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Abstract

The recent wave of large-scale text-to-image dif-
fusion models has dramatically increased our text-
based image generation abilities. However, al-
most all use cases so far have solely focused on
sampling. In this paper, we show that the density
estimates from large-scale text-to-image diffusion
models like Stable Diffusion can be leveraged
to perform zero-shot classification without any
additional training. Our generative approach to
classification, which we call Diffusion Classi-
fier, attains strong results on a variety of bench-
marks and outperforms alternative methods of
extracting knowledge from diffusion models. We
also find that our diffusion-based approach has
stronger multimodal relational reasoning abilities
than competing discriminative approaches. Fi-
nally, we use Diffusion Classifier to extract stan-
dard classifiers from class-conditional diffusion
models trained on ImageNet. Even though these
models are trained with weak augmentations and
no regularization, they approach the performance
of SOTA discriminative classifiers. Overall, our
results are a step toward using generative over
discriminative models for downstream tasks.

1. Introduction
To Recognize Shapes, First Learn to Generate Images (Hin-
ton, 2007)—in this seminal paper, Geoffrey Hinton empha-
sizes generative modeling as a crucial strategy for training
artificial neural networks for discriminative tasks like im-
age recognition. Although generative models tackle the
more challenging task of accurately modeling the under-
lying data distribution, they can create a more complete
representation of the world that can be utilized for various
downstream tasks. As a result, a plethora of generative mod-
eling approaches have been proposed over the last decade
(Goodfellow et al., 2014; Kingma & Welling, 2013; LeCun
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et al., 2006; Dinh et al., 2016; Van Den Oord et al., 2016;
Sohl-Dickstein et al., 2015; Vincent, 2011). In this paper,
we revisit the classic generative vs. discriminative debate in
the context of diffusion models, the current state-of-the-art
generative model family. In particular, we examine how
diffusion models compare against the state-of-the-art dis-
criminative models on the task of image classification.

Diffusion models are a recent class of likelihood-based gen-
erative models that model the distribution of the data via an
iterative noising and denoising procedure (Sohl-Dickstein
et al., 2015; Ho et al., 2020). They have recently achieved
state-of-the-art performance (Dhariwal & Nichol, 2021) on
several text-based content creation and editing tasks (et al,
2022; Saharia et al., 2022; Ho et al., 2022; Ruiz et al., 2022;
Poole et al., 2022). Diffusion models are trained via a varia-
tional objective, which maximizes an evidence lower bound
(ELBO) of the data log-likelihood.

Conditional generative models like diffusion models can be
easily converted into classifiers (Ng & Jordan, 2001). Given
an input x and a set of classes c to choose from, we use the
model to compute class-conditional likelihoods pθ(x | c).
With an appropriate prior p(c) and Bayes’ theorem, we can
predict class probabilities p(c | x). We propose to do this
with conditional diffusion models that use an auxiliary input,
like a class index for class-conditional models or prompt
for text-to-image models, by leveraging the ELBO as an ap-
proximate class-conditional log-likelihood log p(x | c). We
call this approach Diffusion Classifier. Diffusion Classifier
can extract zero-shot classifiers from text-to-image diffusion
models and standard classifiers from class-conditional diffu-
sion models, without any additional training. We develop
techniques for choosing how to perform a Monte Carlo
estimate of the ELBO, reducing variance in the estimated
probabilities, and speeding up classification inference.

We highlight the surprising effectiveness of our proposed
Diffusion Classifier approach on zero-shot and supervised
classification tasks by comparing against multiple baselines
on ten different datasets. To the best of our knowledge, our
approach is among the first generative modeling approaches
to achieve competitive zero-shot classification accuracy with
state-of-the-art methods such as CLIP (Table 1). Finally,
our supervised classification experiments (Table 3) high-
light that our generative approach is catching up to SOTA
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Classification Objective

Figure 1. Overview of our Diffusion Classifier approach: Given an input image x and a set of possible conditioning inputs (e.g., text
for Stable Diffusion or class index for DiT), we use a diffusion model to choose the one that best fits this image. Diffusion Classifier is
theoretically motivated through the variational view of diffusion models and uses the ELBO to approximate log pθ(x | c). Diffusion
Classifier chooses the conditioning c that best predicts the noise added to the input image. Diffusion Classifier can be used to extract a
zero-shot classifier from Stable Diffusion and a standard classifier from DiT without any additional training.

discriminative classifiers on ImageNet, both in- and out-of-
distribution.

2. Method: Classification via Diffusion Models
2.1. Diffusion Model Preliminaries

Diffusion probabilistic models (Sohl-Dickstein et al., 2015;
Ho et al., 2020) are generative models with a specific
Markov chain structure. Starting at a clean sample x0, the
fixed forward process q(xt | xt−1) adds Gaussian noise,
whereas the learned reverse process pθ(xt−1 | xt, c) tries
to denoise its input, optionally conditioning on a variable
c. In our setting, x is an image and c represents a low-
dimensional text embedding (for text-to-image synthesis)
or class index (for class-conditional generation). Diffusion
models define the conditional probability of x0 as:

pθ(x0 | c) =
∫

x1:T

p(xT )

T∏

t=1

pθ(xt−1 | xt, c) dx1:T (1)

where p(xT ) is typically fixed to N (0, I). Directly maxi-
mizing pθ(x0) is intractable due to the integral, so diffusion
models are instead trained to minimize the variational lower
bound (ELBO) of the log-likelihood:

log pθ(x0 | c) ≥ Eq

[
log

pθ(x0:T , c)

q(x1:T | x0)

]
(2)

Diffusion models parameterize pθ(xt−1 | xt, c) as a Gaus-
sian and train a neural network to map a noisy input xt to a
value used to compute the mean of pθ(xt−1 | xt, c). Using
the fact that each noised sample xt =

√
ᾱtix+

√
1− ᾱtiϵi

can be written as a weighted combination of a clean input x
and Gaussian noise ϵ ∼ N (0, I), diffusion models typically
learn a network ϵθ(xt, c) that estimates the added noise.

