside (Figure 1 and §3.1).

We propose incorporating linguistically moti-
vated cues to address these challenges and improve
sign language segmentation. To cope with contin-

1Subtitles may not always correspond directly to sentences.
They frequently split within a sentence and could be tempo-
rally offset from the corresponding signing segments.



Figure 2: The annotation of the first phrase in a video from the test set (dgskorpus_goe_02), in yellow, signing:
“Why do you smoke?” through the use of three signs: WHY (+mouthed), TO-SMOKE, and a gesture (+mouthed)
towards the other signer. At the top, our phrase segmentation model predicts a single phrase that initiates with a B
tag (in green) above the B-threshold (green dashed line), followed by an I (in light blue), and continues until falling
below a certain threshold. At the bottom, our sign segmentation model accurately segments the three signs.

uous signing, we adopt a BIO-tagging approach
(Ramshaw and Marcus, 1995), where in addition to
predicting a frame to be in or out of a segment, we
also classify the beginning of the segment as shown
in Figure 2. Since phrase segmentation is primarily
marked with prosodic cues (i.e., pauses, extended
sign duration, facial expressions) (Sandler, 2010;
Ormel and Crasborn, 2012), we explore using op-
tical flow to explicitly model them (§3.2). Since
signs employ a limited number of hand shapes, we
additionally perform 3D hand normalization (§3.3).

Evaluating on the Public DGS Corpus (Prillwitz
et al., 2008; Hanke et al., 2020) (DGS stands for
German Sign Language), we report enhancements
in model performance following specific modifica-
tions. We compare our final models after hyperpa-
rameter optimization, including parameters for the
decoding algorithm, and find that our best architec-
ture using only the poses is comparable to the one
that uses optical flow and hand normalization.

Reassuringly, we find that our model generalizes
when evaluated on additional data from different
signed languages in a zero-shot approach. We ob-
tain segmentation scores that are competitive with
previous work and observe that incorporating opti-
cal flow and hand normalization makes the model
more robust for out-of-domain data.

Lastly, we conduct an extensive analysis of pose-
based hand manipulations for signed languages
(Appendix C). Despite not improving our segmen-
tation model due to noise from current 3D pose esti-
mation models, we emphasize its potential value for
future work involving skeletal hand poses. Based
on this analysis, we propose several measurable
directions for improving 3D pose estimation.

Our code and models are available at https:
//github.com/sign-language-processing/
transcription.

2 Related Work

2.1 Sign Language Detection

Sign language detection (Borg and Camilleri, 2019;
Moryossef et al., 2020; Pal et al., 2023) is the task
of determining whether signing activity is present
in a given video frame. A similar task in spoken
languages is voice activity detection (VAD) (Sohn
et al., 1999; Ramırez et al., 2004), the detection
of when human voice is used in an audio signal.
As VAD methods often rely on speech-specific rep-
resentations such as spectrograms, they are not
necessarily applicable to videos.

Borg and Camilleri (2019) introduced the classi-
fication of frames taken from YouTube videos as ei-
ther signing or not signing. They took a spatial and
temporal approach based on VGG-16 (Simonyan
and Zisserman, 2015) CNN to encode each frame
and used a Gated Recurrent Unit (GRU) (Cho et al.,
2014) to encode the sequence of frames in a win-
dow of 20 frames at 5fps. In addition to the raw
frame, they either encoded optical-flow history, ag-
gregated motion history, or frame difference.

Moryossef et al. (2020) improved upon their
method by performing sign language detection in
real time. They identified that sign language use
involves movement of the body and, as such, de-
signed a model that works on top of estimated hu-
man poses rather than directly on the video signal.
They calculated the optical flow norm of every joint
detected on the body and applied a shallow yet ef-
fective contextualized model to predict for every
frame whether the person is signing or not.

While these recent detection models achieve
high performance, we need well-annotated data
including interference and non-signing distractions
for proper real-world evaluation. Pal et al. (2023)
conducted a detailed analysis of the impact of

https://www.sign-lang.uni-hamburg.de/meinedgs/html/1247641_en.html
https://github.com/sign-language-processing/transcription
https://github.com/sign-language-processing/transcription
https://github.com/sign-language-processing/transcription


signer overlap between the training and test sets
on two sign detection benchmark datasets (Sign-
ing in the Wild (Borg and Camilleri, 2019) and the
DGS Corpus (Hanke et al., 2020)) used by Borg
and Camilleri (2019) and Moryossef et al. (2020).
By comparing the accuracy with and without over-
lap, they noticed a relative decrease in performance
for signers not present during training. As a result,
they suggested new dataset partitions that eliminate
overlap between train and test sets and facilitate a
more accurate evaluation of performance.

2.2 Sign Language Segmentation

Segmentation consists of detecting the frame
boundaries for signs or phrases in videos to di-
vide them into meaningful units. While the most
canonical way of dividing a spoken language text
is into a linear sequence of words, due to the si-
multaneity of sign language, the notion of a sign
language “word” is ill-defined, and sign language
cannot be fully linearly modeled.

Current methods resort to segmenting units
loosely mapped to signed language units (Santemiz
et al., 2009; Farag and Brock, 2019; Bull et al.,
2020b; Renz et al., 2021a,b; Bull et al., 2021) and
do not explicitly leverage reliable linguistic pre-
dictors of sentence boundaries such as prosody in
signed languages (i.e., pauses, extended sign du-
ration, facial expressions) (Sandler, 2010; Ormel
and Crasborn, 2012). De Sisto et al. (2021) call
for a better understanding of sign language struc-
ture, which they believe is the necessary ground
for the design and development of sign language
recognition and segmentation methodologies.

Santemiz et al. (2009) automatically extracted
isolated signs from continuous signing by align-
ing the sequences obtained via speech recognition,
modeled by Dynamic Time Warping (DTW) and
Hidden Markov Models (HMMs) approaches.

Farag and Brock (2019) used a random forest
classifier to distinguish frames containing signs in
Japanese Sign Language based on the composition
of spatio-temporal angular and distance features
between domain-specific pairs of joint segments.

Bull et al. (2020b) segmented French Sign Lan-
guage into segments corresponding to subtitle units
by relying on the alignment between subtitles and
sign language videos, leveraging a spatio-temporal
graph convolutional network (STGCN; Yu et al.
(2017)) with a BiLSTM on 2D skeleton data.

Renz et al. (2021a) located temporal bound-

aries between signs in continuous sign language
videos by employing 3D convolutional neural net-
work representations with iterative temporal seg-
ment refinement to resolve ambiguities between
sign boundary cues. Renz et al. (2021b) fur-
ther proposed the Changepoint-Modulated Pseudo-
Labelling (CMPL) algorithm to solve the problem
of source-free domain adaptation.

