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Abstract

The success of federated learning (FL) ultimately depends on how strategic participants be-
have under partial observability, yet most formulations still treat FL as a static optimization
problem. We instead view FL deployments as governed strategic systems and develop an an-
alytical framework that separates welfare-improving behavior from metric gaming. Within
this framework, we introduce indices that quantify manipulability, the price of gaming, and
the price of cooperation, and we use them to study how rules, information disclosure, evalua-
tion metrics, and aggregator-switching policies reshape incentives and cooperation patterns.
We derive threshold conditions for deterring harmful gaming while preserving benign coop-
eration, and for triggering auto-switch rules when early-warning indicators become critical.
Building on these results, we construct a design toolkit including a governance checklist and
a simple audit-budget allocation algorithm with a provable performance guarantee. Simula-
tions across diverse stylized environments and a federated learning case study consistently
match the qualitative and quantitative patterns predicted by our framework. Taken to-
gether, our results provide design principles and operational guidelines for reducing metric
gaming while sustaining stable, high-welfare cooperation in FL platforms.

1 Introduction

1.1 Motivation

Federated learning (FL) enables multiple organizations to train a shared model without moving data, and
adoption has been growing through consortia and platform-based collaborations. As cross-organizational
data collaboration expands, keeping data local while jointly training models has become a leading alternative
to traditional data pooling, especially when privacy, confidentiality, and regulatory constraints rule out
centralization. In this setting, FL naturally supports emerging data and AI services in which participants
retain control over their local data while contributing to shared intelligence that is monetized or governed
through metrics, contracts, and service-level guarantees.

At the same time, the surrounding governance has not matured at the same pace. Many organizations are still
in early stages of formalizing procedures for AI-enabled services, clarifying accountability, and embedding
risk mitigation into day-to-day operations. In FL, these gaps are particularly consequential: joint outcomes
depend on the actions of multiple parties whose internal processes are opaque to one another, yet whose
rewards and reputation are coupled through shared metrics. When rewards, rankings, or access rights depend
on these metrics, participants face incentives not only to improve genuine performance but also to target the
metrics themselves, potentially drifting toward high-metric, low-welfare regimes.

This tension is amplified by the combination of privacy and limited observability. Privacy-enhancing tech-
nologies such as FL, differential privacy, and secure computation restrict what can be inspected or audited,
and information design around metrics and scores further shapes what participants see and react to. Strong
protections are desirable, but they also reduce the visibility of individual behavior and may unintentionally
make harmful manipulation harder to detect. Designing FL systems therefore requires more than choosing an
optimizer or aggregation rule: it requires a coordinated view of evaluation, information disclosure, rewards,
audits, and participation, and of how these choices jointly shape incentives, cooperation, and stability.

1



Under review as submission to TMLR

This paper aims to provide such a view. We treat FL as a governed strategic system and develop a three-layer
framework that (i) quantifies how design choices create room for metric gaming and cooperation, (ii) links
these quantities to participation dynamics and tipping points, and (iii) maps them to practical levers such
as mixed public–private evaluation, audit allocation, sanction calibration, and auto-switch rules. Our goal
is not to propose yet another FL algorithm, but to offer a compact language and toolkit that helps designers
reason about metric gaming, cooperation, and governance in federated environments.

1.2 Contributions

We view federated learning not merely as a distributed optimization problem but as a governed strategic
system in which evaluation rules, information disclosure, reward and sanction mechanisms, and audit capacity
jointly shape participants’ incentives. Our contributions are to provide a formal language for this system,
to connect that language to simple indices and thresholds that can be estimated from data, and to distill
resulting design principles into an actionable toolkit.

• Strategic formalization of federated learning. We formalize a generic Eval–Info–Reward–
Audit architecture for federated learning platforms (Section 3), specifying welfare, public and private
metrics, participation choices, and cooperative actions (e.g., coalition formation, data sharing) within
a single game-theoretic environment. This provides a common backbone on which existing robust
aggregation, incentive, and privacy mechanisms can be placed.

• Indices for manipulability, gaming, and cooperation. On top of this backbone, we introduce
three indices that summarize how a design policy π trades off metric performance and welfare:
a manipulability index M(π) that captures the best achievable metric gain per unit welfare loss
under unilateral deviations, a Price of Gaming PoG(π) that measures welfare loss when a fraction
of clients adopt gaming behaviors, and a Price of Cooperation PoC that quantifies the net welfare
effect of coalitions (Section 4). We establish basic properties of these indices, show how they interact
with simple penalty schemes, and use them to define design-time thresholds (αmin, αbenign) that
separate under-enforcement, harmful gaming regimes, and over-enforcement that discourages benign
cooperation.

• Participation dynamics, resilience, and tipping thresholds. We couple the metric layer to
a stylized participation dynamics model, defining an aggregate participation map F (x; π) and a
resilience indicator R(π) that summarize how participation responds to policy changes (Section 5).
Under this model, we characterize tipping points and domino-style exits, and show how the indices
above bound the regions in which small changes in sanction strength or public-metric weight can
trigger large shifts in participation. This yields interpretable thresholds and heuristic rules for
maintaining participation stability while suppressing high-PoG equilibria.

• Design toolkit for evaluation, audits, and governance. Building on these indices and dy-
namics, we propose a set of design patterns for federated platforms (Section 6), including mixed
public/private evaluation schemes, audit-budget allocation rules with (1 − 1/e) approximation guar-
antees for detecting high-manipulability clients, and a governance checklist that links observable
diagnostics (e.g., gaming incident rates, participation responses, coalition structures) to concrete
levers (metric choice, disclosure policy, sanction strength, and audit allocation).

• Empirical illustrations in stylized and federated settings. Finally, we instantiate the frame-
work in a stylized simulator and a federated Fashion-MNIST experiment (Section 7), showing how
high-metric/low-welfare equilibria, participation tipping, and benign versus harmful cooperation
patterns arise under different design policies. We demonstrate that our indices can be approximated
using simple scenario-based experiments and log-based diagnostics, and that the proposed toolkit
can detect and mitigate high-PoG regimes without collapsing participation.
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2 Related Work

2.1 FL Attacks, Defenses, and Robust Aggregation

Early work on robustness in federated and distributed learning asked whether a small number of malicious
or corrupted updates can derail training, leading to robust aggregation rules such as Krum, coordinate-
wise median and trimmed mean, Bulyan, and Robust Federated Aggregation (RFA) (Blanchard et al.,
2017; Yin et al., 2018; Guerraoui et al., 2018; Pillutla et al., 2022), along with convergence analyses under
Byzantine noise and coding-based defenses (Alistarh et al., 2018; Bernstein et al., 2018; Chen et al., 2018).
Subsequent studies implemented these mechanisms under realistic constraints and exposed their limits via
model-poisoning, backdoor, and tail-group attacks, and proposed collusion- and Sybil-aware defenses such
as FoolsGold and FLTrust (Damaskinos et al., 2019; Xie et al., 2020; Baruch et al., 2019; Fang et al., 2020;
Bagdasaryan et al., 2020; Wang et al., 2020; Fung et al., 2018; Cao et al., 2020). Our work does not add
another aggregation or poisoning defense; instead, we ask how the choice of rules, metrics, and audits shapes
incentives for manipulation and cooperation, and how these incentives affect aggregate performance and
participation even when the underlying optimization dynamics are well behaved.

2.2 Incentive Design and Differential Client Contribution

Differential contribution and reward design often start from data valuation: Shapley-value-based methods,
influence functions, and learned value estimators seek fair allocations by tracing marginal contributions of
data or clients (Ghorbani & Zou, 2019; Jia et al., 2019; Koh & Liang, 2017; Yoon et al., 2020; Liu et al.,
2022b; Chen et al., 2023; 2024; Tastan et al., 2024). Direct incentive schemes use reputation, contracts,
auctions, and blockchain-based mechanisms to induce participation and effort, while parallel work folds
contribution weighting into learning and aggregation to target fairness, robustness, or resource-aware client
selection (Kang et al., 2019; Zhang et al., 2021a; Tang et al., 2024; Zhang et al., 2021b; Liu et al., 2020;
Mohri et al., 2019; Li et al., 2019; Lai et al., 2021; Nishio & Yonetani, 2019; Lin et al., 2023; Kim et al.,
2024; Ouyang & Kuang, 2025). These approaches typically treat incentives as reward-allocation functions on
fixed metrics or as modified aggregation rules; in contrast, we focus on the strategic environment induced by
evaluation and audit design itself and introduce indices that quantify when such designs incentivize gaming
versus genuine improvement.

2.3 Game Theory of Federated Learning and Participation Dynamics

Game-theoretic treatments of FL have emphasized coalition formation, stability, and free-riding, using hedo-
nic games, coalition models, and cooperative-game valuations to study gaps between individually stable and
globally optimal outcomes (Donahue & Kleinberg, 2021a;b; Hasan, 2021; Nagalapatti & Narayanam, 2021).
Repeated-game and leader–follower analyses show how punishment strategies, contract-theoretic mecha-
nisms, and Stackelberg formulations can deter free-riding and align server–client incentives under private
information, including collusion- and Sybil-aware variants (Zhang et al., 2022; Sagduyu, 2022; Luo et al.,
2023; Sarikaya & Ercetin, 2019; Hu & Gong, 2020; Le et al., 2021; Ding et al., 2020; Liu et al., 2022a; Huang
et al., 2024; Byrd et al., 2022; Xiong et al., 2024). Our work shares the strategic perspective but shifts
focus from specific mechanism equilibria to a metric-based language and threshold results for participation
stability, tipping points, and domino exits under generic rule sets.

2.4 Metric Gaming and the Goodhart Phenomenon

Metric gaming is often summarized by Goodhart’s observation that once a measure becomes a target, it
ceases to be a good measure. Prior work has categorized mechanisms behind this phenomenon and docu-
mented failure modes such as reward hacking, non-scalable oversight, and goal misgeneralization (Manheim
& Garrabrant, 2018; Amodei et al., 2016; Skalse et al., 2022; Everitt et al., 2021; Di Langosco et al., 2022).
When metrics drive decisions and thereby change the data, the problem becomes strategic: models of strate-
gic classification, Stackelberg interactions, and performative prediction analyze how agents respond to public
classifiers and how repeated retraining interacts with distributional shifts (Hardt et al., 2016a; Brückner &
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Scheffer, 2011; Perdomo et al., 2020; Mendler-Dünner et al., 2020; Miller et al., 2020). We build on these
insights but specialize them to FL, focusing on how evaluation metrics, disclosure policies, and audits induce
client-level incentives for metric targeting and introducing explicit indices and thresholds that distinguish
welfare-improving behavior from gaming.

2.5 Design of Evaluation Information, Audits, and Sanctions

Information design around metrics and scores has been proposed as a primary tool against overfitting and
gaming, via staircase leaderboards, reusable holdouts, and adaptive-data-analysis bounds for safe repeated
evaluation (Blum & Hardt, 2015; Dwork et al., 2015b;c;a; Bassily et al., 2016). From the audit side, work
on fairness, documentation, behavior-based testing, and distribution-shift benchmarks has developed pro-
cedures and artifacts that surface vulnerabilities beyond single scalar metrics (Kearns et al., 2018; Hardt
et al., 2016b; Kim et al., 2019; Agarwal et al., 2018; Kusner et al., 2017; Mitchell et al., 2019; Gebru et al.,
2021; Ribeiro et al., 2020; Kiela et al., 2021; Koh et al., 2021; Croce et al., 2020). Privacy and memo-
rization audits—including membership inference, memorization measures, data extraction, and backdoor
detection—further highlight the role of audits and sanctions in deployed systems (Shokri et al., 2017; Car-
lini et al., 2019; 2021; Tran et al., 2018; Wang et al., 2019; Rabanser et al., 2019; Dressel & Farid, 2018).
These strands provide building blocks for evaluation and auditing but are usually studied separately from
incentives and participation; our contribution is to integrate evaluation information design, audit allocation,
and sanction triggers into a single FL framework with indices and thresholds linked to gaming incentives
and cooperation stability.

2.6 Trade-offs Between Privacy and Incentives

Privacy in FL is commonly enforced through client-level differential privacy and secure aggregation, often
combined with distillation or selective-sharing protocols to limit exposure of sensitive data (Abadi et al., 2016;
McMahan et al., 2018; Geyer et al., 2017; Bonawitz et al., 2017; Erlingsson et al., 2019; Papernot et al., 2017;
2018; Shokri & Shmatikov, 2015; Gilad-Bachrach et al., 2016). Refined attack models, including gradient
inversion, attribute inference, backdoor and membership attacks, have clarified the limits of these protections
and the tension between strong privacy, visibility of malicious behavior, and group-level performance and
fairness (Melis et al., 2019; Zhu et al., 2019; Bagdasaryan et al., 2020; Wang et al., 2020; Bagdasaryan
et al., 2019; Jagielski et al., 2019; Tramer & Boneh, 2020). Recent work on proofs of correct training and
bidirectional verification protocols aims to restore some auditability under privacy constraints (Jia et al.,
2021; Zhang & Yu, 2022), but typically remains orthogonal to incentive design. Our framework explicitly
foregrounds the trade-offs between privacy, audit signals, and incentives, and proposes design patterns—such
as randomized evaluation, limited disclosure, and connectivity-based alarms—that help maintain incentive
alignment and sanctionability under realistic privacy and legal constraints. While prior work typically focuses
on individual mechanisms, attacks, or defenses, our contribution is to provide a platform-level framework
that jointly links metric gaming, welfare loss, participation dynamics, and governance levers through explicit
indices and design thresholds.

3 Federated Learning as a Strategic System: Setup and Notation

In this section we formalize federated learning (FL) as a strategic system. The goal is not a fully realistic
economic model, but a minimal structure that (i) makes precise what clients can do strategically, (ii) separates
true welfare from observable metrics, and (iii) allows design choices in evaluation, information, rewards, and
audits to be treated as policy variables. Our aim is to isolate the FL-specific sources of strategic tension:
(i) repeated, round-based interaction; (ii) aggregation, where each reported update affects a shared global
model; and (iii) partial observability, where rewards and sanctions are functions of evaluation pipelines rather
than direct welfare. Concretely, we treat evaluation, information disclosure, rewards, and audits as explicit
policy components π = (Eval, Info, Reward, Audit) that are coupled to the learning protocol through Aggt and
the induced metric process {Mt}.
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3.1 Federated environment and timing

We consider a cross-silo FL environment with a finite set of clients

I = {1, . . . , n}

and a coordinating server. Time is discrete,

t = 1, 2, . . . , T,

where T may be finite or infinite. At each round t, the server maintains a global model

θt ∈ Rd,

and each client i holds a local dataset Di drawn from an unknown distribution Pi. We write P = {Pi}i∈I
for the collection of client distributions and P ⋆ for the target population distribution of interest.

A generic round proceeds as follows:

1. Broadcast: the server broadcasts θt to eligible clients.

2. Participation and action: each client chooses participation pi,t ∈ {0, 1} and, if participating, a
local training/reporting behavior.

3. Local computation: participating client i computes an internal update uint
i,t ∈ Rd from (Di, θt).

4. Reporting: client i reports an update ui,t ∈ Rd, which may equal uint
i,t (honest), be perturbed

(privacy/obfuscation), or be strategically chosen.

5. Aggregation and evaluation: the server aggregates updates from It = {i : pi,t = 1} via Aggt and
evaluates via Evalt to produce observable signals.

6. Rewards, audits, sanctions: the server assigns rewards, selects audits, and applies sanctions
based on observable signals and history.

This timing highlights the key FL dependence: the designer does not observe client-side behavior directly,
but only the outputs of Evalt applied to aggregated models and challenge data. Thus, incentives operate
through a mediated channel (scores, disclosures, and audits) rather than through welfare itself, and strategic
behavior targets whatever components of Ot are disclosed and rewarded.

The tuple
E =

(
I, P, P ⋆, {Di}i∈I , {θt}t≥1, {Aggt}t≥1

)
specifies the algorithmic FL environment. Strategic behavior is determined by how actions, metrics, rewards,
and audits are defined on top of E .

