
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Graph Transformers Get the GIST: Graph Invariant Structural Trait for
Refined Graph Encoding

Anonymous Authors1

Abstract
Graph classification is a core machine learn-
ing task with diverse applications across scien-
tific fields. Transformers have recently gained
significant attention in this area, addressing
key limitations of traditional Graph Neural Net-
works (GNNs), including oversmoothing and
oversquashing, while leveraging the attention
mechanism. However, a key challenge remains:
effectively encoding graph structure information
within the all-to-all attention mechanism, ar-
guably the first step of all Graph Transformers.
To address this, we propose a novel structural
feature, termed Graph Invariant Structural Trait
(GIST), designed to capture substructures within
a graph through estimated pairwise node intersec-
tions. Furthermore, we extend GIST into a struc-
tural encoding method tailored for the attention
mechanism in graph transformers. Our theoretical
analysis and empirical observations demonstrate
that GIST effectively captures structural informa-
tion critical for graph classification. Extensive
experiments further reveal that graph transform-
ers incorporating GIST into their attention mech-
anism achieve superior performance compared to
state-of-the-art baselines. These findings high-
light the potential of GIST to enhance the struc-
tural encoding of Graph Transformers.

1. Introduction
Graph classification is a fundamental problem in machine
learning with widespread applications in various domains,
including chemistry, biology, and drug discovery (Dwivedi
et al., 2022a;c; Irwin et al., 2012; Wu et al., 2017). The abil-
ity to classify graphs accurately enables advancements in
predicting molecular properties, understanding complex bio-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

logical interactions, and discovering novel therapeutic com-
pounds. Traditional Graph Neural Networks (GNNs) (Kipf
& Welling, 2017; Han et al., 2022) have been the corner-
stone for such tasks, leveraging neighborhood aggregation
to learn node and graph representations. However, GNNs of-
ten suffer from limitations such as oversmoothing (Keriven,
2022), oversquashing (Black et al., 2023), and restricted
expressivity (Wang & Zhang, 2024) due to their reliance on
local message-passing mechanisms.

Recently, Transformers (Vaswani et al., 2017) have emerged
as a promising alternative for graph representation learning
due to their global attention mechanism, which addresses
many of the inherent limitations of GNNs. Transform-
ers’ ability to model complex interactions between enti-
ties makes them particularly attractive for graph classifica-
tion (Ying et al., 2021). However, applying Transformers to
graph data is not a seamless procedure, still posing unique
challenges. Unlike sequential or image data, graph nodes
typically lack inherent self-identity, making it difficult for
Transformers to distinguish between entities purely based
on their features. Without incorporating meaningful struc-
tural information, the attention mechanism in Transformers
struggles to capture complex graph relationships effectively.

Existing approaches have attempted to improve Transform-
ers with graph structural inductive bias by integrating po-
sitional or structural features, such as shortest path dis-
tances (Ying et al., 2021), Laplacian eigenvector-based en-
codings (Dwivedi et al., 2022a), and random walk-based fea-
tures (Rampášek et al., 2022; Ma et al., 2023). While these
methods provide some structural context, they either fail to
capture comprehensive substructural information essential
for distinguishing complex graph patterns (Rampášek et al.,
2022) or focus predominantly on a limited set of substruc-
tures while neglecting higher-order structural relationships
(Wollschlager et al., 2024). The challenge remains to iden-
tify a more expressive and comprehensive set of structural
features, and devise efficient methods for encoding them
within the Transformer’s self-attention mechanism.

In this work, we introduce a novel structural feature called
Graph Invariant Structural Trait (GIST), which captures the
inherent substructures within a graph by estimating k-hop
pairwise node intersections. Our approach is grounded in

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Graph Transformers Get the GIST: Graph Invariant Structural Traits for Refined Graph Encoding

the theoretical understanding that the cardinality of the in-
tersection between two nodes’ k-hop neighborhoods can
serve as an effective permutation-invariant feature for sub-
structure characterization, providing a robust foundation
for graph classification. Incorporating GIST as a struc-
tural bias enhances the Transformer’s capability to discern
complex graph patterns, leading to improved classification
performance. We further propose an efficient randomized
algorithm to estimate GIST, ensuring scalability across large
(number of) graphs. Through extensive experiments on vari-
ous graph classification benchmarks, we demonstrate that
integrating GIST into Graph Transformers achieves state-
of-the-art performance and offers deeper insights into the
structural properties of graph data.

Our key contributions are as follows:

• We introduce GIST, a method that encodes graph structure
using pairwise k-hop substructure vector. These substruc-
ture vectors are efficiently computed by estimating the
interaction cardinality between the k-hop neighborhoods
of node pairs.