Bull et al. (2021) presented a Transformer-based
approach to segment sign language videos and
align them with subtitles simultaneously, encod-
ing subtitles by BERT (Devlin et al., 2019) and
videos by CNN video representations.

3 Motivating Observations

To motivate our proposed approach, we make a
series of observations regarding the intrinsic na-
ture of sign language expressions. Specifically, we
highlight the unique challenges posed by the contin-
uous flow of sign language expressions (§3.1), the
role of prosody in determining phrase boundaries
(§3.2), and the influence of hand shape changes in
indicating sign boundaries (§3.3).

3.1 Boundary Modeling

When examining the nature of sign language ex-
pressions, we note that the utterances are typically
signed in a continuous flow, with minimal to no
pauses between individual signs. This continuity is
particularly evident when dealing with lower frame
rates. This continuous nature presents a signifi-
cant difference from text where specific punctua-
tion marks serve as indicators of phrase boundaries,
and a semi-closed set of tokens represent the words.

Given these characteristics, directly applying
conventional segmentation or sign language de-
tection models—that is, utilizing IO tagging in a
manner similar to image or audio segmentation
models—may not yield the optimal solution, par-
ticularly at the sign level. Such models often fail to
precisely identify the boundaries between signs.

A promising alternative is the Beginning-Inside-
Outside (BIO) tagging (Ramshaw and Marcus,
1995). BIO tagging was originally used for named
entity recognition, but its application extends to any
sequence chunking task beyond the text modality.
In the context of sign language, BIO tagging pro-
vides a more refined model for discerning bound-
aries between signs and phrases, thus significantly
improving segmentation performance (Figure 1).

To test the viability of the BIO tagging approach



in comparison with the IO tagging, we conducted
an experiment on the Public DGS Corpus. The en-
tire corpus was transformed to various frame rates
and the sign segments were converted to frames
using either BIO or IO tagging, then decoded back
into sign segments. Figure 4 illustrates the results
of this comparison. Note that the IO tagging was
unable to reproduce the same number of segments
as the BIO tagging on the gold data. This under-
scores the importance of BIO tagging in identifying
sign and phrase boundaries.
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Figure 4: Reproduced sign segments in the Public DGS
Corpus by BIO and IO tagging at various frame rates.
99.7% of segments reproduced at 25fps by BIO tagging.

3.2 Phrase Boundaries

Linguistic research has shown that prosody is a re-
liable predictor of phrase boundaries in signed lan-
guages (Sandler, 2010; Ormel and Crasborn, 2012).
We observe that this is also the case in the Public
DGS Corpus dataset used in our experiments. To
illustrate this, we model pauses and movement us-
ing optical flow directly on the poses as proposed
by Moryossef et al. (2020). Figure 3 demonstrates
that a change in motion signifies the presence of a
pause, which, in turn, indicates a phrase boundary.

3.3 Sign Boundaries

We observe that signs generally utilize a limited
number of hand shapes, with the majority of signs

utilizing a maximum of two hand shapes. For ex-
ample, linguistically annotated datasets, such as
ASL-LEX (Sehyr et al., 2021) and ASLLVD (Nei-
dle et al., 2012), only record one initial hand shape
per hand and one final hand shape. Mandel (1981,
p. 87) argued that there can only be one set of se-
lected fingers per sign, constraining the number of
handshapes in signs. This limitation is referred to
as the Selected Fingers Constraint. And indeed,
Sandler et al. (2008) find that the optimal form of a
sign is monosyllabic, and that handshape change is
organized by the syllable unit.

To illustrate this constraint empirically, we show
a histogram of hand shapes per sign in SignBank2

for 705, 151 signs in Figure 5.
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Figure 5: Number of hand shapes per sign in SignBank.

Additionally, we found that a change in the dom-
inant hand shape often signals the presence of a
sign boundary. Specifically, out of 27, 658 sen-
tences, comprising 354, 955 pairs of consecutive
signs, only 17.38% of consecutive signs share the
same base hand shape3. Based on these observa-
tions, we propose using 3D hand normalization
as an indicative cue for hand shapes to assist in
detecting sign boundaries. We hypothesize that per-
forming 3D hand normalization makes it easier for

2https://signbank.org/signpuddle2.0/
3It is important to note that this percentage is inflated,

as it may encompass overlaps across the dominant and non-
dominant hands, which were not separated for this analysis.
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Figure 3: Optical flow for a conversation between two signers (signer 1 top, signer 2 bottom). The x-axis is the
progression across 30 seconds. The yellow marks the annotated phrase spans. (Source: Moryossef et al. (2020))

https://signbank.org/signpuddle2.0/


the model to extract the hand shape. We expand on
this process and show examples in Appendix C.

4 Experimental Setup

In this section, we describe the experimental setup
used to evaluate our linguistically motivated ap-
proach for sign language segmentation. This in-
cludes a description of the Public DGS Corpus
dataset used in the study, the methodology em-
ployed to perform sign and phrase segmentation,
and the evaluation metrics used to measure the per-
formance of the proposed approach.

4.1 Dataset

The Public DGS Corpus (Prillwitz et al., 2008;
Hanke et al., 2020) is a distinctive sign language
dataset that includes both accurate sign-level anno-
tation from continuous signing, and well-aligned
phrase-level translation in spoken language.

The corpus comprises 404 documents / 714
videos4 with an average duration of 7.55 minutes,
featuring either one signer or two signers, at 50 fps.
Most of these videos feature gloss transcriptions
and spoken language translations (German and En-
glish), except for the ones in the “Joke” category,
which are not annotated and thus excluded from
our model5. The translations are comprised of full
spoken language paragraphs, sentences, or phrases
(i.e., independent/main clauses).

Each gloss span is considered a gold sign seg-
ment, following a tight annotation scheme (Hanke
et al., 2012). Phrase segments are identified by
examining every translation, with the segment as-
sumed to span from the start of its first sign to the
end of its last sign, correcting imprecise annotation.

This corpus is enriched with full-body pose esti-
mations from OpenPose (Cao et al., 2019; Schul-
der and Hanke, 2019) and Mediapipe Holistic (Gr-
ishchenko and Bazarevsky, 2020). We use the
3.0.0-uzh-document split from Zhang et al. (2023).
After filtering the unannotated data, we are left with
296 documents / 583 videos for training, 6 / 12 for
validation, and 9 / 17 for testing. The mean number
of signs and phrases in a video from the training
set is 613 and 111, respectively.

