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ABSTRACT

Anomaly detection in dynamic graphs is critical for many real-world applications
but remains challenging because labeled anomalies are scarce. Most existing ap-
proaches rely on unsupervised or semi-supervised learning, which often struggle
to learn discriminative representations and generalize to unseen cases. To over-
come these issues, we propose SDGAD, a supervised framework with three main
components. First, we design a residual representation that highlights deviations
from historical patterns, providing strong anomaly signals. Second, we constrain
the residuals of normal samples within an interval defined by two co-centered hy-
perspheres, ensuring consistent scales while keeping anomalies separable. Third,
we use a normalizing flow to model the likelihood distribution of normal sam-
ples, treating anomalies as out-of-distribution points. Based on this distribution,
we derive an explicit decision boundary and further propose a bi-boundary opti-
mization strategy to boost generalization. Experiments on six datasets, covering
both real and synthetic anomalies, show that SDGAD consistently outperforms
diverse baselines across multiple evaluation metrics. The code is available at this
repository:https://anonymous.4open.science/r/SODA-7EFD/.

1 INTRODUCTION

Dynamic graph anomaly detection (DGAD) is vital for real-world applications such as detecting fi-
nancial fraud (Zhang et al., 2021; Li et al., 2023), abnormal social interactions (Berger-Wolf & Saia,
2006; Greene et al., 2010), cyberattacks (Zhang et al., 2022), and has therefore attracted increasing
research attention. Previous DGAD methods (Yu et al., 2018; Zheng et al., 2019; Cai et al., 2021;
Liu et al., 2023) rely on discrete-time dynamic graph (DTDG) representations, which capture tem-
poral evolution at the snapshot level but inevitably lose fine-grained temporal information. Recent
studies (Tian et al., 2023; Postuvan et al., 2024; Yang et al., 2024) employ continuous-time dynamic
graph (CTDG) representations to alleviate this issue. Nonetheless, both DTDG- and CTDG-based
DGAD methods still face a fundamental challenge: anomalies in real-world scenarios are far rarer
than normal instances, resulting in severe class imbalance.

To cope with the scarcity of labeled anomalies, most existing methods (Yu et al., 2018; Cai et al.,
2021; Liu et al., 2023; Postuvan et al., 2024; Yang et al., 2024) adopt unsupervised learning setting,
where models are trained only on normal or unlabeled data and then flag anomalies as deviations
from learned normal patterns. However, without explicit supervision, the resulting decision bound-
aries are often ambiguous, leading to poor discriminability. As illustrated in Figure 1 (a), anomaly
scores can collapse into a narrow low-valued range in which normal and anomalous samples are
largely indistinguishable. This limitation is particularly problematic in high-stakes domains such as
financial fraud detection, where the goal is to make precise binary decisions on individual samples
rather than to generate a ranking over a set of candidates. Semi-supervised approaches (Zheng et al.,
2019; Tian et al., 2023) attempt to leverage the few available labeled anomalies and augment them
with pseudo-labeled data. Yet pseudo labels are inherently noisy, and the observed available anoma-
lies usually cover only a limited subset of anomaly types. Consequently, these methods are prone to
overfitting the seen patterns, introducing bias and limiting generalization to unseen anomalies.

The above observations highlight a critical need for a DGAD method with stronger discriminability
and generalizability. Achieving this objective requires two essential capabilities: First, it must be ca-
pable of learning informative representations that provide anomaly-relevant signals with sufficiently
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Figure 1: Conceptual illustration. (a) Unsupervised methods often yield ambiguous decision bound-
aries, with anomaly scores compressed into a narrow range. (b) The objective of our method.

discriminability to distinguish anomalous behaviors. Second, it must be able to construct an explicit
and robust decision boundary. To this end, we propose an effective and generalizable Supervised
framework for DGAD (SDGAD). To learn informative representations, we introduce residual rep-
resentation, which captures the discrepancy between node’s embeddings computed with and with-
out the current interaction. Since anomalous behaviors in dynamic graphs often deviate from histori-
cal patterns, the residual representation explicitly emphasizes such deviations, providing a principled
signal for detection. However, different patterns of anomalies may yield residuals of varying scales.
To improve discriminability, we design a representation restriction mechanism that constrains the
residuals of normal samples within an interval bounded by two co-centered hyperspheres, while
keeping anomalies outside. Finally, we employ a normalizing flow to model the log-likelihood dis-
tribution of normal samples and identify anomalies as out-of-distribution instances. Building on
this distribution, we introduce a bi-boundary optimization strategy to construct explicit and robust
decision boundary. Our contributions are as follows:

• We introduce SDGAD, an effective and generalizable supervised framework for dynamic graph
anomaly detection.

• We propose a residual representation with restriction to learn discriminative representations and a
bi-boundary optimization strategy to construct explicit and robust decision boundary.

• We conduct extensive experiments on six datasets, comprising both datasets with real anomalies
and datasets with synthetic anomalies. Comprehensive evaluations demonstrate that our frame-
work achieves superior performance compared to diverse baselines.

2 RELATED WORK

2.1 ANOMALY DETECTION IN DYNAMIC GRAPHS

From a modeling perspective, existing dynamic graph anomaly detection approaches can be broadly
categorized into two types: DTDG-based and CTDG-based. DTDG-based approaches (Yu et al.,
2018; Zheng et al., 2019; Cai et al., 2021; Liu et al., 2023) treat dynamic graphs as sequences of
snapshots, where each snapshot is considered a static graph. However, due to fixed-interval rep-
resentation and coarse temporal granularity, these methods often lose critical temporal information
and fail to capture the continuous spatio-temporal dependencies essential for accurate anomaly de-
tection. To overcome these limitations, recent work has explored CTDG-based models (Postuvan
et al., 2024; Reha et al., 2023; Tian et al., 2023; Yang et al., 2024) which represent interactions
as event streams with continuous timestamps. Although CTDG alleviates the drawbacks of DTDG
by offering finer temporal resolution, the fundamental challenges of DGAD remain unresolved.
In particular, most approaches, whether DTDG- or CTDG-based, employ unsupervised learning
frameworks that train exclusively on normal samples. This paradigm yields ambiguous decision
boundaries, as the models lack explicit contrast between normal and anomalous patterns. Thus,
some semi-supervised approaches (Zheng et al., 2019; Tian et al., 2023) attempt to leverage the few
available anomaly labels by combining them with pseudo-labeled data. However, pseudo labels in-
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evitably introduce noise and the scarce anomaly labels typically reflect only a narrow set of patterns,
causing semi-supervised methods to overfit and limiting their generalization to unseen anomalies.

2.2 CLASS IMBALANCE

The extreme rarity of anomalies in real-world scenarios makes class imbalance a fundamental chal-
lenge in dynamic graph anomaly detection. Re-sampling and re-weighting strategies (Wang et al.,
2019; Cui et al., 2020; Dou et al., 2020; Liu et al., 2020), though effective on static graphs, are less
applicable in dynamic settings due to temporal dependencies and evolving relationships. Graph data
augmentation (Hou et al., 2022; Kong et al., 2020; Chen et al., 2024; Zhao et al., 2021) has been
explored as an alternative, yet most techniques are designed for static graphs, rely on node or edge
attributes that are often sparse or unavailable in dynamic graphs. Although recent augmentation
methods for dynamic graphs have been proposed (Tian et al., 2024a; Wang et al., 2021c), they rely
on empirical heuristics without guarantees that the generated anomalous samples faithfully capture
real anomaly characteristics. Consequently, enabling effective learning under such severe imbalance
remains a major open challenge in dynamic graph anomaly detection.