Using this parameterization, the ELBO can be written as:

−Eϵ

[
T∑

t=2

wt∥ϵ− ϵθ(xt, c)∥2 − log pθ(x0 | x1, c)

]
+ C

(3)

where C is a constant term that does not depend on c. Since
T = 1000 is large and log pθ(x0 | x1, c) is typically small,
we choose to drop this term. Finally, previous works (Ho
et al., 2020) find that setting wt = 1 improves sample
quality metrics. We found that deviating from the uniform
weighting used at training time hurts accuracy, so we set
wt = 1. Thus, this gives us our final ELBO:

−Et,ϵ

[
∥ϵ− ϵθ(xt, c)∥2

]
+ C (4)

2.2. Classification with diffusion models

In general, classification using a conditional generative
model can be done by using Bayes’ theorem on the model
predictions and the prior p(c) over labels {ci}:

pθ(ci | x) =
p(ci) pθ(x | ci)∑
j p(cj) pθ(x | cj)

(5)

A uniform prior over {ci} (i.e., p(ci) = 1
N ) is natural and

leads to all of the p(c) terms cancelling. For diffusion
models, computing pθ(x | c) is intractable, so we use the
ELBO in place of log pθ(x | c) and use Eq. 4 and Eq. 5 to
obtain a posterior distribution over {ci}Ni=1:

pθ(ci | x) ≈
exp{−Et,ϵ[∥ϵ− ϵθ(xt, ci)∥2]}∑
j exp{−Et,ϵ[∥ϵ− ϵθ(xt, cj)∥2]}

(6)

We compute an unbiased Monte Carlo estimate of each
expectation by sampling N (ti, ϵi) pairs, with ti ∼ [1, 1000]
and ϵ ∼ N (0, I), and computing

1

N

N∑

i=1

∥∥∥ϵi − ϵθ(
√
ᾱtix+

√
1− ᾱtiϵi, cj)

∥∥∥
2

(7)
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By plugging Eq. 7 into Eq. 6, we can extract a classifier
from any conditional diffusion model. We call this method
Diffusion Classifier. Diffusion Classifier is a powerful,
hyperparameter-free approach to extracting classifiers from
pretrained diffusion models without any additional train-
ing. Diffusion Classifier can be used to extract a zero-shot
classifier from a text-to-image model like Stable Diffusion
(Rombach et al., 2022), to extract a standard classifier from
a class-conditional model like DiT (Peebles & Xie, 2022),
and so on. We show an overview of our method in Fig. 1.

2.3. Variance Reduction via Difference Testing

At first glance, it seems that accurately estimating
Et,ϵ

[
∥ϵ− ϵθ(xt, c)∥2

]
for each class c requires pro-

hibitively many samples. Indeed, a Monte Carlo estimate
even using thousands of samples is not precise enough to
distinguish classes reliably. However, a key observation
is that classification only requires the relative differences
between the prediction errors, not their absolute magnitudes.
We can rewrite the approximate pθ(ci | x) from Eq. 6 as:

1∑
j exp {Et,ϵ[∥ϵ− ϵθ(xt, ci)∥2 − ∥ϵ− ϵθ(xt, cj)∥2]}

(8)

Eq. 8 shows that we only need to estimate the difference in
prediction errors across each conditioning value. Practically,
instead of using different random samples of (ti, ϵi) to es-
timate the ELBO for each conditioning input c, we simply
sample a fixed set S = {(ti, ϵi)} and use the same samples
to estimate the ϵ-prediction error for every c. This is remi-
niscent of paired difference tests in statistics, which increase
their statistical power by matching conditions across groups
and computing differences. We show our overall algorithm
in Alg. 1 and additional practical details in Appendix B.

3. Experimental Details
3.1. Zero-shot Classification

Diffusion Classifier Setup: We build Diffusion Classifier
on top of Stable Diffusion 2.1 (Rombach et al., 2022), a
text-to-image latent diffusion model trained on a filtered
subset of LAION-5B (Schuhmann et al., 2022).
Baselines: We provide results using two strong discrim-
inative zero-shot models: (a) CLIP ResNet-50 (Radford
et al., 2021) and (b) OpenCLIP ViT-H/14 (Cherti et al.,
2022). We provide these for reference only, as these models
are trained on different datasets with very different archi-
tectures from ours and thus cannot be compared apples-
to-apples. We further compare our approach against two
alternative ways to extract class labels from diffusion mod-
els: (c) Synthetic-Labeled-SD trains a ResNet-50 classifier
on synthetic data generated using Stable Diffusion (with

class-names as prompts), (d) Real-Labeled-SD trains a
ResNet-50 classifier on top of Stable Diffusion features
(mid-layer U-Net features at a resolution [8× 8× 1024] at
timestep t = 100) using ground-truth labels. This baseline
is not zero-shot, as it requires a labeled dataset of real-world
images and class-names. Details are in Appendix G.3.

3.2. Supervised Classification

Diffusion Classifier Setup: We repurpose Diffusion
Transformer (DiT) (Peebles & Xie, 2022), a class-
conditional diffusion model trained solely on ImageNet.