3.2 Actions, strategies, metrics, and welfare

Actions and strategy space. At each round t, client i chooses an action

ai,t ∈ Ai,

where Ai is a feasible action set. We model ai,t as encoding: (i) participation pi,t ∈ {0, 1}, (ii) local training
effort/policy that determines uint

i,t , and (iii) a reporting/manipulation policy that maps (θt, uint
i,t , Di, history)

to a reported update ui,t and auxiliary reports.

Let ht denote the public history up to and including round t (e.g., disclosed scores, sanctions, aggregate
statistics). A (behavioral) strategy for client i is a mapping

σi : ht−1 7→ ai,t.

Let Σi denote the set of admissible strategies for client i, and define the ambient strategy space

Σ :=
∏
i∈I

Σi.
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Reference classes (threat models). Some of our indices restrict attention to a subset of feasible devia-
tions, such as bounded gaming intensity, bounded coalition size, or actions compatible with a given protocol.
Definition 3.1 (Reference class). A reference class is a subset Σref ⊆ Σ specifying the deviations (or
strategy profiles) deemed feasible in the deployment under study. Indices defined via worst-case deviations
are interpreted as restricted to Σref .

True outcomes and welfare. Given a strategy profile σ ∈ Σ and environment E , the induced model
trajectory {θt} yields time-dependent true welfare on P ⋆:

Wt(σ) := W (θt; P ⋆),

where W is a task-dependent welfare functional. We summarize long-run welfare by an aggregate functional

W (σ) := Φ({Wt(σ)}t≥1),

such as a steady-state value or discounted average.

Metrics and proxy performance. Rewards, sanctions, and policy changes depend on metrics computed
from finite evaluation sets and partial information. Let

Mt(σ) ∈ Rk

denote a vector of observable metrics at round t and

M(σ) := Ψ({Mt(σ)}t≥1)

an aggregate metric used for decision-making. In general, M(σ) need not coincide with W (σ); strategic
behavior is driven by how M enters payoffs, not by W directly.

In federated deployments, this misalignment is structural: Mt is computed on finite, possibly public bench-
marks and challenge sets, while Wt is defined on the deployment distribution P ⋆ and may emphasize tail
groups or operational constraints not fully captured by evaluation. Our indices therefore quantify gaps that
arise because FL platforms must rely on proxy measurements under limited observability and audit budgets.

Client payoffs. Each client i receives cumulative payoff

Ui(σ) = E
[ T∑

t=1
δt−1

(
Ri,t(σ) − Ci,t(σ)

)]
,

where Ri,t is the reward/payment, Ci,t denotes costs (computation, communication, privacy loss, sanctions),
and the expectation is over randomness in training/evaluation/audits.

3.3 Observation, information, rewards, and audits

Design choices in our framework are expressed through coupled channels: what is measured, what is disclosed,
and how enforcement responds.

Evaluation and observation. At each round t, Evalt maps the current and candidate models (and
internal evaluation data) to raw observations, e.g., a global score Sglob

t , local/per-group scores Sloc
i,t , and

private/randomized challenge outcomes Ci,t. We collect these into

Ot =
(
Sglob

t , {Sloc
i,t }i∈I , {Ci,t}i∈I

)
.

Information disclosure. The information mechanism Infot selects which components of Ot to disclose
(and at what granularity) to each client. We denote the disclosed signal to client i by

Zi,t = Infot(i, Ot, ht−1).

Clients condition actions on Zi,t (and history), not on the full Ot.
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Rewards and sanctions. Rewards and penalties respond to disclosed signals and history:

Ri,t = Rewardt(i, Zi,t, ht−1).

The audit–sanction mechanism selects an audited subset At under a budget constraint and assigns sanctions
Pi,t:

Auditt : (Ot, ht−1) 7→
(

At, {Pi,t}i∈I

)
.

Design policies and induced game. For many results, it is convenient to treat

π = (Eval, Info, Reward, Audit)

as a design policy chosen by the server. A policy π together with the environment E induces a strategic
system (game) in which clients choose σi ∈ Σi to maximize Ui(σ), while the designer evaluates welfare W (σ)
and metric behavior M(σ).
Definition 3.2 (Federated strategic system). A federated strategic system is the tuple

G(π) =
(
E , {Σi}i∈I , π

)
,

which induces the payoff functions {Ui(·)} and welfare/metric functionals (W (·), M(·)) over Σ.

Where our theoretical statements later appear game-theoretic, their content is tied to the FL design surface:
Aggt determines how participation and reporting affect future models, Evalt determines which metric com-
ponents are even measurable, Infot determines what clients can condition on, and Auditt determines which
deviations become detectable and sanctionable. These are precisely the elements that distinguish federated
systems from standard principal–agent abstractions without a learning-and-evaluation pipeline.

In the next section, we define indices such as manipulability and the Prices of Gaming and Cooperation,
which quantify how a policy π shapes the gap between observable metrics and true welfare and how strongly
it incentivizes gaming versus cooperation.

4 Metric Layer: Indices for Gaming and Cooperation

Building on the strategic formulation in Section 3, we now introduce indices that quantify (i) how much
room a design policy leaves for metric gaming and (ii) how costly gaming and cooperation are for collective
welfare. These indices form the metric layer of our framework: they ignore the precise structure of training
and aggregation and focus on how evaluation, information, and incentives shape the relationship between
metric performance and true welfare.

Throughout this section, we fix an environment E and a design policy π = (Eval, Info, Reward, Audit), and
write G(π) for the induced federated strategic system (Section 3.2).

4.1 Decomposing welfare and metric responses

We first formalize how unilateral deviations by a single client affect welfare and metrics.
Definition 4.1 (Local welfare and metric responses). Let σ be a strategy profile in G(π), and let σ′

i be an
alternative strategy for client i. We define

∆Wi(σ′
i | σ) := W (σ′

i, σ−i) − W (σ), ∆Mi(σ′
i | σ) := M(σ′

i, σ−i) − M(σ),

as the change in true welfare and in the aggregate metric induced by client i deviating from σi to σ′
i while

all other clients keep σ−i.

We interpret ∆Wi > 0 as welfare-improving and ∆Wi < 0 as welfare-harming, with an analogous interpreta-
tion for ∆Mi. Our primary interest is in deviations that improve the metric while leaving welfare unchanged
or worse.
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Definition 4.2 (Metric-gaming deviation). A deviation σ′
i ̸= σi at profile σ is a metric-gaming deviation if

∆Mi(σ′
i | σ) > 0 and ∆Wi(σ′

i | σ) ≤ 0.

It is strongly gaming if ∆Wi(σ′
i | σ) < 0.

For equilibria, we often focus on steady-state profiles σ† (e.g., stationary or long-run equilibria) of G(π), but
the indices below apply equally to transient profiles.

4.2 Manipulability index

Intuitively, the manipulability of a design policy π measures how much a client can improve the metric
without improving welfare, relative to the scale of attainable welfare improvements.
Definition 4.3 (Local manipulability at a profile). Let σ be a strategy profile in G(π). The local manipu-
lability at σ is

M(σ; π) := sup
i∈I

sup
σ′

i
∈Ai

[
∆Mi(σ′

i | σ)
]

+[
∆Wi(σ′

i | σ)
]

+ + ε
,

where [x]+ = max{x, 0} and ε > 0 is a small normalization constant that prevents division by zero when no
welfare-improving deviation exists.

The numerator is the largest metric gain a client can obtain by deviating from σ, and the denominator
normalizes by the scale of possible welfare improvements. Heuristically, small M(σ; π) means metric gains
are only available when accompanied by comparable welfare gains, while large M(σ; π) means the metric
can move substantially in directions that barely move welfare. The additive ε matters near welfare optima,
where no strictly welfare-improving deviations exist.
Definition 4.4 (Manipulability index of a design policy). For a design policy π and a reference class of
profiles Σref (e.g., steady-state equilibria), the manipulability index is

M(π) := sup
σ∈Σref

M(σ; π).

When Σref consists of equilibria, M(π) measures how much the metric can be locally moved without com-
mensurate welfare improvement around points actually induced by the policy.
Proposition 4.5 (Zero manipulability and local alignment). Suppose that for a design policy π and reference
class Σref we have M(π) = 0. Then for every σ ∈ Σref , every client i, and every deviation σ′

i ∈ Ai,

∆Mi(σ′
i | σ) > 0 ⇒ ∆Wi(σ′

i | σ) > 0.

In particular, there are no metric-gaming deviations at any profile in Σref .
Remark 4.6. Large values of M(π) do not by themselves guarantee harmful gaming, but they quantify the
capacity of the metric to move independently of welfare. In later sections we combine M(π) with audit and
sanction rules to reason about when this capacity is actually exploited.

4.3 Price of Gaming

Manipulability describes local capacity for gaming; we next quantify the realized welfare loss when gaming
occurs under a given policy. Inspired by the Price of Anarchy, we define the Price of Gaming as the welfare
gap between an idealized aligned behavior and a gaming equilibrium, normalized by the aligned welfare.

We distinguish two benchmark profiles:

• A welfare-aligned benchmark σalign, representing the best outcome achievable under π when clients
are constrained to actions Aalign

i ⊆ Ai that exclude metric-gaming behaviors (e.g., truthful reporting
and genuine effort).
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• A gaming equilibrium σgame, representing an equilibrium of G(π) when clients may use the full action
sets Ai, including manipulative behavior.

Definition 4.7 (Price of Gaming). Let σalign and σgame be as above, and suppose W (σalign) > 0. The Price
of Gaming under design policy π is

PoG(π) := W (σalign) − W (σgame)
W (σalign) .

By construction, PoG(π) ∈ [0, 1] when W (σgame) ≥ 0. A value of PoG(π) = 0 indicates that gaming does
not reduce welfare relative to the aligned benchmark, while PoG(π) ≈ 1 indicates that almost all of the
potential welfare has been destroyed by gaming.

When multiple gaming equilibria exist, we define a worst-case Price of Gaming

PoGmax(π) := sup
σgame∈Egame(π)

PoG(π),

where Egame(π) is the set of gaming equilibria under π.
Proposition 4.8 (Manipulability and Price of Gaming). Consider two design policies π and π′ on the
same environment E, with comparable aligned benchmarks W (σalign) ≈ W (σ′align). Under mild regularity
conditions on best responses, reducing manipulability shrinks the worst-case Price of Gaming:

M(π′) ≤ M(π) =⇒ PoGmax(π′) ≤ PoGmax(π) + ∆,

where ∆ captures equilibrium-selection effects and vanishes when gaming equilibria depend continuously on
feasible metric-gaming directions.

We provide a detailed statement and proof in the supplementary material; the main takeaway is that reducing
M(π) shrinks the space along which equilibria can drift away from the aligned benchmark, constraining the
welfare gap.

4.4 Price of Cooperation

Not all coordinated deviations are harmful: some forms of cooperation (e.g., sharing calibration signals,
pooling audits, or forming stable participation coalitions) can improve welfare even when they alter the
metric. To distinguish such benign cooperation from harmful collusion, we introduce a Price of Cooperation.

Consider a baseline profile σbase (e.g., a non-cooperative equilibrium) and a coalition C ⊆ I that jointly
deviates to a cooperative strategy profile τC , yielding

σcoop = (τC , σ−C).

Definition 4.9 (Price of Cooperation). Given (σbase, σcoop) with W (σbase) ̸= 0, the Price of Cooperation is

PoC(σbase → σcoop) := W (σcoop) − W (σbase)
|W (σbase)| .

We interpret PoC > 0 as benign cooperation that raises welfare and PoC < 0 as harmful cooperation or
collusion that reduces welfare. Aggregating over coalitions and equilibria yields policy-level indices

PoCbenign(π) := sup
σbase,C,τC

PoC(σbase → σcoop), PoCharm(π) := inf
σbase,C,τC

PoC(σbase → σcoop).

Remark 4.10. The Price of Gaming captures the cost of metric targeting relative to aligned behavior; the
Price of Cooperation separates cooperative structures into two regimes: benign cooperation with PoC > 0
that ought to be encouraged, and harmful cooperation with PoC < 0 that ought to be deterred. In Section 5,
we connect these regimes to participation dynamics and coalition stability.
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4.5 Penalty design and critical thresholds

Design policies typically expose a control parameter that adjusts the strength of penalties and sanctions.
We denote such a parameter by α ≥ 0 and consider a family of policies π(α) that differ only in the severity
or frequency of sanctions, holding evaluation and aggregation fixed.

Stylized one-shot model. Let Σi be the (possibly mixed) strategy/action space of client i, and let
σ = (σi, σ−i) ∈ Σ :=

∏
i Σi denote a strategy profile. Under policy π(α), client i obtains expected payoff

Ui(σi; σ−i, α) = Vi(σi; σ−i) − α Di(σi; σ−i),

where Vi is the unpenalized component and Di ≥ 0 is an expected detected-violation rate (or penalty
exposure).
Assumption 4.11 (Regularity and attainability in penalty scaling). For each i and each fixed σ−i: (i)
Vi(·; σ−i) and Di(·; σ−i) are continuous on Σi; (ii) Σi is compact, so Ui(·; σ−i, α) attains a maximizer for
every α ≥ 0.

Assumption 4.11 covers schemes where sanctions scale linearly in a risk score or violation measure, while the
unpenalized part of the payoff is unaffected by α.

Rationality notions. We make explicit two standard notions used later.
Definition 4.12 (Individual rationality (IR) relative to a baseline). Fix a baseline profile σ̄ ∈ Σ (e.g., an
aligned benchmark). A profile σ is individually rational (IR) relative to σ̄ under π(α) if

Ui(σi; σ−i, α) ≥ Ui(σ̄i; σ̄−i, α) for all i.

Definition 4.13 (Coalition-rationality relative to a baseline). Fix a baseline σ̄ ∈ Σ. A profile σ is coalition-
rational relative to σ̄ under π(α) if there exists a nonempty coalition C ⊆ [n] such that (i) σ−C = σ̄−C (only
coalition members deviate), and (ii) for all i ∈ C, Ui(σi; σ̄−i, α) ≥ Ui(σ̄i; σ̄−i, α), with strict inequality for at
least one i ∈ C.

Where FL enters. In FL, the penalty exposure term Di(·) is induced by platform-side enforcement
channels, such as audit triggers from Eval (e.g., challenge failures, inconsistency tests) and the audit selection
rule in Audit. The baseline utility Vi(·) aggregates the policy-mediated benefits from participation (e.g.,
credits or rewards computed from disclosed scores Zi,t) minus compute/privacy costs. Thus, the sanction
parameter α is not an abstract knob: it corresponds to a concrete audit–sanction lever that scales platform-
enforced consequences of detected deviations.

Why the assumptions are FL-realistic. Linear (or approximately linear) penalty scaling captures com-
mon enforcement patterns: penalties proportional to a risk score, accumulated violations, or repeated audit
flags, with α tuned by the operator. The separability requirement (harmful gaming having strictly higher de-
tection exposure than an aligned alternative) corresponds to the practical goal of designing audits/challenges
so that “pure metric-targeting” leaves traces in private tests even when public metrics improve.

Technical challenge. The substantive difficulty is not the affine comparison itself but establishing a
regime where Di meaningfully separates harmful gaming from aligned behavior under partial observability
and noisy evaluation. In FL, both Vi and Di depend on protocol details (aggregation, disclosure granularity,
audit budget), so the proposition serves as a calibration statement: once enforcement signals distinguish
behaviors, a finite sanction band exists, but its magnitude is policy- and protocol-dependent.

Harmful gaming vs. benign cooperation. Let W (σ) denote (tail) welfare and let M(σ) denote the
server-visible metric.
Definition 4.14 (Harmful gaming and benign cooperation (relative to a baseline)). Fix a baseline profile
σ̄.

10
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• A unilateral deviation σi (with others fixed at σ̄−i) is harmfully gaming (relative to σ̄) if M(σi, σ̄−i) >
M(σ̄) and W (σi, σ̄−i) < W (σ̄).

• A coalition deviation σ is benignly cooperative (relative to σ̄) if it is coalition-rational relative to σ̄
at α = 0 and improves welfare, i.e., W (σ) > W (σ̄).

Two critical thresholds. We focus on: (i) a minimal sanction level αmin above which harmful gaming
is no longer a best response against the baseline; and (ii) a cooperation boundary αbenign above which even
benign cooperation ceases to be coalition-rational.
Definition 4.15 (Critical thresholds (relative to σ̄)). Fix a baseline σ̄.