3 PRELIMINARIES

Notations. A dynamic graph is a time-dependent graph G = (V (t), E(t)), where V (t) and
E(t) denote the node and edge sets at timestamp t, respectively. In this paper, we adopt the
CTDG formulation, which represents the dynamic graph as an ordered stream of events G =
{ξ(t0) . . . ξ(tk) . . . ξ(tn)}nk=0 with nondecreasing timestamps t0 ≤ tk ≤ tn. Each event ξ(tk) =

(vi, vj , tk, e
tk
i,j) denotes an interaction between nodes vi and vj at timestamp tk with associated edge

feature etki,j . If the dynamic graph is non-attributed, we simply set the node and edge feature to zero
vectors. Multiple interactions may occur either between the same node pair at different times or
among different pairs at the same time. Each interaction is further annotated with a binary label
y ∈ {0, 1}, where 0 indicates normal and 1 anomalous. In practice, anomaly labels are highly
imbalanced, where the number of normal samples vastly exceeds that of anomalies.

Problem definition. Given an event ξ(t) and historical events before t, the goal is to design a
model that learns the representation for ξ(t) and assigns it a continuous anomaly score in [0, 1],
thereby quantifying its degree of abnormality and determining whether the event is anomalous.

Normalizing Flow provides exact density estimation by mapping an intractable data distribution
Q to a tractable latent distribution Z through an invertible transformation, which is implemented
as a composition of F invertible mappings: Φθ = ΦF ◦ · · · ◦ Φ1, where θ denotes the trainable
parameters. For an input x ∈ Q, its log-likelihood log[p(x)] can be computed as follow:

log[p(x)] = log pZ(Φθ(x)) +

F∑
f=1

log
∣∣ det JΦf

(xf−1)
∣∣ (1)

where JΦf
(xf−1) =

∂Φf (xf−1)
∂xf−1

is the Jacobian matrix, det denotes the determinant. In practice,
the latent distribution Z is typically assumed as a standard Gaussian. Thus, the parameters θ can
be optimized by maximizing the log-likelihoods across the training distribution Q. The loss can be
formulated as a maximum likelihood loss:

LML = Ex∼Q

[
d
2 log(2π) +

1
2Φθ(x)

TΦθ(x)−
F∑

f=1

log
∣∣det JΦf

(xf−1)
∣∣] (2)

4 METHODOLOGY

Figure 2 provides an overview of the proposed framework, which comprises three main components:
residual representation encoding, representation restriction, and bi-boundary optimization. They are
described in detail in the following subsections.
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Figure 2: Overview of our proposed framework. We first encode each sample’s residual repre-
sentation by contrasting two node-pair embeddings. Then the residual representations of normal
samples (green dots) are restricted into an interval region between two co-centered hypersphere,
while anomalous samples (red dots) are pushed outside. Finally, we use the normalizing flow to
model the log-likelihood distribution of normal samples and then the bi-boundary optimization is
used to learn an explicit and robust decision boundary.

4.1 RESIDUAL REPRESENTATION ENCODING

Instead of introducing a new encoder, our framework is designed to be compatible with the encoder
of any CTDG model. Since encoding mechanisms differ across models, we present a unified ab-
straction here, with model-specific implementations of the encoder enc(·) detailed in Appendix B.
Formally, given an interaction ξ(t) = (vi, vj , t, e

t
i,j)

1, the embedding of a target node at timestamp
t is computed by combining its historical interactions with the current one. Specifically, for node
vi, we sample its L historical neighbors together with their associated edges and timestamps and
append the current interaction (vj , ei,j , t). The resulting inputs are then fed into the encoder:

Et
i = enc({vl, eti,l, tl}Ll=1∥{vj , eti,j , t}) vl ∈ N<t(vi) (3)

where Et
i denotes the embedding of node vi at timestamp t. N<t(vi) is the set of sampled historical

neighbors of vi prior to t. The embedding of node vj is computed analogously.

In dynamic graphs, anomalies typically manifest as deviations from recent temporal or structural
patterns. Thus, effective detection should emphasize relational signals that capture such deviations.
Recall that the node embedding Et

i is obtained by aggregating both historical and current interac-
tions. While this aggregation captures long-term dependencies, it may obscure short-term irregu-
larities that are often most indicative of anomalies. To detect the irregularities, we introduce the
residual representation, defined as:

∆Et
i = Et

i − Et−

i = enc({vl, eti,l, tl}Ll=1∥{vj , eti,j , t})− enc({vl, eti,l, tl}Ll=1) (4)

This residual representation ∆Et
i measures the discrepancy between the node embedding com-

puted with and without the current interaction. Its norm remains small when the current interac-
tion conforms to historical patterns, but increases when deviations occur. This property aligns with
neighborhood-based principle in graph analysis: local consistency yields low representation differ-
ences, whereas anomalies induce larger ones. By suppressing stable components and emphasizing
novel temporal or structural variations, the residual representation serves as a discriminative signal
for anomaly detection. Then, the representation of the event ξ(t) can be obtained by concatenating
the residual representations of the two nodes: Et

i,j = ∆Et
i∥∆Et

j .

4.2 REPRESENTATION RESTRICTION

Although the residual representations provide informative anomaly-relevant signal, its effectiveness
is limited by the diversity of anomaly patterns. Different anomalies induce residuals of varying
scales: some lead to large residuals (e.g., interaction bursts), whereas others manifest only as small
residuals (e.g., mild timing irregularities). This scale variation makes it challenging to find a unified

1For notational clarity, we omit the subscript k in all subsequent formulations
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decision boundary to consistently distinguish normal samples from anomalies: a threshold suitable
for large residuals may miss subtle anomalies, while one tuned for smaller values may increase false
positives. To address this, we draw inspiration from Zhang et al. (2024) and propose a representa-
tion restriction strategy to constrain the residual representations of normal samples into an interval
region between two co-centered hyperspheres, while keeping anomalies outside. Specifically, we
first project the residual representation Et

i,j through a linear layer to obtain projected representation
Et′

i,j . The restriction loss is then defined as:

LRR =(1− y)
(
max(0, A− rmax) + max(0, rmin −A)

)︸ ︷︷ ︸
interval penalty

+ y
(
max(A− rmax) +MSE(Et′

i,j , E
t
i,j) + 1− cos(Et′

i,j , E
t
i,j)
)

︸ ︷︷ ︸
discrimination + consistency

(5)

where A =
√

∥Et′
i,j∥2 + 1 − 1 is a stabilized approximation of the L2 norm. rmin, rmax represent

the radii of the inner and outer co-centered hyperspheres that bound the normal region, respectively.
MSE(·) and cos(·) denote the mean square error function and cosine similarity function, respec-
tively. The first term, referred to as the interval penalty, is applied to normal samples and penal-
izes cases where A falls outside the interval [rmin, rmax]. This constraint encourages the projected
representation of normal samples to remain within a compact region of consistent scale, thereby
promoting the formation of a unified decision boundary. However, relying on this constraint alone
risks collapsing both normal and anomalous projected representation into the same region, reducing
their discriminability. Therefore, the second term is applied to anomalous samples and integrates
two objectives: (i) it encourages the projected representation of anomalous samples to remain close
to their initial residuals, rather than being mapped into the normal region. (ii) it enforces separation
by penalizing anomalies that fall within the interval region. Together, these terms compact the resid-
uals of normal samples while keeping anomalies separable in the latent space. This design provides
the foundation for establishing an explicit decision boundary and supports the model’s ability to
generalize to unseen anomaly types.