Baselines: We compare against discriminative models
trained from scratch on ImageNet: ResNet-18, ResNet-34,
ResNet-50, and ResNet-101 (He et al., 2016), as well as ViT-
L/32, ViT-L/16, and ViT-B/16 (Dosovitskiy et al., 2020).

4. Experimental Results
4.1. Zero-shot Classification Results

Table 1 shows that Diffusion Classifier significantly outper-
forms Synthetic-SD-Data baseline, an alternate zero-shot
approach of extracting information from diffusion mod-
els. Our method also achieves comparable performance to
SD-Features, which is a supervised classifier trained on a
labeled training set. In contrast, our method requires no ad-
ditional training or labels. Furthermore, while it is difficult
to make a fair comparison due to architectural differences,
our method matches CLIP ResNet-50 performance and is
competitive with OpenCLIP ViT-H. This is a major advance-
ment in the performance of generative approaches, and there
are clear avenues for improvement. First, we perform no
manual prompt tuning and simply use the prompts used by
the CLIP authors. Tuning the prompts to the Stable Dif-
fusion training distribution should improve its recognition
abilities. Second, we suspect that Stable Diffusion classifier
accuracy could improve with a wider training distribution.
Stable Diffusion’s training data was filtered aggressively to
remove low-resolution, potentially NSFW, or unaesthetic
images. This decreases the likelihood that it has seen rele-
vant data for many of our datasets.

4.2. Improved Relational Reasoning Abilities

Large text-to-image diffusion models are capable of gener-
ating samples with impressive compositional generalization.
In this section, we test whether this generative ability trans-
lates to improved compositional reasoning.

Winoground Benchmark: We compare Diffusion Clas-
sifier to models like CLIP (Radford et al., 2021) on
Winoground (Thrush et al., 2022), a popular benchmark
for evaluating the reasoning abilities of vision-language
models. Each example in Winoground consists of 2 (image,
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Zero-shot? Food101 CIFAR10 FGVC Oxford Pets Flowers102 STL10 ImageNet ObjectNet

Synthetic SD Data ✓ 12.6 35.3 9.4 31.3 22.1 38.0 18.9 5.2
SD Features ✗ 73.0 84.0 35.2 75.9 70.0 87.2 56.6 10.2
Diffusion Classifier (ours) ✓ 77.9 87.1 24.3 86.2 59.4 95.3 58.9 38.3

CLIP ResNet-50 ✓ 81.1 75.6 19.3 85.4 65.9 94.3 58.2 40.0
OpenCLIP ViT-H/14 ✓ 92.7 97.3 42.3 94.6 79.9 98.3 76.8 69.2

Table 1. Zero-shot classification performance. Our zero-shot Diffusion Classifier method (which utilizes Stable Diffusion) significantly
outperforms the zero-shot diffusion model baseline that trains a classifier on synthetic SD data. Diffusion Classifier also generally
outperforms the baseline trained on Stable Diffusion features, especially on complex datasets like ImageNet, in spite of the fact that “SD
Features” uses the entire training set to train a classifier. Finally, although it is difficult to make an apples-to-apples comparison due to
architecture, our generative approach surprisingly matches CLIP ResNet-50 performance and is competitive with OpenCLIP ViT-H.

Model Object (↑) Relation (↑) Both (↑) Average (↑)
Random Chance 25.0 25.0 25.0 25.0
CLIP ViT-L/14 27.0 25.8 57.7 28.2
OpenCLIP ViT-H/14 39.0 26.6 57.7 33.0
Diffusion Classifier (ours) 41.8 25.3 69.2 34.0

Table 2. Zero-shot reasoning results on Winoground Object,
Relation and Both benchmarks. Diffusion Classifier improves
text score whenever object swaps are involved (Both also swaps the
object). However, performance on Relation still remains roughly
at random chance for all three methods.

caption) pairs. Notably, both captions within an example
contain the same set of words, just in a different order. Mul-
timodal models are scored on Winoground by their ability to
match captions Ci to their corresponding images Ii. Models
can only do well if they understand compositional structure
within each modality. Each example is tagged by the type
of linguistic swap (object, relation, and both) between the
two captions. Fig. 6 shows examples of each swap type.

Results Table 2 compares Diffusion Classifier to Open-
CLIP ViT-H/14 (whose text embeddings Stable Diffusion
conditions on) and CLIP ViT-L/14. For the “Relation”
swaps, all three models do about the same as a purely ran-
dom baseline. However, Diffusion Classifier clearly does
better than both discriminative approaches when object
swaps are involved (Object and Both). Since Stable Dif-
fusion uses the same text encoder as OpenCLIP ViT-H/14,
Diffusion Classifier’s compositional reasoning ability comes
from better cross-modal binding of concepts to images. Fig-
ure 7 visualizes examples of some successes and failures.