4The number of videos is nearly double the number of
documents because each document typically includes two
signers, each of whom produces one video for segmentation.

5We also exclude documents with missing annotations.
id ∈ {1289910, 1245887, 1289868, 1246064, 1584617}

4.2 Methodology

Our proposed approach for sign language segmen-
tation is based on the following steps:

1. Pose Estimation Given a video, we first ad-
just it to 25 fps and estimate body poses using
the MediaPipe Holistic pose estimation sys-
tem. We do not use OpenPose because it lacks
a Z-axis, which prevents 3D rotation used for
hand normalization. The shape of a pose is
represented as (frames× keypoints× axes).

2. Pose Normalization To generalize over video
resolution and distance from the camera, we
normalize each of these poses such that the
mean distance between the shoulders of each
person equals 1, and the mid-point is at (0, 0)
(Celebi et al., 2013). We also remove the legs
since they are less relevant to signing.

3. Optical Flow We follow the equation in
Moryossef et al. (2020, Equation 1).

4. 3D Hand Normalization We rotate and scale
each hand to ensure that the same hand shape
is represented in a consistent manner across
different frames. We rotate the 21 XY Z key-
points of the hand so that the back of the hand
lies on the XY plane, we then rotate the hand
so that the metacarpal bone of the middle fin-
ger lies on the Y -axis, and finally, we scale the
hand such that the bone is of constant length.
Visualizations are presented in Appendix C.

5. Sequence Encoder For every frame, the pose
is first flattened and projected into a standard
dimension (256), then fed through an LSTM
encoder (Hochreiter and Schmidhuber, 1997).

6. BIO Tagging On top of the encoder, we place
two BIO classification heads for sign and
phrase independently. B denotes the begin-
ning of a sign or phrase, I denotes the middle
of a sign or phrase, and O denotes being out-
side a sign or phrase. Our cross-entropy loss
is proportionally weighted in favor of B as it
is a rare label6 compared to I and O.

7. Greedy Segment Decoding To decode the
frame-level BIO predictions into sign/phrase
segments, we define a segment to start with
the first frame possessing a B probability

6B:I:O is about 1:5:18 for signs and 1:58:77 for phrases.



greater than a predetermined threshold (de-
faulted at 0.5). The segment concludes with
the first frame among the subsequent frames,
having either a B or O probability exceeding
the threshold. We provide the pseudocode of
the decoding algorithm in Appendix B.

4.3 Experiments

Our approach is evaluated through a series of six
sets of experiments. Each set is repeated three
times with varying random seeds. Preliminary
experiments were conducted to inform the selec-
tion of hyperparameters and features, the details
of which can be found in Table 3 in Appendix A.
Model selection is based on validation metrics.

1. E0: IO Tagger We re-implemented and re-
produced7 the sign language detection model
proposed by Moryossef et al. (2020), in Py-
Torch (Paszke et al., 2019) as a naive baseline.
This model processes optical flow as input and
outputs I (is signing) and O (not signing) tags.

2. E1: Bidirectional BIO Tagger We replace
the IO tagging heads in E0 with BIO heads
to form our baseline. Our preliminary experi-
ments indicate that inputting only the 75 hand
and body keypoints and making the LSTM
layer bidirectional yields optimal results.

3. E2: Adding Reduced Face Keypoints Al-
though the 75 hand and body keypoints serve
as an efficient minimal set for sign language
detection/segmentation models, we investi-
gate the impact of other nonmanual sign lan-
guage articulators, namely, the face. We intro-
duce a reduced set of 128 face keypoints that
signify the signer’s face contour8.

4. E3: Adding Optical Flow At every time step
t we append the optical flow between t and
t−1 to the current pose frame as an additional
dimension after the XY Z axes.

5. E4: Adding 3D Hand Normalization At ev-
ery time step, we normalize the hand poses
and concatenate them to the current pose.

7The initial implementation uses OpenPose (Cao et al.,
2019), at 50 fps. Preliminary experiments reveal that these
differences do not significantly influence the results.

8We reduce the dense FACE_LANDMARKS in Mediapipe
Holistic to the contour keypoints according to the variable
mediapipe.solutions.holistic.FACEMESH_CONTOURS.

6. E5: Autoregressive Encoder We replace the
encoder with the one proposed by Jiang et al.
(2023) for the detection and classification of
great ape calls from raw audio signals. Specif-
ically, we add autoregressive connections be-
tween time steps to encourage consistent out-
put labels. The logits at time step t are con-
catenated to the input of the next time step,
t+ 1. This modification is implemented bidi-
rectionally by stacking two autoregressive en-
coders and adding their output up before the
Softmax operation. However, this approach is
inherently slow, as we have to fully wait for
the previous time step predictions before we
can feed them to the next time step.

4.4 Evaluation Metrics

We evaluate the performance of our proposed ap-
proach for sign and phrase segmentation using the
following metrics:

• Frame-level F1 Score For each frame, we
apply the argmax operation to make a local
prediction of the BIO class and calculate the
macro-averaged per-class F1 score against the
ground truth label. We use this frame-level
metric during validation as the primary metric
for model selection and early stopping, due to
its independence from a potentially variable
segment decoding algorithm (§5.2).

• Intersection over Union (IoU) We compute
the IoU between the ground truth segments
and the predicted segments to measure the de-
gree of overlap. Note that we do not perform
a one-to-one mapping between the two using
techniques like DTW. Instead, we calculate
the total IoU based on all segments in a video.

• Percentage of Segments (%) To comple-
ment IoU, we introduce the percentage of
segments to compare the number of seg-
ments predicted by the model with the ground
truth annotations. It is computed as follows:
#predicted segments

#ground truth segments . The optimal value is 1.

• Efficiency We measure the efficiency of each
model by the number of parameters and the
training time of the model on a Tesla V100-
SXM2-32GB GPU for 100 epochs9.

9Exceptionally the autoregressive models in E5 were
trained on an NVIDIA A100-SXM4-80GB GPUA100 which
doubles the training speed of V100, still the training is slow.



