

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING DISCRIMINATIVE AND GENERALIZABLE ANOMALY DETECTOR FOR DYNAMIC GRAPH

Anonymous authors

Paper under double-blind review

ABSTRACT

Anomaly detection in dynamic graphs is critical for many real-world applications but remains challenging because labeled anomalies are scarce. Most existing approaches rely on unsupervised or semi-supervised learning, which often struggle to learn discriminative representations and generalize to unseen cases. To overcome these issues, we propose SDGAD, a supervised framework with three main components. First, we design a residual representation that highlights deviations from historical patterns, providing strong anomaly signals. Second, we constrain the residuals of normal samples within an interval defined by two co-centered hyperspheres, ensuring consistent scales while keeping anomalies separable. Third, we use a normalizing flow to model the likelihood distribution of normal samples, treating anomalies as out-of-distribution points. Based on this distribution, we derive an explicit decision boundary and further propose a bi-boundary optimization strategy to boost generalization. Experiments on six datasets, covering both real and synthetic anomalies, show that SDGAD consistently outperforms diverse baselines across multiple evaluation metrics. The code is available at this repository: <https://anonymous.4open.science/r/SODA-7EFD/>.

1 INTRODUCTION

Dynamic graph anomaly detection (DGAD) is vital for real-world applications such as detecting financial fraud (Zhang et al., 2021; Li et al., 2023), abnormal social interactions (Berger-Wolf & Saia, 2006; Greene et al., 2010), cyberattacks (Zhang et al., 2022), and has therefore attracted increasing research attention. Previous DGAD methods (Yu et al., 2018; Zheng et al., 2019; Cai et al., 2021; Liu et al., 2023) rely on discrete-time dynamic graph (DTDG) representations, which capture temporal evolution at the snapshot level but inevitably lose fine-grained temporal information. Recent studies (Tian et al., 2023; Postuvan et al., 2024; Yang et al., 2024) employ continuous-time dynamic graph (CTDG) representations to alleviate this issue. Nonetheless, both DTDG- and CTDG-based DGAD methods still face a fundamental challenge: anomalies in real-world scenarios are far rarer than normal instances, resulting in severe class imbalance.

To cope with the scarcity of labeled anomalies, most existing methods (Yu et al., 2018; Cai et al., 2021; Liu et al., 2023; Postuvan et al., 2024; Yang et al., 2024) adopt unsupervised learning setting, where models are trained only on normal or unlabeled data and then flag anomalies as deviations from learned normal patterns. However, without explicit supervision, the resulting decision boundaries are often ambiguous, leading to poor discriminability. As illustrated in Figure 1 (a), anomaly scores can collapse into a narrow low-valued range in which normal and anomalous samples are largely indistinguishable. This limitation is particularly problematic in high-stakes domains such as financial fraud detection, where the goal is to make precise binary decisions on individual samples rather than to generate a ranking over a set of candidates. Semi-supervised approaches (Zheng et al., 2019; Tian et al., 2023) attempt to leverage the few available labeled anomalies and augment them with pseudo-labeled data. Yet pseudo labels are inherently noisy, and the observed available anomalies usually cover only a limited subset of anomaly types. Consequently, these methods are prone to overfitting the seen patterns, introducing bias and limiting generalization to unseen anomalies.

The above observations highlight a critical need for a DGAD method with stronger discriminability and generalizability. Achieving this objective requires two essential capabilities: First, it must be capable of learning informative representations that provide anomaly-relevant signals with sufficiently

Figure 1: Conceptual illustration. (a) Unsupervised methods often yield ambiguous decision boundaries, with anomaly scores compressed into a narrow range. (b) The objective of our method.

discriminability to distinguish anomalous behaviors. Second, it must be able to construct an explicit and robust decision boundary. To this end, we propose an effective and generalizable Supervised framework for DGAD (**SDGAD**). To learn informative representations, we introduce **residual representation**, which captures the discrepancy between node’s embeddings computed with and without the current interaction. Since anomalous behaviors in dynamic graphs often deviate from historical patterns, the residual representation explicitly emphasizes such deviations, providing a principled signal for detection. However, different patterns of anomalies may yield residuals of varying scales. To improve discriminability, we design a **representation restriction** mechanism that constrains the residuals of normal samples within an interval bounded by two co-centered hyperspheres, while keeping anomalies outside. Finally, we employ a normalizing flow to model the log-likelihood distribution of normal samples and identify anomalies as out-of-distribution instances. Building on this distribution, we introduce a **bi-boundary optimization** strategy to construct explicit and robust decision boundary. Our contributions are as follows:

- We introduce SDGAD, an effective and generalizable supervised framework for dynamic graph anomaly detection.
- We propose a residual representation with restriction to learn discriminative representations and a bi-boundary optimization strategy to construct explicit and robust decision boundary.
- We conduct extensive experiments on six datasets, comprising both datasets with real anomalies and datasets with synthetic anomalies. Comprehensive evaluations demonstrate that our framework achieves superior performance compared to diverse baselines.

2 RELATED WORK

2.1 ANOMALY DETECTION IN DYNAMIC GRAPHS

From a modeling perspective, existing dynamic graph anomaly detection approaches can be broadly categorized into two types: DTDG-based and CTDG-based. DTDG-based approaches (Yu et al., 2018; Zheng et al., 2019; Cai et al., 2021; Liu et al., 2023) treat dynamic graphs as sequences of snapshots, where each snapshot is considered a static graph. However, due to fixed-interval representation and coarse temporal granularity, these methods often lose critical temporal information and fail to capture the continuous spatio-temporal dependencies essential for accurate anomaly detection. To overcome these limitations, recent work has explored CTDG-based models (Postuvan et al., 2024; Reha et al., 2023; Tian et al., 2023; Yang et al., 2024) which represent interactions as event streams with continuous timestamps. Although CTDG alleviates the drawbacks of DTDG by offering finer temporal resolution, the fundamental challenges of DGAD remain unresolved. In particular, most approaches, whether DTDG- or CTDG-based, employ unsupervised learning frameworks that train exclusively on normal samples. This paradigm yields ambiguous decision boundaries, as the models lack explicit contrast between normal and anomalous patterns. Thus, some semi-supervised approaches (Zheng et al., 2019; Tian et al., 2023) attempt to leverage the few available anomaly labels by combining them with pseudo-labeled data. However, pseudo labels in-

108 inevitably introduce noise and the scarce anomaly labels typically reflect only a narrow set of patterns,
 109 causing semi-supervised methods to overfit and limiting their generalization to unseen anomalies.
 110

111 **2.2 CLASS IMBALANCE**
 112

113 The extreme rarity of anomalies in real-world scenarios makes class imbalance a fundamental chal-
 114 lenge in dynamic graph anomaly detection. Re-sampling and re-weighting strategies (Wang et al.,
 115 2019; Cui et al., 2020; Dou et al., 2020; Liu et al., 2020), though effective on static graphs, are less
 116 applicable in dynamic settings due to temporal dependencies and evolving relationships. Graph data
 117 augmentation (Hou et al., 2022; Kong et al., 2020; Chen et al., 2024; Zhao et al., 2021) has been
 118 explored as an alternative, yet most techniques are designed for static graphs, rely on node or edge
 119 attributes that are often sparse or unavailable in dynamic graphs. Although recent augmentation
 120 methods for dynamic graphs have been proposed (Tian et al., 2024a; Wang et al., 2021c), they rely
 121 on empirical heuristics without guarantees that the generated anomalous samples faithfully capture
 122 real anomaly characteristics. Consequently, enabling effective learning under such severe imbalance
 123 remains a major open challenge in dynamic graph anomaly detection.
 124

125 **3 PRELIMINARIES**

126 **Notations.** A dynamic graph is a time-dependent graph $G = (V(t), E(t))$, where $V(t)$ and
 127 $E(t)$ denote the node and edge sets at timestamp t , respectively. In this paper, we adopt the
 128 CTDG formulation, which represents the dynamic graph as an ordered stream of events $G =$
 129 $\{\xi(t_0) \dots \xi(t_k) \dots \xi(t_n)\}_{k=0}^n$ with nondecreasing timestamps $t_0 \leq t_k \leq t_n$. Each event $\xi(t_k) =$
 130 $(v_i, v_j, t_k, e_{i,j}^{t_k})$ denotes an interaction between nodes v_i and v_j at timestamp t_k with associated edge
 131 feature $e_{i,j}^{t_k}$. If the dynamic graph is non-attributed, we simply set the node and edge feature to zero
 132 vectors. Multiple interactions may occur either between the same node pair at different times or
 133 among different pairs at the same time. Each interaction is further annotated with a binary label
 134 $y \in \{0, 1\}$, where 0 indicates normal and 1 anomalous. In practice, anomaly labels are highly
 135 imbalanced, where the number of normal samples vastly exceeds that of anomalies.
 136

137 **Problem definition.** Given an event $\xi(t)$ and historical events before t , the goal is to design a
 138 model that learns the representation for $\xi(t)$ and assigns it a continuous anomaly score in $[0, 1]$,
 139 thereby quantifying its degree of abnormality and determining whether the event is anomalous.
 140

141 **Normalizing Flow** provides exact density estimation by mapping an intractable data distribution
 142 \mathcal{Q} to a tractable latent distribution \mathcal{Z} through an invertible transformation, which is implemented
 143 as a composition of F invertible mappings: $\Phi_\theta = \Phi_F \circ \dots \circ \Phi_1$, where θ denotes the trainable
 144 parameters. For an input $x \in \mathcal{Q}$, its log-likelihood $\log[p(x)]$ can be computed as follow:
 145

$$\log[p(x)] = \log p_{\mathcal{Z}}(\Phi_\theta(x)) + \sum_{f=1}^F \log |\det J_{\Phi_f}(x_{f-1})| \quad (1)$$

146 where $J_{\Phi_f}(x_{f-1}) = \frac{\partial \Phi_f(x_{f-1})}{\partial x_{f-1}}$ is the Jacobian matrix, \det denotes the determinant. In practice,
 147 the latent distribution \mathcal{Z} is typically assumed as a standard Gaussian. Thus, the parameters θ can
 148 be optimized by maximizing the log-likelihoods across the training distribution \mathcal{Q} . The loss can be
 149 formulated as a maximum likelihood loss:
 150

$$\mathcal{L}_{\mathcal{ML}} = \mathbb{E}_{x \sim \mathcal{Q}} \left[\frac{d}{2} \log(2\pi) + \frac{1}{2} \Phi_\theta(x)^T \Phi_\theta(x) - \sum_{f=1}^F \log |\det J_{\Phi_f}(x_{f-1})| \right] \quad (2)$$

151 **4 METHODOLOGY**
 152

153 Figure 2 provides an overview of the proposed framework, which comprises three main components:
 154 residual representation encoding, representation restriction, and bi-boundary optimization. They are
 155 described in detail in the following subsections.
 156

Figure 2: Overview of our proposed framework. We first encode each sample’s residual representation by contrasting two node-pair embeddings. Then the residual representations of normal samples (green dots) are restricted into an interval region between two co-centered hypersphere, while anomalous samples (red dots) are pushed outside. Finally, we use the normalizing flow to model the log-likelihood distribution of normal samples and then the bi-boundary optimization is used to learn an explicit and robust decision boundary.