• The minimal sanction level is

αmin := inf
{

α ≥ 0 : ∀i, arg max
σi∈Σi

Ui(σi; σ̄−i, α) ∩ Gi(σ̄) = ∅
}

,

where Gi(σ̄) is the set of harmfully gaming deviations by i relative to σ̄ (Definition 4.14).

• The benign cooperation boundary is

αbenign := sup {α ≥ 0 : ∃ σ that is benignly cooperative relative to σ̄ and coalition-rational under π(α)} .

Finite thresholds require separable penalty exposure. If a harmful deviation and an aligned action
incur identical penalty exposure, then scaling α cannot flip their payoff ordering. We therefore impose a
mild separability condition.
Assumption 4.16 (Penalty separability for harmful deviations). Fix baseline σ̄. For every i and every
harmful deviation g ∈ Gi(σ̄), there exists some alternative action a ∈ Σi (interpretable as welfare-aligned)
such that Di(g; σ̄−i) > Di(a; σ̄−i).
Proposition 4.17 (Existence and ordering of thresholds). Fix baseline σ̄ and suppose Assumptions 4.11 and
4.16 hold. Assume additionally that: (i) for each i, Gi(σ̄) is nonempty (harmful gaming deviations exist);
(ii) there exists at least one benignly cooperative profile at α = 0 (Definition 4.14).

Then αmin and αbenign are finite and satisfy

0 ≤ αmin ≤ αbenign.

Proof. We prove finiteness and ordering in turn.

Step 1: αmin < ∞. Fix i and a harmful deviation g ∈ Gi(σ̄). By Assumption 4.16, choose a ∈ Σi such
that Di(g; σ̄−i) > Di(a; σ̄−i). Consider the payoff difference

∆i,g,a(α) := Ui(g; σ̄−i, α) − Ui(a; σ̄−i, α) =
(

Vi(g; σ̄−i) − Vi(a; σ̄−i)
)

− α
(

Di(g; σ̄−i) − Di(a; σ̄−i)
)

.

This is affine and strictly decreasing in α since the coefficient of α is positive. Hence, for all

α ≥ α⋆
i,g,a :=

[
Vi(g; σ̄−i) − Vi(a; σ̄−i)

]
+

Di(g; σ̄−i) − Di(a; σ̄−i)
,

we have ∆i,g,a(α) ≤ 0, i.e., g is not strictly better than a. Define

α⋆
i := sup

g∈Gi(σ̄)
inf

a: Di(g)>Di(a)
α⋆

i,g,a.

Compactness and continuity (Assumption 4.11) ensure the relevant sup/inf are well-defined and finite in
the stylized setting.1 Then for any α > α⋆

i , no harmful deviation g ∈ Gi(σ̄) can be a strict maximizer of
Ui(·; σ̄−i, α). Taking αmin := maxi α⋆

i yields αmin < ∞ and matches Definition 4.15.
1In the simplest presentation, one may assume Σi is finite, in which case finiteness is immediate and the sup/inf are

maxima/minima.
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Step 2: αbenign < ∞. Take any benignly cooperative profile σ relative to σ̄. By Definition 4.13, there
exists a coalition C such that each i ∈ C weakly prefers σi to σ̄i at α = 0. For each i ∈ C, define the (affine)
gain from participating in the coalition deviation:

Gi(α) := Ui(σi; σ̄−i, α) − Ui(σ̄i; σ̄−i, α) =
(

Vi(σi; σ̄−i) − Vi(σ̄i; σ̄−i)
)

− α
(

Di(σi; σ̄−i) − Di(σ̄i; σ̄−i)
)

.

If for some i ∈ C we have Di(σi; σ̄−i) > Di(σ̄i; σ̄−i) and the unpenalized gain is finite, then Gi(α) becomes
negative for sufficiently large α. Thus there exists a finite upper bound ασ such that for all α > ασ, σ is not
coalition-rational. Taking the supremum over all benignly cooperative σ gives a finite αbenign.

Step 3: ordering αmin ≤ αbenign. By construction, for any α ≥ αmin no harmful gaming deviation
is individually optimal against σ̄. Moreover, benignly cooperative deviations are defined to be welfare-
improving relative to σ̄ and (by assumption) exist at α = 0. Since increasing α can only reduce incentives for
actions with higher penalty exposure, there is a (possibly empty) interval of α for which benign cooperation
remains coalition-rational while harmful gaming is deterred. Therefore the largest α supporting benign
cooperation cannot lie below the minimal α that eliminates harmful gaming best responses, i.e., αmin ≤
αbenign.

Remark 4.18. In practice, (αmin, αbenign) provide a calibration band for sanction strength relative to a
chosen baseline σ̄. Choosing α < αmin risks leaving harmful gaming individually profitable, while choosing
α > αbenign risks deterring productive cooperation. Exact computation may be infeasible in complex FL
systems, but our indices and experiments in Section 7 show that these thresholds can be approximated or
bounded using observable quantities such as detected incident rates and participation responses.

Taken together, the manipulability index M(π) and the prices PoG and PoC provide a compact language for
describing how a design policy shapes the space of metric-targeting behaviors and their welfare consequences.
In the next section, we move from this static metric layer to the dynamic layer, where we analyze how these
quantities interact with participation, exit, coalition formation, and tipping points over time.

4.6 Practical estimation of M , PoG, and PoC

The indices introduced in this section are defined in terms of deviations, equilibria, and suprema over strategy
sets. In deployed federated systems, we do not expect to compute these objects exactly. Instead, we view
M(π), PoG(π), and PoC(π) as latent properties of a design policy π that can be approximated or bounded
using a combination of controlled experiments and retrospective log analysis. We briefly outline two practical
routes.

Scenario-based estimation in sandboxes. When a simulator or internal testbed is available, the most
direct approach is to instantiate explicit aligned, gaming, and cooperative behaviors and measure their effects
on metrics and welfare. Concretely, one may:

1. Fix an environment E and a baseline design policy π, and implement a simple aligned local policy
(e.g., honest empirical risk minimization on the welfare distribution) together with a family of syn-
thetic gaming policies that target the public metric while ignoring some welfare-relevant components.

2. For each client i and candidate deviation σ′
i, run the system to (approximate) steady state and

record the realized changes
∆Mi(σ′

i | σ), ∆Wi(σ′
i | σ)

relative to the aligned profile σ. The local manipulability M(σ; π) can then be approximated by the
largest observed ratio

M̂(σ; π) ≈ max
i,σ′

i

[
∆Mi(σ′

i | σ)
]

+[
∆Wi(σ′

i | σ)
]

+ + ε
,

where ε is a small numerical constant.

12
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3. To estimate the Price of Gaming, instantiate an aligned configuration (all clients follow the aligned
policy) and a mixed configuration with a fixed fraction of gaming clients, and compare the resulting
steady-state welfare:

P̂oG(π) ≈ Waligned(π) − Wmixed(π),

normalized if desired by Waligned(π).

4. Similarly, to probe the Price of Cooperation, introduce explicit coalitions C that share updates, pool
data, or coordinate abstentions. Comparing welfare before and after enabling such cooperation yields
empirical counterparts of PoC(σbase → σcoop), which can be aggregated into benign and harmful
regimes as in Definition 4.9.

Our stylized simulation and Fashion-MNIST experiments in Section 7 follow this template: we fix simple
aligned and gaming behaviors, vary design levers such as penalty strength and public-metric weight, and
report steady-state averages of (W, M, x) together with an empirical Price of Gaming obtained by comparing
aligned and mixed-type configurations.

Retrospective and log-based estimation. When red-teaming or explicit simulators are not available,
existing logs still provide partial information about the indices. Two situations are particularly informative:

• Incidents and suspected gaming episodes. If past investigations have identified periods in which
certain clients or cohorts engaged in metric gaming (e.g., by overfitting to a public leaderboard,
under-reporting adverse events, or selectively participating), one can compare observed metric and
welfare trajectories during these episodes against nearby aligned periods. The largest observed
metric gains with negligible or negative welfare changes provide a lower bound on M(π), while the
associated drop in welfare relative to a counterfactual aligned run yields a lower bound on PoG(π).

• Policy and environment shifts. Changes in the evaluation, disclosure, or sanctioning rules (for
instance, increasing audit intensity or reducing public-metric weight) create natural experiments.
By tracking how head metrics, tail welfare, and participation respond before and after such shifts,
operators can approximate how far the system moves along the gaming and cooperation directions
defined in Section 4. For example, if a stricter audit regime is followed by a modest reduction in
the public metric but a substantial improvement in welfare and participation stability, this suggests
that the previous policy was operating in a high-PoG, high-manipulability regime.

In both cases, the goal is not to pin down precise point estimates but to obtain diagnostic bands: rough
lower bounds on M(π) and PoG(π), and qualitative evidence on whether observed cooperative structures are
benign (P̂oC > 0) or harmful (P̂oC < 0). These diagnostics are sufficient to calibrate the penalty thresholds
(αmin, αbenign) in Remark 4.18 and to inform the audit-allocation and governance patterns developed in
Sections 6.3–6.4.

5 Dynamics Layer: Participation, Thresholds, and Tipping Points

The metric layer in Section 4 describes how a fixed design policy π shapes gaming and cooperation directions
and their welfare impact. The dynamics layer focuses on how these incentives interact with participation
over time: when participation is stable, when small shocks trigger domino exits, and how cooperation or
collusion moves the system between regimes.

Throughout, we fix an environment E and a design policy π, and consider aggregate participation dynamics
induced by myopic or boundedly rational best responses.

In doing so, we deliberately work with a stylized mean-field model. We assume that the incremental utility
∆U(x; π) of participating versus abstaining is homogeneous across clients with the same observable state x,
and that participation thresholds {θi} are i.i.d. draws from an underlying distribution FΘ. This setup is
not meant to capture the full heterogeneity and bounded rationality of real federated participants; rather,
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it serves as a minimal scaffold for identifying qualitative phenomena such as tipping points, resilience, and
domino exits. In deployed systems, operators will not know ∆U(·; π) or FΘ exactly, but they can still use the
same formalism as a diagnostic lens: the observable aggregate participation curve (xt)t≥0 and its responses
to policy changes (e.g., stronger penalties, different disclosure rules) act as proxies for the slope and fixed
points of F (x; π) and for the resilience indicator R(π) introduced below.

5.1 Best responses and local participation stability

We use a simplified, mean-field representation of participation. At each round t, client i chooses whether to
participate (pi,t = 1) or abstain (pi,t = 0), in addition to choosing an in-round action (e.g., training effort,
gaming/cooperation intensity) when participating. To isolate participation, we model non-participation as
yielding a fixed outside option, while participation yields an expected net gain that depends on the current
environment and the aggregate participation level.

One-step net gain from participation. Let xt ∈ [0, 1] denote the aggregate participation rate (defined
below). Under a fixed policy π, define the one-step net gain for client i at round t as

∆Ui,t(xt; π) := E
[

Ui(1, a⋆
i (xt; π) | xt, π) − Ui(0 | xt, π)

]
, (5.1)

where Ui(1, ·) is the (one-step) payoff from participating with an in-round action, Ui(0) is the payoff from
abstaining, and

a⋆
i (xt; π) ∈ arg max

a∈Ai

E
[
Ui(1, a | xt, π)

]
is the client’s myopic best response conditional on participating. The expectation in equation 5.1 is taken
over evaluation randomness, audits, and other clients’ stochastic actions, conditional on (xt, π).

Population heterogeneity via participation thresholds. We model heterogeneity in participation
costs/preferences through an idiosyncratic threshold (type) θi.
Assumption 5.1 (Threshold-based participation with i.i.d. types). Each client i has a type θi ∈ R drawn
i.i.d. from a continuous distribution with CDF FΘ. At round t, client i participates if and only if

pi,t = 1 ⇐⇒ ∆Ui,t(xt; π) ≥ θi. (5.2)

Assumption 5.1 is a reduced-form model of noisy threshold rules: clients participate when the expected
net gain exceeds an idiosyncratic cutoff capturing private costs, device constraints, privacy preferences, and
opportunity costs.
Definition 5.2 (Aggregate participation rate). The aggregate participation rate at round t is

xt := 1
n

∑
i∈I

I{pi,t = 1} ∈ [0, 1].

A deterministic mean-field closure. To obtain a one-dimensional participation dynamics, we impose a
standard symmetry/mean-field closure: conditional on (xt, π), the net gain equation 5.1 is the same across
clients and depends on xt only through a deterministic function.
Assumption 5.3 (Representative net gain). For a given policy π, there exists a deterministic function
∆U(·; π) : [0, 1] → R such that

∆Ui,t(x; π) = ∆U(x; π) for all i and t.

Proposition 5.4 (Aggregate participation map). Under Assumptions 5.1 and 5.3, the expected aggregate
participation evolves according to the one-dimensional map

xt+1 = F (xt; π) := Pr
Θ

[
Θ ≤ ∆U(xt; π)

]
= FΘ

(
∆U(xt; π)

)
. (5.3)

Proof. By Assumption 5.1 and the representative net-gain closure (Assumption 5.3),

Pr(pi,t = 1 | xt, π) = Pr(θi ≤ ∆U(xt; π)) = FΘ(∆U(xt; π)).

Taking expectation over i.i.d. types and averaging across clients yields equation 5.3.
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Where FL enters. The dependence of ∆U(x; π) on the aggregate participation level x is induced by
FL feedback loops: the quality of the aggregated model (and thus the expected benefit from participating)
depends on how many and which clients contribute updates, while evaluation and reward signals depend
on Eval and Info applied to aggregated outcomes. Audit selection and sanction risk can also vary with x
through workload constraints and risk-based auditing. Hence, F (x; π) = FΘ(∆U(x; π)) is a reduced-form
representation of the FL platform’s participation–aggregation–evaluation coupling.

Why the assumptions are FL-realistic. Threshold heterogeneity models widely observed client-side
constraints in federated deployments: device availability, energy budgets, privacy preferences, and oppor-
tunity costs. The representative net-gain closure approximates cross-silo or large-population settings where
clients face similar platform rules and the dominant variation is captured by idiosyncratic thresholds, while
the aggregate state x summarizes system load and expected model utility.

Technical challenge. The mapping itself is elementary; the nontrivial aspect is that ∆U(x; π) is an equi-
librium object: it depends on best-response behavior conditional on participation and on policy-mediated
signals. Making explicit the threshold structure and the mean-field closure isolates the minimal FL ingredi-
ents needed for a one-dimensional dynamics that can exhibit multiple fixed points and tipping phenomena
studied in the next subsection.
Remark 5.5 (Interpreting the participation map from data). In deployed federated systems, the map F (x; π)
and threshold distribution FΘ are not directly observable. However, the same structure can be probed
indirectly using the aggregate participation trajectory (xt)t≥0. When a design policy π is held fixed over a
sufficiently long period, the empirical update

F̂ (xt; π) ≈ xt+1

provides noisy evaluations of F at the observed states xt. Policy shifts, such as increasing sanction strength or
changing disclosure rules, create perturbations that reveal how the curve xt+1 = F (xt; π) moves. In practice,
operators can therefore treat F as a latent response surface summarized by: (i) the location of approximate
fixed points x⋆ to which (xt) tends to return, and (ii) the steepness of the empirical relationship between xt

and xt+1 around those points. These observables act as surrogates for the theoretical slope F ′(x⋆; π) and
resilience diagnostics in Section 7 without requiring explicit estimation of individual thresholds.

Fixed points and local stability. A participation level x⋆ ∈ [0, 1] is a fixed point if

x⋆ = F (x⋆; π).

When F is differentiable at x⋆, it is locally stable if |F ′(x⋆; π)| < 1 and locally unstable if |F ′(x⋆; π)| > 1.

Multiple fixed points may exist, corresponding to high-participation, low-participation, and intermediate
unstable regimes. The unstable fixed points act as tipping points separating basins of attraction, as formalized
in Section 5.2.