Sign Phrase Efficiency

Experiment F1 IoU % F1 IoU % #Params Time

E0 Moryossef et al. (2020) — 0.46 1.09 — 0.70 1.00 102K 0:50:17

E1 Baseline 0.56 0.66 0.91 0.59 0.80 2.50 454K 1:01:50
E2 E1 + Face 0.53 0.58 0.64 0.57 0.76 1.87 552K 1:50:31
E3 E1 + Optical Flow 0.58 0.62 1.12 0.60 0.82 3.19 473K 1:20:17
E4 E3 + Hand Norm 0.56 0.61 1.07 0.60 0.80 3.24 516K 1:30:59

E1s E1 + Depth=4 0.63 0.69 1.11 0.65 0.82 1.63 1.6M 4:08:48
E2s E2 + Depth=4 0.62 0.69 1.07 0.63 0.84 2.68 1.7M 3:14:03
E3s E3 + Depth=4 0.60 0.63 1.13 0.64 0.80 1.53 1.7M 4:08:30
E4s E4 + Depth=4 0.59 0.63 1.13 0.62 0.79 1.43 1.7M 4:35:29

E1s* E1s + Tuned Decoding — 0.69 1.03 — 0.85 1.02 — —
E4s* E4s + Tuned Decoding — 0.63 1.06 — 0.79 1.12 — —

E5 E4s + Autoregressive 0.45 0.47 0.88 0.52 0.63 2.72 1.3M ~3 days

Table 1: Mean test evaluation metrics for our experiments. The best score of each column is in bold and a star (*)
denotes further optimization of the decoding algorithm without changing the model (only affects IoU and %). Table
4 in Appendix A contains a complete report including validation metrics and standard deviation of all experiments.

5 Results and Discussion

We report the mean test evaluation metrics for our
experiments in Table 1. We do not report F1 Score
for E0 since it has a different number of classes
and is thus incomparable. Comparing E1 to E0,
we note that the model’s bidirectionality, the use
of poses, and BIO tagging indeed help outperform
the model from previous work where only optical
flow and IO tagging are used. While E1 predicts
an excessive number of phrase segments, the IoUs
for signs and phrases are both higher.

Adding face keypoints (E2) makes the model
worse, while including optical flow (E3) improves
the F1 scores. For phrase segmentation, includ-
ing optical flow increases IoU, but over-segments
phrases by more than 300%, which further exagger-
ates the issue in E1. Including hand normalization
(E4) on top of E3 slightly deteriorates the quality
of both sign and phrase segmentation.

From the non-exhaustive hyperparameter search
in the preliminary experiments (Table 3), we exam-
ined different hidden state sizes (64, 128, 256, 512,
1024) and a range of 1 to 8 LSTM layers, and con-
clude that a hidden size of 256 and 4 layers with
1e− 3 learning rate are optimal for E1, which lead
to E1s. We repeat the setup of E2, E3, and E4 with
these refined hyper-parameters, and show that all of
them outperform their counterparts, notably in that
they ease the phrase over-segmentation problem.

In E2s, we reaffirmed that adding face keypoints
does not yield beneficial results, so we exclude face
in future experiments. Although the face is an es-
sential component to understanding sign language
expressions and does play some role in sign and
phrase level segmentation, we believe that the 128
face contour points are too dense for the model to
learn useful information compared to the 75 body
points, and may instead confuse the model.

In addition, the benefits of explicitly including
optical flow (E3s) fade away with the increased
model depth and we speculate that now the model
might be able to learn the optical flow features by
itself. Surprisingly, while adding hand normaliza-
tion (E4s) still slightly worsens the overall results,
it has the best phrase percentage.

From E4s we proceeded with the training of E5,
an autoregressive model. Unexpectedly, counter to
our intuition and previous work, E5 underachieves
our baseline across all evaluation metrics10.

5.1 Challenges with 3D Hand Normalization

While the use of 3D hand normalization is well-
justified in §3.3, we believe it does not help
the model due to poor depth estimation quality,

10E5 should have more parameters than E4s, but because
of an implementation bug, each LSTM layer has half the
parameters. Based on the current results, we assume that
autoregressive connections (even with more parameters) will
not improve our models.



as further corroborated by recent research from
De Coster et al. (2023). Therefore, we consider it a
negative result, showing the deficiencies in the 3D
pose estimation system. The evaluation metrics we
propose in Appendix C could help identify better
pose estimation models for this use case.

5.2 Tuning the Segment Decoding Algorithm
We selected E1s and E4s to further explore the
segment decoding algorithm. As detailed in §4.2
and Appendix B, the decoding algorithm has two
tunable parameters, thresholdb and thresholdo.
We conducted a grid search with these parameters,
using values from 10 to 90 in increments of 10. We
additionally experimented with a variation of the
algorithm that conditions on the most likely class
by argmax instead of fixed threshold values, which
turned out similar to the default version.

We only measured the results using IoU and the
percentage of segments at validation time since
the F1 scores remain consistent in this case. For
sign segmentation, we found using thresholdb =
60 and thresholdo = 40/50/60 yields slightly
better results than the default setting (50 for both).
For phrase segmentation, we identified that higher
threshold values (thresholdb = 90, thresholdo =
90 for E1s and thresholdb = 80, thresholdo =
80/90 for E4s) improve on the default significantly,
especially on the percentage metric. We report the
test results under E1s* and E4s*, respectively.

Despite formulating a single model, we under-
line a separate sign/phrase model selection process
to archive the best segmentation results. Figure 6
illustrates how higher threshold values reduce the
number of predicted segments and skew the distri-
bution of predicted phrase segments towards longer
ones in E1s/E1s*. As Bull et al. (2020b) suggest,
advanced priors could also be integrated into the
decoding algorithm.

5.3 Comparison to Previous Work
We re-implemented and re-purposed the sign lan-
guage detection model introduced in Moryossef
et al. (2020) for our segmentation task as a baseline
since their work is the state-of-the-art and the only
comparable model designed for the Public DGS
Corpus dataset. As a result, we show the necessity
of replacing IO tagging with BIO tagging to tackle
the subtle differences between the two tasks.

For phrase segmentation, we compare to Bull
et al. (2020b). We note that our definition of sign
language phrases (spanning from the start of its first
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Figure 6: Probability density of phrase segment lengths.

sign to the end of its last sign) is tighter than the
subtitle units used in their paper and that we use
different training datasets of different languages
and domains. Nevertheless, we implemented some
of their frame-level metrics and show the results
in Table 2 on both the Public DGS Corpus and
the MEDIAPI-SKEL dataset (Bull et al., 2020a)
in French Sign Language (LSF). We report both
zero-shot out-of-domain results11 and the results
of our models trained specifically on their dataset
without the spatio-temporal graph convolutional
network (ST-GCN) (Yan et al., 2018) used in their
work for pose encoding.