4.1 RESIDUAL REPRESENTATION ENCODING

Instead of introducing a new encoder, our framework is designed to be compatible with the encoder of any CTDG model. Since encoding mechanisms differ across models, we present a unified abstraction here, with model-specific implementations of the encoder $enc(\cdot)$ detailed in Appendix B. Formally, given an interaction $\xi(t) = (v_i, v_j, t, e_{i,j}^t)$ ¹, the embedding of a target node at timestamp t is computed by combining its historical interactions with the current one. Specifically, for node v_i , we sample its L historical neighbors together with their associated edges and timestamps and append the current interaction $(v_j, e_{i,j}, t)$. The resulting inputs are then fed into the encoder:

$$\mathbf{E}_i^t = enc(\{v_l, e_{i,l}^t, t_l\}_{l=1}^L \| \{v_j, e_{i,j}^t, t\}) \quad v_l \in \mathcal{N}_{<t}(v_i) \quad (3)$$

where \mathbf{E}_i^t denotes the embedding of node v_i at timestamp t . $\mathcal{N}_{<t}(v_i)$ is the set of sampled historical neighbors of v_i prior to t . The embedding of node v_j is computed analogously.

In dynamic graphs, anomalies typically manifest as deviations from recent temporal or structural patterns. Thus, effective detection should emphasize relational signals that capture such deviations. Recall that the node embedding \mathbf{E}_i^t is obtained by aggregating both historical and current interactions. While this aggregation captures long-term dependencies, it may obscure short-term irregularities that are often most indicative of anomalies. To detect the irregularities, we introduce the residual representation, defined as:

$$\Delta \mathbf{E}_i^t = \mathbf{E}_i^t - \mathbf{E}_i^{t-} = enc(\{v_l, e_{i,l}^t, t_l\}_{l=1}^L \| \{v_j, e_{i,j}^t, t\}) - enc(\{v_l, e_{i,l}^t, t_l\}_{l=1}^L) \quad (4)$$

This residual representation $\Delta \mathbf{E}_i^t$ measures the discrepancy between the node embedding computed with and without the current interaction. Its norm remains small when the current interaction conforms to historical patterns, but increases when deviations occur. This property aligns with neighborhood-based principle in graph analysis: local consistency yields low representation differences, whereas anomalies induce larger ones. By suppressing stable components and emphasizing novel temporal or structural variations, the residual representation serves as a discriminative signal for anomaly detection. Then, the representation of the event $\xi(t)$ can be obtained by concatenating the residual representations of the two nodes: $E_{i,j}^t = \Delta \mathbf{E}_i^t \| \Delta \mathbf{E}_j^t$.

4.2 REPRESENTATION RESTRICTION

Although the residual representations provide informative anomaly-relevant signal, its effectiveness is limited by the diversity of anomaly patterns. Different anomalies induce residuals of varying scales: some lead to large residuals (e.g., interaction bursts), whereas others manifest only as small residuals (e.g., mild timing irregularities). This scale variation makes it challenging to find a unified

¹For notational clarity, we omit the subscript k in all subsequent formulations

216 decision boundary to consistently distinguish normal samples from anomalies: a threshold suitable
 217 for large residuals may miss subtle anomalies, while one tuned for smaller values may increase false
 218 positives. To address this, we draw inspiration from Zhang et al. (2024) and propose a representa-
 219 tion restriction strategy to constrain the residual representations of normal samples into an interval
 220 region between two co-centered hyperspheres, while keeping anomalies outside. Specifically, we
 221 first project the residual representation $E_{i,j}^t$ through a linear layer to obtain projected representation
 222 $E_{i,j}^{t'}$. The restriction loss is then defined as:

$$\begin{aligned} \mathcal{L}_{RR} = & (1 - y) \underbrace{\left(\max(0, A - r_{\max}) + \max(0, r_{\min} - A) \right)}_{\text{interval penalty}} \\ & + y \underbrace{\left(\max(A - r_{\max}) + MSE(E_{i,j}^{t'}, E_{i,j}^t) + 1 - \cos(E_{i,j}^{t'}, E_{i,j}^t) \right)}_{\text{discrimination + consistency}} \end{aligned} \quad (5)$$

230 where $A = \sqrt{\|E_{i,j}^{t'}\|_2 + 1} - 1$ is a stabilized approximation of the L_2 norm. r_{\min}, r_{\max} represent
 231 the radii of the inner and outer co-centered hyperspheres that bound the normal region, respectively.
 232 $MSE(\cdot)$ and $\cos(\cdot)$ denote the mean square error function and cosine similarity function, respec-
 233 tively. The first term, referred to as the *interval penalty*, is applied to normal samples and penal-
 234 izes cases where A falls outside the interval $[r_{\min}, r_{\max}]$. This constraint encourages the projected
 235 representation of normal samples to remain within a compact region of consistent scale, thereby
 236 promoting the formation of a unified decision boundary. However, relying on this constraint alone
 237 risks collapsing both normal and anomalous projected representation into the same region, reducing
 238 their discriminability. Therefore, the second term is applied to anomalous samples and integrates
 239 two objectives: (i) it encourages the projected representation of anomalous samples to remain close
 240 to their initial residuals, rather than being mapped into the normal region. (ii) it enforces separation
 241 by penalizing anomalies that fall within the interval region. Together, these terms compact the resid-
 242 uals of normal samples while keeping anomalies separable in the latent space. This design provides
 243 the foundation for establishing an explicit decision boundary and supports the model’s ability to
 244 generalize to unseen anomaly types.

245 4.3 BI-BOUNDARY OPTIMIZATION

247 Building on the restricted representations, we can use a distribution estimator that models the dis-
 248 tribution of normal samples and treats anomalies as out-of-distribution deviations. Specifically, we
 249 employ normalizing flow to compute the exact log-likelihood $\log[p(x)]$ for each sample, as defined
 250 in Equation 1. Since log-likelihood value can range in $(-\infty, 0]$, a normalization constant is ap-
 251 plied to rescale them into the range $[-1, 0]$ for more stable optimization. As training is conducted
 252 in a batch-wise manner, we denote the log-likelihoods of normal and anomalous samples within a
 253 batch as $\mathcal{D}_n = \{\log[p(x_i)]\}_{i=1}^N$ and $\mathcal{D}_a = \{\log[p(x_j)]\}_{j=1}^M$, where N and M denote the number
 254 of normal and anomalous samples in the batch. Then \mathcal{D}_n can be regarded as an approximation of
 255 the log-likelihood distribution of normal samples. As anomalies are defined relative to the normal
 256 distribution, the decision boundary \mathcal{B} can be naturally constructed on \mathcal{D}_n .

257 A straightforward way is to set \mathcal{B} as the α -th percentile of sorted normal log-likelihood distribution
 258 \mathcal{D}_n and identify samples with lower log-likelihoods as anomalies. However, probability density
 259 tends to spread out in high-dimensional spaces (Kirichenko et al., 2020) and the bijective nature of
 260 normalizing flow can map anomalies into the typical set of the latent space rather than the expected
 261 tail (Kumar et al., 2021). As a result, anomalies may not consistently fall into low log-likelihood
 262 regions and can even attain unexpectedly high log-likelihood value, making it difficult to establish a
 263 robust decision boundary. Therefore, we propose a bi-boundary optimization strategy. Specifically,
 264 we define a decision margin τ (e.g., $\tau = 0.1$), refining the single boundary \mathcal{B} into a normal boundary
 265 \mathcal{B}_n and an anomalous boundary $\mathcal{B}_a = \mathcal{B}_n - \tau$. This margin construct a buffer zone that reduces
 266 ambiguity near the boundary and improves robustness by preserving an explicit separation between
 267 normal and anomalous regions. Accordingly, the optimization objective can be formulated as:

$$\mathcal{L}_{BO} = \sum_{i=1}^N |\min(\text{softplus}(\log[p(x_i)] - \mathcal{B}_n), 0)| + \sum_{j=1}^M |\max(\text{softplus}(\log[p(x_j)] - \mathcal{B}_a), 0)| \quad (6)$$

270 By minimizing \mathcal{L}_{BO} , the model enforces a clear margin between the log-likelihood of normal and
 271 anomalous samples, constraining anomalous samples to $[-\infty, \mathcal{B}_a]$ and normal samples to $[\mathcal{B}_n, 0]$.
 272 Samples outside these regions are penalized in proportion to their deviation from the boundary,
 273 encouraging normal samples to concentrate in high density areas while pushing anomalies further
 274 away. Unlike hard losses that impose discontinuous penalties at the boundary, we adopt the softplus
 275 function, $\text{softplus}(x) = \log(1 + e^x)$, which scales penalties smoothly with the degree of violation.
 276

277 **Overall Loss Function.** The overall training loss of our framework is the combination of the Eq. 2,
 278 Eq. 5 and Eq. 6 as follows:

$$\mathcal{L} = \mathcal{L}_{ML} + \lambda_1 \mathcal{L}_{BO} + \lambda_2 \mathcal{L}_{RR} \quad (7)$$

280 Here \mathcal{L}_{ML} is the basic loss for training the normalizing flow, and it is computed only on normal
 281 samples, since our objective is to maximize the likelihood of the normal data distribution. We also
 282 provide sensitivity analysis of balancing the loss terms and error bound analysis in Appendix D.

283 **Anomaly Scoring.** We define the anomaly score for sample x as the complement of its log-
 284 likelihood, where higher values correspond to stronger deviations from the distribution of normal
 285 samples. Owing to the monotonicity of the exponential function $\exp(\cdot)$, the anomaly score s for a
 286 sample x can be equivalently written as:

$$s(x) = 1 - \exp(\log[p(x)]) \quad (8)$$

290 5 EXPERIMENTS

292 **Datasets.** We conduct experiments on datasets with real-world labeled anomalies as well as on
 293 benign datasets with synthetic anomalies. The datasets with real-world labeled anomalies include
 294 Wikipedia, Reddit, and MOOC, while the benign datasets include Enron, UCI, and LastFM. Detailed
 295 descriptions, statistics, and preprocessing procedures are provided in Appendix A.

297 **Baselines.** We compare our framework against a diverse set of baselines for DGAD, which fall
 298 into three categories. (1) DTDG-based methods designed for DGAD, including AddGraph (Zheng
 299 et al., 2019), StrGNN (Cai et al., 2021), TADDY (Liu et al., 2023) and Netwalk (Yu et al., 2018).
 300 (2) CTDG-based methods designed for DGAD, including SAD (Tian et al., 2023) and Gener-
 301 alDyG (Yang et al., 2024) (3) Representative CTDG models originally proposed for tasks such as
 302 link prediction but readily adaptable to anomaly detection, including JODIE (Kumar et al., 2019),
 303 DyRep (Trivedi et al., 2019), TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), TCL (Wang et al.,
 304 2021a), GraphMixer (Cong et al., 2023), CAWN (Wang et al., 2021b), DyGFormer (Yu et al., 2023),
 305 and FreeDyG (Tian et al., 2024b). We provide detailed descriptions in Appendix B.