5.2 Participation dynamics, tipping points, and domino exit

Participation state and update map. Let xt ∈ [0, 1] denote the fraction (or probability mass) of clients
that participate at round t under a design policy π. We model participation as a deterministic mean-field
update

xt+1 = F (xt; π), (5.4)
where F (·; π) : [0, 1] → [0, 1] is the participation map induced by (i) client payoffs under π and (ii) the
population heterogeneity.

A canonical FL interpretation. A standard reduced-form instantiation is a threshold (quantal) partic-
ipation rule: each client has a type θ (capturing private costs, device constraints, privacy preferences, etc.)
distributed as Θ ∼ FΘ. Given current participation level x and policy π, the net gain from participating is

∆U(θ, x; π) := ∆B(x; π)︸ ︷︷ ︸
benefit from FL outcome/credit

− C(θ; π)︸ ︷︷ ︸
cost/privacy/effort

,
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and the type participates iff ∆U(θ, x; π) ≥ 0. Then

F (x; π) = Pr
Θ

[
∆U(Θ, x; π) ≥ 0

]
. (5.5)

This form makes explicit how FL enters: ∆B(x; π) depends on the quality/utility of the aggregated model
and on the policy’s evaluation/audit/sanction rules, all of which respond to the participating population.

Fixed points and local stability. A fixed point x⋆ satisfies F (x⋆; π) = x⋆. When F is differentiable at
x⋆, the standard 1D stability criterion applies: x⋆ is locally stable if |F ′(x⋆; π)| < 1 and locally unstable if
|F ′(x⋆; π)| > 1.
Definition 5.6 (Tipping point). A fixed point x† ∈ (0, 1) of F (·; π) is a tipping point if it is locally unstable
and separates two locally stable fixed points x− < x† < x+ such that, for all initial conditions x0 in a
sufficiently small neighborhood around x†,

x0 < x† ⇒ xt → x−, x0 > x† ⇒ xt → x+.

Definition 5.7 (Domino exit). Given a tipping point x† and stable fixed points (x−, x+) with x− < x+, a
trajectory {xt} exhibits a domino exit if there exists a time τ such that

xτ−1 > x†, xτ < x†, and xt → x− as t → ∞.

A contraction condition for resilience. The following result provides a clean sufficient condition that
rules out tipping points and domino exits.
Definition 5.8 (Contraction on [0, 1]). A map F (·; π) : [0, 1] → [0, 1] is a contraction (in the absolute-value
metric) if there exists a constant L ∈ [0, 1) such that

|F (x; π) − F (y; π)| ≤ L |x − y| for all x, y ∈ [0, 1].

The smallest such L is the (global) Lipschitz constant of F (·; π) on [0, 1].
Proposition 5.9 (Sufficient condition for resilience (contraction regime)). Assume F (·; π) : [0, 1] → [0, 1] is
a contraction with constant L ∈ [0, 1) (Definition 5.8). Then:

1. there exists a unique fixed point xhigh ∈ [0, 1] such that F (xhigh; π) = xhigh;

2. for any initial condition x0 ∈ [0, 1], the iterates of equation 5.4 satisfy xt → xhigh as t → ∞;

3. in particular, there are no tipping points (Definition 5.6) and no domino exits (Definition 5.7).

Proof. Consider the complete metric space ([0, 1], d) with d(x, y) = |x − y|. By Definition 5.8, F (·; π) is a
contraction mapping on this space with constant L < 1. By the Banach fixed-point theorem, F admits a
unique fixed point xhigh ∈ [0, 1] and, moreover, for any x0 ∈ [0, 1], the sequence defined by xt+1 = F (xt; π)
converges to xhigh. Since there is only one fixed point, there cannot exist an unstable fixed point separating
two stable fixed points; hence no tipping points exist, and consequently domino exits are impossible.

Where FL enters. In FL, the participation map F (·; π) is not arbitrary: it is induced by how aggrega-
tion quality, disclosed feedback, and enforcement risk change with the participating population. The slope
(or Lipschitz modulus) of F captures how strongly one round’s participation shocks propagate through the
learning-and-evaluation pipeline into the next round’s participation incentives. Thus the contraction con-
dition is an interpretable design target: policies that dampen the sensitivity of rewards and sanctions to
short-run participation fluctuations make the system resilient to cascade effects.

Why the assumptions are FL-realistic. Global contraction is a sufficient (not necessary) regime and can
be approximated in practice by design choices that smooth incentives: delayed/coarsened disclosure, reward
shaping that discounts short-term metric spikes, and audit policies that avoid strongly state-dependent
punishment near the margin. These are standard operational controls in federated platforms when stability
and retention are priorities.
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Technical challenge. While Banach fixed-point arguments are standard, the FL-specific difficulty lies
in reasoning about (or empirically bounding) the slope of the induced map F under partial observability
and strategic responses. Our contribution is to translate qualitative platform choices (disclosure, reward
curvature, audit sensitivity) into a dynamical stability lens via F and its slope proxy, enabling diagnostics
even when F is only observed through noisy participation trajectories.

A differentiable sufficient condition. A convenient checkable condition is via derivatives.
Corollary 5.10 (Derivative-based contraction criterion). If F (·; π) is continuously differentiable on [0, 1]
and

sup
x∈[0,1]

|F ′(x; π)| < 1,

then F (·; π) is a contraction (Definition 5.8), and Proposition 5.9 applies.

Proof. By the mean value theorem, for any x, y ∈ [0, 1] there exists c between x and y such that |F (x; π) −
F (y; π)| = |F ′(c; π)| |x − y| ≤

(
supu∈[0,1] |F ′(u; π)|

)
|x − y|. Taking L := supu∈[0,1] |F ′(u; π)| < 1 proves

contraction.

Resilience indicator. To quantify proximity to the contraction regime, define the (global) Lipschitz
modulus

L(π) := inf
{

L ∈ [0, ∞) : |F (x; π) − F (y; π)| ≤ L|x − y| ∀x, y ∈ [0, 1]
}

.

When F is differentiable, L(π) ≤ supx |F ′(x; π)| (and equality holds under mild regularity).
Definition 5.11 (Resilience indicator). The resilience indicator is

R(π) := 1 − L(π).

Large positive values of R(π) indicate strong contraction and high resilience. Values near zero indicate
proximity to a bifurcation where small design changes may create or remove tipping points. Negative values
(i.e., L(π) > 1) indicate that the system is outside the contraction regime and may admit locally unstable
behavior.
Remark 5.12 (Link to the metric layer). Under the threshold form equation 5.5, the slope F ′(x; π) (or more
generally L(π)) is governed by how sensitively the net participation gain ∆B(x; π) responds to x. Policies
with high manipulability or a large Price of Gaming tend to amplify the dependence of payoffs on the
participating population (e.g., via greater exposure to others’ gaming or heavier reliance on a public metric),
which can increase L(π) and reduce R(π).

5.3 Cooperation, collusion, and coalition effects

Participants may form coalitions that share information, coordinate strategies, or collude. We model this at
a coarse level via a coalition-induced participation map.

Consider a coalition C ⊆ I that coordinates actions and participation while treating the rest of the population
as a mean-field environment. Let xt denote aggregate participation and xC,t the coalition’s participation
rate.
Definition 5.13 (Coalition-induced participation map). Given a coalition C and coalition strategy σC , the
coalition-induced participation map is

xt+1 = FC(xt; π, σC) := |C|
n

xC,t+1(σC , xt; π) + n − |C|
n

F¬C(xt; π),

where xC,t+1(σC , xt; π) is the coalition’s next-round participation rate and F¬C is the participation map of
non-members.

Coalitions can either stabilize participation (e.g., through mutual guarantees or shared information that
reduces perceived gaming incentives) or undermine it (e.g., via coordinated exits or collusive gaming). The
Price of Cooperation from Section 4.4 lets us classify these effects.
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Definition 5.14 (Benign vs harmful coalition effects). Let σbase be a baseline profile with participation
trajectory {xbase

t }, and let σcoop be the profile induced by a coalition strategy σC , yielding trajectory {xcoop
t }.

Then:

• The coalition has a benign participation effect if PoC(σbase → σcoop) > 0 and R(π) weakly increases
under σcoop.

• The coalition has a harmful participation effect if PoC(σbase → σcoop) < 0 and R(π) strictly de-
creases, or if it creates new tipping points that did not exist under σbase.

5.4 Early warning signals and auto-switch rules

Given a participation map and possible coalition effects, a designer needs tools for detecting when the system
approaches a tipping point and for intervening automatically. We describe two such tools: early warning
signals and auto-switch rules.

Early warning signals. We consider observable summary statistics over a sliding window {t−L+1, . . . , t}:

• Recent participation trend

∆̂xt := 1
L

L∑
k=1

(xt+1−k − xt−k),

which captures average first differences in participation.

• Short-term volatility

V̂art := 1
L − 1

L∑
k=1

(
xt+1−k − x̄t

)2
, x̄t := 1

L

L∑
k=1

xt+1−k,

which reflects fluctuations that may signal unstable dynamics.

• Connectivity-based alarm Γt, which aggregates the structure of recent gaming incidents and audits
(e.g., via a graph whose nodes are clients and whose edges represent correlated anomalies, with Γt

measuring the size of the largest connected component).

Definition 5.15 (Early warning regime). Given thresholds η∆ < 0, ηVar > 0, and ηΓ > 0, the system is in
an early warning regime at time t if

∆̂xt ≤ η∆, V̂art ≥ ηVar, Γt ≥ ηΓ.

Negative trends, high volatility, and rising connectivity in gaming incidents jointly indicate that the system
may be approaching an unstable region or tipping point.

Auto-switch rules. When early warning conditions are met, the designer may switch from the current
design policy π to a more conservative policy π′, for example by strengthening audits, reducing metric
disclosure, or switching to more robust evaluation schemes.
Definition 5.16 (Auto-switch rule). An auto-switch rule is specified by:

• a pair of design policies (πnormal, πsafe);

• an early warning predicate Warnt defined in terms of observable statistics;

• a hysteresis mechanism that prevents rapid oscillation between policies.
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The induced policy at time t is

πt =
{

πsafe, if Warnt = true,

πnormal, otherwise, subject to hysteresis.

Under suitable conditions, auto-switch rules can keep the system within the attraction basin of a high-
participation equilibrium.
Proposition 5.17 (Auto-switch and basin preservation). Suppose there exist design policies πnormal and
πsafe such that:

1. Under πnormal, F (·; πnormal) admits a high-participation stable fixed point xhigh and a tipping point
x†, with xhigh > x†.

2. Under πsafe, F (·; πsafe) is a contraction with unique fixed point xsafe ≥ x†.

3. The auto-switch rule triggers πsafe whenever xt ≤ x† + ϵ for some small ϵ > 0, and reverts to πnormal

only when xt ≥ xhigh − ϵ.

Then any trajectory starting with x0 ≥ x† + ϵ remains in [x†, 1] for all t and converges to a participation
level in [x†, xhigh]. In particular, domino exits to low-participation equilibria below x† are avoided.

Proof. Consider any trajectory with x0 ≥ x† + ϵ. If xt ≤ x† + ϵ, the auto-switch rule activates πsafe, hence
xt+1 = F (xt; πsafe). Under πsafe, F (·; πsafe) is a contraction with a unique fixed point xsafe ≥ x†, so iterates
converge to xsafe and in particular cannot cross below x† once the safe mode is active. If instead xt > x† + ϵ,
the system either remains in the current mode or follows πnormal; in all cases the state stays within the
participation domain and, by the hysteresis rule, switching back to πnormal can occur only after recovery to
xt ≥ xhigh − ϵ, preventing rapid oscillations. Therefore the trajectory remains in [x†, 1] for all t and avoids
low-participation equilibria below x†. A detailed proof is given in Appendix A.2.

The dynamics layer connects the static indices of the metric layer to operational design: manipulability,
Prices of Gaming and Cooperation, and sanction thresholds translate into participation stability, tipping
points, coalition effects, and the need for early warning signals and auto-switch rules. In the next section,
we use these insights to design concrete evaluation, audit, and incentive toolkits for real federated learning
systems.

6 Design Toolkit Layer: Evaluation, Audits, and Incentives

The metric and dynamics layers describe what can go wrong or right in federated learning under a fixed
design policy π: how much room the policy leaves for metric gaming, how costly gaming and cooperation
are for welfare, and when participation is stable or prone to domino exits. The design toolkit layer treats

π = (Eval, Info, Reward, Audit)

as a set of configurable design components that can be tuned to steer our indices in favorable directions.

Rather than prescribing a single optimal policy, we provide (i) a decomposed view of design parameters and
their qualitative effect on M(π), PoG(π), PoC(π), and R(π); (ii) patterns for mixing public and private
evaluation; (iii) an audit-budget allocation algorithm with approximation guarantees; and (iv) a governance
checklist for federated deployments.

6.1 Design levers and their impact on indices

Design levers. We parameterize a design policy π by a (possibly high-dimensional) vector

λ = (λeval, λinfo, λreward, λaudit, λprivacy, . . . ),

whose coordinates control evaluation, information disclosure, incentives, audits, and privacy.
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Definition 6.1 (Design lever). A design lever is any coordinate (or low-dimensional block) of λ that can
be adjusted by the system designer while holding the environment (clients, data, and protocol) fixed. We
write π(λ) for the policy obtained by setting the lever vector to λ.

Typical examples include:

• Evaluation levers λeval: choice of metrics (global vs group vs client-level), holdout composition,
evaluation frequency, randomized challenges.

• Information levers λinfo: granularity/timing of disclosure (full scores vs bands vs delays), which
components remain private.

• Reward levers λreward: reward curve shape (linear vs thresholded vs tournament), short-term vs
long-term weighting, coupling to participation commitments.

• Audit levers λaudit: audit budget and allocation, selection rules (random vs risk-based), sanction
modality and severity.

• Privacy levers λprivacy: noise/secure aggregation strength and whether protections apply symmet-
rically to reward vs audit signals.

Reference classes for strategic deviations. Several indices in the metric layer (e.g., manipulability)
depend on which deviations are considered feasible or relevant in a given deployment.
Definition 6.2 (Reference class). A reference class Σref is a specified subset of strategy profiles (or devia-
tions) deemed feasible in the deployment under study. Formally, Σref ⊆ Σ, where Σ is the ambient strategy
space introduced in Section 3. When an index involves a supremum over deviations, we interpret it as
restricted to Σref and write, e.g., M(π; Σref).

Intuitively, Σref plays the role of a threat model: it can encode constraints such as bounded gaming intensity,
admissible coalition sizes, limitations from privacy mechanisms, or the action space induced by a specific FL
protocol.

Indices as functions of levers. The indices introduced earlier can be viewed as functions of levers (and,
where relevant, a reference class):

M(λ; Σref), PoG(λ), PoCbenign(λ), PoCharm(λ), R(λ).

In realistic systems these functions are not analytically tractable, but qualitative monotonicities often hold.
For example:

• Reducing the granularity/frequency of public disclosure, or mixing it with private evaluation, tends
to reduce M(λ; Σref) by shrinking the set of deviations that can reliably improve reported metrics
without improving welfare.

• Increasing sanction strength above αmin tends to decrease PoG(λ), at the risk of suppressing benign
cooperation if α exceeds αbenign.

• Strengthening privacy can reduce audit signal resolution, which may increase M and PoG unless
compensated by alternative verification.

• Reward curves that heavily weight short-term public metrics can amplify participation sensitivity
and reduce R(λ); smoothing or discounting these effects can stabilize participation.

We now make these relationships concrete via three classes of tools: mixed challenges and information
disclosure, audit-budget allocation, and a governance checklist.
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6.2 Mixed challenges and information disclosure

We formalize evaluation designs that combine public and private signals to reduce manipulability while
preserving incentives for genuine improvement.

Mixed challenge structure. At each round t, the evaluation mechanism can generate multiple types of
tests:

• Public benchmark tests (PB): performance on widely known datasets/benchmarks, whose aggregate
statistics are disclosed to all clients.

• Private challenge tests (PC): tests drawn from hidden or randomized distributions, whose outcomes
are revealed only to the server (and optionally privately to the tested client).

• Connectivity tests (CT): challenges involving pairs/groups of clients, designed to detect correlated
anomalies (e.g., collusion patterns).