Data Model ROC-AUC F1-M

LSF

full (theirs) 0.87 —
body (theirs) 0.87 —

E1s (ours, zero-shot) 0.71 0.41
E4s (ours, zero-shot) 0.76 0.44

E1s (ours, trained) 0.87 0.49
E4s (ours, trained) 0.87 0.51

DGS
E1s (ours) 0.91 0.65
E4s (ours) 0.90 0.62

Table 2: Evaluation metrics used in Bull et al. (2020b).
ROC-AUC is applied exclusively on the O-tag. For
comparison F1-M denotes the macro-averaged per-class
F1 used in this work across all tags. The first two rows
are the best results taken from Table 1 in their paper.
The next four rows represent how our models perform
on their data in a zero-shot setting, and in a supervised
setting, and the last two rows represent how our models
perform on our data.

11The zero-shot results are not directly comparable to theirs
due to different datasets and labeling approaches.



For sign segmentation, we do not compare to
Renz et al. (2021a,b) due to different datasets and
the difficulty in reproducing their segment-level
evaluation metrics. The latter depends on the de-
coding algorithm and a way to match the gold and
predicted segments, both of which are variable.

6 Conclusions

This work focuses on the automatic segmentation
of signed languages. We are the first to formulate
the segmentation of individual signs and larger sign
phrases as a joint problem.

We propose a series of improvements over previ-
ous work, linguistically motivated by careful anal-
yses of sign language corpora. Recognizing that
sign language utterances are typically continuous
with minimal pauses, we opted for a BIO tagging
scheme over IO tagging. Furthermore, leverag-
ing the fact that phrase boundaries are marked by
prosodic cues, we introduce optical flow features as
a proxy for prosodic processes. Finally, since signs
typically employ a limited number of hand shapes,
to make it easier for the model to understand hand-
shapes, we attempt 3D hand normalization.

Our experiments conducted on the Public DGS
Corpus confirmed the efficacy of these modifica-
tions for segmentation quality. By comparing to
previous work in a zero-shot setting, we demon-
strate that our models generalize across signed lan-
guages and domains and that including linguisti-
cally motivated cues leads to a more robust model
in this context.

Finally, we envision that the proposed model has
applications in real-world data collection for signed
languages. Furthermore, a similar segmentation
approach could be leveraged in various other fields
such as co-speech gesture recognition (Moryossef,
2023) and action segmentation (Tang et al., 2019).

Limitations

Pose Estimation
In this work, we employ the MediaPipe Holis-
tic pose estimation system (Grishchenko and
Bazarevsky, 2020). There is a possibility that
this system exhibits bias towards certain protected
classes (such as gender or race), underperforming
in instances with specific skin tones or lower video
quality. Thus, we cannot attest to how our system
would perform under real-world conditions, given
that the videos utilized in our research are gener-
ated in a controlled studio environment, primarily

featuring white participants.

Encoding of Long Sequences
In this study, we encode sequences of frames that
are significantly longer than the typical 512 frames
often seen in models employing Transformers
(Vaswani et al., 2017). Numerous techniques, rang-
ing from basic temporal pooling/downsampling to
more advanced methods such as a video/pose en-
coder that aggregates local frames into higher-level
‘tokens’ (Renz et al., 2021a), graph convolutional
networks (Bull et al., 2020b), and self-supervised
representations (Baevski et al., 2020), can alleviate
length constraints, facilitate the use of Transform-
ers, and potentially improve the outcomes. More-
over, a hierarchical method like the Swin Trans-
former (Liu et al., 2021) could be applicable.

Limitations of Autoregressive LSTMs
In this paper, we replicated the autoregressive
LSTM implementation originally proposed by
Jiang et al. (2023). Our experiments revealed that
this implementation exhibits significant slowness,
which prevented us from performing further exper-
imentation. In contrast, other LSTM implemen-
tations employed in this project have undergone
extensive optimization (Appleyard, 2016), includ-
ing techniques like combining general matrix mul-
tiplication operations (GEMMs), parallelizing in-
dependent operations, fusing kernels, rearranging
matrices, and implementing various optimizations
for models with multiple layers (which are not nec-
essarily applicable here).

A comparison of CPU-based performance
demonstrates that our implementation is x6.4 times
slower. Theoretically, the number of operations
performed by the autoregressive LSTM is equiv-
alent to that of a regular LSTM. However, while
the normal LSTM benefits from concurrency based
on the number of layers, we do not have that lux-
ury. The optimization of recurrent neural networks
(RNNs) (Que et al., 2020, 2021, 2022) remains an
ongoing area of research. If proven effective in
other domains, we strongly advocate for efforts to
optimize the performance of this type of network.

Interference Between Sign and Phrase Models
In our model, we share the encoder for both the sign
and phrase segmentation models, with a shallow
linear layer for the BIO tag prediction associated
with each task. It remains uncertain whether these
two tasks interfere with or enhance each other. An



ablation study (not presented in this work) involv-
ing separate modeling is necessary to obtain greater
insight into this matter.

Noisy Training Objective

Although the annotations utilized in this study are
of expert level, the determination of precise sign
(Hanke et al., 2012) and phrase boundaries remains
a challenging task, even for experts. Training the
model on these annotated boundaries might intro-
duce excessive noise. A similar issue was observed
in classification-based pose estimation (Cao et al.,
2019). The task of annotating the exact anatomical
centers of joints proves to be nearly impossible,
leading to a high degree of noise when predicting
joint position as a 1-hot classification task. The
solution proposed in this previous work was to dis-
tribute a Gaussian around the annotated location
of each joint. This approach allows the joint’s cen-
ter to overlap with some probability mass, thereby
reducing the noise for the model. A similar solu-
tion could be applied in our context. Instead of
predicting a strict 0 or 1 class probability, we could
distribute a Gaussian around the boundary.

Naive Segment Decoding

We recognize that the frame-level greedy decod-
ing strategy implemented in our study may not
be optimal. Previous research in audio segmen-
tation (Venkatesh et al., 2022) employed a You
Only Look Once (YOLO; Redmon et al. (2015)) de-
coding scheme to predict segment boundaries and
classes. We propose using a similar prediction atop
a given representation, such as the LSTM output or
classification logits of an already trained network.
Differing from traditional object detection tasks,
this process is simplified due to the absence of a
Y axis and non-overlapping segments. In this sce-
nario, the network predicts the segment boundaries
using regression, thereby avoiding the class imbal-
ance issue of the BIO tagging. We anticipate this
to yield more accurate sign language segmentation.

Lack of Transcription

Speech segmentation is a close task to our sign
language segmentation task on videos. In addi-
tion to relying on prosodic cues from audio, the
former could benefit from automatic speech tran-
scription systems, either in terms of surrogating
the task to text-level segmentation and punctuation
(Cho et al., 2015), or gaining additional training

data from automatic speech recognition / spoken
language translation (Tsiamas et al., 2022).