4.3. Supervised Classification Results

We compare Diffusion Classifier, leveraging the ImageNet-
trained DiT model (Peebles & Xie, 2022), to variants of
ViTs (Dosovitskiy et al., 2020) and ResNets (He et al., 2016)
trained on ImageNet. Table 3 shows that Diffusion Classifier
is strongly competitive with state-of-the-art discriminative
classifiers on various natural distribution shifts. Diffusion
Classifier matches the in-distribution accuracy of a ViT-L/32
model and consistently does better OOD than half of the

Method ID OOD

IN IN-v2 IN-A ObjectNet

ResNet-18 74.1 57.3 15.0 26.6
ResNet-34 78.1 59.8 10.5 31.6
ResNet-50 79.7 61.6 9.8 35.6
ResNet-101 82.2 63.2 19.5 38.2
ViT-L/32 79.0 61.6 26.3 29.9
ViT-L/16 81.0 66.6 25.6 36.7
ViT-B/16 83.4 66.6 30.1 37.8

Diffusion Classifier 78.9 62.1 22.6 32.3

Table 3. Diffusion Classifier performs well ID and OOD.
We compare our generative Diffusion Classifier approach to dis-
criminative models trained on ImageNet. We highlight cells where
Diffusion Classifier does better.

discriminative methods. Notably, to the best of our knowl-
edge, we are the first to show that a generative model can
achieve ImageNet classification accuracy comparable with
highly competitive discriminative methods like ViTs (Doso-
vitskiy et al., 2020). This is surprising since DiT was trained
with only random horizontal flips, unlike typical classifiers
that use RandomResizedCrop, Mixup (Zhang et al., 2017),
RandAugment (Cubuk et al., 2020), and other tricks.

5. Conclusion
We investigated diffusion models for zero-shot and super-
vised classification by leveraging diffusion models as con-
ditional density estimators. By performing a simple un-
biased Monte Carlo estimate of the ϵ-predictions at vari-
ous timesteps of diffusion sampling, we extract Diffusion
Classifier—a powerful, zero-shot, and hyper-parameter-
free classifier without any additional training. We find that
this classifier narrows the gap with SOTA discriminative
approaches on zero-shot and standard classification and out-
performs them on multimodal reasoning. While generative
models have previously fallen short of discriminative ones
for classification, today’s pace of advances in generative
modeling means that they may catch up in the near future.
Our strong classification, multimodal reasoning, and gener-
alization results are an encouraging step in this direction.
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Appendix

A. Extended Related Work
Generative Models for Discriminative Tasks: Machine learning algorithms designed to solve common classification or
regression tasks generally operate under two paradigms: discriminative approaches directly learn to model the decision
boundary of the underlying task, while generative approaches learn to model the distribution of the data and then address
the underlying task as a maximum likelihood estimation problem. Algorithms like naive Bayes (Ng & Jordan, 2001), VAEs
(Kingma & Welling, 2013), GANs (Goodfellow et al., 2014), EBMs (Du & Mordatch, 2019; LeCun et al., 2006), and
diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) fall under the category of generative models. The idea of
modeling the data distribution to better learn the discriminative feature has been highlighted by several seminal works
(Hinton, 2007; Ng & Jordan, 2001; Ranzato et al., 2011). These works train deep belief networks (Hinton et al., 2006) to
model the underlying image data as latents, which are later used for image recognition tasks. Recent works on generative
modeling have also learned efficient representations for both global and dense prediction tasks like classification (He et al.,
2021; Hjelm et al., 2019; Croce et al., 2020; Brown et al., 2020; Devlin et al., 2019) and segmentation (Li et al., 2021; Zhang
et al., 2021; Chen et al., 2016; Baranchuk et al., 2022; Burgert et al., 2022). Moreover, such models (Grathwohl et al., 2020;
Liu & Abbeel, 2020; Huang et al., 2020) have been shown to generalize better, be more robust, and be better calibrated.
However, most of the aforementioned works either train jointly for discriminative and generative modeling or fine-tune
generative representations for downstream tasks. Directly utilizing generative models for discriminative tasks is a relatively
less-studied problem, and in this work, we particularly highlight the efficacy of directly using recent diffusion models as
zero-shot image classifiers.

Diffusion Models: Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) have recently gained significant attention
from the research community due to their ability to generate high-fidelity and diverse content like images (Saharia et al.,
2022; Nichol et al., 2021; et al, 2022), videos (Singer et al., 2023; Ho et al., 2022; Villegas et al., 2022), 3D (Poole et al.,
2022; Lin et al., 2022), and audio (Kong et al., 2021; Liu et al., 2023) from various input modalities like text. Diffusion
models are also closely tied to EBMs (LeCun et al., 2006; Du & Mordatch, 2019), denoising score matching (Song &
Ermon, 2019; Vincent et al., 2008), and stochastic differential equations (Song et al., 2020; Zimmermann et al., 2021). In
this work, we investigate to what extent the impressive high-fidelity generative abilities of these diffusion models can be
utilized for discriminative tasks (namely classification). We take advantage of the variational view of diffusion models for
efficient and parallelizable density estimates. The prior work of Dhariwal & Nichol (Dhariwal & Nichol, 2021) proposed
using a classifier network to modify the output of an unconditional generative model to obtain class-conditional samples.
Our goal is the reverse: using diffusion models as classifiers.

Zero-Shot Image Classification: Classifiers thus far have usually been trained in a supervised setting where the train and
test sets are fixed and limited. CLIP (Radford et al., 2019) showed that exploiting large-scale image-text data can result
in zero-shot generalization to various new tasks. Since then there has been a surge towards building a new category of
classifiers, known as zero-shot or open-vocabulary classifiers, that are capable of detecting a wide range of class categories
(Gadre et al., 2022; Li et al., 2022a;b; Alayrac et al., 2022). These methods have been shown to learn robust representations
that generalize to various distribution shifts (Ilharco et al., 2021; Dehghani et al., 2023; Taori et al., 2020). Note that in
spite of them being called “zero-shot,” it is still unclear whether evaluation samples lie in their training data distribution. In
contrast to the discriminative approaches above, we propose extracting a zero-shot classifier from a large-scale generative
model.

B. Practical Considerations for Diffusion Classifier
Our Diffusion Classifier method requires repeated error prediction evaluations for every class in order to classify an input
image. These evaluations naively require significant inference time, even with the technique presented in Sec 2.3. In this
section, we present further insights and optimizations that reduce our method’s runtime.