• We incorporate GIST into attention mechanisms of graph
Transformers to enhance structural encoding. We provide
both theoretical and empirical evidence demonstrating its
effectiveness as a graph-invariant representation.

• We evaluate GIST-augmented graph Transformers on stan-
dard graph classification benchmarks, showing consistent
performance improvements.

The introduction of GIST opens new avenues for enhanc-
ing the structural encoding capabilities of Transformers,
paving the way for more effective and interpretable graph
classification models.1

2. Motivation
Transformers, originally designed for sequential data, lack
an inherent mechanism to capture the structural biases of
graph data as highlighted in (Ying et al., 2021; Rampášek
et al., 2022). Without a well-designed structural bias (struc-
tural encoding), they treat all nodes as equally related, fail-
ing to utilize the relational dependencies critical for graph
tasks (Ying et al., 2021; Brody et al., 2022).

Challenge 1. Capturing Graph Substructures in Struc-
tural Encoding. The first key challenge in designing effec-
tive structural encodings for Graph Transformers is captur-
ing the substructures within a graph, as these substructures
often represent critical local patterns, or fragments that de-
fine the graph’s overall characteristics (Ying et al., 2021;
Ma et al., 2023; Wollschlager et al., 2024). While many
early-stage structural encoding methods, such as shortest
path distance (SPD) (Ying et al., 2021), provide a notion of

1The code will be made publicly available upon publication.

(a) (u, v1) from the same 6-ring substructure

(b) (u, v2) from different substructures: a 6-ring and a 2-path

Figure 1. k-hop Substructure Vector Visualization (Def. 3.1) of
ZINC molecule. The substructures of node pairs in the form of in-
tersection cardinality of their common neighborhood at different
distances from u and v are “GIST”-ed into the Substructure Vec-
tor. Specifically, each cell (ku, kv) in the Substructure Vector de-
notes the number of nodes that are exactly ku hops from u and kv
hops from v. The variations in the Substructure Vector help the self-
attention mechanism distinguish structural differences between
node pairs, such as (u, v1) and (u, v2). For example, in Figure 1a,
the pair (u, v1), which belongs to the same 6-ring substructure,
has intersection cardinalities I(2,2) = I(4,2) = I(2,4) = 1. In con-
trast, the pair (u, v2), where u and v2 belong to different substruc-
tures (a 6-ring and a 2-path), has I(2,2) = I(4,2) = I(2,4) = 0.

proximity between nodes, they often struggle to effectively
capture and represent substructures.

Challenge 2. Aggregating Diverse Substructures Infor-
mation. As highlighted in (Wollschlager et al., 2024), it is
equally important for structural encodings to enable the ag-
gregation of information across diverse substructures, rather
than restricting it to similar or localized patterns. Graphs,
such as molecules, often exhibit a variety of substructures
that interact in complex ways, and limiting information
flow to nodes in different structures can hinder the model’s
ability to capture global dependencies and cross-pattern in-
teractions. This is particularly important in domains like
chemistry, biology, and social networks, where functional
or structural properties often arise from specific subgraph

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Graph Transformers Get the GIST: Graph Invariant Structural Traits for Refined Graph Encoding

Figure 2. Node Clustering via Spectral Clustering Using Learned
GIST Features in Graph Transformers on ZINC molecule graph.
Nodes within the same local substructures are clustered to-
gether: 6-rings (purple), 2-path (cyan), and X-shape (light blue).

arrangements (i.e., rings and bonds in molecules) rather than
the global graph structure alone (Yang et al., 2018; Yu &
Gao, 2022). Many recent structural biases, such as shortest
path distance (Ying et al., 2021) or those based on random
walks (Rampášek et al., 2022; Ma et al., 2023), are effec-
tive at capturing simple substructures like cycles but tend
to focus predominantly on these patterns, neglecting the
interactions between different substructures (Wollschlager
et al., 2024). For example, in Figure 2, it is more beneficial
for u to aggregate information from the 6-ring, X-shape,
and 2-path substructures rather than solely focusing on an-
other 6-ring that mirrors its own structural pattern. This
highlights the need for a structural encoding that can help
attention mechanisms effectively learn the substructures
while enabling nodes to distinguish their own substructures
from those of others, guiding attention based on the distinct
structural relationships between nodes.