4.3 BI-BOUNDARY OPTIMIZATION

Building on the restricted representations, we can use a distribution estimator that models the dis-
tribution of normal samples and treats anomalies as out-of-distribution deviations. Specifically, we
employ normalizing flow to compute the exact log-likelihood log[p(x)] for each sample, as defined
in Equation 1. Since log-likelihood value can range in (−∞, 0], a normalization constant is ap-
plied to rescale them into the range [−1, 0] for more stable optimization. As training is conducted
in a batch-wise manner, we denote the log-likelihoods of normal and anomalous samples within a
batch as Dn = {log[p(xi)]}Ni=1 and Da = {log[p(xj)]}Mj=1, where N and M denote the number
of normal and anomalous samples in the batch. Then Dn can be regarded as an approximation of
the log-likelihood distribution of normal samples. As anomalies are defined relative to the normal
distribution, the decision boundary B can be naturally constructed on Dn.

A straightforward way is to set B as the α-th percentile of sorted normal log-likelihood distribution
Dn and identify samples with lower log-likelihoods as anomalies. However, probability density
tends to spread out in high-dimensional spaces (Kirichenko et al., 2020) and the bijective nature of
normalizing flow can map anomalies into the typical set of the latent space rather than the expected
tail (Kumar et al., 2021). As a result, anomalies may not consistently fall into low log-likelihood
regions and can even attain unexpectedly high log-likelihood value, making it difficult to establish a
robust decision boundary. Therefore, we propose a bi-boundary optimization strategy. Specifically,
we define a decision margin τ (e.g., τ = 0.1), refining the single boundary B into a normal boundary
Bn and an anomalous boundary Ba = Bn − τ . This margin construct a buffer zone that reduces
ambiguity near the boundary and improves robustness by preserving an explicit separation between
normal and anomalous regions. Accordingly, the optimization objective can be formulated as:

LBO =

N∑
i=1

|min(softplus(log[p(xi)]−Bn), 0)|+
M∑
j=1

|max(softplus(log[p(xj)]−Ba), 0)| (6)
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By minimizing LBO, the model enforces a clear margin between the log-likelihood of normal and
anomalous samples, constraining anomalous samples to [−∞,Ba] and normal samples to [Bn, 0].
Samples outside these regions are penalized in proportion to their deviation from the boundary,
encouraging normal samples to concentrate in high density areas while pushing anomalies further
away. Unlike hard losses that impose discontinuous penalties at the boundary, we adopt the softplus
function, softplus(x) = log(1 + ex), which scales penalties smoothly with the degree of violation.

Overall Loss Function. The overall training loss of our framework is the combination of the Eq. 2,
Eq. 5 and Eq. 6 as follows:

L = LML + λ1LBO + λ2LRR (7)
Here LML is the basic loss for training the normalizing flow, and it is computed only on normal
samples, since our objective is to maximize the likelihood of the normal data distribution. We also
provide sensitivity analysis of balancing the loss terms and error bound analysis in Appendix D.

Anomaly Scoring. We define the anomaly score for sample x as the complement of its log-
likelihood, where higher values correspond to stronger deviations from the distribution of normal
samples. Owing to the monotonicity of the exponential function exp(·), the anomaly score s for a
sample x can be equivalently written as:

s(x) = 1− exp(log[p(x)]) (8)

5 EXPERIMENTS

Datasets. We conduct experiments on datasets with real-world labeled anomalies as well as on
benign datasets with synthetic anomalies. The datasets with real-world labeled anomalies include
Wikipedia, Reddit, and MOOC, while the benign datasets include Enron, UCI, and LastFM. Detailed
descriptions, statistics, and preprocessing procedures are provided in Appendix A.

Baselines. We compare our framework against a diverse set of baselines for DGAD, which fall
into three categories. (1) DTDG-based methods designed for DGAD, including AddGraph (Zheng
et al., 2019), StrGNN (Cai et al., 2021), TADDY (Liu et al., 2023) and Netwalk (Yu et al., 2018).
(2) CTDG-based methods designed for DGAD, including SAD (Tian et al., 2023) and Gener-
alDyG (Yang et al., 2024) (3) Representative CTDG models originally proposed for tasks such as
link prediction but readily adaptable to anomaly detection, including JODIE (Kumar et al., 2019),
DyRep (Trivedi et al., 2019), TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), TCL (Wang et al.,
2021a), GraphMixer (Cong et al., 2023), CAWN (Wang et al., 2021b), DyGFormer (Yu et al., 2023),
and FreeDyG (Tian et al., 2024b). We provide detailed descriptions in Appendix B.

Experiment Settings. Previous studies rely exclusively on Area Under the Receiver Operating
Characteristic Curve (AUROC) as the evaluation metric. While useful as a ranking metric, AUROC
fails to assess a model’s capacity to clearly classify individual samples. In practice, it can remain
high remain high even when anomaly score of samples collapse into an indistinguishable low-valued
range as shown in Fig 1. To provide a comprehensive evaluation, we report results on three met-
rics: AUROC, F1 score and Average Precision (AP). All models are trained for up to 200 epochs
with early stopping (patience = 10) and the checkpoint achieving the best validation performance is
selected for testing. The batch size is fixed at 200 for all methods and datasets. Each experiment
is repeated five times and the average performance is reported to mitigate randomness. We perform
grid search over some hyper-parameters. The learning rate is varied in {1e−3, 1e−4, 1e−5}, weight
decay in {1e−1, 1e−2, 1e−3, 1e−4, 1e−5}.

5.1 MAIN RESULTS

Table 1 reports the results across all baselines on the datasets with real-world labeled anomalies.
From the results, we can observe that DTDG-based methods consistently yield the worst perfor-
mance across all datasets. This is because their reliance on snapshot-level modeling inevitably
discards fine-grained temporal information, which are essential for accurately capturing anomalous
behaviors in dynamic graphs. By contrast, both CTDG-based DGAD methods and representative
CTDG models achieve substantially stronger results. Notably, the performance gap between them
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Methods
Wikipedia Reddit MOOC

AUROC AP F1 AUROC AP F1 AUROC AP F1
Netwalk 73.10±2.12 1.28±1.14 0±0 59.18±2.02 0.09±0.04 0±0 64.12±0.98 2.21±0.43 0±0

AddGraph 74.80±1.98 1.63±1.19 0.92±0.15 58.37±4.28 0.12±0.05 0±0 66.35±1.76 2.52±0.39 0±0
STRGNN 72.87±3.31 2.24±2.01 0±0 59.26±3.14 0.10±0.03 0±0 63.47±2.05 1.98±0.37 0±0

Taddy 75.40±2.88 2.52±1.41 1.34±0.17 61.04±2.33 0.14±0.06 0.10±0.05 67.02±1.64 3.83±0.41 0±0

SAD 79.84±1.91 5.12±2.03 4.25±3.84 62.98±2.05 0.17±0.05 0.76±0.48 71.25±0.77 6.74±0.52 3.12±1.21
GeneralDyG 77.52±1.05 3.15±0.87 1.06±1.41 61.43±1.48 0.15±0.03 0±0 70.12±0.83 5.31±0.64 0±0