B.1. Importance of matched ϵ and t

In Figure 2, we sample 4 fixed ϵi’s and evaluate ∥ϵi − ϵθ(
√
ᾱtx+

√
1− ᾱtϵi, c)∥2 for every t ∈ 1, . . . , 1000, two prompts

(“Samoyed dog” and “Great Pyrenees dog”), and a fixed input image of a Great Pyrenees. Even for a fixed prompt, the
ϵ-prediction error varies wildly across the specific ϵ used. However, the error difference between each prompt is much more
consistent. Thus, by using the same (ti, ϵi) for each conditioning input, our estimate of pθ(ci | x) is much more accurate.
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Figure 2. We show the ϵ-prediction error for a fixed image of a Great Pyrenees dog and two prompts. Each subplot corresponds to a single
ϵ, with the error evaluated for every 1 ≤ t ≤ 1000. Errors are normalized to be zero-mean at each timestep across the 4 plots, and lower
is better. Variance in ϵ-prediction error is high across different ϵ, but the variance in relative error between prompts at each t is much
smaller for the same ϵ.

B.2. Effect of timestep
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Figure 3. Pets accuracy, evaluating only a single
timestep per class. Small t corresponds to less noise
added, and large t corresponds to significant noise. Accu-
racy is highest when an intermediate amount of noise is
added (t = 500).

Diffusion Classifier, which is a theoretically principled method for
estimating p(ci | x), uses a uniform distribution over the timestep
t for estimating the ϵ-prediction error. Here, we check if alternate
distributions over t yield more accurate results. Figure 3 shows the
Pets accuracy when using only a single timestep evaluation per class.
Perhaps intuitively, accuracy is highest when using intermediate
timesteps (t ≈ 500). This begs the question: can we improve ac-
curacy by oversampling intermediate timesteps and undersampling
low or high timesteps?

We try a variety of timestep sampling strategies, including repeat-
edly trying t = 500 with many random ϵ, trying N evenly spaced
timesteps, and trying the middle t−N/2, . . . , t+N/2 timesteps.
The tradeoff between different strategies is whether to try a few ti
repeatedly with many ϵ or to try many ti once. Figure 4 shows that
all strategies improve when taking using average error of more samples, but simply using evenly spaced timesteps is best.
We hypothesize that repeatedly trying a small set of ti scales poorly since this biases the ELBO estimate.

B.3. Efficient Classification

A naive implementation of our method requires C ×N trials to classify a given image, where C is the number of classes
and N is the number of (t, ϵ) samples to evaluate for each conditional ELBO. However, we can do better. Since we only
care about argmaxc p(c | x), we can stop computing the ELBO for classes we can confidently reject. Thus, one option to
classify an image is to use an upper confidence bound algorithm (Auer, 2002) to allocate most of the compute to the top
candidates. However, this would require making the assumption that the distribution of ∥ϵ− ϵθ(xt, cj)∥2 is the same across
timesteps t. We found that a simpler method works just as well. We split our evaluation into a series of stages, where in each
stage we try each remaining ci some number of times and then remove the ones that have the highest average error. This
allows us to efficiently eliminate classes that are almost certainly not the final output and allocate more compute to reasonable
classes. As an example, on the Pets dataset, we have Nstages = 2 stages. We try each class 25 times in the first stage, then
prune to the 5 classes with the smallest average error. Finally, in the second stage we try each of the 5 remaining classes 225
additional times. In Algorithm 1, we write this as KeepList = (5, 1) and TrialList = (25, 250). With this evaluation



Your Diffusion Model is Secretly a Zero-Shot Classifier

100 101 102

Number of trials per class

10

20

30

40

50

60

70

80

A
cc

ur
ac

y

Uniform
0, 500, 1000
0
500
1000
475, 500, 525
Even 5
Even 10

Figure 4. Zero-shot scaling curves for different timestep sampling strategies. We evaluate a variety of strategies for choosing the
timesteps at which we evaluate the ϵ-prediction error. Each strategy name indicates which timesteps it uses— e.g., “0” only uses the first
timestep, “0, 500, 1000” uses only the first, middle and last, “Even 10” uses 10 evenly spaced timesteps. We allocate more ϵ evaluations
at the chosen timesteps as the number of trials increases. Strategies that repeatedly sample from a restricted set of timesteps, like “475,
500, 525”, scale poorly with trials. Using timesteps uniformly from the full range [1, 1000] scales best.

strategy, classifying one Pets image requires 15 seconds on a single 3090 GPU. As our work focuses on understanding
diffusion model capabilities, and does not propose a practical inference algorithm, we do not significantly tune the evaluation
strategies. Future work could focus on further speeding up inference time. Further details are in Appendix G.1.

C. Analyzing Diffusion Classifier for Zero-Shot Classification
We analyze why our proposed diffusion-based density estimator, Diffusion Classifier, works well.

Experiment Setup: Given an input image, we first perform DDIM inversion (Song et al., 2021; Kim et al., 2022) (with 50
timesteps) using Stable Diffusion 2.1 and different captions as prompts: BLIP (Li et al., 2022a) generated caption, human-
refined BLIP generated caption, “a photo of {correct-class-name}, a type of pet” and “a photo of {incorrect-class-name}, a
type of pet.”. Next, we leverage the inverted DDIM latent and the corresponding prompt to attempt to reconstruct the original
image (using a deterministic diffusion scheduler (Song et al., 2021)). The underlying intuition behind this experiment is that
the inverted image should look more similar to the original image when a correct and appropriate/descriptive prompt is used
for DDIM inversion and sampling.