306 **Experiment Settings.** Previous studies rely exclusively on Area Under the Receiver Operating
 307 Characteristic Curve (AUROC) as the evaluation metric. While useful as a ranking metric, AUROC
 308 fails to assess a model’s capacity to clearly classify individual samples. In practice, it can remain
 309 high remain high even when anomaly score of samples collapse into an indistinguishable low-valued
 310 range as shown in Fig 1. To provide a comprehensive evaluation, we report results on three met-
 311 rics: AUROC, F1 score and Average Precision (AP). All models are trained for up to 200 epochs
 312 with early stopping (patience = 10) and the checkpoint achieving the best validation performance is
 313 selected for testing. The batch size is fixed at 200 for all methods and datasets. Each experiment
 314 is repeated five times and the average performance is reported to mitigate randomness. We perform
 315 grid search over some hyper-parameters. The learning rate is varied in $\{1e-3, 1e-4, 1e-5\}$, weight
 316 decay in $\{1e-1, 1e-2, 1e-3, 1e-4, 1e-5\}$.

317 5.1 MAIN RESULTS

319 Table 1 reports the results across all baselines on the datasets with real-world labeled anomalies.
 320 From the results, we can observe that DTDG-based methods consistently yield the worst perfor-
 321 mance across all datasets. This is because their reliance on snapshot-level modeling inevitably
 322 discards fine-grained temporal information, which are essential for accurately capturing anomalous
 323 behaviors in dynamic graphs. By contrast, both CTDG-based DGAD methods and representative
 324 CTDG models achieve substantially stronger results. Notably, the performance gap between them

324 325 326 327 328 329 330 331	Methods	Wikipedia			Reddit			MOOC		
		AUROC	AP	F1	AUROC	AP	F1	AUROC	AP	F1
Netwalk	73.10 \pm 2.12	1.28 \pm 1.14	0 \pm 0	59.18 \pm 2.02	0.09 \pm 0.04	0 \pm 0	64.12 \pm 0.98	2.21 \pm 0.43	0 \pm 0	
AddGraph	74.80 \pm 1.98	1.63 \pm 1.19	0.92 \pm 0.15	58.37 \pm 4.28	0.12 \pm 0.05	0 \pm 0	66.35 \pm 1.76	2.52 \pm 0.39	0 \pm 0	
STRGNN	72.87 \pm 3.31	2.24 \pm 2.01	0 \pm 0	59.26 \pm 3.14	0.10 \pm 0.03	0 \pm 0	63.47 \pm 2.05	1.98 \pm 0.37	0 \pm 0	
Taddy	75.40 \pm 2.88	2.52 \pm 1.41	1.34 \pm 0.17	61.04 \pm 2.33	0.14 \pm 0.06	0.10 \pm 0.05	67.02 \pm 1.64	3.83 \pm 0.41	0 \pm 0	
SAD	79.84 \pm 1.91	5.12 \pm 2.03	4.25 \pm 3.84	62.98 \pm 2.05	0.17 \pm 0.05	0.76 \pm 0.48	71.25 \pm 0.77	6.74 \pm 0.52	3.12 \pm 1.21	
GeneralDyG	77.52 \pm 1.05	3.15 \pm 0.87	1.06 \pm 1.41	61.43 \pm 1.48	0.15 \pm 0.03	0 \pm 0	70.12 \pm 0.83	5.31 \pm 0.64	0 \pm 0	
JODIE	80.23 \pm 1.39	1.87 \pm 1.02	0 \pm 0	55.93 \pm 5.06	0.13 \pm 0.03	0 \pm 0	72.12 \pm 0.84	2.40 \pm 0.64	0 \pm 0	
DyRep	83.89 \pm 1.03	2.60 \pm 0.31	0 \pm 0	58.83 \pm 2.95	0.14 \pm 0.02	0 \pm 0	72.21 \pm 0.25	3.56 \pm 0.04	0 \pm 0	
TGN	85.51 \pm 1.12	3.80 \pm 1.47	0.96 \pm 1.32	64.31 \pm 0.72	0.14 \pm 0.01	0 \pm 0	76.63 \pm 0.98	6.47 \pm 0.15	0 \pm 0	
TGAT	76.93 \pm 1.14	2.78 \pm 1.04	0.46 \pm 1.03	61.58 \pm 1.72	0.13 \pm 0.01	0 \pm 0	69.05 \pm 0.92	4.86 \pm 0.41	0 \pm 0	
TCL	77.69 \pm 0.74	5.38 \pm 1.21	2.41 \pm 0.0	60.47 \pm 2.13	0.22 \pm 0.21	0 \pm 0	72.51 \pm 1.76	7.87 \pm 0.71	0 \pm 0	
CAWN	78.97 \pm 0.56	4.96 \pm 0.72	1.44 \pm 1.32	65.29 \pm 0.92	0.18 \pm 0.03	0.14 \pm 0.32	72.63 \pm 0.39	7.58 \pm 0.24	0 \pm 0	
GraphMixer	76.19 \pm 2.29	2.80 \pm 1.65	1.67 \pm 3.73	60.11 \pm 3.61	0.13 \pm 0.02	0 \pm 0	71.03 \pm 0.52	5.32 \pm 1.07	0 \pm 0	
DyGFormer	85.58 \pm 1.25	2.58 \pm 0.72	0.48 \pm 1.06	66.70 \pm 2.09	0.25 \pm 0.11	0 \pm 0	72.63 \pm 0.33	6.20 \pm 0.36	0 \pm 0	
FreeDyG	77.22 \pm 4.21	3.01 \pm 1.19	1.26 \pm 0.73	63.99 \pm 2.76	0.19 \pm 0.04	0 \pm 0	73.10 \pm 0.71	5.91 \pm 0.92	0 \pm 0	
SDGAD (TCL)	80.36 \pm 0.69	5.41\pm1.23	8.34\pm2.72	62.22 \pm 0.95	0.49 \pm 0.26	2.74 \pm 1.86	72.87 \pm 1.40	7.89 \pm 0.38	7.15\pm0.64	
SDGAD (CAWN)	80.84 \pm 0.65	5.15 \pm 0.79	7.41 \pm 3.04	66.81 \pm 1.08	0.57 \pm 0.05	3.28\pm2.02	73.02 \pm 0.41	8.62\pm0.25	6.74 \pm 0.53	
SDGAD (DyGFormer)	86.60\pm1.20	3.71 \pm 0.77	4.15 \pm 2.06	67.24\pm1.12	0.88\pm0.11	3.15 \pm 1.11	73.25\pm0.36	6.39 \pm 0.48	5.86 \pm 0.77	

Table 1: Performance comparison on datasets with real anomalies. Results are mean \pm standard deviation, with all values scaled by 100. The best metric is highlighted in bold.

remains small, suggesting that task-specific designs for DGAD add only limited benefits. A key reason is that both categories concentrate on aggregating temporal structural information to obtain expressive representations, while giving less emphasis to constructing clear and robust decision boundaries for anomaly detection. By comparison, our framework consistently outperforms all competing baselines. For example, when built on top of TCL, our framework improves F1 by a large margin while maintaining strong AUROC and AP performance. Similar gains are observed when using other CTDG backbones such as CAWN and DyGFormer, indicating that the improvements are not tied to a specific encoder design. On average, SDGAD yields significant improvements over the best competing baselines across all metrics, confirming its effectiveness.

We also experiments on datasets with synthetic anomalies, with the result shown in Table 2. Note that synthetic anomalies may contain both normal and abnormal interactions for the same node pair within a single snapshot. Since DTDG methods discard temporal order, they cannot resolve such conflicts and are therefore unsuitable. The results again support our findings: general CTDG models often achieve reasonable AUROC but suffer from low F1, reflecting weak decision boundaries. In contrast, SDGAD consistently delivers substantial gains across all backbones, markedly boosting F1 while maintaining or improving AUROC and AP. The improvements hold for TCL, CAWN, and DyGFormer, with the latter achieving the strongest overall results. Taken together, these results demonstrate that SDGAD complements diverse CTDG models and consistently enhances their anomaly detection capability in a backbone-agnostic manner.

5.2 ABLATION STUDIES AND QUALITATIVE RESULTS

To verify the effectiveness of each design, we conduct ablation studies on the Wikipedia and MOOC datasets. We designed three variants including (1) **w/o Res** which removes the residual representation encoding and directly uses the representation computed with both historical and current interaction information. (2) **w/o \mathcal{L}_{RR}** which removes the restriction loss applied to the residual representations of normal samples. (3) **w/o \mathcal{L}_{BO}** which replaces the proposed bi-boundary optimization with single-boundary optimization.

As shown in Table 3, removing the residual representation **w/o Res** results in the most severe performance degradation: all metrics drop accompanied by a substantial increase in standard deviations. It demonstrates that residual representations play an indispensable role, as they encode discriminative signals that are essential for anomaly detection. For **w/o \mathcal{L}_{RR}** , AUROC and AP remain close to those of the full model, while F1 declines markedly. The reason is that, without the restriction imposed