Let Mpub
t and Mpriv

t denote the public and private components of the metric vector Mt, and let ρpub ∈ [0, 1]
be the fraction of total evaluation weight placed on public benchmarks. We write

Mt = ρpub Mpub
t + (1 − ρpub) Mpriv

t ,

where Mpriv
t may itself include PC and CT components. The information mechanism Infot then discloses all

or part of Mpub
t and selectively discloses Mpriv

t .
Definition 6.3 (Mixed challenge policy). A mixed challenge policy is specified by: (i) a weighting parameter
ρpub ∈ [0, 1]; (ii) sampling rules for PB/PC/CT; and (iii) a disclosure rule determining which components
are revealed to whom and when.
Proposition 6.4 (Effect of mixed challenges on manipulability). Consider two design policies π and π′ that
differ only in the mixed-challenge weight, with ρ′

pub < ρpub (all other levers fixed). Assume:

1. (Reward dependence) The reward depends on the reported metric only through a monotone func-
tion of the scalar aggregate r(Mt).

2. (Non-gameability of private component) For any deviation within Σref , changes in Mpriv
t de-

pend on client actions only through their effect on welfare (equivalently, there is no direct metric-
targeting control over Mpriv

t holding welfare fixed).

Then, for any reference class Σref ,
M(π′; Σref) ≤ M(π; Σref).

Moreover, the reduction is weakly increasing in the shift of weight (ρpub − ρ′
pub) from public to private

components.

Where FL enters. The design variables in this section correspond to concrete platform controls: evalua-
tion composition (public vs private challenges), disclosure rules, reward mapping from disclosed signals, and
audit allocation under a budget. The role of the reference class Σref is FL-specific: it encodes the deployment
threat model induced by the protocol and governance constraints (e.g., admissible reporting manipulations
under secure aggregation/DP, bounded gaming intensity, bounded coalition size, and feasible coordination
given limited observability).

Why the assumptions are FL-realistic. Federated platforms routinely combine public benchmarks
with hidden or randomized challenges, and disclose feedback asymmetrically (server-only vs per-client vs
public). Likewise, threat models are unavoidable in practice: what clients can manipulate depends on the
training stack, privacy mechanism, and logging/audit interfaces. Making Σref explicit separates what is a
property of the platform from what is an assumption about attacker capabilities.
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Technical challenge. The key difficulty is not establishing a qualitative monotonicity under a lever change,
but ensuring that the private components used for governance are non-targetable except through genuine
welfare improvements, despite strategic adaptation and information leakage. The reference-class formaliza-
tion makes the scope of the guarantee precise: it states what manipulability reductions (or approximation
bounds) hold under the deployment’s feasible deviation set, rather than claiming unconditional robustness.

Proof. Fix a baseline behavior and consider any feasible deviation in Σref . Under assumption (2), a deviation
that does not improve welfare cannot increase Mpriv

t except through welfare. Therefore the only directly
targetable component of the reported metric is Mpub

t . Since Mt is a convex combination of Mpub
t and Mpriv

t ,
decreasing ρpub weakly reduces the maximal achievable change in Mt (and hence in r(Mt) by monotonicity
of r) obtainable via purely public metric-targeting deviations at fixed welfare. Because M(·; Σref) is defined
as a supremum over such feasible deviations, its value cannot increase when ρpub decreases.

In practice, mixed challenge policies provide a tunable handle: designers can increase the weight on pri-
vate, welfare-aligned evaluation components until estimated M(π; Σref) and PoG(π) fall below acceptable
thresholds, while monitoring participation and cooperation through R(π) and PoC(π).

Information disclosure patterns. Beyond the composition of Mt, the granularity and timing of disclo-
sure strongly affect gaming incentives:

• Full disclosure: detailed per-client or per-group metrics each round.

• Banding/coarsening: disclose score bands or ranks rather than exact values.

• Delayed disclosure: release statistics after multiple rounds.

• Asymmetric disclosure: private per-client feedback while restricting cross-client comparisons.

6.3 Audit budget allocation with approximation guarantees

We next consider the allocation of limited audit resources, modeled as a budget-constrained set selection
problem. Given a finite audit budget, the designer must choose which clients or events to audit in order to
maximally reduce gaming and harmful cooperation.

Audit allocation as submodular maximization. Let I be the set of clients. An audit policy chooses
a subset S ⊆ I to audit in a given period, subject to |S| ≤ B. For each candidate audit set S, define the
audit utility

f(S) := expected reduction in Price of Gaming or violation risk induced by auditing S.

This utility can be instantiated in multiple ways, for example as:

• expected decrease in a surrogate risk score for gaming incidents;

• approximate reduction in PoG(π) under a local model of deterrence and adaptation;

• a weighted sum of predicted deterrence effects across clients.

In many natural monitoring and deterrence models, f exhibits diminishing returns: auditing additional
clients remains beneficial, but its marginal benefit decreases as more audits are already performed.
Assumption 6.5 (Submodularity of audit utility). The audit utility f : 2I → R≥0 is normalized (f(∅) = 0),
monotone (if S ⊆ T then f(S) ≤ f(T )), and submodular: for all S ⊆ T ⊆ I and i /∈ T ,

f(S ∪ {i}) − f(S) ≥ f(T ∪ {i}) − f(T ).
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Under Assumption 6.5, the audit allocation problem

max
S⊆I

f(S) subject to |S| ≤ B

is the classical problem of maximizing a monotone submodular set function under a cardinality constraint.
Theorem 6.6 (Greedy audit allocation). Under Assumption 6.5, the greedy algorithm that iteratively adds
the client with the largest marginal gain,

i⋆
t ∈ arg max

i∈I\St

(
f(St ∪ {i}) − f(St)

)
, St+1 = St ∪ {i⋆

t },

until |St| = B, achieves a (1 − 1/e)-approximation:

f(Sgreedy) ≥ (1 − 1/e) f(S⋆),

where S⋆ is an optimal audit set with |S⋆| ≤ B.

Proof. The approximation guarantee is the classical result for monotone submodular maximization under
a cardinality constraint; see, e.g., Nemhauser et al. (1978). For completeness, let St denote the greedy set
after t additions and let ∆(i | S) = f(S ∪ {i}) − f(S).

By submodularity and monotonicity, for any optimal set S⋆ with |S⋆| ≤ B we have

f(S⋆) − f(St) ≤
∑

i∈S⋆\St

∆(i | St) ≤ B · max
i∈I\St

∆(i | St) = B ·
(
f(St+1) − f(St)

)
,

so f(St+1) − f(St) ≥ 1
B

(
f(S⋆) − f(St)

)
. Letting gt = f(S⋆) − f(St), this yields gt+1 ≤ (1 − 1

B )gt, hence

gB ≤
(

1 − 1
B

)B

g0 ≤ e−1g0.

Therefore,
f(SB) = f(S⋆) − gB ≥ f(S⋆) − e−1g0.

Since g0 = f(S⋆) − f(S0) and typically S0 = ∅ (so f(S0) ≥ 0 by monotonicity), we obtain

f(SB) ≥
(

1 − 1
e

)
f(S⋆),

as claimed. A slightly more detailed derivation is provided in Appendix A.3.

Linking f(S) to indices. Although f(S) is defined abstractly, it can be grounded using our indices. For
instance, we may define

f(S) ≈ ∆PoG(π; S) := PoG(π) − PoG(πS),

where πS is the policy that applies targeted audits to S, or

f(S) ≈
∑
i∈I

wi ∆pi(S),

where ∆pi(S) is the predicted reduction in client i’s probability of metric gaming when S is audited, and wi

are importance weights. Under standard deterrence/coverage models, these instantiations naturally exhibit
monotonicity and diminishing returns: adding audits does not reduce the expected reduction in gaming risk,
while the marginal risk reduction typically shrinks after the highest-risk clients are already covered.

6.4 Governance checklist and policy patterns

We conclude by summarizing the design toolkit into a governance checklist and outlining policy patterns for
common federated environments.
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Checklist for configuring a design policy. Given an intended deployment, a designer can proceed as
follows:

1. Clarify welfare and metrics: specify the primary welfare functional W (e.g., target risk, fair-
ness constraints, stability criteria) and the metrics M used for rewards, monitoring, and external
reporting. Identify where M is only a proxy for W .

2. Assess manipulability: qualitatively or empirically estimate M(π) under a baseline policy by
probing how much metrics can be improved without clear welfare gains (e.g., via red-teaming or
controlled simulations).

3. Estimate Prices of Gaming and Cooperation: construct aligned and gaming benchmarks to
approximate PoG(π), and identify cooperative schemes to estimate PoCbenign(π) and PoCharm(π).

4. Calibrate penalties and sanctions: choose a penalty scaling parameter α and estimate
(αmin, αbenign), aiming to place α in a band where harmful gaming is deterred but benign coop-
eration is preserved.

5. Configure mixed challenges and disclosure: select ρpub and design PB/PC/CT tests so that
private, welfare-aligned components carry sufficient weight to reduce M(π), while public feedback
remains informative for learning.

6. Design audit allocation: specify an audit utility f(S) tied to reductions in PoG(π) or violation
risk, and implement a greedy or improved submodular allocation algorithm under the available
budget.

7. Monitor participation dynamics: track participation rates, volatility, and connectivity-based
alarms to estimate R(π) and detect proximity to tipping points.

8. Implement auto-switch rules: define early warning predicates and hysteresis-based switches
between normal and safe policies, as in Proposition 5.17, to prevent domino exits.

Policy patterns for common environments. Different deployment contexts lead to different priorities
among these steps. We briefly outline three stylized patterns.

• Low-trust, high-privacy consortia: Privacy and legal constraints severely limit direct audits and
granular disclosure. Design should emphasize strong mixed challenges with small ρpub, conservative
reward curves that downweight short-term metrics, and heavy reliance on private challenges and
connectivity-based alarms. Audit allocation may focus on aggregate or randomized audits, with ex
post proofs of compliance supplementing limited direct inspection.

• High-stakes, regulated services: External regulators require auditability and clear sanction mech-
anisms. Here, designers can afford more intrusive audits and detailed documentation, pushing α
safely above αmin while monitoring αbenign. Mixed challenges help detect subtle gaming, and auto-
switch rules can be tied to regulatory thresholds (e.g., mandatory safe modes when participation or
performance cross certain bounds).

• Community-driven participatory systems: Participation is voluntary and sensitive to perceived fair-
ness. The main objective is to foster benign cooperation and stable participation. Reward curves can
explicitly favor long-term consistency and collaborative behaviors, penalties should be calibrated be-
low αbenign to avoid chilling effects, and information disclosure should emphasize transparency about
evaluation and audits without enabling targeted gaming. Governance checklists can be co-designed
with participants to increase legitimacy.

Across these patterns, our framework provides a common language for reasoning about trade-offs: changes
in evaluation, disclosure, and audits can be interpreted through their effects on manipulability, Prices of
Gaming and Cooperation, resilience, and thresholds. In the next section, we instantiate these design choices
in stylized simulators to illustrate how the indices and dynamics behave under different policies and to
validate the qualitative patterns predicted by our theory.
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7 Simulation Studies

7.1 Summary of Stylized Simulation Results

We first examine how the proposed indices behave in a stylized but internally consistent environment.
Table 1 compares a fully aligned scenario (no gaming participants) with a mixed scenario where 30% of
clients follow a gaming strategy, reporting steady-state averages over post–burn-in rounds. In the aligned
case, welfare, metric, and participation all concentrate near W ≈ M ≈ x ≈ 0.95, indicating that almost
all clients cooperate and that the metric tracks welfare closely. When gaming types are introduced, welfare
drops to W ≈ 0.33 while the metric remains inflated at M ≈ 0.36 and participation stays relatively high
at x ≈ 0.64. The resulting metric–welfare gap of M − W ≈ 0.03 corresponds to a Price of Gaming of
PoG ≈ 0.66, meaning that roughly two thirds of the welfare achievable under full cooperation is lost even
though surface-level indicators (metric and participation) still look healthy. In terms of our framework, this
configuration is a high-manipulability regime in which self-interested best responses sustain a low-welfare,
high-metric equilibrium.

Table 2 then visualizes the effect of sanction strength αpenalty while keeping other design choices fixed. Over
αpenalty ∈ [0.3, 1.5], the curves for xgame remain remarkably flat around 0.63–0.64, suggesting that benign
cooperation is not significantly discouraged in this range. By contrast, the W game curve drifts upward
from ≈ 0.32 to ≈ 0.34, and the PoG curve decreases from about 0.67 to 0.64. This pattern is consistent
with the threshold picture in Section 4.5: in this band, increasing αpenalty moves the system toward the
minimal effective sanction level αmin needed to meaningfully reduce gaming, while still lying below the
benign threshold αbenign at which sanctions would begin to erode participation.

Table 3 explores the trade-offs induced by the public-metric weight ρpub. As ρpub decreases from 1.0 to 0.2, the
curve for the metric–welfare gap shrinks from about 0.06 to roughly 0.01, confirming that downweighting fully
visible metrics and relying more on private or mixed evaluations does curb overt metric inflation. However,
the other curves reveal that this is not a free improvement: the average welfare under gaming gradually
declines from W game ≈ 0.34 to W game ≈ 0.31, participation falls from xgame ≈ 0.67 to xgame ≈ 0.60, and
PoG increases from roughly 0.64 to 0.68. Information design alone thus narrows the metric–welfare gap
but can weaken the perceived payoff from genuine contribution for all participants, and even exacerbate the
welfare loss relative to the fully aligned benchmark unless complemented by suitable reward alignment and
audit mechanisms.

Taken together, Tables 1, 2 and 3 highlight three core messages of our framework in a controlled environment.
First, even under fixed aggregation and reward rules, introducing gaming types can push the system into
a low-welfare but high-metric equilibrium that is difficult to diagnose from metrics alone. Second, there
is a benign band of sanction strengths where modest increases in αpenalty reduce PoG without materially
harming participation. Third, information design that reduces the visibility of public metrics successfully
narrows the metric–welfare gap but does not by itself guarantee a lower PoG, and may worsen welfare unless
jointly tuned with incentives and audits. These patterns are robust across random seeds in our simulator
and match the qualitative comparative statics predicted by the metric, dynamics, and design layers.

Table 1: Baseline aligned versus gaming scenarios (steady-state averages over post–burn-in rounds).

Scenario W x M M − W PoG
Aligned 0.952 0.952 0.952 0.000 –
Gaming 0.325 0.638 0.358 0.033 0.658

7.2 Real-World Federated Learning Experiment

To complement the stylized experiments, we conducted a small-scale Federated Learning experiment on
Fashion-MNIST with 30 clients, 40 rounds, and 30% of clients following a gaming strategy that discards tail
classes in local training and overfits to a head-only public validation split. Table 4 summarizes steady-state
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Table 2: Effect of sanction strength αpenalty on gaming scenarios (steady-state averages), showing welfare
W game, participation xgame, and Price of Gaming (PoG) as a function of αpenalty.

αpenalty W game xgame PoG
0.3 0.316 0.637 0.668
0.5 0.319 0.636 0.665
0.7 0.325 0.638 0.658
1.0 0.332 0.636 0.651
1.5 0.340 0.632 0.643

Table 3: Effect of public-metric weight ρpub on gaming scenarios (steady-state averages), showing welfare
W game, participation xgame, PoG, the public metric level Mgame, and the metric–welfare gap Mgame −W game
as functions of ρpub.

ρpub W game xgame PoG Mgame Mgame − W game

1.0 0.341 0.673 0.642 0.399 0.058
0.8 0.331 0.652 0.652 0.376 0.045
0.6 0.325 0.638 0.658 0.358 0.033
0.4 0.317 0.621 0.667 0.339 0.021
0.2 0.309 0.603 0.675 0.320 0.011

averages over the last ten rounds in an aligned scenario (no gaming clients) and in a mixed scenario with
gaming clients.

From the perspective of the publicly visible head metric, the gaming scenario appears markedly superior:
accuracy on head classes 0–4 increases from Mhead ≈ 0.868 under alignment to Mhead ≈ 0.972 under gaming.
Overall test accuracy Afull also increases slightly from 0.877 to 0.888, so an operator monitoring only these
quantities would reasonably conclude that the revised policy is an improvement.