Experimental Evaluation: Figure 5 shows the results of this experiment for the Oxford-IIIT Pets dataset. The image
inverted using a human-modified BLIP caption (column 3) is the most similar to the original image (column 1). This aligns
with our intuition as this caption is most descriptive of the input image. The human-modified caption (column 2 in Figure 5)
only adds the class name (Bengal Cat, American Bull Dog, Birman Cat) ahead of the BLIP predicted “cat or dog” token
for the foreground object and slightly enhances the description for the background. Comparing the BLIP-caption results
(column 2) with the human-modified BLIP-caption results (column 3), we can see that by just using the class-name as the
extra token, the diffusion model can inherit class-descriptive features (Bengal cat has stripes, American Bulldog has a wider
chin, Birman cat has a black patch on the face) into the reconstructed image. This backs our proposal of diffusion-based
generative models as strong zero-shot classifiers.

Compared to the image generated using the oracle (human-generated) caption as a prompt, the images reconstructed using
only class names as prompts (columns 4,5,6) align less with the input image (column 1). This is expected as class names
by themselves are not dense descriptions of the input images. Comparing the results of column 4 (correct class names as
prompt) with those of column 5,6 (incorrect class names as prompt), we can see that the foreground object has similar
class-descriptive features (brown and black stripes in row 1, white, and black face patches in row 3) to the input image for
the correct-prompt reconstructions. This strongly highlights the fact that although using class names as approximate prompts
will not lead to absolute perfect denoising or density estimation (Eq. 7), for the global prediction task of classification, the
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Algorithm 1 Diffusion Classifier

1: Input: test image x, conditioning inputs {ci}ni=1 (e.g., text embeddings or class indices), number of stages Nstages, list
KeepList of number of ci to keep after each stage, list TrialList of number of trials done by each stage

2: Initialize Errors[ci] = list() for each ci
3: C = {ci}ni=1

4: PrevTrials = 0
5: for stage i = 1, . . . , Nstages do
6: for trial j = 1, . . . ,TrialList[i]− PrevTrials do
7: Sample t ∼ [1, 1000]
8: Sample ϵ ∼ N (0, I)
9: xt =

√
ᾱtx+

√
1− ᾱtϵ

10: for conditioning ck ∈ C do
11: Errors[ck].append(∥ϵ− ϵθ(xt, ck)∥2)
12: end for
13: end for
14: // Keep best KeepList[i] ck with the lowest errors
15: C ← argmin

S⊂C;
|S|=KeepList[i]

∑

ck∈S
mean(Errors[ck])

16: PrevTrials = TrialList[i]
17: end for
18: return argmin

ci∈C
mean(Errors[ci])

correct class names should provide enough descriptive features for denoising, relative to the incorrect class names.

Row 3 of Figure 5 further highlights an example where the base Stable Diffusion model generates very similar-looking
inverted images for correct Birman and incorrect Ragdoll text prompts. As a result, our model also incorrectly classifies
Birman cat with Ragdoll, although getting the perfect zero-shot top-2 classification metric. This happens because Ragdolls
and Birmans look extremely similar (even to humans). Finally, we fine-tuned the Stable Diffusion diffusion model on a
dataset of Ragdoll/Birman cats (175 images in total). Diffusion Classifier using this finetuned model achieves a classification
accuracy of 85%, significantly higher than the initial zero-shot accuracy of 45%.

D. Additional Details and Figures for Multimodal Reasoning
Figure 6 shows examples of each type of Winoground swap:

1. Object: reorder elements like noun phrases that typically refer to real-world objects/subjects.
2. Relation: reorder elements like verbs, adjectives, prepositions, and/or adverbs that modify objects.
3. Both: a combination of the previous two types.

E. Effect of Loss Function

Food101 CIFAR10 FGVC Oxford Pets Flowers102 STL10 ImageNet ObjectNet

Squared ℓ2 77.9 76.3 24.3 85.7 56.8 94.2 58.4 38.3
ℓ1 74.3 87.1 18.3 86.2 59.4 95.3 58.0 32.2
Huber 77.9 76.9 23.7 85.5 57.5 94.2 58.9 38.1

Table 4. Diffusion Classifier performance with different loss functions.
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Figure 5. Analyzing Diffusion Classifier for Zero-Shot Classification: We analyze the role of different text/captions (BLIP, Human-
modified BLIP, correct class-name, incorrect class-name) for zero-shot classification using text-based diffusion models. To do so, we
invert the input image using the corresponding caption and then reconstruct it using deterministic DDIM sampling. The image inverted
and reconstructed using a human-modified BLIP caption aligns the most with the input image since this caption is the most descriptive.
The images reconstructed using correct class names as prompts (column 4) align much better with the input image in terms of class-

descriptive features of the underlying object than the images reconstructed using incorrect class names as prompts (columns 5 and 6) .
Row 3 (columns 4 and 5) demonstrates an example where the base Stable Diffusion does not distinguish the two cat breeds, Birman and
Ragdoll, and hence cannot invert/sample them differently. As a result, our classifier also fails.

F. Techniques that did not help
Diffusion Classifier requires many samples to accurately estimate the ELBO. In addition to using the techniques in Section 2
and B, we tried several other options for variance reduction. None of the following methods worked, however. We list
negative results here for completeness, so others do not have to retry them.