378 379 380 381 382 383 384 385 386 387 388 389	Methods	UCI			Enron			LastFM		
		AUROC	AP	F1	AUROC	AP	F1	AUROC	AP	F1
SAD		81.12 \pm 0.75	6.05 \pm 3.42	2.93 \pm 2.88	77.46 \pm 1.12	5.01 \pm 2.55	2.11 \pm 3.66	79.52 \pm 2.64	5.77 \pm 3.91	3.08 \pm 1.27
GeneralDyG		78.21 \pm 0.88	4.51 \pm 1.07	1.27 \pm 0.65	73.92 \pm 2.31	3.92 \pm 1.98	0.84 \pm 1.12	75.66 \pm 1.02	4.33 \pm 0.92	1.05 \pm 0.73
JODIE		75.08 \pm 3.11	3.06 \pm 0.74	0.62 \pm 0.48	70.14 \pm 1.42	2.77 \pm 0.81	0.38 \pm 0.33	72.41 \pm 2.08	3.12 \pm 0.66	0.71 \pm 0.57
DyRep		76.92 \pm 1.27	3.59 \pm 0.95	0.91 \pm 0.52	72.06 \pm 1.98	3.21 \pm 1.07	0.64 \pm 0.49	74.19 \pm 0.94	3.74 \pm 1.12	0.98 \pm 0.61
TGN		84.63 \pm 0.54	5.43 \pm 2.12	1.46 \pm 1.15	79.92 \pm 0.63	5.03 \pm 1.26	1.12 \pm 0.88	81.05 \pm 0.71	5.39 \pm 1.83	1.31 \pm 0.97
TGAT		79.51 \pm 1.72	4.65 \pm 1.08	1.08 \pm 0.91	75.77 \pm 1.06	4.06 \pm 0.92	0.95 \pm 0.74	78.21 \pm 0.93	4.98 \pm 1.35	1.24 \pm 0.88
TCL		81.56 \pm 0.91	7.18 \pm 2.98	2.24 \pm 2.63	77.41 \pm 1.42	5.84 \pm 2.01	1.73 \pm 1.54	79.61 \pm 1.15	5.97 \pm 1.74	2.01 \pm 1.92
CAWN		80.84 \pm 2.67	5.79 \pm 1.15	1.92 \pm 1.41	83.66 \pm 0.82	6.31 \pm 3.11	2.37 \pm 3.88	80.22 \pm 1.76	5.88 \pm 1.08	2.06 \pm 0.94
GraphMixer		79.74 \pm 1.03	4.86 \pm 3.01	1.57 \pm 2.04	76.23 \pm 1.61	4.39 \pm 0.97	1.31 \pm 0.76	78.96 \pm 2.55	5.32 \pm 3.42	1.69 \pm 2.08
DyGFormer		86.07 \pm 0.49	5.88 \pm 1.24	1.98 \pm 1.01	81.73 \pm 0.57	5.43 \pm 0.95	1.64 \pm 0.87	82.94 \pm 0.62	5.77 \pm 1.08	1.82 \pm 1.12
FreeDyG		81.29 \pm 1.45	5.03 \pm 2.63	1.71 \pm 1.99	77.12 \pm 0.96	4.72 \pm 1.04	1.39 \pm 0.85	78.86 \pm 1.58	4.97 \pm 1.73	1.61 \pm 1.42
SDGAD (TCL)		84.70 \pm 0.82	8.90\pm2.20	4.35\pm1.55	80.42 \pm 1.18	6.25 \pm 1.42	3.25 \pm 1.05	83.95 \pm 0.91	7.55\pm2.30	4.72\pm1.46
SDGAD (CAWN)		82.41 \pm 1.14	6.35 \pm 1.28	3.05 \pm 1.12	85.64 \pm 0.72	7.95\pm2.35	4.55\pm2.05	82.71 \pm 1.29	6.38 \pm 1.01	3.66 \pm 1.58
SDGAD (DyGFormer)		88.72\pm0.44	7.05 \pm 1.63	3.18 \pm 1.41	86.02\pm0.56	6.15 \pm 1.77	4.72 \pm 1.69	86.45\pm0.59	6.81 \pm 1.34	4.48 \pm 2.02

Table 2: Performance comparison on datasets with synthetic anomalies. Results are mean \pm standard deviation, with all values scaled by 100. The best results are highlighted in bold.

on normal residuals, the residual space becomes scale-inconsistent, making it difficult to separate anomalies with small residuals. Consequently, although the relative ranking of samples is largely preserved (yielding stable AUROC and AP), the misaligned decision boundary causes a noticeable drop in F1. In the case of **w/o** \mathcal{L}_{BO} , AUROC and AP change little, whereas F1 drops on average and fluctuates more. This suggests that although the overall score distribution is preserved, the lack of a decision margin makes boundary cases less stable. The bi-boundary optimization mitigates this issue by introducing such a margin, thereby reducing ambiguity.

To intuitively illustrate the effectiveness of each component, we visualize the log-likelihood distributions of normal and anomalous samples under different variants in Figure 3. The experiment is conducted on the *Wikipedia* dataset with TCL as the base encoder. In Figure 3(a), the left plot corresponds to baseline without any components, where the distributions of normal and anomalous samples heavily overlap, reflecting poor discriminability. When residual representations are included but the restriction is removed (**w/o** \mathcal{L}_{RR} , Figure 3(a), right), the overlap is reduced, yet normal samples remain scattered. Figure 3(b), left, shows the effect of **w/o** \mathcal{L}_{BO} . Here the normal distribution becomes more compact and separation improves, but some anomalies still cluster near the boundary due to the lack of explicit optimization in likelihood space. Finally, in Figure 3(b) right, the full framework yields a concentrated normal distribution at high-likelihood values, with anomalies clearly shifted toward low-likelihood regions, forming a sharp decision boundary.

415 416 417	Variant	Wikipedia			MOOC		
		AUROC	AP	F1	AUROC	AP	F1
SDGAD(TCL)		80.36\pm0.69	5.41\pm1.23	8.34\pm2.72	72.87\pm1.40	7.89\pm0.38	7.15\pm0.64
w/o Res		77.79 \pm 3.17	3.83 \pm 2.48	5.29 \pm 5.69	69.14 \pm 2.48	5.14 \pm 2.48	6.58 \pm 2.48
w/o \mathcal{L}_{RR}		79.44 \pm 0.80	5.33 \pm 1.47	6.01 \pm 0.72	71.02 \pm 1.28	7.41 \pm 0.62	5.96 \pm 0.81
w/o \mathcal{L}_{BO}		80.36 \pm 1.00	5.38 \pm 1.32	7.41 \pm 3.29	72.54 \pm 1.35	7.56 \pm 0.55	6.42 \pm 0.97
TCL		77.69 \pm 0.74	5.28 \pm 1.21	2.41 \pm 0.00	72.51 \pm 1.76	7.87 \pm 0.71	0 \pm 0

Table 3: Ablation studies on Wikipedia and MOOC.

5.3 HYPER-PARAMETER STUDY

In this section, we analyze two hyperparameters that are critical to the performance of our framework. The first is L , which controls the number of sampled historical neighbors during the residual representation encoding stage. The second parameter is α , which determines the position of the normal boundary as the α -th percentile of the sorted normal log-likelihood distribution \mathcal{D}_n . We conduct experiments with SDGAD(TCL), varying $L \in \{2, 5, 10, 20, 32\}$ and $\alpha \in \{0.001, 0.005, 0.01, 0.05, 0.1\}$. The experimental results are summarized in Tables 4a and 4b.

Figure 3: Visualization of log-likelihood distributions under different ablation variants. (a) Left: baseline without any components; Right: adding residual representations but without restriction. (b) Left: with representation restriction but without bi-boundary optimization; Right: full framework.

L	Wikipedia			MOOC			α	Wikipedia			MOOC			
	AUROC	AP	F1	AUROC	AP	F1		AUROC	AP	F1	AUROC	AP	F1	
								2	5	10	20	32		
80.36±0.69	5.41±1.23	8.34±2.72	65.75±0.72	3.26±0.19	8.74±0.54	0.001	81.12±1.24	5.68±1.61	5.40±3.10	71.28±1.42	6.93±0.95	7.42±2.81		
83.76±0.49	5.36±0.53	5.33±3.23	68.51±1.86	3.33±0.16	4.27±1.83	0.005	80.77±0.84	5.68±1.09	4.68±1.83	71.88±0.96	7.40±0.27	6.65±0.66		
85.94±0.74	4.72±1.33	4.43±3.44	70.31±0.29	6.46±0.56	7.46±0.79	0.01	80.36±0.69	5.41±1.23	8.34±2.72	72.87±1.40	7.89±0.38	7.15±0.64		
87.22±0.76	4.94±0.85	4.67±4.04	<u>72.87±1.40</u>	<u>7.89±0.38</u>	<u>7.15±0.64</u>	0.05	79.87±0.42	5.39±1.09	6.37±3.91	72.91±0.45	7.12±0.40	5.43±0.43		
88.06±0.38	5.04±1.55	2.92±1.59	73.56±1.11	7.24±0.44	6.20±0.38	0.1	79.70±0.89	5.37±0.91	6.46±2.68	72.73±0.81	7.00±1.03	5.78±1.04		

(a) Performance with different values of L (b) Performance with different values of α

Table 4: Effect of hyperparameters L and α on performance. The best results are highlighted in bold and the underlined results correspond to those reported in the main results Table. 1.

For hyperparameter L , we can observe a consistent trend: as L increases, AUROC gradually improves while F1 consistently decreases. This phenomenon aligns well with the characteristics of residual representation. When more historical information is aggregated during representation encoding, the residual signals become diluted, thereby reducing the discriminative capacity between normal and abnormal samples and directly lowering F1 performance. At the same time, AUROC remains less sensitive to this dilution because it evaluates ranking consistency rather than absolute separability. Even when anomalies and normal scores converge and exhibit weaker discriminability, as long as anomalies tend to be ranked above normal samples, AUROC will continue to increase. This explains why larger L yields higher AUROC but lower F1.

The results for hyperparameter α highlight the importance of selecting an appropriate boundary. A large α shifts the normal boundary closer to the center of the normal distribution, improving generalization but weakening discrimination and misclassifying borderline normal samples. In contrast, a small α enforces an overly strict boundary, increasing the risk of overfitting. Empirically, on the Wikipedia dataset, AUROC achieves its maximum at $\alpha=0.001$, while F1 peaks at $\alpha=0.01$. On the MOOC dataset, AUROC is highest at $\alpha=0.01$, whereas F1 is maximized at $\alpha=0.001$. Overall, the results demonstrate a trade-off, where small α favors discriminability and large α favors robustness, with $\alpha = 0.01$ offering the best balance. We further provide a more comprehensive hyper-parameter analysis in the Appendix C.

6 CONCLUSION

In this paper, we introduced SDGAD, a supervised framework for dynamic graph anomaly detection that is both effective and generalizable. Our framework learns informative and discriminative representations through a residual representation with a restriction mechanism. Furthermore, we employ a normalizing flow to model the log-likelihood distribution of normal samples, enabling the detection of anomalies as out-of-distribution instances. Building on this distribution, we derive an explicit decision boundary and introduce a bi-boundary optimization strategy to further enhance generalization. Extensive evaluations demonstrate the superiority of our framework.

486 7 ETHICS STATEMENT

488 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
 489 perimentation was involved. All datasets used were sourced in compliance with relevant usage
 490 guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
 491 natory outcomes in our research process. No personally identifiable information was used, and no
 492 experiments were conducted that could raise privacy or security concerns. We are committed to
 493 maintaining transparency and integrity throughout the research process.

495 8 REPRODUCIBILITY STATEMENT

497 We have made every effort to ensure that the results presented in this paper are reproducible. All
 498 code and datasets have been made publicly available in an anonymous repository to facilitate repli-
 499 cation and verification. The experimental setup, including training steps, model configurations, and
 500 hardware details, is described in detail in the paper. We believe these measures will enable other
 501 researchers to reproduce our work and further advance the field.

503 9 LLM USAGE

505 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
 506 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
 507 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
 508 grammar checking, and enhancing the overall flow of the text.

510 It is important to note that the LLM was not involved in the ideation, research methodology, or
 511 experimental design. All research concepts, ideas, and analyses were developed and conducted by
 512 the authors. The contributions of the LLM were solely focused on improving the linguistic quality
 513 of the paper, with no involvement in the scientific content or data analysis.