JODIE 80.23±1.39 1.87±1.02 0±0 55.93±5.06 0.13±0.03 0±0 72.12±0.84 2.40±0.64 0±0
DyRep 83.89±1.03 2.60±0.31 0±0 58.83±2.95 0.14±0.02 0±0 72.21±0.25 3.56±0.04 0±0
TGN 85.51±1.12 3.80±1.47 0.96±1.32 64.31±0.72 0.14±0.01 0±0 76.63±0.98 6.47±0.15 0±0

TGAT 76.93±1.14 2.78±1.04 0.46±1.03 61.58±1.72 0.13±0.01 0±0 69.05±0.92 4.86±0.41 0±0
TCL 77.69±0.74 5.38±1.21 2.41±0.0 60.47±2.13 0.22±0.21 0±0 72.51±1.76 7.87±0.71 0±0

CAWN 78.97±0.56 4.96±0.72 1.44±1.32 65.29±0.92 0.18±0.03 0.14±0.32 72.63±0.39 7.58±0.24 0±0
GraphMixer 76.19±2.29 2.80±1.65 1.67±3.73 60.11±3.61 0.13±0.02 0±0 71.03±0.52 5.32±1.07 0±0
DyGFormer 85.58±1.25 2.58±0.72 0.48±1.06 66.70±2.09 0.25±0.11 0±0 72.63±0.33 6.20±0.36 0±0

FreeDyG 77.22±4.21 3.01±1.19 1.26±0.73 63.99±2.76 0.19±0.04 0±0 73.10±0.71 5.91±0.92 0±0

SDGAD (TCL) 80.36±0.69 5.41±1.23 8.34±2.72 62.22±0.95 0.49±0.26 2.74±1.86 72.87±1.40 7.89±0.38 7.15±0.64
SDGAD (CAWN) 80.84±0.65 5.15±0.79 7.41±3.04 66.81±1.08 0.57±0.05 3.28±2.02 73.02±0.41 8.62±0.25 6.74±0.53

SDGAD (DyGFormer) 86.60±1.20 3.71±0.77 4.15±2.06 67.24±1.12 0.88±0.11 3.15±1.11 73.25±0.36 6.39±0.48 5.86±0.77

Table 1: Performance comparison on datasets with real anomalies. Results are mean ± standard
deviation, with all values scaled by 100. The best metric is highlighted in bold.

remains small, suggesting that task-specific designs for DGAD add only limited benefits. A key
reason is that both categories concentrate on aggregating temporal structural information to ob-
tain expressive representations, while giving less emphasis to constructing clear and robust decision
boundaries for anomaly detection. By comparison, our framework consistently outperforms all com-
peting baselines. For example, when built on top of TCL, our framework improves F1 by a large
margin while maintaining strong AUROC and AP performance. Similar gains are observed when
using other CTDG backbones such as CAWN and DyGFormer, indicating that the improvements
are not tied to a specific encoder design. On average, SDGAD yields significant improvements over
the best competing baselines across all metrics, confirming its effectiveness.

We also experiments on datasets with synthetic anomalies, with the result shown in Table 2. Note
that synthetic anomalies may contain both normal and abnormal interactions for the same node pair
within a single snapshot. Since DTDG methods discard temporal order, they cannot resolve such
conflicts and are therefore unsuitable. The results again support our findings: general CTDG mod-
els often achieve reasonable AUROC but suffer from low F1, reflecting weak decision boundaries.
In contrast, SDGAD consistently delivers substantial gains across all backbones, markedly boost-
ing F1 while maintaining or improving AUROC and AP. The improvements hold for TCL, CAWN,
and DyGFormer, with the latter achieving the strongest overall results. Taken together, these re-
sults demonstrate that SDGAD complements diverse CTDG models and consistently enhances their
anomaly detection capability in a backbone-agnostic manner.

5.2 ABLATION STUDIES AND QUALITATIVE RESULTS

To verify the effectiveness of each design, we conduct ablation studies on the Wikipedia and MOOC
datasets. We designed three variants including (1) w/o Res which removes the residual representa-
tion encoding and directly uses the representation computed with both historical and current inter-
action information. (2) w/o LRR which removes the restriction loss applied to the residual repre-
sentations of normal samples. (3) w/o LBO which replaces the proposed bi-boundary optimization
with single-boundary optimization.

As shown in Table 3, removing the residual representation w/o Res results in the most severe perfor-
mance degradation: all metrics drop accompanied by a substantial increase in standard deviations. It
demonstrates that residual representations play an indispensable role, as they encode discriminative
signals that are essential for anomaly detection. For w/o LRR, AUROC and AP remain close to those
of the full model, while F1 declines markedly. The reason is that, without the restriction imposed
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Methods
UCI Enron LastFM

AUROC AP F1 AUROC AP F1 AUROC AP F1
SAD 81.12±0.75 6.05±3.42 2.93±2.88 77.46±1.12 5.01±2.55 2.11±3.66 79.52±2.64 5.77±3.91 3.08±1.27

GeneralDyG 78.21±0.88 4.51±1.07 1.27±0.65 73.92±2.31 3.92±1.98 0.84±1.12 75.66±1.02 4.33±0.92 1.05±0.73

JODIE 75.08±3.11 3.06±0.74 0.62±0.48 70.14±1.42 2.77±0.81 0.38±0.33 72.41±2.08 3.12±0.66 0.71±0.57
DyRep 76.92±1.27 3.59±0.95 0.91±0.52 72.06±1.98 3.21±1.07 0.64±0.49 74.19±0.94 3.74±1.12 0.98±0.61
TGN 84.63±0.54 5.43±2.12 1.46±1.15 79.92±0.63 5.03±1.26 1.12±0.88 81.05±0.71 5.39±1.83 1.31±0.97

TGAT 79.51±1.72 4.65±1.08 1.08±0.91 75.77±1.06 4.06±0.92 0.95±0.74 78.21±0.93 4.98±1.35 1.24±0.88
TCL 81.56±0.91 7.18±2.98 2.24±2.63 77.41±1.42 5.84±2.01 1.73±1.54 79.61±1.15 5.97±1.74 2.01±1.92

CAWN 80.84±2.67 5.79±1.15 1.92±1.41 83.66±0.82 6.31±3.11 2.37±3.88 80.22±1.76 5.88±1.08 2.06±0.94
GraphMixer 79.74±1.03 4.86±3.01 1.57±2.04 76.23±1.61 4.39±0.97 1.31±0.76 78.96±2.55 5.32±3.42 1.69±2.08
DyGFormer 86.07±0.49 5.88±1.24 1.98±1.01 81.73±0.57 5.43±0.95 1.64±0.87 82.94±0.62 5.77±1.08 1.82±1.12

FreeDyG 81.29±1.45 5.03±2.63 1.71±1.99 77.12±0.96 4.72±1.04 1.39±0.85 78.86±1.58 4.97±1.73 1.61±1.42

SDGAD (TCL) 84.70±0.82 8.90±2.20 4.35±1.55 80.42±1.18 6.25±1.42 3.25±1.05 83.95±0.91 7.55±2.30 4.72±1.46
SDGAD (CAWN) 82.41±1.14 6.35±1.28 3.05±1.12 85.64±0.72 7.95±2.35 4.55±2.05 82.71±1.29 6.38±1.01 3.66±1.58

SDGAD (DyGFormer) 88.72±0.44 7.05±1.63 3.18±1.41 86.02±0.56 6.15±1.77 4.72±1.69 86.45±0.59 6.81±1.34 4.48±2.02

Table 2: Performance comparison on datasets with synthetic anomalies. Results are mean ± standard
deviation, with all values scaled by 100. The best results are highlighted in bold.

on normal residuals, the residual space becomes scale-inconsistent, making it difficult to separate
anomalies with small residuals. Consequently, although the relative ranking of samples is largely
preserved (yielding stable AUROC and AP), the misaligned decision boundary causes a noticeable
drop in F1. In the case of w/o LBO, AUROC and AP change little, whereas F1 drops on average
and fluctuates more. This suggests that although the overall score distribution is preserved, the lack
of a decision margin makes boundary cases less stable. The bi-boundary optimization mitigates this
issue by introducing such a margin, thereby reducing ambiguity.