Classifier-free guidance Classifier-free guidance (Ho & Salimans, 2022) is a technique that improves the match between a
prompt and generated image, at the cost of mode coverage. This is done by training a conditional ϵθ(xt, c) and unconditional
ϵθ(xt) denoising network and combining their predictions at sampling time:

ϵ̃(xt, c) = (1 + w)ϵθ(xt, c)− wϵθ(xt) (9)

where w is a guidance weight that is typically in the range [0, 10]. Most diffusion models are trained to enable this trick by
occasionally replacing the conditioning c with an empty token. Intuitively, classifier-free guidance “sharpens” log pθ(x | c)
by encouraging the model to move away from regions that unconditionally have high probability. We test Diffusion Classifier
to see if using the ϵ̃ from classifier-free guidance can improve confidence and classification accuracy. Our new ϵ-prediction
metric is now ∥ϵ− (1 + w)ϵθ(xt, c)− wϵθ(xt)∥2. However, Figure 8 shows that w = 0 (i.e., no classifier-free guidance)
performs best. We hypothesize that this is because Diffusion Classifier fails on uncertain examples, which classifier-free
guidance affects unpredictably.

Downsampled Latent 256x256 instead of 512x512
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Figure 6. Example visualizations of Winoground swap types. Each category corresponds to a different type of linguistic swap in the
caption. Object swaps noun phrases, Relation swaps verbs, adjectives, or adverbs, and Both can swap entities of both kinds.

Error map cropping The ELBO Et,ϵ[∥ϵ− ϵθ(xt, c)∥2] depends on accurately estimating the added noise at every location
of the 64× 64× 4 image latent. We try to reduce the impact of edge pixels (which are less likely to contain the subject) by
computing xt as normal, but only measuring the ELBO on a center crop of ϵ and ϵθ(xt, c). We compute:

∥ϵ[i:−i,i:−i] − ϵθ(xt, c)[i:−i,i:−i]∥2 (10)

where i is the number of latent “pixels” to remove from each edge. However, Figure 9 shows that any amount of cropping
reduces accuracy.

Importance sampling Importance sampling is a common method for reducing the variance of a Monte Carlo estimate.
Instead of sampling ϵ ∼ N (0, I), we sample ϵ from a narrower distribution. We first tried fixing ϵ = 0, which is the
mode of N (0, I), and only varying the timestep t. We also tried the truncation trick (Brock et al., 2018) which samples
ϵ ∼ N (0, I) but continually resamples elements that fall outside the interval [a, b]. Finally, we tried sampling ϵ ∼ N (0, I)
and rescaling them to the expected norm (ϵ → ϵ

∥ϵ∥2
Eϵ′ [∥ϵ′∥2])) so that there are no outliers. Table 5 shows that none of

these importance sampling strategies improve accuracy. This is likely because the noise ϵ sampled with these strategies are
completely out-of-distribution for the noise prediction model. For computational reasons, we performed this experiment on
a 10% subset of Pets.

Sampling distribution for ϵ Pets accuracy

ϵ = 0 41.3
TruncatedNormal, [−1, 1] 49.9
TruncatedNormal, [−2.5, 2.5] 81.5
Expected norm 86.9
ϵ ∼ N (0, I) 87.5

Table 5. Every importance sampling strategy underperforms sampling the noise ϵ from a standard normal distribution.

G. Additional Implementation Details
G.1. Zero-shot classification using Diffusion Classifier

Training Data For our zero-shot Diffusion Classifier, we utilize Stable Diffusion 2.1 (Rombach et al., 2022). This model
was trained on a subset of the LAION-5B dataset, filtered so that the training data is aesthetic and appropriately safe-for-work.
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"a bird eats a snake" "a snake eats a bird" "there are more 
ladybugs than flowers"

"there are more flowers 
than ladybugs"

✅ Diffusion Classifier  ✅ OpenCLIP ✅ CLIP ✅ Diffusion Classifier  ✅ OpenCLIP  ❌ CLIP

"an old person kisses a 
young person"

"a young person kisses 
an old person"

"the taller person hugs 
the shorter person"

"the shorter person hugs 
the taller person"

✅ Diffusion Classifier ❌ OpenCLIP ❌ CLIP❌ Diffusion Classifier ❌ OpenCLIP  ❌ CLIP

Figure 7. Results on selected Winoground examples. The example in the bottom right shows that Diffusion Classifier can better reason
about the spatial and the compositional understanding of the underlying images. THe bottom left example shows a challenging example
where all the baselines and our approach fail.
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Figure 8. Accuracy plot of classifier-free guidance on Pets.
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Figure 9. Cropping ϵ and ϵθ(xt, c) reduces accuracy on Pets.

LAION classifiers were used to remove samples that are too small (less than 256× 256), potentially pornographic (punsafe
≥ 0.1), or unaesthetic (aesthetic score < 4.5). These thresholds are relatively conservative, since false negatives (leaving
NSFW or undesirable images in the training set) is worse than removing extra images from a large starting dataset. As
discussed in Section 6.1, these filtering criteria bias the distribution of Stable Diffusion training data and likely negatively
affect Diffusion Classifier’s performance on datasets whose images do not satisfy these criteria. The checkpoint we use
was trained for 550k steps at resolution 256 × 256 on this subset, followed by an additional 850k steps at resolution
512× 512 on images that are at least that large. This checkpoint can be downloaded online through the diffusers repository
at stabilityai/stable-diffusion-2-1-base.