However, for signed languages, there is nei-
ther a standardized and widely used written form
nor a reliable transcription procedure into some
potential writing systems like SignWriting (Sut-
ton, 1990), HamNoSys (Prillwitz and Zienert,
1990), and glosses (Johnston, 2008). Transcrip-
tion/recognition and segmentation tasks need to be
solved simultaneously, so we envision that a multi-
task setting helps. Sign spotting, the localization of
a specific sign in continuous signing, is a simplifi-
cation of the segmentation and recognition problem
in a closed-vocabulary setting (Wong et al., 2022;
Varol et al., 2022). It can be used to find candidate
boundaries for some signs, but not all.
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A Extended Experimental Results

We conducted some preliminary experiments (starting with P0) on training a sign language segmentation
model to gain insights into hyperparameters and feature choices. The results are shown in Table 312. We
found in P1.3.2 the optimal hyperparameters and repeated them with different feature choices.

Sign Phrase

Experiment F1 IoU % F1 IoU %

P0 Moryossef et al. (2020) test — 0.4 1.45 — 0.65 0.82
dev — 0.35 1.36 — 0.6 0.77

P0.1 P0 + Holistic 25fps test — 0.39 0.86 — 0.64 0.5
dev — 0.32 0.81 — 0.58 0.52

P1 P1 baseline test 0.55 0.49 0.83 0.6 0.67 2.63
dev 0.56 0.43 0.75 0.58 0.62 2.61

P1.1 P1 - encoder_bidirectional test 0.48 0.45 0.68 0.5 0.64 2.68
dev 0.46 0.41 0.64 0.51 0.61 2.56

P1.2.1 P1 + hidden_dim=512 test 0.47 0.42 0.44 0.52 0.63 1.7
dev 0.46 0.4 0.43 0.52 0.61 1.69

P1.2.2 P1 + hidden_dim=1024 test 0.48 0.45 0.42 0.58 0.65 1.53
dev 0.46 0.41 0.36 0.53 0.61 1.49

P1.3.1 P1 + encoder_depth=2 test 0.55 0.48 0.76 0.58 0.67 2.56
dev 0.56 0.43 0.69 0.58 0.62 2.52

P1.3.2 P1 + encoder_depth=4 test 0.63 0.51 0.91 0.66 0.67 1.41
dev 0.61 0.47 0.84 0.64 0.6 1.39

P1.4.1 P1 + hidden_dim=128 + encoder_depth=2 test 0.58 0.48 0.8 0.6 0.67 2.0
dev 0.55 0.43 0.75 0.54 0.62 2.03

P1.4.2 P1 + hidden_dim=128 + encoder_depth=4 test 0.62 0.51 0.91 0.64 0.68 2.43
dev 0.6 0.47 0.83 0.6 0.62 2.57

P1.4.3 P1 + hidden_dim=128 + encoder_depth=8 test 0.59 0.52 0.91 0.63 0.68 3.04
dev 0.6 0.47 0.84 0.6 0.62 3.02

P1.5.1 P1 + hidden_dim=64 + encoder_depth=4 test 0.57 0.5 0.8 0.6 0.68 2.41
dev 0.58 0.45 0.75 0.59 0.62 2.39

P1.5.2 P1 + hidden_dim=64 + encoder_depth=8 test 0.62 0.51 0.85 0.64 0.68 2.53
dev 0.6 0.46 0.79 0.6 0.62 2.53

P2 P1 + optical_flow test 0.58 0.5 0.95 0.63 0.68 3.17
dev 0.59 0.45 0.84 0.59 0.61 3.08

P2.1 P1.3.2 + optical_flow test 0.63 0.51 0.92 0.66 0.67 1.51
dev 0.62 0.46 0.81 0.62 0.6 1.53

P3 P1 + hand_normalization test 0.55 0.48 0.77 0.58 0.67 2.79
dev 0.55 0.42 0.71 0.57 0.62 2.73

P3.1 P1.3.2 + hand_normalization test 0.63 0.51 0.91 0.66 0.66 1.43
dev 0.61 0.46 0.82 0.64 0.61 1.46

P4 P2.1 + P3.1 test 0.56 0.51 0.92 0.61 0.66 1.45
dev 0.61 0.46 0.81 0.63 0.6 1.41

P4.1 P4 + encoder_depth=8 test 0.6 0.51 0.95 0.62 0.67 1.08
dev 0.61 0.47 0.86 0.62 0.6 1.12

P5 P1.3.2 + reduced_face test 0.63 0.51 0.94 0.64 0.66 1.16
dev 0.61 0.47 0.86 0.64 0.58 1.14

P5.1 P1.3.2 + full_face test 0.54 0.49 0.8 0.6 0.68 2.29
dev 0.57 0.45 0.7 0.59 0.62 2.29

Table 3: Results of the preliminary experiments.

12Note that due to an implementation issue on edge cases (which we fixed later), the IoU and % values in Table 3 are lower
than the ones in Table 1 and Table 4 thus not comparable across tables. The comparison inside of Table 3 between different
experiments remains meaningful. In addition, the results in Table 3 are based on only one run instead of three random runs.



We selected some promising models from our preliminary experiments and reran them three times using
different random seeds to make the final conclusion reliable and robust. Table 4 includes the standard
deviation and the validation results (where we performed the model selection) for readers to scrutinize.

Sign Phrase Efficiency

Experiment F1 IoU % F1 IoU % #Params Time

E0 Moryossef et al. (2020) test — 0.46± 0.03 1.09± 0.41 — 0.70± 0.01 1.00± 0.06 102K 0:50:17
dev — 0.42± 0.05 1.21± 0.59 — 0.61± 0.06 2.47± 0.85 102K 0:50:17

E1 Baseline test 0.56± 0.03 0.66± 0.01 0.91± 0.05 0.59± 0.02 0.80± 0.03 2.50± 0.13 454K 1:01:50
dev 0.55± 0.01 0.59± 0.00 1.12± 0.11 0.56± 0.02 0.75± 0.05 2.94± 0.08 454K 1:01:50

E2 E1 + Face test 0.53± 0.05 0.58± 0.07 0.64± 0.30 0.57± 0.02 0.76± 0.03 1.87± 0.83 552K 1:50:31
dev 0.50± 0.07 0.53± 0.11 0.90± 0.19 0.53± 0.05 0.71± 0.07 2.43± 1.02 552K 1:50:31

E3 E1 + Optical Flow test 0.58± 0.01 0.62± 0.00 1.12± 0.05 0.60± 0.03 0.82± 0.03 3.19± 0.11 473K 1:20:17
dev 0.58± 0.00 0.62± 0.00 1.50± 0.19 0.59± 0.01 0.79± 0.00 3.94± 0.14 473K 1:20:17