To intuitively illustrate the effectiveness of each component, we visualize the log-likelihood dis-
tributions of normal and anomalous samples under different variants in Figure 3. The experiment
is conducted on the Wikipedia dataset with TCL as the base encoder. In Figure 3(a), the left plot
corresponds to baseline without any components, where the distributions of normal and anoma-
lous samples heavily overlap, reflecting poor discriminability. When residual representations are
included but the restriction is removed (w/o LRR, Figure 3(a), right), the overlap is reduced, yet
normal samples remain scattered. Figure 3(b), left, shows the effect of w/o LBO. Here the normal
distribution becomes more compact and separation improves, but some anomalies still cluster near
the boundary due to the lack of explicit optimization in likelihood space. Finally, in Figure 3(b)
right, the full framework yields a concentrated normal distribution at high-likelihood values, with
anomalies clearly shifted toward low-likelihood regions, forming a sharp decision boundary.

Variant
Wikipedia MOOC

AUROC AP F1 AUROC AP F1

SDGAD(TCL) 80.36±0.69 5.41±1.23 8.34±2.72 72.87±1.40 7.89±0.38 7.15±0.64
w/o Res 77.79±3.17 3.83±2.48 5.29±5.69 69.14±2.48 5.14±2.48 6.58±2.48
w/o LRR 79.44±0.80 5.33±1.47 6.01±0.72 71.02±1.28 7.41±0.62 5.96±0.81
w/o LBO 80.36±1.00 5.38±1.32 7.41±3.29 72.54±1.35 7.56±0.55 6.42±0.97
TCL 77.69±0.74 5.28±1.21 2.41±0.00 72.51±1.76 7.87±0.71 0±0

Table 3: Ablation studies on Wikipedia and MOOC.

5.3 HYPER-PARAMETER STUDY

In this section, we analyze two hyperparameters that are critical to the performance of our frame-
work. The first is L, which controls the number of sampled historical neighbors during the residual
representation encoding stage. The second parameter is α, which determines the position of the nor-
mal boundary as the α-th percentile of the sorted normal log-likelihood distribution Dn. We conduct
experiments with SDGAD(TCL), varying L ∈ 2, 5, 10, 20, 32 and α ∈ 0.001, 0.005, 0.01, 0.05, 0.1.
The experimental results are summarized in Tables 4a and 4b.
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(a) (b)

Figure 3: Visualization of log-likelihood distributions under different ablation variants. (a) Left:
baseline without any components; Right: adding residual representations but without restriction. (b)
Left: with representation restriction but without bi-boundary optimization; Right: full framework.

L
Wikipedia MOOC

AUROC AP F1 AUROC AP F1

2 80.36±0.69 5.41±1.23 8.34±2.72 65.75±0.72 3.26±0.19 8.74±0.54
5 83.76±0.49 5.36±0.53 5.33±3.23 68.51±1.86 3.33±0.16 4.27±1.83
10 85.94±0.74 4.72±1.33 4.43±3.44 70.31±0.29 6.46±0.56 7.46±0.79
20 87.22±0.76 4.94±0.85 4.67±4.04 72.87±1.40 7.89±0.38 7.15±0.64
32 88.06±0.38 5.04±1.55 2.92±1.59 73.56±1.11 7.24±0.44 6.20±0.38

(a) Performance with different values of L

α
Wikipedia MOOC

AUROC AP F1 AUROC AP F1

0.001 81.12±1.24 5.68±1.61 5.40±3.10 71.28±1.42 6.93±0.95 7.42±2.81
0.005 80.77±0.84 5.68±1.09 4.68±1.83 71.88±0.96 7.40±0.27 6.65±0.66
0.01 80.36±0.69 5.41±1.23 8.34±2.72 72.87±1.40 7.89±0.38 7.15±0.64
0.05 79.87±0.42 5.39±1.09 6.37±3.91 72.91±0.45 7.12±0.40 5.43±0.43
0.1 79.70±0.89 5.37±0.91 6.46±2.68 72.73±0.81 7.00±1.03 5.78±1.04

(b) Performance with different values of α

Table 4: Effect of hyperparameters L and α on performance. The best results are highlighted in bold
and the underlined results correspond to those reported in the main results Table. 1.

For hyperparameter L, we can observe a consistent trend: as L increases, AUROC gradually im-
proves while F1 consistently decreases. This phenomenon aligns well with the characteristics of
residual representation. When more historical information is aggregated during representation en-
coding, the residual signals become diluted, thereby reducing the discriminative capacity between
normal and abnormal samples and directly lowering F1 performance. At the same time, AUROC
remains less sensitive to this dilution because it evaluates ranking consistency rather than absolute
separability. Even when anomaly and normal scores converge and exhibit weaker discriminability,
as long as anomalies tend to be ranked above normal samples, AUROC will continue to increase.
This explains why larger L yields higher AUROC but lower F1.

The results for hyperparameter α highlight the importance of selecting an appropriate boundary. A
large α shifts the normal boundary closer to the center of the normal distribution, improving gener-
alization but weakening discrimination and misclassifying borderline normal samples. In contrast,
a small α enforces an overly strict boundary, increasing the risk of overfitting. Empirically, on the
Wikipedia dataset, AUROC achieves its maximum at α=0.001, while F1 peaks at α=0.01. On the
MOOC dataset, AUROC is highest at α=0.01, whereas F1 is maximized at α=0.001. Overall, the
results demonstrate a trade-off, where small α favors discriminability and large α favors robustness,
with α = 0.01 offering the best balance. We further provide a more comprehensive hyper-parameter
analysis in the Appendix C.

6 CONCLUSION

In this paper, we introduced SDGAD, a supervised framework for dynamic graph anomaly detec-
tion that is both effective and generalizable. Our framework learns informative and discriminative
representations through a residual representation with a restriction mechanism. Furthermore, we
employ a normalizing flow to model the log-likelihood distribution of normal samples, enabling
the detection of anomalies as out-of-distribution instances. Building on this distribution, we derive
an explicit decision boundary and introduce a bi-boundary optimization strategy to further enhance
generalization. Extensive evaluations demonstrate the superiority of our framework.
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This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We believe these measures will enable other
researchers to reproduce our work and further advance the field.
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Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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A DETAILS OF DATASETS

Dataset Nodes Edges Unique Edges Timesteps Edge Feature Anomaly Ratio Density
Wikipedia 9227 157474 18257 152757 172 0.14% 4.30E-03

Reddit 10984 672447 78516 669065 172 0.05% 8.51E-03
MOOC 7144 411749 178443 345600 4 0.99% 1.26E-02
LastFm 1980 1293103 154993 1283614 0 - 5.57E-01
Enron 184 125235 3125 22632 0 - 5.53E+00
UCI 1899 59835 20296 58911 0 - 3.66E-02

Table 5: Dataset statistics

A.1 DESCRIPTION OF DATASETS

Wikipedia: A bipartite graph of user edits on Wikipedia pages, where nodes represent users and
pages, and edges denote timestamped edits. Each interaction is associated with a 172-dimensional
LIWC feature. Dynamic labels indicate whether the corresponding edit behavior is banned.