514 The authors take full responsibility for the content of the manuscript, including any text generated
 515 or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
 516 and does not contribute to plagiarism or scientific misconduct.

518 REFERENCES

520 Tanya Y. Berger-Wolf and Jared Saia. A framework for analysis of dynamic social networks. In
 521 *Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and*
 522 *Data Mining*, KDD '06, pp. 523–528, New York, NY, USA, 2006. Association for Computing
 523 Machinery.

524 Lei Cai, Zhengzhang Chen, Chen Luo, Jiaoping Gui, Jingchao Ni, Ding Li, and Haifeng Chen. Struc-
 525 tural temporal graph neural networks for anomaly detection in dynamic graphs. In *Proceedings*
 526 *of the 30th ACM International Conference on Information & Knowledge Management*, CIKM
 527 '21, pp. 3747–3756, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
 528 9781450384469. doi: 10.1145/3459637.3481955.

530 Nan Chen, Zemin Liu, Bryan Hooi, Bingsheng He, Rizal Fathony, Jun Hu, and Jia Chen. Consis-
 531 tency training with learnable data augmentation for graph anomaly detection with limited super-
 532 vision. In *The Twelfth International Conference on Learning Representations*, 2024.

533 Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
 534 Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
 535 In *ICLR*, 2023.

537 Limeng Cui, Haeseung Seo, Maryam Tabar, Fenglong Ma, Suhang Wang, and Dongwon Lee. De-
 538 terrent: Knowledge guided graph attention network for detecting healthcare misinformation. In
 539 *Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data*
mining, pp. 492–502, 2020.

540 Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
 541 neural network-based fraud detectors against camouflaged fraudsters. In *Proceedings of the 29th*
 542 *ACM international conference on information & knowledge management*, pp. 315–324, 2020.

543

544 Derek Greene, Dónal Doyle, and Pádraig Cunningham. Tracking the evolution of communities in
 545 dynamic social networks. In *2010 International Conference on Advances in Social Networks*
 546 *Analysis and Mining*, pp. 176–183, 2010. doi: 10.1109/ASONAM.2010.17.

547

548 Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
 549 Graphmae: Self-supervised masked graph autoencoders. In *Proceedings of the 28th ACM*
 550 *SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '22, pp. 594–604, New
 551 York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393850. doi:
 552 10.1145/3534678.3539321.

553

554 Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect
 555 out-of-distribution data. *Advances in neural information processing systems*, 33:20578–20589,
 556 2020.

557

558 Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and
 559 Tom Goldstein. Flag: Adversarial data augmentation for graph neural networks. *arXiv preprint*
 560 *arXiv:2010.09891*, 2020.

561

562 Nishant Kumar, Pia Hanfeld, Michael Hecht, Michael Bussmann, Stefan Gumhold, and Nico
 563 Hoffmann. Inflow: Robust outlier detection utilizing normalizing flows. *arXiv preprint*
 564 *arXiv:2106.12894*, 2021.

565

566 Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
 567 poral interaction networks. In *KDD*, 2019.

568

569 Song Li, Jiandong Zhou, Chong MO, Jin LI, Geoffrey K. F. Tso, and Yuxing Tian. Motif-aware
 570 temporal gcn for fraud detection in signed cryptocurrency trust networks, 2023. URL <https://arxiv.org/abs/2211.13123>.

571

572 Yixin Liu, Shirui Pan, Yu Guang Wang, Fei Xiong, Liang Wang, Qingfeng Chen, and Vincent CS
 573 Lee. Anomaly detection in dynamic graphs via transformer. *IEEE Transactions on Knowledge*
 574 *and Data Engineering*, 35(12):12081–12094, 2023. doi: 10.1109/TKDE.2021.3124061.

575

576 Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng. Alleviating the inconsis-
 577 tency problem of applying graph neural network to fraud detection. In *Proceedings of the 43rd*
 578 *international ACM SIGIR conference on research and development in information retrieval*, pp.
 579 1569–1572, 2020.

580

581 Tim Postuvan, Claas Grohfeldt, Michele Russo, and Giulio Lovisotto. Learning-based link
 582 anomaly detection in continuous-time dynamic graphs. *Transactions on Machine Learn-
 583 ing Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=8imVCizVew>.

584

585 Jakub Reha, Giulio Lovisotto, Michele Russo, Alessio Gravina, and Claas Grohfeldt. Anomaly de-
 586 tection in continuous-time temporal provenance graphs. In *Temporal Graph Learning Workshop*
 587 @ *NeurIPS 2023*, 2023. URL <https://openreview.net/forum?id=88tGIxxhsf>.

588

589 Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
 590 Michael M. Bronstein. Temporal graph networks for deep learning on dynamic graphs. *CoRR*,
 591 abs/2006.10637, 2020.

592

593 Sheng Tian, Jihai Dong, Jintang Li, Wenlong Zhao, Xiaolong Xu, Baokun Wang, Bowen Song,
 594 Changhua Meng, Tianyi Zhang, and Liang Chen. Sad: semi-supervised anomaly detection on
 595 dynamic graphs. In *Proceedings of the Thirty-Second International Joint Conference on Artificial*
 596 *Intelligence, IJCAI '23*, 2023. ISBN 978-1-956792-03-4. doi: 10.24963/ijcai.2023/256.

597

598 Yuxing Tian, Aiwen Jiang, Qi Huang, Jian Guo, and Yiyuan Qi. Latent diffusion-based data aug-
 599 mentation for continuous-time dynamic graph model. In *Proceedings of the 30th ACM SIGKDD*
 600 *Conference on Knowledge Discovery and Data Mining*, pp. 2900–2911, 2024a.

594 Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dynamic graph
 595 model for link prediction. In *The Twelfth International Conference on Learning Representations*,
 596 2024b. URL <https://openreview.net/forum?id=82Mc5ilInM>.

597

598 Rakshit S. Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
 599 representations over dynamic graphs. In *ICLR*, 2019.

600

601 Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun Zhou,
 602 Shuang Yang, and Yuan Qi. A semi-supervised graph attentive network for financial fraud de-
 603 tector. In *2019 IEEE international conference on data mining (ICDM)*, pp. 598–607. IEEE,
 2019.

604

605 Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren
 606 Zhou, and Hongxia Yang. TCL: transformer-based dynamic graph modelling via contrastive
 607 learning. *CoRR*, abs/2105.07944, 2021a.

608

609 Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
 610 learning in temporal networks via causal anonymous walks. In *ICLR*, 2021b.

611

612 Yawei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang, Siddharth Bhatia, and Bryan
 613 Hooi. Adaptive data augmentation on temporal graphs. *NeurIPS*, 34:1440–1452, 2021c.

614

615 Da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan achan. Inductive representation
 616 learning on temporal graphs. In *ICLR*, 2020.

617

618 Xiao Yang, Xuejiao Zhao, and Zhiqi Shen. A generalizable anomaly detection method in dynamic
 619 graphs, 2024. URL <https://arxiv.org/abs/2412.16447>.

620

621 Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
 622 architecture and unified library. *CoRR*, abs/2303.13047, 2023.

623

624 Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk:
 625 A flexible deep embedding approach for anomaly detection in dynamic networks. In *Proceedings
 626 of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
 627 2672–2681, 2018.

628

629 Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu, Qingwei Lin, and
 630 Dongmei Zhang. Deeptralog: trace-log combined microservice anomaly detection through graph-
 631 based deep learning. In *Proceedings of the 44th International Conference on Software Engineering*,
 632 ICSE '22, pp. 623–634, New York, NY, USA, 2022. Association for Computing Machinery.
 doi: 10.1145/3510003.3510180.

633

634 Shilei Zhang, Toyotaro Suzumura, and Li Zhang. Dyngraphtrans: Dynamic graph embedding
 635 via modified universal transformer networks for financial transaction data. In *2021 IEEE In-
 636 ternational Conference on Smart Data Services (SMDS)*, pp. 184–191, 2021. doi: 10.1109/
 637 SMDS53860.2021.00032.

638

639 Yunhe Zhang, Yan Sun, Jinyu Cai, and Jicong Fan. Deep orthogonal hypersphere compression for
 640 anomaly detection. In *The Twelfth International Conference on Learning Representations*, 2024.
 URL <https://openreview.net/forum?id=cJs4oE4m9Q>.

641

642 Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification on
 643 graphs with graph neural networks. In *Proceedings of the 14th ACM international conference on
 644 web search and data mining*, pp. 833–841, 2021.

645

646 Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao. Addgraph: Anomaly detection in dynamic
 647 graph using attention-based temporal gcn. In *IJCAI*, volume 3, pp. 7, 2019.

648
649
650
651
A DETAILS OF DATASETS

Dataset	Nodes	Edges	Unique Edges	Timesteps	Edge Feature	Anomaly Ratio	Density
Wikipedia	9227	157474	18257	152757	172	0.14%	4.30E-03
Reddit	10984	672447	78516	669065	172	0.05%	8.51E-03
MOOC	7144	411749	178443	345600	4	0.99%	1.26E-02
LastFm	1980	1293103	154993	1283614	0	-	5.57E-01
Enron	184	125235	3125	22632	0	-	5.53E+00
UCI	1899	59835	20296	58911	0	-	3.66E-02

652
653
654
655
656
657
658
659
660
Table 5: Dataset statistics
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A.1 DESCRIPTION OF DATASETS

Wikipedia: A bipartite graph of user edits on Wikipedia pages, where nodes represent users and pages, and edges denote timestamped edits. Each interaction is associated with a 172-dimensional LIWC feature. Dynamic labels indicate whether the corresponding edit behavior is banned.

Reddit: A bipartite dataset of user posts on Reddit over one month. Nodes correspond to users and subreddits, with timestamped posting edges and 172-dimensional LIWC features. Dynamic labels indicate whether the corresponding post behavior is banned.

MOOC: A bipartite interaction network between students and course units (e.g., videos, problem sets). Edges represent student access behaviors with 4-dimensional features. Dynamic labels indicate whether the access behavior is banned.

LastFM: A bipartite graph of music listening activities over one month, where nodes are users and songs, and edges denote timestamped listening events.

Enron: An email communication network with about 50K messages exchanged among Enron employees over three years. No attributes are provided.

UCI: A communication network among students at the University of California, Irvine, with timestamped interactions at second-level granularity. No additional features are included.

A.2 PREPROCESSING PROCEDURES

We split all datasets into three chronological segments for training, validation, and testing with ratios of 40%-20%-40%. For the three datasets with real anomalies, the anomaly proportion remains relatively consistent across the training, validation, and testing sets. Specifically, For the Wikipedia dataset, the anomaly ratio remains very stable across subsets, with anomaly ratio of approximately 0.14% in train, 0.15% in validation, and 0.13% in test. For the MOOC dataset, the anomaly proportion is slightly higher overall, with anomaly ratio of about 1.14% in train, 0.86% in validation, and 0.9% in test. For the Reddit dataset, anomalies are extremely sparse, with anomaly ratio of 0.024% in train, 0.065% in validation, and 0.08% in test.