E4 E3 + Hand Norm test 0.56± 0.02 0.61± 0.00 1.07± 0.05 0.60± 0.00 0.80± 0.00 3.24± 0.17 516K 1:30:59
dev 0.57± 0.01 0.61± 0.01 1.50± 0.07 0.58± 0.00 0.79± 0.00 4.04± 0.31 516K 1:30:59

E1s E1 + Depth=4 test 0.63± 0.01 0.69± 0.00 1.11± 0.01 0.65± 0.02 0.82± 0.04 1.63± 0.10 1.6M 4:08:48
dev 0.61± 0.00 0.63± 0.00 1.27± 0.01 0.63± 0.01 0.77± 0.01 2.17± 0.18 1.6M 4:08:48

E2s E2 + Depth=4 test 0.62± 0.02 0.69± 0.00 1.07± 0.03 0.63± 0.01 0.84± 0.03 2.68± 0.53 1.7M 3:14:03
dev 0.60± 0.01 0.63± 0.01 1.20± 0.12 0.59± 0.02 0.76± 0.05 3.30± 0.62 1.7M 3:14:03

E3s E3 + Depth=4 test 0.60± 0.01 0.63± 0.00 1.13± 0.01 0.64± 0.03 0.80± 0.03 1.53± 0.18 1.7M 4:08:30
dev 0.62± 0.00 0.63± 0.00 1.63± 0.05 0.63± 0.00 0.76± 0.00 2.14± 0.09 1.7M 4:08:30

E4s E4 + Depth=4 test 0.59± 0.00 0.63± 0.00 1.13± 0.03 0.62± 0.00 0.79± 0.00 1.43± 0.10 1.7M 4:35:29
dev 0.61± 0.00 0.63± 0.00 1.56± 0.04 0.63± 0.00 0.77± 0.01 1.89± 0.07 1.7M 4:35:29

E4ba E4s + Autoregressive test 0.45± 0.03 0.47± 0.05 0.88± 0.08 0.52± 0.02 0.63± 0.10 2.72± 1.33 1.3M 2 days, 21:28:42
dev 0.40± 0.01 0.40± 0.01 2.02± 0.73 0.47± 0.00 0.57± 0.04 4.26± 1.26 1.3M 2 days, 21:28:42

Table 4: Mean evaluation metrics for our main experiments. A complete version of Table 1.



B Greedy Decoding Algorithm

We provide our exact decoding algorithm in Algorithm 1. We opt to employ adjustable thresholds rather
than argmax prediction, as our empirical findings demonstrate superior performance with this approach
(§5.2).

Algorithm 1 Probabilities to Segments Conversion.

Require: probs, a list of probabilities from 0 to 100
1: thresholdb ← 50.0
2: thresholdo ← 50.0
3:

4: start← None
5: did_pass_start← False
6:

7: for i = 0 to len(probs) do
8: b, i, o← probs[i]
9:

10: if start = None then
11: if b > thresholdb then
12: start← i
13: end if
14: else
15: if did_pass_start then
16: if b > thresholdb or o > thresholdo then
17: yield (start, i− 1))
18: start← None
19: did_pass_start← False
20: end if
21: else
22: if b < thresholdb then
23: did_pass_start← True
24: end if
25: end if
26: end if
27: end for
28:

29: if start ̸= None then
30: yield (start, len(probs)))
31: end if



C Pose Based Hand Shape Analysis

C.1 Introduction to Hand Shapes in Sign Language

The most prominent feature of signed languages is their use of the hands. In fact, the hands play an
integral role in the phonetics of signs, and a slight variation in hand shape can convey differences in
meaning (Stokoe Jr, 1960). In sign languages such as American Sign Language (ASL) and British Sign
Language (BSL), different hand shapes contribute to the vocabulary of the language, similar to how
different sounds contribute to the vocabulary of spoken languages. ASL is estimated to use between 30 to
80 hand shapes13, while BSL is limited to approximately 40 hand shapes14. SignWriting (Sutton, 1990), a
system of notation used for sign languages, specifies a superset of 261 distinct hand shapes (Frost and
Sutton, 2022). Each sign language uses a subset of these hand shapes.

Despite the fundamental role of hand shapes in sign languages, accurately recognizing and classifying
them is a challenging task. In this section, we explore rule-based hand shape analysis in sign languages
using 3D hand normalization. By performing 3D hand normalization, we can transform any given hand
shape to a fixed orientation, making it easier for a model to extract the hand shape, and hence improving
the recognition and classification of hand shapes in sign languages.

C.2 Characteristics of the Human Hand

The human hand consists of 27 bones and can be divided into three main sections: the wrist (carpals), the
palm (metacarpals), and the fingers (phalanges). Each finger consists of three bones, except for the thumb,
which has two. The bones are connected by joints, which allow for the complex movements and shapes
that the hand can form.

Figure 7: Anatomy of a human hand. ©American Society for Surgery of the Hand

13https://aslfont.github.io/Symbol-Font-For-ASL/asl/handshapes.html
14https://bsl.surrey.ac.uk/principles/i-hand-shapes

https://aslfont.github.io/Symbol-Font-For-ASL/asl/handshapes.html
https://bsl.surrey.ac.uk/principles/i-hand-shapes


Understanding the different characteristics of hands and their implications in signed languages is crucial
for the extraction and classification of hand shapes. These characteristics are based on the SignWriting
definitions of the five major axes of hand variation: handedness, plane, rotation, view, and shape.

Handedness is the distinction between the right and left hands. Signed languages make a distinction
between the dominant hand and the non-dominant hand. For right-handed individuals, the right hand is
considered dominant, and vice-versa. The dominant hand is used for fingerspelling and all one-handed
signs, while the non-dominant hand is used for support and two-handed signs. Using 3D pose estimation,
the handedness analysis is trivial, as the pose estimation platform predicts which hand is which.

Plane refers to whether the hand is parallel to the wall or the floor. The variation in the plane can,
but does not have to, create a distinction between two signs. For example, in ASL the signs for “date”
and “dessert” exhibit the same hand shape, view, rotation, and movement, but differ by plane. The plane
of a hand can be estimated by comparing the positions of the wrist and middle finger metacarpal bone
(M_MCP ).

Algorithm 2 Hand Plane Estimation

1: y ← |M_MCP.y −WRIST.y| × 1.5 // add bias to y
2: z ← |M_MCP.z −WRIST.z|
3: return y > z ? ‘wall’ : ‘floor’

Rotation refers to the angle of the hand in relation to the body. SignWriting groups the hand rotation
into eight equal categories, each spanning 45 degrees. The rotation of a hand can be calculated by finding
the angle of the line created by the wrist and the middle finger metacarpal bone.