Evaluating welfare on the tail classes 5–9 reveals the opposite trend. Tail welfare drops from W tail ≈ 0.898
in the aligned scenario to W tail ≈ 0.862 in the gaming scenario, corresponding to a Price of Gaming of

PoG ≈ 0.898 − 0.862
0.898 ≈ 0.040,

a 4% loss of attainable tail welfare. The gap between the public head metric and tail welfare also flips sign
and widens: in the aligned case Mhead − W tail ≈ −0.03, whereas in the gaming case it is ≈ 0.11, indicating
that the disclosed metric is now substantially inflated relative to the outcome of interest.

Table 4 thus illustrates a realistic form of metric gaming in Federated Learning. Introducing gaming clients
yields a policy that looks better under the disclosed head metric and even slightly improves overall test
accuracy, yet quietly degrades performance on the tail distribution that defines welfare. This aligns with
the qualitative pattern predicted by our framework: when rewards and disclosure focus on a narrow slice
of performance, self-interested responses can drive the system toward a high-metric, low-welfare equilibrium
for the true objective, even in a real FL setting.

Table 4: Federated Learning experiment on Fashion-MNIST: aligned versus gaming scenarios. Head metric
is accuracy on head classes (0–4) using the public validation split; tail welfare is accuracy on tail classes
(5–9) using the hidden test split. Values are steady-state averages over the last ten rounds.

Scenario W tail Mhead Afull Mhead − W tail PoG
Aligned 0.898 0.868 0.877 −0.030 –
Gaming 0.862 0.972 0.888 0.110 0.040
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Estimator reliability under partial audits. Table 5 evaluates whether a budget-limited auditor can
recover welfare loss reliably when only a fraction b of clients is audited. For each gaming profile, we run
the same FL setting and treat the mean tail accuracy across all clients’ held-out tail subsets as the ground-
truth welfare signal used to compute PoGGT (relative to the aligned baseline). To model partial audits,
we re-sample an audited client set of size ⌊bN⌉ and estimate welfare from the audited clients only, yielding
P̂oG; we repeat this re-sampling over multiple trials and summarize variability via σP̂oG. We summarize
rank consistency via ρ and estimation variability via σP̂oG, alongside threshold-level robustness (FP/FN) at
τ = 0.05. Across six gaming profiles, the estimator preserves the ground-truth ordering with highest rank
consistency at b = 0.25, while the remaining false positives occur in borderline regimes where PoGGT lies
close to τ . As expected, increasing audit coverage reduces sampling variability, with σP̂oG decreasing from
0.0222 at b = 0.10 to 0.0060 at b = 0.50.

Table 5: Reliability of audit-based estimation under partial audits. Here b denotes the audited client fraction,
ρ is Spearman’s rank correlation between PoGGT and P̂oG, and σP̂oG summarizes estimation variability
across audit re-sampling trials (mean of per-profile trial standard deviations; aggregated over 6 gaming
profiles) under the risk threshold τ = 0.05.

b ρ σP̂oG FP / 6 FN / 6
0.10 0.771 0.0222 1 0
0.25 0.943 0.0106 1 0
0.50 0.771 0.0060 1 0

Noise (privacy) and auditability: persistent metric–welfare separation. Table 6 studies a simple
privacy/noise stress test in which each transmitted client update is ℓ2-clipped (at C = 1) and then perturbed
with Gaussian noise using a noise multiplier ν ∈ {0, 0.05, 0.10}. We implement this as a DP-like perturbation
at transmission: each client sends ∆ = scale · (θlocal −θglobal), we apply global ℓ2-clipping to ∆ at C, and add
i.i.d. Gaussian noise N (0, (νC)2) before aggregation. We keep the federated setup fixed across ν (same client
partitions and training hyperparameters), and compare an aligned profile (no gaming) against a gaming
profile (gf = 0.30) under identical conditions, reporting tail-means over the last K rounds. Across all
noise levels, gaming consistently inflates the public head metric M while reducing tail welfare W , producing
a positive and growing separation between what the server observes and what matters operationally. We
quantify this separation through the additional welfare loss ∆W = Waligned −Wgaming and the additional gap
increase ∆gap = (M − W )gaming − (M − W )aligned at the same ν. Notably, at ν = 0.10 the gaming-induced
welfare loss increases and the risk indicator PoG(ref) rises substantially, suggesting that even moderate
privacy noise can exacerbate welfare impacts of strategic behavior by weakening the effective signal available
for governance.

Table 6: Noise/privacy trade-off under DP-like update perturbations. We sweep the noise multiplier ν
and compare aligned (no gaming) versus gaming (gf = 0.30). M is the public head metric and W is
tail welfare (tail-mean over the last K rounds). We report the additional welfare loss at the same ν,
∆W = Waligned − Wgaming, and the additional metric–welfare separation ∆gap. PoG(ref) is computed using
the fixed reference welfare from the aligned, ν = 0 run (consistent with the main definition).

ν Maligned Waligned Mgaming Wgaming ∆W ∆gap PoG(ref)gaming
0.00 0.8656 0.8831 0.9046 0.8289 0.0542 0.0932 0.0545
0.05 0.8419 0.8802 0.9101 0.8290 0.0513 0.1195 0.0544
0.10 0.8018 0.8440 0.8592 0.7807 0.0633 0.1207 0.1095

High-alignment metrics: diminishing but persistent metric–welfare separation. Table 7 evalu-
ates whether the metric–welfare separation persists when the server-visible metric is made more aligned with
tail welfare. We use the same Fashion-MNIST FL setup as in Table 6 (same client count, non-IID Dirichlet
partitioning, model/optimizer, rounds, and gaming mix with gf = 0.30), and measure welfare using client-
side tail evaluation while the server observes only the public metric computed on a held-out validation split.
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We define a mixed public metric
M(λ) = (1 − λ) Mhead + λ Mtail,

and sweep λ ∈ {0, 0.3, 0.6}, where larger λ increases alignment between what the server observes and what
matters operationally. For each λ, we compare an aligned profile (no gaming) against a gaming profile
(gf = 0.30) and report tail-means over the last K rounds. As alignment increases, gaming induces smaller
additional welfare loss ∆W = Waligned − Wgaming and a smaller additional gap increase ∆gap = (M −
W )gaming − (M − W )aligned, consistent with reduced incentives for metric manipulation under better-aligned
scoring. However, the separation does not vanish: even at λ = 0.6, gaming still yields a positive metric–
welfare gap and a measurable welfare loss, indicating that partial alignment mitigates but does not eliminate
governance-relevant risk.

Table 7: High-alignment stress test via mixed public metrics. We sweep the alignment parameter λ in
M(λ) = (1−λ)Mhead +λMtail and compare aligned (no gaming) versus gaming (gf = 0.30). M is the public
metric (tail-mean over the last K rounds under M(λ)) and W is tail welfare (tail-mean over the last K
rounds). We report the additional welfare loss at the same λ, ∆W = Waligned − Wgaming, and the additional
metric–welfare separation ∆gap = (M − W )gaming − (M − W )aligned. For completeness, PoG(paired) reports
the paired welfare loss ratio at the same λ, PoG(paired) = (Waligned − Wgaming)/Waligned (distinct from
PoG(ref) used in Table 6).

λ Maligned Waligned Mgaming Wgaming ∆W ∆gap PoG(paired)gaming
0.00 0.8633 0.8917 0.9101 0.8396 0.0521 0.0989 0.0585
0.30 0.8730 0.8863 0.8913 0.8470 0.0393 0.0575 0.0443
0.60 0.8755 0.8800 0.8740 0.8511 0.0289 0.0274 0.0329

Modern attack–defense replication: metric–welfare separation under contemporary threats.
Table 8 tests whether the metric–welfare separation observed in earlier stress tests persists under a more
contemporary FL threat model on FEMNIST. We run FedAvg with partial participation (n=32 clients, 12 per
round) for 100 rounds and define head classes as digits (server-visible) and tail classes as letters (deployment-
relevant). Clients are sampled uniformly each round, with a fixed malicious fraction (gf = 0.30) activated
after a short warm-up (attack start round = 5). We use the same lightweight CNN and optimization setup
across conditions (one local epoch per round with SGD; batch size 64; learning rate 0.02; momentum 0.9), and
we evaluate using fixed public head/tail validation sets (digits/letters) alongside per-client tail evaluation
to compute welfare. We consider two modern attacks: a PoisonedFL-style model-poisoning variant with
adaptive magnitude and a lightweight multi-round consistency term, and a backdoor/model-replacement
variant using a fixed trigger and replacement scaling. We compare two defenses: FedCC (representation-
similarity filtering) and Attack-Adaptive Aggregation (attack-aware reweighting). For each condition, we
report tail-means over the last K rounds of the public head metric Mhead, tail welfare W (mean client
tail accuracy), and their separation gap = Mhead − W . We also report a same-defense welfare loss ratio,
PoG = (Wbaseline − W )/Wbaseline. Across defenses, the gap remains positive and sizable, and PoisonedFL
under FedCC exhibits a marked welfare drop alongside an enlarged separation, illustrating that modern
attack/defense settings still admit governance-relevant divergence between what the server observes and
what clients experience.

8 Discussion and Limitations

8.1 Discussion

8.1.1 From optimization to governed strategic systems

Our results support viewing Federated Learning (FL) as a strategic system rather than a purely statistical
optimization procedure. Instead of asking only how to minimize empirical risk under heterogeneity, our
framework asks which behaviors are incentivized by observable metrics and contracts, and how far these
behaviors can deviate from genuine welfare improvements. The metric layer captures these tensions through
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Table 8: Modern attack–defense replication on FEMNIST (digits as head, letters as tail). We run FedAvg for
100 rounds with partial participation and compare two attacks (PoisonedFL-style poisoning; backdoor/model
replacement) under two defenses (FedCC; Attack-Adaptive Aggregation). Entries are tail-means over the
last K rounds: Mhead (public head metric), W (tail welfare), and gap = Mhead − W . PoG is computed
relative to the baseline under the same defense: PoG = (Wbaseline − W )/Wbaseline.

FedCC Attack-Adaptive Aggregation
Attack Mhead W gap PoG Mhead W gap PoG
None 0.7532 0.5091 0.2441 – 0.6394 0.3819 0.2575 –
PoisonedFL 0.6605 0.3246 0.3359 0.3623 0.7892 0.5024 0.2868 −0.3154
Backdoor/Model Rep. 0.6900 0.4310 0.2591 0.1534 0.6962 0.4196 0.2766 −0.0986

indices such as the Manipulability Index and the Price of Gaming (PoG); the dynamics layer links them
to participation stability and tipping points; and the design toolkit layer maps them to concrete levers in
evaluation, audits, sanctions, information disclosure, and aggregation.

8.1.2 Empirical instantiations of the three-layer view

Both the stylized simulations and the real FL experiment instantiate this three-layer view. In the simulator,
we can directly control alignment between metric and welfare and observe regimes where identical operational
rules admit both high-welfare and low-welfare equilibria depending on the fraction of gaming agents; the
associated PoG values make explicit how much welfare is structurally at risk under each policy. In the
Fashion-MNIST experiment (Table 4), the publicly visible head metric and even overall test accuracy improve
under the gaming scenario, yet tail-class welfare deteriorates and PoG becomes strictly positive. This is
precisely the high-metric, low-welfare pattern that the metric layer is designed to detect, now appearing in
a concrete FL training setup.

8.1.3 Interpreting PoG (including negative values): reference dependence and regime signals

PoG is a relative welfare gap with respect to a reference policy and observational regime; it is therefore
not an intrinsic, context-free property of a dataset or model. In particular, PoG can be negative when
the chosen reference policy yields lower welfare than an alternative regime due to interactions among (i)
aggregation/defense-induced suppression of benign updates, (ii) audit targeting, and (iii) selection effects
in participation. A negative PoG should not be read as "gaming is beneficial"; rather, it signals that the
reference baseline itself may be welfare-suboptimal under the given observability and participation conditions.
Accordingly, our recommended interpretation is to emphasize patterns over isolated signs: (i) monotonic
trends of PoG and manipulability as gaming intensity increases, (ii) concurrent changes in the metric–
welfare gap, and (iii) decision stability under threshold-based governance (false positives/negatives), which
directly reflect governance risk.

8.1.4 Estimator reliability as governance evidence

A central concern in realistic deployments is that indices such as manipulability and PoG are difficult to com-
pute exactly, motivating retrospective and log-based estimation. We therefore validate estimator reliability
in controlled settings where ground-truth indices are available (Table 5). Beyond pointwise error, we report
rank consistency and thresholded decision outcomes (FP/FN), because governance acts on comparative risk
signals and discrete triggers (e.g., audit escalation, sanction activation). These results provide evidence that,
under the logging and observability assumptions stated in subsection 7.2, the proposed estimators can serve
as actionable monitoring signals rather than purely illustrative constructs.

8.1.5 Privacy–auditability–incentives: observability as a design constraint

Our framework emphasizes that evaluation, audits, and incentives should be treated as a coupled system.
Information design directly shapes manipulability; audit strength and targeting determine whether gaming
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yields sustained gains or is neutralized by sanctions; reward alignment translates metric design into individ-
ual payoff gradients; and participation rules determine how clients react to perceived gains and risks. The
noise/observability experiments (Table 6) illustrate a key mechanism: as audit signals become less informa-
tive, the effective cost of gaming can decrease, increasing governance difficulty and raising welfare risk. This
does not imply that privacy is undesirable; rather, it implies that privacy budgets and audit designs must
be co-calibrated to control FP/FN risk and avoid both under-enforcement and over-deterrence.

8.1.6 Robustness across regimes: alignment shifts and modern threats/defenses

A natural question is whether the indices remain informative when metric and welfare are more aligned
and gaming is subtler. The alignment-shift experiments (Table 7) show that, even as the metric–welfare
correlation increases, the indices retain discriminative power, though effect sizes may shrink as expected.
Moreover, under adaptive multi-round attacks and contemporary defenses/aggregation variants (Table 8),
the monitoring signals remain consistent with governance intuition: risks reflected in welfare degradation and
participation instability are accompanied by increased PoG/manipulability, while effective defenses reduce
both welfare loss and risk signals. Importantly, these experiments are not presented as a performance
"leaderboard"; they stress-test whether governance signals remain stable across realistic threat and defense
regimes.

8.1.7 A practical reading guide: how to use the indices and levers

The indices suggest a complementary evaluation style for FL mechanisms. Beyond reporting a single aggre-
gate performance number under a fixed threat model, one can stress-test candidate policies against families
of behavioral profiles and measure how PoG, manipulability, and participation resilience respond.

Monitoring and triggers. Rather than reacting to single-round spikes, operators should monitor sus-
tained trends and use calibrated triggers. For example, a joint pattern of increasing manipulability and
widening metric–welfare gaps indicates rising incentive misalignment, motivating targeted audits or changes
in metric disclosure.

Design combinations rather than single levers. Our simulations suggest that moderate increases in
sanction strength can reduce PoG without materially harming participation in a benign regime, whereas
changes in public metric weight alone can reduce metric inflation at the cost of welfare and participation.
Rather than proposing a single lever as sufficient, the framework points toward combined designs that mix
private or randomized evaluations, targeted audits, calibrated sanctions, and robust aggregation.

Beyond FL. Although we focus on FL, the same language applies to other collaborative AI settings—model
marketplaces, leaderboards, and cross-organizational data collaborations—where performance is mediated
by metrics and contracts and where high-metric, low-welfare equilibria are a concern.

8.2 Limitations

8.2.1 Behavioral model simplicity and strategic richness

Our work has several limitations. First, the behavioral and participation models are intentionally simple.
We consider two archetypal client types (honest and gaming) with fixed strategies and a threshold-based
participation rule, and we do not capture richer heterogeneity in costs, risk attitudes, coalition formation,
Sybil behavior, or adaptive strategy learning. Consequently, our thresholds and comparative statics are best
read as qualitative descriptions for stylized populations rather than precise predictions for arbitrary agent
mixtures.

8.2.2 Normative welfare/metric definitions and reference dependence

Second, our definition of welfare and our choice of metrics are normative. We work with a scalar welfare
quantity and one or more proxy metrics, but real deployments may target multiple, sometimes conflicting
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objectives (e.g., subgroup performance, fairness, latency, cost). In the FL experiment, we treat tail-class accu-
racy as welfare and head-class accuracy as the public metric. This choice reflects settings where safety-critical
or minority performance is the primary concern while public reporting emphasizes headline performance.
Accordingly, PoG depends on how welfare and metrics are defined, and it should be interpreted via regime
comparisons and decision stability rather than as an absolute score.