For the three datasets (LastFM, Enron, UCI) that do not contain real anomalies, we follow the anomaly synthesis strategy for dynamic graphs proposed by Postuvan et al. (2024) to inject synthetic anomalies. Specifically, Postuvan et al. (2024) introduce five strategies based on three fundamental anomaly types: (i) randomizing the destination node to create structural anomalies, (ii) randomizing attributes to create contextual anomalies, and (iii) randomizing edge timestamps to create temporal anomalies. Since these three datasets do not contain original node/edge attributes, the second type is not applicable. We therefore adopt only (i) and (iii) and construct three synthetic anomaly types: T (temporal anomaly), S (structural anomaly), and T-S (temporal and structural anomaly). To evaluate the generalization ability of our model, we inject 1% T anomalies into the training and validation sets, while in the test set we inject 0.33% of each anomaly type (T, S, T-S).

702
703 **B BASELINES**704 **B.1 DESCRIPTION OF BASELINES**705
706 **Netwalk** (Yu et al., 2018) A temporal random-walk embedding model that learns joint node–edge
707 representations. It maintains an online clustering of embedding trajectories and flags deviations as
708 anomalies.709 **AddGraph** (Zheng et al., 2019) A semi-supervised DTDG method that augments a temporal GCN
710 with attention to capture long- and short-term patterns, and trains with selective negative sampling
711 plus a margin loss to address label sparsity.712 **StrGNN** (Cai et al., 2021) A subgraph-based temporal model for edge anomalies. It extracts the
713 h -hop enclosing subgraph, labels node roles, applies graph convolution with SortPooling to obtain
714 fixed-size snapshot features, and uses a GRU to capture temporal dynamics.715
716 **Taddy** (Liu et al., 2023) A dynamic-graph transformer with a learnable node encoding that sepa-
717 rates global spatial, local spatial, and temporal terms. It samples edge-centered temporal substruc-
718 tures and uses attention to couple structural and temporal dependencies end to end.719
720 **SAD** (Tian et al., 2023) A semi-supervised CTDG method for DGAD. It first predicts node-level
721 anomaly scores and stores score–timestamp pairs in a memory bank to estimate a normal prior and
722 apply a deviation loss, and adds a pseudo-label contrastive module that forms score-based pseudo-
723 groups and treats intra-group pairs as positives.724
725 **GeneralDyG** (Yang et al., 2024) An unsupervised CTDG method for DGAD. It uses a GNN
726 extractor that embeds nodes, edges, and topology and alternates node- and edge-centric message
727 passing. It inserts special tokens into feature sequences to encode hierarchical relations between
728 anomalous events while balancing global temporal context and local dynamics, and trains on ego-
729 graph samples of anomalous events to reduce computation.730
731 **JODIE** (Kumar et al., 2019) An RNN-based model. For each interaction between v_i and v_j at
732 time t , it updates the temporal embedding of v_i using its previous state, the latest state of v_j , the link
733 features, and the time gap since the last interaction. Final embeddings are extrapolated via a linear
734 projection on the last observed state.735
736 **DyRep** (Trivedi et al., 2019) An RNN-based model with attention and a temporal point-process
737 head. After each event, node states are recurrently updated while attention aggregates neighbor
738 context, and the conditional intensity models event timing.739
740 **TGAT** (Xu et al., 2020) A temporal graph attention model that incorporates both structural and
741 temporal signals. Each node feature is concatenated with a trainable time encoding. Multi-head
742 self-attention is then applied over temporal neighbors to compute node representations.743
744 **TGN** (Rossi et al., 2020) A memory-augmented temporal GNN model which integrates a memory
745 mechanism with self-attention. Each node maintains a memory state that summarizes its history.
746 Upon observing an interaction, the states of involved nodes are updated through an RNN-based
747 memory updater. Final embeddings are computed by aggregating K-hop temporal neighborhoods
748 with self-attention.749
750 **GraphMixer** (Cong et al., 2023) A lightweight MLP-Mixer architecture. It adopts a fixed (non-
751 trainable) time encoding function, integrates it into an MLP-Mixer for edge encoding, and summa-
752 rizes neighbor information through mean pooling.753
754 **TCL** (Wang et al., 2021a) A transformer-based temporal graph model. It builds node interaction
755 sequences via breadth-first traversal on temporal subgraphs, applies a graph transformer to capture
756 joint structural–temporal dependencies, and uses cross-attention to model inter-node interactions.757
758 **CAWN** (Wang et al., 2021b) Combines RNNs and self-attention via temporal random walks. It
759 replaces raw node identities with hitting counts obtained from sampled walks, encodes these motifs
760 with RNNs, and aggregates multiple walks into a single node representation using self-attention.761
762 **DyGFormer** (Yu et al., 2023) A transformer operating on patched interaction sequences. It seg-
763 ments each node’s timeline into patches and learns temporal dependencies across patches to obtain
764 node representations.

756 **FreeDyG** (Tian et al., 2024b) A frequency-aware temporal graph model. It first encodes the
 757 time, node and edge information, augmented with a node-pair frequency encoding mechanism. A
 758 frequency-enhanced MLP-Mixer is then applied to capture periodicities and temporal shifts, then
 759 inverts and mixes to yield frequency-salient embeddings.
 760

761 B.2 IMPLEMENTATION DETAILS

763 We employ several CTDG-based methods that were originally proposed for fundamental dynamic
 764 graph tasks such as link prediction and node classification. Owing to the close connection between
 765 these tasks and anomaly detection, such methods can be extended to the anomaly detection setting.
 766 The only required modification concerns the treatment of event samples: in link prediction, the target
 767 edge of the current interaction cannot be used as input, whereas in anomaly detection it can. Thus,
 768 we follow Postuvan et al. (2024) and apply this adjustment to adapt general CTDG-based methods
 769 for anomaly detection.
 770

771 C HYPER-PARAMETERS STUDIES

774 We further study two important hyperparameters to analyze their effect on performance of SDGAD.
 775 The first is the decision margin τ , which is used in bi-boundary optimization. After the normal
 776 boundary is determined by α , the anomaly boundary is defined as $B_n - \tau$. Since the log-likelihood
 777 values are rescaled into the range $[-1, 0]$ by a normalization constant for stable optimization, τ can
 778 also be treated as a constant in $[0, 1]$. The second hyperparameter is the interval $[r_{\max}, r_{\min}]$ used
 779 in the representation restriction phase. According to Eq. 5, A is normalized to a constant range,
 780 r_{\max} and r_{\min} can also be treated as constants. Importantly, what matters is the interval between
 781 them rather than their absolute values. In our experiments, we fix $r_{\max} = 0.4$ and determine r_{\min}
 782 through a coefficient parameter, i.e., $r_{\min} = \text{coefficient} \times r_{\max}$. Therefore, we focus on exploring
 783 the effect of the coefficient (coe) on model performance. Specifically, we conduct experiments with
 784 SDGAD(TCL), varying $\tau \in \{0.05, 0.1, 0.15, 0.2\}$ and $\text{coe} \in \{0.99, 0.95, 0.90, 0.80\}$. The experimental
 785 results are summarized in Tables 6 and 7.

786 The results in Table 6 show that the decision margin τ has a non-trivial impact on performance. A
 787 proper margin provides sufficient separation between normal and anomalous boundaries, while mar-
 788 gins that are too narrow or too wide both lead to performance degradation. This reflects the central
 789 role of τ in balancing discrimination against robustness during boundary optimization. Specifically,
 790 $\tau = 0.1$ consistently delivers the strongest results across all metrics. A too-narrow margin (e.g.,
 791 $\tau = 0.05$) compresses the space between normal and anomaly boundaries, leaving insufficient room
 792 for effective separation and thereby depressing F1. In contrast, an overly wide margin (e.g., $\tau = 0.2$)
 793 relaxes the anomaly boundary excessively, which introduces noise and wrongly pushes borderline
 794 normal samples into the anomaly region. Interestingly, $\tau = 0.15$ offers moderate AUROC but still
 795 struggles on F1, showing that ranking consistency can be preserved even when classification pre-
 796 cision is compromised. For the coe in Table 7, we observe a similar trade-off. A tighter interval
 797 enforces stronger consistency among normal samples and thus favors discriminability, whereas a
 798 looser interval introduces flexibility but weakens the separation from anomalies. The results sug-
 799 gest that carefully tuning this interval is crucial for achieving a good balance between precision and
 800 generalization.

τ	Wikipedia			MOOC		
	AUROC	AP	F1	AUROC	AP	F1
0.05	80.26 \pm 0.95	4.52 \pm 1.21	5.06 \pm 3.49	71.92 \pm 1.10	7.10 \pm 0.18	5.77 \pm 0.85
0.1	80.36\pm0.69	5.41\pm1.23	8.34\pm2.72	72.87\pm1.40	7.89\pm0.38	7.15\pm0.64
0.15	80.18 \pm 1.15	5.08 \pm 1.60	5.72 \pm 2.62	72.32 \pm 1.22	6.67 \pm 1.13	5.77 \pm 1.44
0.2	77.26 \pm 6.33	3.57 \pm 2.17	5.07 \pm 3.57	72.02 \pm 1.53	7.01 \pm 0.37	5.91 \pm 1.22

807 Table 6: Effect of hyperparameter τ on performance. The best results are highlighted in bold and
 808 the underlined results correspond to those reported in the Table. 1.
 809

coe	Wikipedia			MOOC		
	AUROC	AP	F1	AUROC	AP	F1
0.99	80.36 \pm 0.69	5.41 \pm 1.23	8.34\pm2.72	72.87 \pm 1.40	7.89\pm0.38	7.15\pm0.64
0.95	80.29 \pm 1.74	5.28 \pm 1.76	3.51 \pm 0.81	72.57 \pm 0.48	7.18 \pm 0.34	7.02 \pm 0.80
0.90	80.77 \pm 0.72	5.57\pm1.69	5.79 \pm 1.85	72.98\pm0.95	7.24 \pm 0.44	6.02 \pm 0.29
0.80	81.15\pm0.68	5.43 \pm 1.70	3.97 \pm 0.67	72.63 \pm 0.87	7.40 \pm 0.27	6.65 \pm 0.66

Table 7: Effect of hyperparameter coe on performance. The best results are highlighted in bold and the underlined results correspond to those reported in the Table. 1.