View refers to the side of the hand as observed by the signer, and is grouped into four categories: front,
back, sideways, and other-sideways. The view of a hand can be estimated by analyzing the normal of
the plane created by the palm of the hand (between the wrist, index finger metacarpal bone, and pinky
metacarpal bone).

Algorithm 3 Hand View Estimation

1: normal← math.normal(WRIST, I_MCP,P_MCP)
2: plane← get_plane(WRIST,M_MCP)
3: if plane = ‘wall’ then
4: angle← ̸ (normal.z, normal.x)
5: return angle > 210 ? ‘front’ : (angle > 150 ? ‘sideways’ : ‘back’)
6: else
7: angle← ̸ (normal.y, normal.x)
8: return angle > 0 ? ‘front’ : (angle > −60 ? ‘sideways’ : ‘back’)
9: end if

Shape refers to the configuration of the fingers and thumb. This characteristic of the hand is the most
complex to analyze due to the vast array of possible shapes the human hand can form. The shape of a
hand is determined by the state of each finger and thumb, specifically whether they are straight, curved,
or bent, and their position relative to each other. Shape analysis can be accomplished by examining the
bend and rotation of each finger joint. More advanced models may also take into consideration the spread
between the fingers and other nuanced characteristics. 3D pose estimation can be used to extract these
features for a machine learning model, which can then classify the hand shape.

C.3 3D Hand Normalization
3D hand normalization is an attempt at standardizing the orientation and position of the hand, thereby
enabling models to effectively classify various hand shapes. The normalization process involves several



key steps, as illustrated below:

1. Pose Estimation Initially, the 3D pose of the hand is estimated from the hand image crop (Figure 8).

Figure 8: Pictures of six hands all performing the same hand shape (v-shape) taken from six different orientations.
Mediapipe fails at estimating the pose of the bottom-middle image.

2. 3D Rotation The pose is then rotated in 3D space such that the normal of the back of the hand aligns
with the Z-axis. As a result, the palm plane now resides within the XY plane (Figure 9).

Figure 9: Hand poses after 3D rotation. The scale difference between the hands demonstrates a limitation of the 3D
pose estimation system used.



3. 2D Orientation Subsequently, the pose is rotated in 2D such that the metacarpal bone of the middle
finger aligns with the Y -axis (Figure 10).

Figure 10: Hand poses after being rotated.

4. Scale The hand is scaled such that the metacarpal bone of the middle finger attains a constant length
(which we typically set to 200, Figure 11).

Figure 11: Hand poses after being scaled.

5. Translation Lastly, the wrist joint is translated to the origin of the coordinate system (0, 0, 0). Figure
12 demonstrates how when overlayed, we can see all hands producing the same shape, except for one
outlier.



Figure 12: Normalized hand poses overlayed after being translated to the same position. The positions of the wrist
and the metacarpal bone of the middle finger are fixed.

By conducting these normalization steps, a hand model can be standardized, reducing the complexity of
subsequent steps such as feature extraction and hand shape classification. This standardization simplifies
the recognition process and can contribute to improving the overall accuracy of the system.

C.4 3D Hand Pose Evaluation

In order to assess the performance of our 3D hand pose estimation and normalization, we introduce two
metrics that gauge the consistency of the pose estimation across orientations and crops.

Our dataset is extracted from the SignWriting Hand Symbols Manual (Frost and Sutton, 2022), and
includes images of 261 different hand shapes, from 6 different angles. All images are of the same hand, of
an adult white man.

Multi Angle Consistency Error (MACE) evaluates the consistency of the pose estimation system
across the different orientations. We perform 3D hand normalization, and overlay the hands. The MACE
score is the average standard deviation of all pose landmarks, between all views. A high MACE score
indicates a problem in the pose estimation system’s ability to maintain consistency across different
orientations. This could adversely affect the model’s performance when analyzing hand shapes in sign
languages, as signs can significantly vary with hand rotation.

Figure 13: Visualizations of 10 hand shapes, each with 6 orientations 3D normalized and overlayed.

Figure 13 shows that our 3D normalization does work to some extent using Mediapipe. We can identify
differences across hand shapes, but still note high variance within each hand shape.



Crop Consistency Error (CCE) gauges the pose estimation system’s consistency across different crop
sizes. We do not perform 3D normalization, but still overlay all the estimated hands, shifting the wrist
point of each estimated hand to the origin (0, 0, 0). The CCE score is the calculated average standard
deviation of all pose landmarks across crops. A high CCE score indicates that the pose estimation system
is sensitive to the size of the input crop, which is a significant drawback as the system should be invariant
to the size of the input image.

Figure 14: Visualizations of 10 hand shapes, each with 48 crops overlayed.

Figure 14 shows that for some poses, Mediapipe is very resilient to crop size differences (e.g. the first
and last hand shapes). However, it is concerning that for some hand shapes, it exhibits very high variance,
and possibly even wrong predictions.

C.5 Conclusion
Our normalization process appears to work reasonably well when applied to different views within the
same crop size. It succeeds in simplifying the hand shape, which in turn, can aid in improving the accuracy
of hand shape classification systems.

However, it is crucial to note that while this method may seem to perform well on a static image, its
consistency and reliability in a dynamic context, such as a video, may be quite different. In a video, the
crop size can change between frames, introducing additional complexity and variance. This dynamic
nature coupled with the inherently noisy nature of the estimation process can pose challenges for a model
that aims to consistently estimate hand shapes.

In light of these findings, it is clear that there is a need for the developers of 3D pose estimation
systems to consider these evaluation methods and strive to make their systems more robust to changes in
hand crops. The Multi Angle Consistency Error (MACE) and the Crop Consistency Error (CCE) can be
valuable tools in this regard.

MACE could potentially be incorporated as a loss function for 3D pose estimation, thereby driving
the model to maintain consistency across different orientations. Alternatively, MACE could be used
as an indicator to identify hand shapes that require more training data. It is apparent from our study
that the performance varies greatly across hand shapes and orientations, and this approach could help in
prioritizing the allocation of training resources.

Ultimately, the goal of improving 3D hand pose estimation is to enhance the ability to encode signed
languages accurately. The insights gathered from this study can guide future research and development
efforts in this direction, paving the way for more robust and reliable sign language technology.

The benchmark, metrics, and visualizations are available at https://github.com/
sign-language-processing/3d-hands-benchmark/.

https://github.com/sign-language-processing/3d-hands-benchmark/
https://github.com/sign-language-processing/3d-hands-benchmark/