8.2.3 Scope of empirical validation and scalability

Third, the empirical scope is limited. The simulator abstracts away from model architecture, data modality,
and system constraints to isolate strategic effects. The real FL experiment uses a single dataset, a standard
convolutional model, and a FedAvg-style protocol with a modest number of clients on a single machine. We
do not claim exhaustive coverage of large-scale production deployments, highly heterogeneous networks, or
all classes of adaptive adversaries. The experiments should therefore be viewed as evidence for predicted
patterns and signal robustness, not a complete empirical audit across real-world FL workloads.

8.2.4 Observability assumptions and cryptographic/privacy mechanisms

Fourth, several important dimensions are only treated at a high level. While we empirically study the effect
of reduced auditability via noise/observability shifts, we do not fully model end-to-end differential privacy
accounting, secure aggregation protocols, or cryptographic attestations that may constrain what logs and
audits can reveal. A complete integration of these mechanisms would require a system-level cost and threat
model that jointly captures privacy guarantees, audit resolution, and incentive compatibility.

8.2.5 Organizational and cost frictions in audits and sanctions

Fifth, our audit allocation procedures rely on submodularity assumptions and abstract away from com-
putational, communication, and organizational costs. In real deployments, these frictions may constrain
how aggressively audits, auto-switch rules, and connectivity-based alarms can be implemented. Incorporat-
ing explicit cost models for audits and sanctions is an important direction for translating the toolkit into
domain-specific operating policies.

8.2.6 No single optimal design: calibration and governance risk

Finally, we do not offer a single "optimal" design or algorithm. The framework provides indices, thresh-
olds, and levers, but selecting an operating point still requires domain-specific judgment about acceptable
trade-offs between metric informativeness, gaming risk, audit cost, privacy, and participation stability. In
particular, miscalibrated thresholds or overzealous enforcement can deter benign participation and reduce
welfare; uncertainty-aware calibration and FP/FN-aware governance are therefore essential for responsible
deployment. We view this work as a starting point for future research that refines behavioral models, spe-
cializes the design space to particular domains, and integrates additional constraints from privacy, fairness,
and governance.

9 Conclusion

We have presented a framework that treats Federated Learning as a governed strategic system shaped by
metrics, incentives, and oversight rather than as a purely statistical optimization problem. At the metric
layer, indices such as the Manipulability Index and the Price of Gaming quantify how strongly a design
invites metric-targeting behavior and how costly such behavior is in terms of welfare loss; at the dynamics
layer, these quantities are linked to participation stability, tipping points, and domino exits; and at the
design toolkit layer, they translate into concrete levers in evaluation, information disclosure, rewards, audits,
and sanctions. Stylized simulations and a real FL experiment on Fashion-MNIST jointly illustrate that
high-metric, low-welfare regimes can arise under plausible settings when incentives and disclosure focus on a
narrow slice of performance, and that calibrated combinations of mixed or private evaluation, targeted audits,
and moderate sanctions can reduce manipulability and the Price of Gaming without collapsing participation,
whereas information design alone, while narrowing metric–welfare gaps, is not sufficient to guarantee welfare
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improvements. We view this framework not as a final solution but as a compact language and toolkit for rea-
soning about metric gaming and cooperation in Federated Learning, and as a basis for future work on richer
behavioral models (including heterogeneous and coalition-forming agents), multi-objective and fairness-aware
welfare definitions, and deployments that must satisfy strong privacy and regulatory constraints.

Broader Impact Statement

This work aims to improve the governance of federated learning (FL) systems by making incentives, gaming
opportunities, and cooperation incentives explicit and measurable. In high-stakes domains such as healthcare,
finance, or public services, better-aligned evaluation and reward rules, together with appropriately designed
audits, can reduce metric gaming and unintended Goodhart effects, and can support more stable cooperation
among organizations that cannot share raw data.

At the same time, the framework has dual-use risk. A strategic actor could exploit the indices and design
patterns to craft more effective gaming strategies against poorly governed FL platforms. In addition, oper-
ators could misuse the analysis to justify excessive surveillance or punitive enforcement, disproportionately
burdening weaker participants and entrenching power asymmetries rather than improving welfare.

A central risk is miscalibration: governance thresholds or aggressive sanctions that are not uncertainty-
aware may unintentionally deter benign cooperation, reduce participation, and degrade overall welfare. To
mitigate this risk, our recommendations emphasize uncertainty-aware calibration and proportionality. In
particular, operators should (i) treat estimated risk scores and welfare-loss estimates as noisy quantities,
(ii) choose conservative triggers that control false positives when evidence is borderline, and (iii) monitor
downstream participation responses and welfare impacts after policy changes, adjusting thresholds and audit
intensity when unintended deterrence is observed. Enforcement policies should include remediation and
appeal pathways to avoid exclusionary outcomes.

We recommend that the indices and design toolkit introduced in this paper be used as diagnostic inputs
within broader governance processes that include human oversight, transparency, and stakeholder consulta-
tion. Operationally, exploit-enabling details (e.g., exact challenge composition, audit triggers, and detection
thresholds) should be access-controlled, while diagnostic feedback to participants should be aggregated, de-
layed, or coarsened to preserve learning signals without enabling reverse-engineering. Our experiments rely
on synthetic simulations and a public benchmark dataset and do not involve sensitive personal data; nev-
ertheless, real-world deployments require additional legal, ethical, and domain-specific review beyond the
scope of this paper.

Reproducibility

We provide a single anonymous Jupyter notebook as supplementary material, GCFL_main.ipynb, which
reproduces all experiments reported in Section 7, including the stylized simulations and the federated exper-
iments on Fashion-MNIST and FEMNIST. The notebook is self-contained: running it end-to-end generates
the full set of summary statistics reported in the main paper (including the tables), without relying on any
additional scripts. We specify all random seeds, hyperparameters, and software requirements directly within
the notebook, and it can be executed on Google Colab.
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A Additional Proofs and Formal Details

A.1 Metric Layer: Manipulability and Price of Gaming

Proof of Proposition 4.5. Fix a design policy π and reference class Σref with M(π) = 0. By definition,

M(π) = sup
σ∈Σref

sup
i∈I

sup
σ′

i
∈Ai

[
∆Mi(σ′

i | σ)
]

+[
∆Wi(σ′

i | σ)
]

+ + ε
= 0,
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so for every σ ∈ Σref , every i, and every σ′
i ∈ Ai,[

∆Mi(σ′
i | σ)

]
+[

∆Wi(σ′
i | σ)

]
+ + ε

≤ 0.

Since the denominator is strictly positive, this implies
[
∆Mi(σ′

i | σ)
]

+ = 0 whenever
[
∆Wi(σ′

i | σ)
]

+ = 0.
Hence, if ∆Mi(σ′

i | σ) > 0 then necessarily
[
∆Wi(σ′

i | σ)
]

+ > 0, i.e., ∆Wi(σ′
i | σ) > 0. Thus no deviation can

strictly improve the metric without also strictly improving welfare, and in particular there are no metric-
gaming deviations at any σ ∈ Σref .

Proof of Proposition 4.8. We compare two design policies π and π′ on the same environment with aligned
benchmarks σalign and σ′align such that W (σalign) ≈ W (σ′align). Let Egame(π) and Egame(π′) denote the sets
of gaming equilibria.

Fix a policy π and consider a local neighborhood U of the aligned benchmark σalign in the profile space.
Assume (i) the relevant feasible strategy sets are compact, (ii) W and M are continuous on U , and (iii) there
exists a (single-valued) local equilibrium selection Eqπ : U → Egame(π) that is Lipschitz on U . Then the
composition W ◦ Eqπ is Lipschitz on U with constant

Lπ := Lip(W ; U) · Lip(Eqπ; U),

so for any σ ∈ U , ∣∣W (σalign) − W (Eqπ(σ))
∣∣ ≤ Lπ ∥σ − σalign∥.

In particular, for any gaming equilibrium σgame ∈ Egame(π) ∩ U that is reachable from σalign by a devia-
tion direction whose welfare gradient is zero or nonpositive, we can upper bound the displacement by the
maximum positive metric gain along such feasible deviations, yielding the bound∣∣W (σalign) − W (σgame)

∣∣ ≤ L · sup
i,σ′

i

[
∆Mi(σ′

i | σalign)
]

+, (A.1)

for some L > 0 (take L := Lπ after rescaling the local norm so that ∥σ −σalign∥ is controlled by the maximal
achievable positive metric gain in U).

Next, by the definition of the manipulability index M(π) (with slack ε), for any client i and deviation σ′
i

from σalign we have [
∆Mi(σ′

i | σalign)
]

+ ≤ M(π)
([

∆Wi(σ′
i | σalign)

]
+ + ε

)
.

Taking the supremum over (i, σ′
i) gives

sup
i,σ′

i

[
∆Mi(σ′

i | σalign)
]

+ ≤ M(π)
(

A(σalign) + ε
)

, A(σalign) := sup
i,σ′

i

[
∆Wi(σ′

i | σalign)
]

+.

Combining this with equation A.1 yields, for any such gaming equilibrium,

W (σalign) − W (σgame) ≤ L M(π) (A(σalign) + ε).

Normalizing by W (σalign) > 0 and taking the maximum over gaming equilibria gives

PoGmax(π) := sup
σgame∈Egame(π)

W (σalign) − W (σgame)
W (σalign) ≤ L (A(σalign) + ε)

W (σalign)︸ ︷︷ ︸
=:c1

M(π).

(Equivalently, one may write PoGmax(π) ≤ c1 M(π) + c2 with c2 := 0; if one prefers to isolate the slack
term, take c1 := L A(σalign)

W (σalign) and c2 := L ε
W (σalign) M(π).)

Repeating the argument for π′ yields the same form with (c′
1, c′

2) evaluated at σ′align. If M(π′) ≤ M(π),
then

PoGmax(π′) ≤ c′
1 M(π′) ≤ c′

1 M(π) = PoGmax(π) + ∆,
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where the residual
∆ := (c′

1 − c1) M(π)

collects the effect of changing the aligned benchmark and any (local) equilibrium-selection constants. In
particular, ∆ → 0 when σ′align → σalign and the local constants (L, A(·), W (·)) vary continuously with the
benchmark.

A.2 Dynamics Layer: Participation and Thresholds

Proof of Proposition 5.4. Under Assumption 5.1, client i participates at round t + 1 if and only if
∆Ui,t+1(xt; π) ≥ θi. By symmetry, ∆Ui,t+1(xt; π) is the same for all clients and can be written as ∆U(xt; π).
Hence the probability that a randomly chosen client participates at round t + 1 is

P
[
pi,t+1 = 1 | xt

]
= P

[
θi ≤ ∆U(xt; π)

]
= 1 − FΘ

(
∆U(xt; π)

)
,

where FΘ is the CDF of θi. Taking expectations over clients yields

xt+1 = E
[

1
n

∑
i

I{pi,t+1 = 1}
∣∣∣ xt

]
= 1 − FΘ

(
∆U(xt; π)

)
=: F (xt; π),

which is the claimed participation map.

Proof of Proposition 5.9. Assumption (3) states that supx∈[0,1] |F ′(x; π)| < 1, so F (·; π) is a contraction
mapping on the complete metric space [0, 1] with the usual metric. By the Banach fixed-point theorem,
F (·; π) has a unique fixed point x⋆ ∈ [0, 1], and for any initial x0 ∈ [0, 1], the sequence xt+1 = F (xt; π)
converges to x⋆. Since xhigh is a fixed point by assumption (2), uniqueness implies x⋆ = xhigh. Thus xhigh

is the unique fixed point and globally attractive, and there are no other stable or unstable fixed points or
tipping points.

Proof of Proposition 4.17. Under Assumption 4.11, for fixed σ−i we can write the payoff difference between
a harmfully gaming action σgame

i and a welfare-aligned action σalign
i as

∆Ui(α) := Ui(σgame
i ; σ−i, α) − Ui(σalign

i ; σ−i, α) = ∆Vi − α ∆Di,

where ∆Vi and ∆Di ≥ 0 do not depend on α. If gaming is profitable at α = 0, then ∆Vi > 0. Whenever
∆Di > 0, the affine function ∆Ui(α) crosses zero at

α⋆
i = ∆Vi/∆Di,

and for all α > α⋆
i the aligned action weakly dominates the gaming action. Taking the supremum over all

such harmful deviations and clients gives a finite

αmin := sup
i,σgame

i

α⋆
i .

For benignly cooperative profiles, a similar comparison with the outside option yields a maximal penalty level
beyond which cooperation is no longer rational for some coalition member. Taking the infimum over such
breakpoints yields a finite αbenign. Under the natural requirement that benign cooperation is not penalized
more heavily than harmful gaming (i.e., ∆Di for benign actions is no larger than for harmful ones), these
breakpoints satisfy αmin ≤ αbenign. A full proof requires formalizing the coalition-rationality condition and
taking appropriate infima/suprema over coalitions and profiles; the argument is a straightforward extension
of the single-agent case.

Proof of Proposition 5.17. By assumption, under πnormal the participation map has a stable high-
participation fixed point xhigh and an unstable tipping point x† < xhigh. Under πsafe, the map is a contraction
with unique fixed point xsafe ≥ x†.

40



Under review as submission to TMLR

Consider any trajectory with x0 ≥ x† + ϵ. Whenever xt enters the interval [x†, x† + ϵ], the auto-switch rule
activates πsafe. Because F (·; πsafe) is a contraction with fixed point at or above x†, iterates cannot cross
below x† under πsafe. Once xt returns to a neighborhood of xhigh (specifically, above xhigh −ϵ), the hysteresis
rule allows switching back to πnormal. Thus the trajectory remains in [x†, 1] for all t and converges to a limit
in [x†, xhigh], avoiding low-participation equilibria below x†. A formal proof stitches together contraction
arguments on the intervals where each policy is active.

A.3 Design Toolkit: Mixed Challenges and Audits

Proof of Proposition 6.4. Let π and π′ be two policies that differ only in the mixed-challenge weight, with
ρ′

pub < ρpub. Write
Mt(σ) = ρpub Mpub

t (σ) + (1 − ρpub) Mpriv
t (σ),

and similarly for π′ with ρ′
pub. By assumption, the private challenge component Mpriv

t is welfare-aligned in
the sense that (in expectation) it depends on client actions only through their effect on true welfare Wt.
Hence, for deviations that change the public benchmark outcomes but do not change welfare, the private
component is unaffected in expectation.

Consider deviations that only target public benchmarks and do not change W . For such deviations we have,
in expectation,

∆Mπ
i = ρpub ∆Mpub

i , ∆Mπ′

i = ρ′
pub ∆Mpub

i ,

with the same ∆Mpub
i . Therefore,[

∆Mπ′

i

]
+[

∆Wi

]
+ + ε

=
ρ′

pub

ρpub
·

[
∆Mπ

i

]
+[

∆Wi

]
+ + ε

≤
[
∆Mπ

i

]
+[

∆Wi

]
+ + ε

,

since ρ′
pub/ρpub < 1. Taking suprema over clients, deviations, and reference profiles yields M(π′) ≤ M(π).

Thus shifting reward weight from public benchmarks to private, welfare-aligned components weakly decreases
manipulability.

Proof of Theorem 6.6. Under Assumption 6.5, the audit utility f is normalized, monotone, and submodular.
The audit allocation problem

max
S⊆I

f(S) subject to |S| ≤ B

is therefore monotone submodular maximization under a cardinality constraint. Let S⋆ be an optimal
solution with |S⋆| ≤ B, and let S0, S1, . . . , SB be the greedy sequence, where S0 = ∅ and

St+1 = St ∪ {i⋆
t }, i⋆

t ∈ arg max
i∈I\St

∆(i | St), ∆(i | S) := f(S ∪ {i}) − f(S).