D LOSS ANALYSIS

D.1 SENSITIVITY OF BALANCING THE LOSS TERMS

Our framework jointly optimizes three objectives: the maximum likelihood loss \mathcal{L}_{ML} , the restriction loss \mathcal{L}_{RR} , and the bi-boundary optimization loss \mathcal{L}_{BO} . Since \mathcal{L}_{ML} is the basic training objective for the normalizing flow, we fix its weight to 1 and introduce λ_1 and λ_2 as the weights for \mathcal{L}_{BO} and \mathcal{L}_{RR} , respectively. Table 8 reports the results of varying these coefficients. Overall, performance remains relatively stable when λ_1 and λ_2 are set within a moderate range (e.g., 1/0.1, 1/0.5, 1/0.7). On Wikipedia, \mathcal{L}_{BO} plays a central role, as reducing its weight ($\lambda_1 = 0.5$) causes substantial performance drops, whereas settings with $\lambda_1 = 1$ achieve consistently higher AUROC and F1. By contrast, on MOOC, $\lambda_1 = 0.5$ yields the strongest results, suggesting that a lighter weight on \mathcal{L}_{BO} helps avoid overfitting. For \mathcal{L}_{RR} , moderate changes in λ_2 generally have a weaker effect, but excessive weighting ($\lambda_2 = 2$) degrades performance across both datasets, likely due to over-constraining the residual space.

Notably, there is no configuration simultaneously maximizes all metrics. For example, $\lambda_1 = 1, \lambda_2 = 0.1$ achieves the best AUROC on Wikipedia, while $\lambda_1 = 1, \lambda_2 = 0.5$ yields higher AP and F1 with more stable variance. Thus, we adopt $\lambda_1 = 1, \lambda_2 = 0.5$ as the best setting for wikipedia. This choice reflects a deliberate trade-off: the reported results in our experiments are not necessarily the absolute optimum for any single metric, but rather represent a balanced configuration that ensures stable and robust performance across all evaluation metrics.

λ_1/λ_2	Wikipedia			MOOC		
	AUROC	AP	F1	AUROC	AP	F1
0.5/0.5	71.73 \pm 8.80	4.08 \pm 3.17	4.18 \pm 3.93	72.87\pm1.40	7.89\pm0.38	7.15 \pm 0.64
1/0.1	80.67\pm1.14	4.47 \pm 0.74	8.32 \pm 2.00	70.02 \pm 1.15	5.22 \pm 1.26	4.74 \pm 4.92
1/0.5	80.36 \pm 0.69	5.41\pm1.23	8.34\pm2.72	70.48 \pm 0.76	5.37 \pm 1.14	7.69\pm4.52
1/0.7	80.64 \pm 0.47	5.33 \pm 1.47	6.41 \pm 3.08	66.10 \pm 7.71	4.30 \pm 2.74	4.90 \pm 5.27
1/1	76.65 \pm 9.03	4.71 \pm 2.19	6.78 \pm 4.27	70.87 \pm 0.51	5.45 \pm 0.73	6.24 \pm 2.01
1/2	74.91 \pm 8.65	4.01 \pm 2.90	4.65 \pm 4.48	70.75 \pm 0.82	5.80 \pm 1.54	6.62 \pm 1.18

Table 8: Results when varying different λ_1/λ_2 values for balancing loss terms.

D.2 ERROR BOUND ANALYSIS

Proposition 1. Assume that $\Phi_{\theta^*} \in \operatorname{argmin}_{\theta \in \Theta} \{\mathcal{L}_{\mathcal{ML}} + \lambda_1 \mathcal{L}_{\mathcal{BO}}\}$. That is, Φ_{θ^*} corresponds to the optimal parameters minimizing the joint objective of the maximum-likelihood loss and the bi-boundary optimization loss. Then we have that

$$\begin{aligned}
& \mathbb{E}_{y_i=0}[\max((\mathcal{B}'_n - \log[p(x_i)]), 0)] + \mathbb{E}_{y_j=1}[\max((\log[p(x_j)] - \mathcal{B}'_a), 0)] \\
& \leq (\mathcal{B}_n - \mathcal{B}_a)\mathcal{L}_{\mathcal{BO}}(\Phi_{\theta^*}) + \frac{N}{(N+M)}[\max(1 + \mathcal{B}'_n, -\mathcal{B}'_a)] \\
& \leq \frac{\left(\frac{d}{2}\log(2\pi) - \frac{1}{2}\right)(\mathcal{B}_n - \mathcal{B}_a)}{\lambda} + \frac{N}{(N+M)}
\end{aligned} \tag{9}$$

where $y = 0$, $y = 1$ denote normal and anomalous labels, $\mathcal{B}'_n = \mathcal{B}_n - \epsilon$, $\mathcal{B}'_a = \mathcal{B}_a + \epsilon$, $\epsilon \in (0, \mathcal{B}_n - \mathcal{B}_a)$, N and M are the number of normal and abnormal samples.

proof. Suppose we sort all samples (both normal and anomalous) by their log-likelihoods in descending order: $\log[p(x_1)] \geq \log[p(x_2)] \geq \dots \geq \log[p(x_{N+M})]$. Let $\mathcal{B}_n = \log[p(x_N)]$ denote the normal boundary induced by the N -th ranked sample, which corresponds to the threshold for classifying normal sample. Under a worst-case assumption, all top- N samples (which ideally should be normal) are misclassified, while the remaining M anomalous samples have log-likelihoods lying between \mathcal{B}_a and \mathcal{B}_n . In this scenario, the expected margin-violation error can be bounded as:

$$\begin{aligned} & \mathbb{E}_{y_i=0}[\max((\mathcal{B}'_n - \log[p(x_i)]), 0)] + \mathbb{E}_{y_j=1}[\max((\log[p(x_j)] - \mathcal{B}'_a), 0)] \\ & \leq (\mathcal{B}'_n - \mathcal{B}'_a)\mathcal{L}'_{\mathcal{BO}}(\Phi_{\theta^*}) + \frac{N}{(N+M)}[\max(1 + \mathcal{B}'_n, -\mathcal{B}'_a)] \\ & \leq (\mathcal{B}_n - \mathcal{B}_a)\mathcal{L}_{\mathcal{BO}}(\Phi_{\theta^*}) + \frac{N}{(N+M)} \end{aligned} \quad (10)$$

Here $\mathcal{L}'_{\mathcal{BO}}$ denotes the ℓ_0 norm based formulation of $\mathcal{L}_{\mathcal{BO}}$, which counts the number of samples violating the boundary constraints (i.e., the number of misclassified samples). It represents an idealized, non-differentiable version of $\mathcal{L}_{\mathcal{BO}}$, used only for theoretical analysis. The second inequality is obtained as $1 + \mathcal{B}'_n \leq 1$ and $-\mathcal{B}'_a \leq 1$ when $-1 \leq \mathcal{B}'_a < \mathcal{B}'_n \leq 0$ satisfies. Since Φ_{θ^*} is defined as the optimal parameter of the joint objective $\mathcal{L}_{\mathcal{ML}} + \lambda_1\mathcal{L}_{\mathcal{BO}}$, its objective value cannot be larger than that of any other candidate solution. In particular, consider an arbitrary reference solution $\Phi_{\theta'}$ such that $\mathcal{L}_{\mathcal{BO}}(\Phi_{\theta'}) = 0$. By the optimality of Φ_{θ^*} , we have:

$$\begin{aligned} \mathcal{L}_{\mathcal{ML}}(\Phi_{\theta^*}) + \lambda_1\mathcal{L}_{\mathcal{BO}}(\Phi_{\theta^*}) & \leq \mathcal{L}_{\mathcal{ML}}(\Phi_{\theta'}) + \lambda_1\mathcal{L}_{\mathcal{BO}}(\Phi_{\theta'}) \\ & = \mathcal{L}_{\mathcal{ML}}(\Phi_{\theta'}) \end{aligned} \quad (11)$$

We isolate $\mathcal{L}_{\mathcal{BO}}(\Phi_{\theta^*})$ as:

$$\begin{aligned} \mathcal{L}_{\mathcal{BO}}(\Phi_{\theta^*}) & \leq \frac{(\mathcal{L}_{\mathcal{ML}}(\Phi_{\theta'}) - \mathcal{L}_{\mathcal{ML}}(\Phi_{\theta^*}))}{\lambda_1} \\ & \leq \frac{\left(\frac{1}{2}\Phi_{\theta'}(x)^T\Phi_{\theta'}(x) - \frac{1}{2}\Phi_{\theta^*}(x)^T\Phi_{\theta^*}(x) + \frac{1}{2}\Phi_{\theta^*}(x)^T\Phi_{\theta^*}(x) + \frac{d}{2}\log(2\pi)\right)}{\lambda_1} \\ & \leq \frac{\frac{d}{2}\log(2\pi) - \frac{1}{2}}{\lambda_1} \end{aligned} \quad (12)$$

To obtain a tractable bound, we assume a worst-case initialization:

$$\Phi_{\theta'}(x)^T\Phi_{\theta'}(x) = -1 \quad (13)$$

This assumption gives the largest possible gap between $\Phi_{\theta'}$ and Φ_{θ^*} , and thus produces the loosest valid bound. By combining the above E.q.(10) and E.q.(12), we have that

$$\begin{aligned} & \mathbb{E}_{y_i=0}[\max((\mathcal{B}'_n - \log[p(x_i)]), 0)] + \mathbb{E}_{y_j=1}[\max((\log[p(x_j)] - \mathcal{B}'_a), 0)] \\ & \leq \frac{(\frac{d}{2}\log(2\pi) - \frac{1}{2})(\mathcal{B}_n - \mathcal{B}_a)}{\lambda_1} + \frac{N}{(N+M)} \end{aligned} \quad (14)$$

The above proposition highlights both the necessity and the effectiveness of the bi-boundary optimization loss $\mathcal{L}_{\mathcal{BO}}$. Ideally, increasing the weight λ_1 of $\mathcal{L}_{\mathcal{BO}}$ facilitates the convergence of the error bound toward zero. Moreover, the proposition implies that the presence of more anomalous samples can further enhance the reliability of discriminating between normal and abnormal samples.