Reddit: A bipartite dataset of user posts on Reddit over one month. Nodes correspond to users and
subreddits, with timestamped posting edges and 172-dimensional LIWC features. Dynamic labels
indicate whether the corresponding post behavior is banned.

MOOC: A bipartite interaction network between students and course units (e.g., videos, problem
sets). Edges represent student access behaviors with 4-dimensional features. Dynamic labels indi-
cate whether the access behavior is banned.

LastFM: A bipartite graph of music listening activities over one month, where nodes are users and
songs, and edges denote timestamped listening events.

Enron: An email communication network with about 50K messages exchanged among Enron em-
ployees over three years. No attributes are provided.

UCI: A communication network among students at the University of California, Irvine, with times-
tamped interactions at second-level granularity. No additional features are included.

A.2 PREPROCESSING PROCEDURES

We split all datasets into three chronological segments for training, validation, and testing with ra-
tios of 40%-20%-40%. For the three datasets with real anomalies, the anomaly proportion remains
relatively consistent across the training, validation, and testing sets. Specifically, For the Wikipedia
dataset, the anomaly ratio remains very stable across subsets, with anomaly ratio of approximately
0.14% in train, 0.15% in validation, and 0.13% in test. For the MOOC dataset, the anomaly propor-
tion is slightly higher overall, with anomaly ratio of about 1.14% in train, 0.86% in validation, and
0.9% in test. For the Reddit dataset, anomalies are extremely sparse, with anomaly ratio of 0.024%
in train, 0.065% in validation, and 0.08% in test.

For the three datasets (LastFM, Enron, UCI) that do not contain real anomalies, we follow the
anomaly synthesis strategy for dynamic graphs proposed by Postuvan et al. (2024) to inject synthetic
anomalies. Specifically, Postuvan et al. (2024) introduce five strategies based on three fundamental
anomaly types: (i) randomizing the destination node to create structural anomalies, (ii) randomizing
attributes to create contextual anomalies, and (iii) randomizing edge timestamps to create temporal
anomalies. Since these three datasets do not contain original node/edge attributes, the second type is
not applicable. We therefore adopt only (i) and (iii) and construct three synthetic anomaly types: T
(temporal anomaly), S (structural anomaly), and T-S (temporal and structural anomaly). To evaluate
the generalization ability of our model, we inject 1% T anomalies into the training and validation
sets, while in the test set we inject 0.33% of each anomaly type (T, S, T-S).
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B BASELINES

B.1 DESCRIPTION OF BASELINES

Netwalk (Yu et al., 2018) A temporal random-walk embedding model that learns joint node–edge
representations. It maintains an online clustering of embedding trajectories and flags deviations as
anomalies.

AddGraph (Zheng et al., 2019) A semi-supervised DTDG method that augments a temporal GCN
with attention to capture long- and short-term patterns, and trains with selective negative sampling
plus a margin loss to address label sparsity.

StrGNN (Cai et al., 2021) A subgraph-based temporal model for edge anomalies. It extracts the
h-hop enclosing subgraph, labels node roles, applies graph convolution with SortPooling to obtain
fixed-size snapshot features, and uses a GRU to capture temporal dynamics.

Taddy (Liu et al., 2023) A dynamic-graph transformer with a learnable node encoding that sepa-
rates global spatial, local spatial, and temporal terms. It samples edge-centered temporal substruc-
tures and uses attention to couple structural and temporal dependencies end to end.

SAD (Tian et al., 2023) A semi-supervised CTDG method for DGAD. It first predicts node-level
anomaly scores and stores score–timestamp pairs in a memory bank to estimate a normal prior and
apply a deviation loss, and adds a pseudo-label contrastive module that forms score-based pseudo-
groups and treats intra-group pairs as positives.

GeneralDyG (Yang et al., 2024) An unsupervised CTDG method for DGAD. It uses a GNN
extractor that embeds nodes, edges, and topology and alternates node- and edge-centric message
passing. It inserts special tokens into feature sequences to encode hierarchical relations between
anomalous events while balancing global temporal context and local dynamics, and trains on ego-
graph samples of anomalous events to reduce computation.

JODIE (Kumar et al., 2019) An RNN-based model. For each interaction between vi and vj at
time t, it updates the temporal embedding of vi using its previous state, the latest state of vj , the link
features, and the time gap since the last interaction. Final embeddings are extrapolated via a linear
projection on the last observed state.

DyRep (Trivedi et al., 2019) An RNN-based model with attention and a temporal point-process
head. After each event, node states are recurrently updated while attention aggregates neighbor
context, and the conditional intensity models event timing.

TGAT (Xu et al., 2020) A temporal graph attention model that incorporates both structural and
temporal signals. Each node feature is concatenated with a trainable time encoding. Multi-head
self-attention is then applied over temporal neighbors to compute node representations.

TGN (Rossi et al., 2020) A memory-augmented temporal GNN model which integrates a memory
mechanism with self-attention. Each node maintains a memory state that summarizes its history.
Upon observing an interaction, the states of involved nodes are updated through an RNN-based
memory updater. Final embeddings are computed by aggregating K-hop temporal neighborhoods
with self-attention.

GraphMixer (Cong et al., 2023) A lightweight MLP-Mixer architecture. It adopts a fixed (non-
trainable) time encoding function, integrates it into an MLP-Mixer for edge encoding, and summa-
rizes neighbor information through mean pooling.

TCL (Wang et al., 2021a) A transformer-based temporal graph model. It builds node interaction
sequences via breadth-first traversal on temporal subgraphs, applies a graph transformer to capture
joint structural–temporal dependencies, and uses cross-attention to model inter-node interactions.

CAWN (Wang et al., 2021b) Combines RNNs and self-attention via temporal random walks. It
replaces raw node identities with hitting counts obtained from sampled walks, encodes these motifs
with RNNs, and aggregates multiple walks into a single node representation using self-attention.

DyGFormer (Yu et al., 2023) A transformer operating on patched interaction sequences. It seg-
ments each node’s timeline into patches and learns temporal dependencies across patches to obtain
node representations.
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FreeDyG (Tian et al., 2024b) A frequency-aware temporal graph model. It first encodes the
time, node and edge information, augmented with a node-pair frequency encoding mechanism. A
frequency-enhanced MLP-Mixer is then applied to capture periodicities and temporal shifts, then
inverts and mixes to yield frequency-salient embeddings.

B.2 IMPLEMENTATION DETAILS

We employ several CTDG-based methods that were originally proposed for fundamental dynamic
graph tasks such as link prediction and node classification. Owing to the close connection between
these tasks and anomaly detection, such methods can be extended to the anomaly detection setting.
The only required modification concerns the treatment of event samples: in link prediction, the target
edge of the current interaction cannot be used as input, whereas in anomaly detection it can. Thus,
we follow Postuvan et al. (2024) and apply this adjustment to adapt general CTDG-based methods
for anomaly detection.