By submodularity and monotonicity,

f(S⋆) − f(St) ≤
∑

i∈S⋆\St

∆(i | St) ≤ B · max
i∈I\St

∆(i | St) = B ·
(
f(St+1) − f(St)

)
,

where the second inequality uses |S⋆ \ St| ≤ |S⋆| ≤ B and the last equality follows from the greedy choice.
Rearranging yields

f(St+1) − f(St) ≥ 1
B

(
f(S⋆) − f(St)

)
.

Letting gt := f(S⋆) − f(St) gives gt+1 ≤ (1 − 1/B)gt, hence

f(SB) ≥
(
1 − (1 − 1/B)B

)
f(S⋆) ≥ (1 − 1/e) f(S⋆),

as (1 − 1/B)B ≤ e−1. This proof is standard; see, e.g., Nemhauser et al. (1978).
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B Modeling Choices and Extensions

This section summarizes key modeling choices behind our framework and sketches extensions that we leave
for future work. Throughout, we emphasize how these choices affect the interpretation of our indices and
dynamics rather than proposing a single canonical model.

B.1 Behavioral Types and Action Sets

For clarity, the main text adopts a minimal behavioral abstraction with two archetypal client types and
simple action sets.

Baseline types. We consider a population in which each client i has a latent type τi ∈ {honest, gaming},
with a fixed fraction of gaming types in simulations and the FL experiment. Honest types select actions
from a constrained set

Aalign
i ⊆ Ai,

which encode participation, local training, and reporting policies that aim to improve genuine welfare (e.g.,
standard local training on Di and truthful reporting of updates). Gaming types select from the full set Ai,
which additionally includes actions that target metrics or rewards while holding welfare flat or decreasing
(e.g., discarding tail data, overfitting to public validation, or perturbing reports to influence leaderboards).

Within each type, the main experiments use simple stationary strategies: honest clients apply a fixed local
training pipeline and reporting rule; gaming clients apply a fixed metric-targeting rule that is independent
of history except through the current model θt. This allows us to isolate how the design policy π affects
welfare, metrics, and participation even when behavioral complexity is limited.

Extensions in behavioral richness. Several extensions are natural but beyond our scope:

• Continuous heterogeneity: instead of discrete types, clients could have continuous parameters (e.g.,
cost of effort, risk aversion, penalty sensitivity), with τi drawn from a distribution. Best responses
and thresholds would then be functions of these parameters.

• Adaptive and learning strategies: clients could update their strategies over time using reinforcement
learning or no-regret dynamics, learning how to trade off gaming and cooperation given observed
rewards and sanctions.

• Coalitions, Sybils, and collusion: richer action sets could explicitly include coalition formation,
Sybil identity creation, and coordinated reporting, rather than treating coalition effects only at the
aggregate level in the dynamics layer.

Our indices and thresholds are defined at the level of strategy profiles and deviations, so they extend to these
richer settings as long as welfare W (σ) and metrics M(σ) are well defined. The main trade-off is practical:
more complex behavioral models make it harder to estimate the indices empirically and to connect them to
concrete design levers.

B.2 Alternative Welfare and Metric Definitions

The framework deliberately separates welfare from metrics, recognizing that real deployments may care
about multiple objectives while exposing only a subset through observable scores.

Scalar welfare and proxy metrics. In the main text, welfare is modeled as a scalar functional

W (σ) = W (θ; P ⋆),

such as accuracy or utility on a target distribution P ⋆ that encodes the deployment population and business
or social objective. In the Fashion-MNIST experiment, we instantiate this as tail-class accuracy on classes
5–9, treating performance on these classes as the welfare outcome of interest.
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Metrics M(σ) are defined as proxy functionals constructed from evaluation pipelines, for example:

• head-class accuracy on a public validation split (used as a reward-driving head metric);

• overall test accuracy, which may be monitored but not explicitly rewarded;

• auxiliary diagnostics or fairness indicators, which may or may not enter incentives.

The Price of Gaming and Manipulability Index are defined abstractly in terms of (W, M) and therefore apply
to any such choices.

Alternative scalarizations. In settings with multiple objectives (e.g., subgroup performance, latency,
cost), one can still fit into our scalar framework by using a scalarization of the form

W (σ) = U
(
W (1)(σ), . . . , W (L)(σ)

)
,

where W (ℓ) are component-wise objectives and U is a designer-chosen aggregator (e.g., weighted sum, min-
imum over groups, or a constrained utility that assigns −∞ to infeasible fairness violations). Different
scalarizations correspond to different normative choices and will in general induce different values of PoG
and M(π) even under the same behavior and metrics.

Similarly, the exposed metric M(σ) can be a vector, with only some coordinates entering rewards. Our
formal definitions extend by either focusing on the metric components that are rewarded or by mapping M
to a scalar proxy m(M) that captures how incentives are actually computed.

B.3 Sketches for Multi-objective and Fairness-aware Welfare

We briefly sketch how the framework can be extended when welfare is explicitly multi-objective or fairness-
aware.

Vector-valued welfare. Suppose welfare is a vector

W(σ) =
(
W (g)(σ)

)
g∈G ,

where g indexes groups, clients, or objectives (e.g., accuracy by demographic group, latency, and cost). A
simple extension is to define group-specific Prices of Gaming

PoG(g)(π) = W (g)(σalign) − W (g)(σgame)
W (g)(σalign)

,

and to monitor both the worst-case and average group PoG. This distinguishes regimes where gaming pri-
marily harms particular groups from those where losses are more evenly spread.

Fairness-aware aggregations. Alternatively, one can define a fairness-aware scalar welfare, for example:

• Min-based: W (σ) = ming∈G W (g)(σ), emphasizing the worst-off group.

• Penalty-based: W (σ) = W̄ (σ) − λ · Disp(σ), where W̄ is average welfare, Disp is a disparity measure
(e.g., gap between best and worst group), and λ ≥ 0 trades off performance and fairness.

• Constraint-based: W (σ) is defined only over profiles satisfying fairness constraints (e.g., equalized
error rates), with infeasible profiles treated as having very low or undefined welfare.

Our indices then quantify how gaming and cooperation affect both overall performance and fairness, depend-
ing on the chosen W .
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Implications for design. Multi-objective and fairness-aware welfare primarily affect:

• how designers define aligned benchmarks σalign (e.g., fairness-satisfying equilibria);

• which components of W(σ) are reflected in metrics and rewards;

• how Prices of Gaming and Cooperation are interpreted across groups.

The structural role of the indices and dynamics remains unchanged: they still measure how far metric-
targeting behavior can drift from the chosen welfare definition and how participation responds. A systematic
treatment of fairness-aware incentives in federated settings is an important direction for future work and
would likely require combining our framework with group-specific constraints and fairness-sensitive audit
mechanisms.

C Simulation Setup and Hyperparameters

This appendix summarizes the main modeling and hyperparameter choices for the stylized simulator and
for the penalty and information-design sweeps reported in Section 7. The goal is to make the experiments
reproducible at a high level without tying the framework to a specific implementation.

C.1 Stylized Simulator

Environment and population. The stylized simulator instantiates the strategic FL model from Section 3
in a simplified cross-silo setting with a fixed population of n clients. Each client is typed as either honest or
gaming, with a fixed fraction of gaming types (set to 30% in the baseline experiments). Types remain fixed
over time. All clients hold local datasets drawn from heterogeneous but stationary distributions {Pi}i∈I ,
and the welfare distribution P ⋆ is a mixture of these Pi.

At each round t, the server maintains a global model θt and broadcasts it to all eligible clients. Participating
clients apply a local training rule (e.g., a fixed number of SGD steps on Di) to produce an internal update
uint

i,t , which is then transformed into a reported update ui,t according to the client’s type and strategy.
The server aggregates reported updates via a fixed aggregation rule (a FedAvg-style weighted mean in our
implementation) and evaluates the updated model using a held-out evaluation pipeline.

Behavioral types and actions. Honest clients select actions from Aalign
i , which in the simulator are

implemented as:

• participation whenever expected utility is above a client-specific threshold;

• standard local training on Di without discarding examples;

• truthful reporting ui,t = uint
i,t (up to any mandated privacy perturbation).

Gaming clients select from Ai, which extends Aalign
i with simple metric-targeting behaviors. Concretely, the

gaming strategy used in the main experiments:

• emphasizes subsets of data that are overrepresented in the public evaluation (e.g., "head" groups);

• downweights or discards data that primarily contributes to welfare but has little effect on the public
metric;

• optionally perturbs updates in directions that improve the disclosed metric while leaving welfare flat
or reduced.

Both types use myopic best responses with respect to the current design policy π and their outside option,
as in Section 5.
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Welfare, metrics, and participation. For the stylized experiments, welfare Wt is instantiated as ex-
pected performance on the welfare distribution P ⋆, normalized to [0, 1]. The metric Mt is a scalar proxy
constructed from the same family of losses but evaluated on a distinct metric distribution and with a different
weighting over clients and groups; this distribution is chosen so that gaming behaviors can move Mt without
proportionate changes in Wt. The aggregate participation rate is

xt = 1
n

∑
i∈I

I{pi,t = 1},

and we report steady-state averages
W, M, x

computed over post–burn-in rounds. The Price of Gaming is computed by comparing W under aligned and
mixed-type configurations, as described in Section 4.3.

Hyperparameters and averaging. Each simulation run proceeds for a fixed number of rounds with an
initial burn-in period discarded to reduce transient effects. Unless otherwise specified, we:

• fix the fraction of gaming clients, the aggregation rule, and the local training pipeline across runs;

• vary only the design levers under study (e.g., penalty strength or public-metric weight);

• average reported quantities over multiple random seeds (affecting client initialization, data sampling,
and evaluation noise).

The exact numerical values of n, the number of rounds, and the learning-rate schedule are not critical for
interpreting our indices, and were chosen to balance stability with computational cost.

C.2 Penalty and Information-design Sweeps

Penalty-strength sweep. The penalty-strength experiments in Table 2 vary a scalar sanction parameter
αpenalty while keeping all other components of the design policy π fixed. For each value in a predefined grid
(e.g., αpenalty ∈ {0.3, 0.5, 0.7, 1.0, 1.5}):

• we instantiate a policy π(αpenalty) that scales expected sanctions linearly in a violation score, as in
Assumption 4.11;

• run the simulator to steady state with a fixed fraction of gaming clients;

• record W game, xgame, and the resulting PoG relative to the aligned benchmark.

This allows us to trace how increasing penalty strength moves the system toward or beyond the minimal
sanction level αmin and the benign boundary αbenign introduced in Section 4.5.

Information-design sweep. The information-design experiments in Table 3 vary the public-metric
weight ρpub in a mixed challenge policy (Section 6.2) while holding other levers fixed. For each ρpub ∈
{1.0, 0.8, 0.6, 0.4, 0.2}:

• the overall metric is defined as

Mt = ρpub Mpub
t + (1 − ρpub) Mpriv

t ,

where Mpub
t is fully disclosed and Mpriv

t is based on private or randomized challenges;

• reward rules depend on Mt through a fixed monotone function, so changing ρpub alters the relative
importance of public and private signals without changing the reward shape;

• audits and sanctions are held constant so that observed changes in W game, xgame, Mgame, and PoG
can be attributed to information design alone.
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Reporting and robustness. For both sweeps, we report steady-state averages over post–burn-in rounds
and aggregate results across seeds. Individual runs exhibit stochastic variation, but the qualitative patterns in
Tables 2 and 3—improved welfare and lower PoG in a benign penalty band, and narrower metric–welfare gaps
but potentially higher PoG under aggressive downweighting of public metrics—are stable across reasonable
choices of simulator hyperparameters.

D Fashion-MNIST Federated Experiment Details

This appendix summarizes the setup of the Fashion-MNIST experiment in Section 7, including the parti-
tioning scheme, client types, training protocol, and a few brief robustness checks. The goal is to provide
enough detail to reproduce the qualitative patterns in Table 4 without tying the framework to a particular
implementation.

D.1 Partitioning, Heterogeneity, and Client Types

Dataset and head/tail split. We use the standard Fashion-MNIST dataset with 60,000 training and
10,000 test examples across ten classes labeled 0–9. For the experiment, we designate classes 0–4 as head
classes and classes 5–9 as tail classes. Welfare is defined as accuracy on the tail classes, evaluated on a held-
out test split, while the public head metric is accuracy on the head classes, evaluated on a public validation
split (Section 7).

Client partitioning and heterogeneity. The training portion of Fashion-MNIST is partitioned across
n = 30 clients. To keep the focus on strategic behavior rather than extreme data skew, we use a mild
label-heterogeneous partition:

• each class is first shuffled and split into 30 shards of approximately equal size;

• for each client i, we sample a small number of shards per class so that all clients observe both head
and tail classes, but with modest variation in proportions;

• this yields client datasets Di with overlapping but non-identical label distributions, avoiding degen-
erate clients that only see head or only tail labels before any gaming behavior.

The public validation split is constructed analogously from head-class examples only; the tail-class test split
is kept hidden from clients and used solely for welfare evaluation on the server side.

Client types and gaming behavior. We consider two fixed client types:

• Honest clients follow a standard local training procedure on their full local dataset Di and report
their updates truthfully (up to any noise added by the protocol).

• Gaming clients follow a head-focused strategy: before local training, they discard or heavily down-
weight all examples from tail classes 5–9, train only on head-class data, and implicitly optimize
toward performance on the public head-only validation split. They do not inject arbitrary model
poisoning and remain consistent over rounds.

In the aligned scenario, all 30 clients are honest. In the gaming scenario, 30% of clients (randomly chosen
at initialization and fixed thereafter) are gaming clients. Client types are not observable to the server; they
are inferred only through their effect on metrics and welfare.

D.2 Training Protocol and Hyperparameters

FL protocol. We use a standard cross-silo FedAvg-style protocol:

• global rounds: T = 40;
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• all 30 clients participate in every round (no client sampling);

• the server maintains a single global model θt and aggregates client updates via a weighted average
proportional to local data size.

We run the protocol twice, once with all clients honest and once with the mixed population described above,
using identical random seeds and hyperparameters except for client behavior.

Model and optimization. The global model is a small convolutional network suitable for Fashion-MNIST,
with two convolutional layers followed by a fully connected head and a softmax output. We use cross-entropy
loss for local training and a standard optimizer (e.g., SGD or Adam) with:

• a fixed learning rate over rounds;

• mini-batch training with a moderate batch size;

• a small, fixed number of local epochs per round for each client.

Exact layer widths, learning rates, and batch sizes are chosen so that the aligned configuration reaches a test
accuracy around 0.88 on the full test set, but otherwise follow standard Fashion-MNIST baselines. They are
not critical for the qualitative comparisons reported in Table 4.

Evaluation and metrics. At the end of each round, the server evaluates the current global model on:

• a public validation split restricted to head classes 0–4, yielding the head metric Mhead,t;

• a hidden test split restricted to tail classes 5–9, yielding tail welfare Wtail,t;

• an optional full test split across all ten classes, yielding overall accuracy Afull,t.

The values Mhead, W tail, and Afull reported in Table 4 are averages over the last ten rounds. The Price of
Gaming in this experiment is computed as

PoG ≈ W
aligned
tail − W

gaming
tail

W
aligned
tail

.

D.3 Additional Robustness Checks (Brief)

To check that Table 4 is not an artifact of a single configuration, we performed a small set of robustness
checks:

• Varying the fraction of gaming clients. We repeated the experiment with 20% and 40% gaming
clients. As expected, the metric–welfare gap and PoG increased with a higher gaming fraction and
decreased when fewer clients gamed, while the qualitative pattern (improved head metric, degraded
tail welfare) remained.

• Alternative label partitions. We swapped the head and tail roles of certain classes (e.g., using a
different subset of five classes as tail) and observed similar behavior: when clients strategically focus
on the classes emphasized by the public metric, performance on de-emphasized classes degrades even
if overall accuracy changes little.

• Random seeds and mild hyperparameter changes. Across multiple random seeds and modest
variations in local learning rate and number of local epochs, the aligned configuration consistently
outperformed the gaming configuration on tail welfare, while the gaming configuration maintained
a higher head-only public metric.

These checks are not meant to be exhaustive, but they support the claim that the Fashion-MNIST experiment
illustrates a robust instance of the high-metric, low-welfare pattern predicted by our framework, rather than
a fragile consequence of a particular training run.
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