D.3 ERROR BOUND ANALYSIS UNDER THE FULL OBJECTIVE

We now make explicit how the representation restriction loss L_{RR} contributes to the error through the geometry of the projected residuals. Recall that the restriction loss is

$$L_{RR} = (1 - y)\ell_{\text{int}}(x) + y\ell_{\text{anom}}(x)$$

where $y \in \{0, 1\}$ is the label, and for normal samples ($y = 0$) the *interval penalty* is

$$\ell_{\text{int}}(x) = \max(0, A(x) - r_{\max}) + \max(0, r_{\min} - A(x))$$

918 The anomalous part $\ell_{\text{anom}}(x)$ is always non-negative. We denote the expected interval penalty on
 919 normal samples by

$$920 \quad 921 \quad 922 \quad 923 \quad 924 \quad 925 \quad 926 \quad 927 \quad 928 \quad 929 \quad 930 \quad 931 \quad 932 \quad 933 \quad 934 \quad 935 \quad 936 \quad 937 \quad 938 \quad 939 \quad 940 \quad 941 \quad 942 \quad 943 \quad 944 \quad 945 \quad 946 \quad 947 \quad 948 \quad 949 \quad 950 \quad 951 \quad 952 \quad 953 \quad 954 \quad 955 \quad 956 \quad 957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971 \quad 972 \quad 973 \quad 974 \quad 975 \quad 976 \quad 977 \quad 978 \quad 979 \quad 980 \quad 981 \quad 982 \quad 983 \quad 984 \quad 985 \quad 986 \quad 987 \quad 988 \quad 989 \quad 990 \quad 991 \quad 992 \quad 993 \quad 994 \quad 995 \quad 996 \quad 997 \quad 998 \quad 999 \quad 1000$$

$$L_{RR}^{(0)} = \mathbb{E}_{y=0}[\ell_{\text{int}}(x)].$$

By construction $L_{RR}^{(0)} \leq L_{RR}$, since L_{RR} additionally includes the non-negative anomalous part. As in Appendix D.2, we define the margin-violation error as

$$\mathcal{E}_{\text{mv}} = \mathbb{E}_{y_i=0}[\max(B'_n - \log[p(x_i)], 0)] + \mathbb{E}_{y_j=1}[\max(\log[p(x_j)] - B'_a, 0)]$$

For notational convenience, we set $Z_i = \max(B'_n - \log[p(x_i)], 0)$ and $W_j = \max(\log[p(x_j)] - B'_a, 0)$ so that $\mathcal{E}_{\text{mv}} = \mathbb{E}_{y_i=0}[Z_i] + \mathbb{E}_{y_j=1}[W_j]$. Finally, let $C_B = \max(1 + B'_n, -B'_a)$ denote the constant used in Eq. (9) and we assume that the per-sample margin-violation on normal samples is uniformly bounded by a constant $C_{\text{mv}} > 0$, that is,

$$0 \leq Z_i \leq C_{\text{mv}} \quad \text{for all } i \text{ with } y_i = 0.$$

Then we can get the new proposition as follow:

Proposition 2. *Assume the setting of Proposition 1 and the uniform bound $0 \leq Z_i \leq C_{\text{mv}}$ for all normal samples. Then for any slack parameter $\delta > 0$, the margin-violation error satisfies*

$$936 \quad 937 \quad 938 \quad 939 \quad 940 \quad 941 \quad 942 \quad 943 \quad 944 \quad 945 \quad 946 \quad 947 \quad 948 \quad 949 \quad 950 \quad 951 \quad 952 \quad 953 \quad 954 \quad 955 \quad 956 \quad 957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971 \quad 972 \quad 973 \quad 974 \quad 975 \quad 976 \quad 977 \quad 978 \quad 979 \quad 980 \quad 981 \quad 982 \quad 983 \quad 984 \quad 985 \quad 986 \quad 987 \quad 988 \quad 989 \quad 990 \quad 991 \quad 992 \quad 993 \quad 994 \quad 995 \quad 996 \quad 997 \quad 998 \quad 999 \quad 1000$$

$$\mathcal{E}_{\text{mv}} \leq (B_n - B_a) L_{\text{BO}}(\Phi_{\theta^*}) + \frac{N}{N+M} C_B + \frac{C_{\text{mv}}}{\delta} L_{RR} \quad (15)$$

proof. For a fixed $\delta > 0$, we define the event

$$\mathcal{G}_\delta(x) = \{r_{\min} - \delta \leq A(x) \leq r_{\max} + \delta\}.$$

If $\mathcal{G}_\delta(x)$ does not hold for a normal sample, then either $A(x) > r_{\max} + \delta$ or $A(x) < r_{\min} - \delta$, and in both cases the distance from $A(x)$ to the interval $[r_{\min}, r_{\max}]$ is at least δ . By the definition of $\ell_{\text{int}}(x)$, this implies

$$\ell_{\text{int}}(x) = \max(0, A(x) - r_{\max}) + \max(0, r_{\min} - A(x)) \geq \delta.$$

Equivalently,

$$\ell_{\text{int}}(x) \geq \delta \cdot \mathbf{1}\{\neg \mathcal{G}_\delta(x)\} \quad \text{for } y = 0.$$

Taking expectations over normal samples gives

$$950 \quad 951 \quad 952 \quad 953 \quad 954 \quad 955 \quad 956 \quad 957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971 \quad 972 \quad 973 \quad 974 \quad 975 \quad 976 \quad 977 \quad 978 \quad 979 \quad 980 \quad 981 \quad 982 \quad 983 \quad 984 \quad 985 \quad 986 \quad 987 \quad 988 \quad 989 \quad 990 \quad 991 \quad 992 \quad 993 \quad 994 \quad 995 \quad 996 \quad 997 \quad 998 \quad 999 \quad 1000$$

$$L_{RR}^{(0)} = \mathbb{E}_{y=0}[\ell_{\text{int}}(x)] \geq \delta \mathbb{P}_{y=0}(\neg \mathcal{G}_\delta(x)),$$

and hence

$$953 \quad 954 \quad 955 \quad 956 \quad 957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971 \quad 972 \quad 973 \quad 974 \quad 975 \quad 976 \quad 977 \quad 978 \quad 979 \quad 980 \quad 981 \quad 982 \quad 983 \quad 984 \quad 985 \quad 986 \quad 987 \quad 988 \quad 989 \quad 990 \quad 991 \quad 992 \quad 993 \quad 994 \quad 995 \quad 996 \quad 997 \quad 998 \quad 999 \quad 1000$$

$$\mathbb{P}_{y=0}(\neg \mathcal{G}_\delta(x)) \leq \frac{1}{\delta} L_{RR}^{(0)} \leq \frac{1}{\delta} L_{RR}. \quad (16)$$

We split the normal contribution according to the radius event $\mathcal{G}_\delta(x)$:

$$957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971 \quad 972 \quad 973 \quad 974 \quad 975 \quad 976 \quad 977 \quad 978 \quad 979 \quad 980 \quad 981 \quad 982 \quad 983 \quad 984 \quad 985 \quad 986 \quad 987 \quad 988 \quad 989 \quad 990 \quad 991 \quad 992 \quad 993 \quad 994 \quad 995 \quad 996 \quad 997 \quad 998 \quad 999 \quad 1000$$

$$\mathbb{E}_{y_i=0}[Z_i] = \mathbb{E}_{y_i=0}[Z_i \mathbf{1}\{\mathcal{G}_\delta(x_i)\}] + \mathbb{E}_{y_i=0}[Z_i \mathbf{1}\{\neg \mathcal{G}_\delta(x_i)\}].$$

Using the uniform bound $0 \leq Z_i \leq C_{\text{mv}}$ and Eq. 16, we obtain

$$959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971 \quad 972 \quad 973 \quad 974 \quad 975 \quad 976 \quad 977 \quad 978 \quad 979 \quad 980 \quad 981 \quad 982 \quad 983 \quad 984 \quad 985 \quad 986 \quad 987 \quad 988 \quad 989 \quad 990 \quad 991 \quad 992 \quad 993 \quad 994 \quad 995 \quad 996 \quad 997 \quad 998 \quad 999 \quad 1000$$

$$\mathbb{E}_{y_i=0}[Z_i] \leq \mathbb{E}_{y_i=0}[Z_i \mathbf{1}\{\mathcal{G}_\delta(x_i)\}] + C_{\text{mv}} \mathbb{P}_{y=0}(\neg \mathcal{G}_\delta(x))$$

$$\leq \mathbb{E}_{y_i=0}[Z_i \mathbf{1}\{\mathcal{G}_\delta(x_i)\}] + \frac{C_{\text{mv}}}{\delta} L_{RR}. \quad (17)$$

Therefore, the total margin-violation error satisfies

$$964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971 \quad 972 \quad 973 \quad 974 \quad 975 \quad 976 \quad 977 \quad 978 \quad 979 \quad 980 \quad 981 \quad 982 \quad 983 \quad 984 \quad 985 \quad 986 \quad 987 \quad 988 \quad 989 \quad 990 \quad 991 \quad 992 \quad 993 \quad 994 \quad 995 \quad 996 \quad 997 \quad 998 \quad 999 \quad 1000$$

$$\mathcal{E}_{\text{mv}} = \mathbb{E}_{y_i=0}[Z_i] + \mathbb{E}_{y_j=1}[W_j]$$

$$\leq \left(\mathbb{E}_{y_i=0}[Z_i \mathbf{1}\{\mathcal{G}_\delta(x_i)\}] + \mathbb{E}_{y_j=1}[W_j] \right) + \frac{C_{\text{mv}}}{\delta} L_{RR}. \quad (18)$$

By construction,

$$969 \quad 970 \quad 971 \quad 972 \quad 973 \quad 974 \quad 975 \quad 976 \quad 977 \quad 978 \quad 979 \quad 980 \quad 981 \quad 982 \quad 983 \quad 984 \quad 985 \quad 986 \quad 987 \quad 988 \quad 989 \quad 990 \quad 991 \quad 992 \quad 993 \quad 994 \quad 995 \quad 996 \quad 997 \quad 998 \quad 999 \quad 1000$$

$$\mathbb{E}_{y_i=0}[Z_i \mathbf{1}\{\mathcal{G}_\delta(x_i)\}] \leq \mathbb{E}_{y_i=0}[Z_i],$$

so the bracketed term in Eq. 18 is bounded above by the full margin-violation error:

$$971 \quad 972 \quad 973 \quad 974 \quad 975 \quad 976 \quad 977 \quad 978 \quad 979 \quad 980 \quad 981 \quad 982 \quad 983 \quad 984 \quad 985 \quad 986 \quad 987 \quad 988 \quad 989 \quad 990 \quad 991 \quad 992 \quad 993 \quad 994 \quad 995 \quad 996 \quad 997 \quad 998 \quad 999 \quad 1000$$

$$\mathbb{E}_{y_i=0}[Z_i \mathbf{1}\{\mathcal{G}_\delta(x_i)\}] + \mathbb{E}_{y_j=1}[W_j] \leq \mathcal{E}_{\text{mv}}. \quad (19)$$

972 Proposition 1 states that for the flow Φ_{θ^*} minimizing $L_{\text{ML}} + \lambda_1 L_{\text{BO}}$ we have
 973

$$974 \quad \mathcal{E}_{\text{mv}} \leq (B_n - B_a) L_{\text{BO}}(\Phi_{\theta^*}) + \frac{N}{N+M} C_B. \quad (20)$$

975 Since the bracketed term in Eq. 18 is at most \mathcal{E}_{mv} , Eq. 20 implies
 976

$$978 \quad \mathbb{E}_{y_i=0}[Z_i \mathbf{1}\{\mathcal{G}_\delta(x_i)\}] + \mathbb{E}_{y_j=1}[W_j] \leq (B_n - B_a) L_{\text{BO}}(\Phi_{\theta^*}) + \frac{N}{N+M} C_B.$$

980 Substituting this into Eq. 18 yields
 981

$$982 \quad \mathcal{E}_{\text{mv}} \leq (B_n - B_a) L_{\text{BO}}(\Phi_{\theta^*}) + \frac{N}{N+M} C_B + \frac{C_{\text{mv}}}{\delta} L_{RR},$$

983 which is exactly Eq. 15.
 984

985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025