C HYPER-PARAMETERS STUDIES

We further study two important hyperparameters to analyze their effect on performance of SDGAD.
The first is the decision margin τ , which is used in bi-boundary optimization. After the normal
boundary is determined by α, the anomaly boundary is defined as Bn − τ . Since the log-likelihood
values are rescaled into the range [−1, 0] by a normalization constant for stable optimization, τ can
also be treated as a constant in [0, 1]. The second hyperparameter is the interval [rmax, rmin] used
in the representation restriction phase. According to Eq. 5, A is normalized to a constant range,
rmax and rmin can also be treated as constants. Importantly, what matters is the interval between
them rather than their absolute values. In our experiments, we fix rmax = 0.4 and determine rmin

through a coefficient parameter, i.e., rmin = coefficient × rmax. Therefore, we focus on exploring
the effect of the coefficient (coe) on model performance. Specifically, we conduct experiments with
SDGAD(TCL), varying τ ∈ 0.05, 0.1, 0.15, 0.2 and coe ∈ 0.99, 0.95, 0.90, 0.80. The experimental
results are summarized in Tables 6 and 7.

The results in Table 6 show that the decision margin τ has a non-trivial impact on performance. A
proper margin provides sufficient separation between normal and anomalous boundaries, while mar-
gins that are too narrow or too wide both lead to performance degradation. This reflects the central
role of τ in balancing discrimination against robustness during boundary optimization. Specifically,
τ = 0.1 consistently delivers the strongest results across all metrics. A too-narrow margin (e.g.,
τ = 0.05) compresses the space between normal and anomaly boundaries, leaving insufficient room
for effective separation and thereby depressing F1. In contrast, an overly wide margin (e.g., τ = 0.2)
relaxes the anomaly boundary excessively, which introduces noise and wrongly pushes borderline
normal samples into the anomaly region. Interestingly, τ = 0.15 offers moderate AUROC but still
struggles on F1, showing that ranking consistency can be preserved even when classification pre-
cision is compromised. For the coe in Table 7, we observe a similar trade-off. A tighter interval
enforces stronger consistency among normal samples and thus favors discriminability, whereas a
looser interval introduces flexibility but weakens the separation from anomalies. The results sug-
gest that carefully tuning this interval is crucial for achieving a good balance between precision and
generalization.

τ
Wikipedia MOOC

AUROC AP F1 AUROC AP F1

0.05 80.26±0.95 4.52±1.21 5.06±3.49 71.92±1.10 7.10±0.18 5.77±0.85
0.1 80.36±0.69 5.41±1.23 8.34±2.72 72.87±1.40 7.89±0.38 7.15±0.64
0.15 80.18±1.15 5.08±1.60 5.72±2.62 72.32±1.22 6.67±1.13 5.77±1.44
0.2 77.26±6.33 3.57±2.17 5.07±3.57 72.02±1.53 7.01±0.37 5.91±1.22

Table 6: Effect of hyperparameter τ on performance. The best results are highlighted in bold and
the underlined results correspond to those reported in the Table. 1.
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coe
Wikipedia MOOC

AUROC AP F1 AUROC AP F1

0.99 80.36±0.69 5.41±1.23 8.34±2.72 72.87±1.40 7.89±0.38 7.15±0.64
0.95 80.29±1.74 5.28± 1.76 3.51±0.81 72.57±0.48 7.18±0.34 7.02±0.80
0.90 80.77±0.72 5.57±1.69 5.79±1.85 72.98±0.95 7.24±0.44 6.02±0.29
0.80 81.15±0.68 5.43±1.70 3.97±0.67 72.63±0.87 7.40±0.27 6.65±0.66

Table 7: Effect of hyperparameter coe on performance. The best results are highlighted in bold and
the underlined results correspond to those reported in the Table. 1.

D LOSS ANALYSIS

D.1 SENSITIVITY OF BALANCING THE LOSS TERMS

Our framework jointly optimizes three objectives: the maximum likelihood loss LML, the restriction
loss LRR, and the bi-boundary optimization loss LBO. Since LML is the basic training objective
for the normalizing flow, we fix its weight to 1 and introduce λ1 and λ2 as the weights for LBO and
LRR, respectively. Table 8 reports the results of varying these coefficients. Overall, performance
remains relatively stable when λ1 and λ2 are set within a moderate range (e.g., 1/0.1, 1/0.5, 1/0.7).
On Wikipedia, LBO plays a central role, as reducing its weight (λ1 = 0.5) causes substantial per-
formance drops, whereas settings with λ1 = 1 achieve consistently higher AUROC and F1. By
contrast, on MOOC, λ1 = 0.5 yields the strongest results, suggesting that a lighter weight on LBO
helps avoid overfitting. For LRR, moderate changes in λ2 generally have a weaker effect, but exces-
sive weighting (λ2 = 2) degrades performance across both datasets, likely due to over-constraining
the residual space.

Notably, there is no configuration simultaneously maximizes all metrics. For example, λ1 = 1, λ2 =
0.1 achieves the best AUROC on Wikipedia, while λ1 = 1, λ2 = 0.5 yields higher AP and F1 with
more stable variance. Thus, we adopt λ1 = 1, λ2 = 0.5 as the best setting for wikipedia. This
choice reflects a deliberate trade-off: the reported results in our experiments are not necessarily the
absolute optimum for any single metric, but rather represent a balanced configuration that ensures
stable and robust performance across all evaluation metrics.

λ1/λ2
Wikipedia MOOC

AUROC AP F1 AUROC AP F1

0.5/0.5 71.73±8.80 4.08±3.17 4.18±3.93 72.87±1.40 7.89±0.38 7.15±0.64
1/0.1 80.67±1.14 4.47±0.74 8.32±2.00 70.02±1.15 5.22±1.26 4.74±4.92
1/0.5 80.36±0.69 5.41±1.23 8.34±2.72 70.48±0.76 5.37±1.14 7.69±4.52
1/0.7 80.64±0.47 5.33±1.47 6.41±3.08 66.10±7.71 4.30±2.74 4.90±5.27
1/1 76.65±9.03 4.71±2.19 6.78±4.27 70.87±0.51 5.45±0.73 6.24±2.01
1/2 74.91±8.65 4.01±2.90 4.65±4.48 70.75±0.82 5.80±1.54 6.62±1.18

Table 8: Results when varying different λ1/λ2 values for balancing loss terms.

D.2 ERROR BOUND ANALYSIS

Proposition 1. Assume that Φθ∗ ∈ argminθ∈Θ{LML + λ1LBO}. That is, Φθ∗ corresponds to
the optimal parameters minimizing the joint objective of the maximum-likelihood loss and the bi-
boundary optimization loss. Then we have that

Eyi=0[max((B′
n − log[p(xi)]), 0)] + Eyj=1[max((log[p(xj)]− B′

a), 0)]

≤ (Bn − Ba)LBO(Φθ∗) +
N

(N +M)
[max(1 + B′

n,−B′
a)]

≤
(d2 log(2π)−

1
2 )(Bn − Ba)

λ
+

N

(N +M)
(9)

where y = 0, y = 1 denote normal and anomalous labels, B′
n = Bn − ϵ,B′

a = Ba + ϵ, ϵ ∈
(0,Bn − Ba), N and M are the number of normal and abnormal samples.
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proof. Suppose we sort all samples (both normal and anomalous) by their log-likelihoods in de-
scending order: log[p(x1)] ≥ log[p(x2)] ≥ · · · ≥ log[p(xN+M )]. Let Bn = log[p(xN )] denote the
normal boundary induced by the N -th ranked sample, which corresponds to the threshold for clas-
sifying normal sample. Under a worst-case assumption, all top-N samples (which ideally should
be normal) are misclassified, while the remaining M anomalous samples have log-likelihoods lying
between Ba and Bn. In this scenario, the expected margin-violation error can be bounded as:

Eyi=0[max((B′
n − log[p(xi)]), 0)] + Eyj=1[max((log[p(xj)]− B′

a), 0)]

≤ (B′
n − B′

a)L′
BO(Φθ∗) +

N

(N +M)
[max(1 + B′

n,−B′
a)]

≤ (Bn − Ba)LBO(Φθ∗) +
N

(N +M)
(10)

Here L′
BO denotes the ℓ0 norm based formulation of LBO, which counts the number of samples

violating the boundary constraints (i.e., the number of misclassified samples). It represents an ide-
alized, non-differentiable version of LBO, used only for theoretical analysis. The second inequality
is obtained as 1 + B′

n ≤ 1 and −B′
a ≤ 1 when −1 ≤ B′

a < B′
n ≤ 0 satisfies. Since Φθ∗ is defined

as the optimal parameter of the joint objective LML + λ1LBO, its objective value cannot be larger
than that of any other candidate solution. In particular, consider an arbitrary reference solution Φθ′

such that LBO(Φθ′) = 0. By the optimality of Φθ∗ , we have:

LML(Φθ∗) + λ1LBO(Φθ∗) ≤ LML(Φθ′) + λ1LBO(Φθ′)

= LML(Φθ′) (11)

We isolate LBO(Φθ∗) as:

LBO(Φθ∗) ≤ (LML(Φθ′)− LML(Φθ∗))

λ1

≤

(
1
2Φθ′(x)TΦθ′(x)− 1

2Φθ∗(x)TΦθ∗(x) + 1
2Φθ∗(x)TΦθ∗(x) + d

2 log(2π)

)
λ1

≤
d
2 log(2π)−

1
2

λ1
(12)

To obtain a tractable bound, we assume a worst-case initialization:

Φθ′(x)TΦθ′(x) = −1 (13)

This assumption gives the largest possible gap between Φθ′ and Φθ∗ , and thus produces the loosest
valid bound. By combining the above E.q.(10) and E.q.(12), we have that

Eyi=0[max((B′
n − log[p(xi)]), 0)] + Eyj=1[max((log[p(xj)]− B′

a), 0)]

≤
(d2 log(2π)−

1
2 )(Bn − Ba)

λ1
+

N

(N +M)
(14)

The above proposition highlights both the necessity and the effectiveness of the bi-boundary opti-
mization loss LBO. Ideally, increasing the weight λ1 of LBO facilitates the convergence of the error
bound toward zero. Moreover, the proposition implies that the presence of more anomalous samples
can further enhance the reliability of discriminating between normal and abnormal samples.

D.3 ERROR BOUND ANALYSIS UNDER THE FULL OBJECTIVE

We now make explicit how the representation restriction loss LRR contributes to the error through
the geometry of the projected residuals. Recall that the restriction loss is

LRR = (1− y) ℓint(x) + y ℓanom(x)

where y ∈ {0, 1} is the label, and for normal samples (y = 0) the interval penalty is

ℓint(x) = max(0, A(x)− rmax) + max(0, rmin −A(x))
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The anomalous part ℓanom(x) is always non-negative. We denote the expected interval penalty on
normal samples by

L
(0)
RR = Ey=0

[
ℓint(x)

]
.

By construction L
(0)
RR ≤ LRR, since LRR additionally includes the non-negative anomalous part.

As in Appendix D.2, we define the margin–violation error as

Emv = Eyi=0

[
max(B′

n − log[p(xi)], 0)
]
+ Eyj=1

[
max(log[p(xj)]−B′

a, 0)
]

For notational convenience, we set Zi = max(B′
n − log[p(xi)], 0) and Wj = max(log[p(xj)] −

B′
a, 0) so that Emv = Eyi=0[Zi] + Eyj=1[Wj ]. Finally, let CB = max(1 + B′

n, −B′
a) denote the

constant used in Eq. (9) and we assume that the per-sample margin–violation on normal samples is
uniformly bounded by a constant Cmv > 0, that is,

0 ≤ Zi ≤ Cmv for all i with yi = 0.

Then we can get the new proposition as follow:

Proposition 2. Assume the setting of Proposition 1 and the uniform bound 0 ≤ Zi ≤ Cmv for all
normal samples. Then for any slack parameter δ > 0, the margin–violation error satisfies

Emv ≤ (Bn −Ba)LBO(Φθ∗) +
N

N +M
CB +

Cmv

δ
LRR (15)

proof. For a fixed δ > 0, we define the event

Gδ(x) =
{
rmin − δ ≤ A(x) ≤ rmax + δ

}
.

If Gδ(x) does not hold for a normal sample, then either A(x) > rmax + δ or A(x) < rmin − δ, and
in both cases the distance from A(x) to the interval [rmin, rmax] is at least δ. By the definition of
ℓint(x), this implies

ℓint(x) = max(0, A(x)− rmax) + max(0, rmin −A(x)) ≥ δ.

Equivalently,
ℓint(x) ≥ δ · 1{¬Gδ(x)} for y = 0.

Taking expectations over normal samples gives

L
(0)
RR = Ey=0

[
ℓint(x)

]
≥ δ Py=0

(
¬Gδ(x)

)
,

and hence
Py=0

(
¬Gδ(x)

)
≤ 1

δ
L
(0)
RR ≤ 1

δ
LRR. (16)

We split the normal contribution according to the radius event Gδ(x):

Eyi=0[Zi] = Eyi=0

[
Zi 1{Gδ(xi)}

]
+ Eyi=0

[
Zi 1{¬Gδ(xi)}

]
.

Using the uniform bound 0 ≤ Zi ≤ Cmv and Eq. 16, we obtain

Eyi=0[Zi] ≤ Eyi=0

[
Zi 1{Gδ(xi)}

]
+ Cmv Py=0

(
¬Gδ(x)

)
≤ Eyi=0

[
Zi 1{Gδ(xi)}

]
+

Cmv

δ
LRR. (17)

Therefore, the total margin–violation error satisfies

Emv = Eyi=0[Zi] + Eyj=1[Wj ]

≤
(
Eyi=0

[
Zi 1{Gδ(xi)}

]
+ Eyj=1[Wj ]

)
+

Cmv

δ
LRR. (18)

By construction,
Eyi=0

[
Zi 1{Gδ(xi)}

]
≤ Eyi=0[Zi],

so the bracketed term in Eq. 18 is bounded above by the full margin–violation error:

Eyi=0

[
Zi 1{Gδ(xi)}

]
+ Eyj=1[Wj ] ≤ Emv. (19)
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Proposition 1 states that for the flow Φθ∗ minimizing LML + λ1LBO we have

Emv ≤ (Bn −Ba)LBO(Φθ∗) +
N

N +M
CB . (20)

Since the bracketed term in Eq. 18 is at most Emv, Eq. 20 implies

Eyi=0

[
Zi 1{Gδ(xi)}

]
+ Eyj=1[Wj ] ≤ (Bn −Ba)LBO(Φθ∗) +

N

N +M
CB .

Substituting this into Eq. 18 yields

Emv ≤ (Bn −Ba)LBO(Φθ∗) +
N

N +M
CB +

Cmv

δ
LRR,

which is exactly Eq. 15.
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