Inference Details We use FP16 and Flash Attention (Dao et al., 2022) to improve inference speed. This enables efficient
inference with a batch size of 32, which works across a variety of GPUs, from RTX 2080Ti to A6000. We found that adding
these two tricks did not affect test accuracy compared to using FP32 without Flash Attention. Given a test image, we resize
the shortest edge to 512 pixels using bicubic interpolation, take a 512× 512 center crop, and normalize the pixel values to
[−1, 1]. We then use the Stable Diffusion autoencoder to encode the 512× 512× 3 RGB image into a 64× 64× 4 latent.
We finally classify the test image by applying the method described in Sections 3 and 4 to estimate ϵ-prediction error in this
latent space.

Sampling Strategy Table 6 shows the evaluation strategy used for each zero-shot dataset. We hand-picked the strategies
based on the number of classes in each dataset. Further gains in accuracy may be possible with more evaluations.
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Dataset Prompts kept per stage Evaluations per stage Avg. evaluations per class Total evaluations

Food101 20 10 5 1 20 50 100 500 50.7 5120
CIFAR10 5 1 100 500 300 3000
FGVC Aircraft 20 10 5 1 20 50 100 500 51 5100
Pets 5 1 25 250 51 1890
Flowers102 20 10 5 1 20 50 100 500 50.4 5140
STL10 5 1 100 500 300 3000
ImageNet 500 50 10 1 50 100 500 1000 100 100000
ObjectNet 25 10 5 1 50 100 500 1000 118.6 13400

Table 6. Evaluation strategy for each zero-shot dataset.

G.2. ImageNet classification using Diffusion Classifier

For this task, we use the recent Diffusion Transformer (DiT) (Peebles & Xie, 2022) as the backbone of our Diffusion
Classifier. DiT was trained on ImageNet-1k, which contains about 1.28 million images from 1,000 unique classes. While
it was originally trained to produce high-quality samples with strong FID scores, we repurpose the model and compare it
against discriminative models with the same ImageNet-1k training data. Notably, DiT achieves strong performance while
using much weaker data augmentations than what discriminative models are usually trained with. During training time for
our 256× 256 checkpoint, the smaller edge of the input image is resized to 256 pixels. Then, a 256× 256 center crop is
taken, followed by a random horizontal flip, followed by embedding with the Stable Diffusion autoencoder. At test time,
we follow the same preprocessing pipeline, but omit the random horizontal flip. Diffusion Classifier performance in this
setting may improve if stronger augmentations, like RandomResizedCrop or color jitter, are used during the diffusion model
training process.

G.3. Baselines for Zero-Shot Classification

Synthetic-SD: We provide the implementation details of the “Synthetic-SD” baseline (row 1 of Table 1) for the task of
zero-shot image classification. Our Diffusion Classifier approach builds on the intuition that a model capable of generating
examples of desired classes should be able to directly discriminate between them. In contrast, this baseline takes the simple
approach of using our generative model, Stable Diffusion, as intended to generate synthetic training data for a discriminative
model. For a given dataset, we use pre-trained Stable Diffusion 2.1 with default settings to generate 10,000 synthetic
512× 512 pixel images per class as follows: we use the English class name and randomly sample a template from those
provided by the CLIP (Radford et al., 2021) authors to form the prompt for each generation. We then train a supervised
ResNet-50 classifier using the synthetic data and the labels corresponding to the class name that was used to generate each
image. We use batch size = 256, weight decay = 1e− 4, learning rate = 0.1 with a cosine schedule, the AdamW optimizer,
and use random resized crop & horizontal flip transforms. We create a validation set using the synthetic data by randomly
selecting 10% of the images for each class; we use this for early stopping to prevent over-fitting. Finally, we report the
accuracy on the target dataset’s proper test set.

Real-Labeled-SD: We provide the implementation details of the “Real-Labeled-SD” baseline (row 2 of Table 1) for the task
of image classification. This baseline is inspired by Label-DDPM (Baranchuk et al., 2022), a recent work on diffusion-based
semantic segmentation. Unlike Label-DDPM, which leverages a category-specific diffusion model, we directly build on top
of the open-sourced Stable Diffusion model (trained on the LAION dataset). We then approach the task of classification
as follows: given the pre-trained Stable Diffusion model, we extract the intermediate U-Net features corresponding to the
input image. These features are then passed through a ResNet-based classifier to predict the corresponding class name.
To extract the intermediate U-Net features, we add a noise equivalent to the 100th timestep noise to the input image and
evaluate the corresponding noisy latent using the forward diffusion process. We then pass the noisy latent through the U-Net
model, conditioned on timestep t = 100 and text conditioning (y) as an empty string, and extract out the features from the
mid-layer of the U-Net at a resolution of [8 × 8 × 1024]. Next, we train a supervised classifier on top of these features. Thus,
this baseline is not zero-shot. The architecture of our classifier is similar to ResNet-18, with small modifications to make it
compatible with an input size of [8× 8× 1024]. Table 7 defines these modifications. We set batch size = 16, learning rate
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Arch Conv1 Conv2 Conv3 x2 Conv4 x2 Conv5 x2
ResNet-18 7x7x64 3x3 max-pool 3x3x128 3x3x256 3x3x512

ResNet-18 (Real-Labeled-SD) 3x3x1280 - 3x3x1280 3x3x2560 3x3x2560

Table 7. Comparison of Real-Labeled-SD’s ResNet-18 classifier architecture with the original ResNet-18

= 1e− 4, and use AdamW optimizer. During training, we do augmentations similar to the original ResNet (Random Crop
and Flip). We do early stopping using the validation set to prevent over-fitting. We use the official train-test splits for each
dataset, except ImageNet and ObjectNet. For these two datasets, we perform class sub-sampling and use the same train-test
split as our model. We do this to achieve fair comparisons with the other baselines.