Observation 1: Intersection Cardinality as a Discrimina-
tive Subgraph Feature. Empirically, we observe that the
intersection cardinality of common neighborhoods between
two nodes (u, v) can also serve as a powerful and discrimi-
native feature encoding the k−hop subgraph structures. As
illustrated in Figure 1, the intersections of common neigh-
borhoods at different hop distances provide a structured way
for u to differentiate between the ring structure containing
v1 and the 2-path structure containing v2, based on the dif-
ferences in the in-between graph structures. Specifically,
for (u, v1), which belongs to the same 6-ring substructure,
the intersection cardinality values I(2,2), I(4,2), and I(2,4)
are all nonzero, indicating strong shared neighborhood con-
nectivity. In contrast, (u, v2), which belongs to different
substructures (a 6-ring and a 2-path), lacks these intersection
values but instead exhibits nonzero intersection cardinality
in positions such as I(3,2) and I(2,3), which are absent for

(u, v1). This contrast highlights how different substructure
compositions lead to distinct intersection patterns, enabling
the model to effectively distinguish between structurally
similar and dissimilar node pairs, guiding the self-attention
mechanism to weigh higher-order interactions accordingly.

Observation 2: Intersection Cardinality Enhances Struc-
tural Awareness in Self-Attention Mechanisms. More-
over, we empirically observe that incorporating an attention
mechanism with intersection cardinality as an attention bias
enables the attention mechanism to learn distinct substruc-
tures within the graph. In Figure 2, we train a Transformer
architecture on the on ZINC dataset (Dwivedi et al., 2022a),
introducing only the intersection cardinality (formally de-
fined in Section 4 as GIST) as a bias in the attention scores.
After training the model, we apply Spectral Clustering to
group nodes based on the learned GIST features. The GIST
features facilitate representation aggregation across struc-
turally similar regions, allowing node u to integrate infor-
mation from another ring structure. This effect is evident
as nodes from both rings are grouped into the same clus-
ters, marked in dark blue and cyan. Furthermore, certain
nodes positioned at the boundaries of these substructures
act as “information exchange points”, facilitating communi-
cation between distant regions of the graph. For example,
the cyan-colored node within the ”X” substructure is as-
signed to the same cluster as the ring nodes, effectively
facilitating representation aggregation between two differ-
ent substructures—an ability that current GNNs and Graph
Transformers struggle with due to their inherent locality
constraints. We note that this is not a cherry-picked ex-
ample; rather, this phenomenon consistently occurs across
multiple samples in the ZINC dataset after the Transformer
is trained.

3. GIST: Graph Invariant Structural Trait
In this section, we formally introduce the graph invariant
structural trait (GIST). We start by introducing how to en-
code the k-hop substructure of a node pair (u, v) based
on the k-hop common neighborhood between them. Next,
we introduce how to use encoded k-hop substructures in a
graph to form GIST. Finally, we introduce how to efficiently
compute GIST with randomized hashing algorithms.

Notation: We denote an undirected graph G = (V, E),
which contains a set V of n nodes (vertices) and a set E of
m edges (links). Each node v ∈ V has dn associated node
features xv ∈ Rdn , while each edge eu,v ∈ E connecting
node pair (u, v) has de associated edge features yu,v ∈ Rde

(yu,v = 0de if there is no edge between u and v). For every
node v ∈ V , we denote its k-hop neighborhoods as Nk(v).
Nk(v) consists of all vertices that can be reached from v
with less or equal to k edges. Subsequently, we define
the k-hop common neighborhood of a node pair (u, v) as

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Graph Transformers Get the GIST: Graph Invariant Structural Traits for Refined Graph Encoding

Cku,kv
(u, v) = Nku

(u) ∩ Nkv
(v), which is a set of nodes

in the graph that can be reached within ku from u and kv
edges from v, respectively.

3.1. Encoding k-hop Substructure of a Node Pair

We encode the k-hop substructure of a node pair (u, v) in a
vector. This vector is computed based on the k-hop common
neighborhood Cku,kv (u, v).

Definition 3.1 (k-hop substructure vector). Given a pair of
node (u, v) ∈ G, we propose capturing the k−hop graph
structure between u and v with two types of features com-
puted by k-hop common neighborhood Cku,kv (u, v) as fol-
lows:

• Iku,kv (u, v) as the cardinality of common neighborhoods
that are exactly ku hops from node u and kv hops from
node v, computed as:

Iku,kv
(u, v) = |Cku,kv

(u, v)| −
∑

x≤ku , y≤kv

(x,y)̸=(ku,kv)

Ix,y(u, v),

where I1,1(u, v) = |C1,1(u, v)| for u and v.
• Tku

(u, v): the cardinality of nodes that are exactly ku
hop from vertex u and greater than k hop from v (and
vice-versa for Tkv

(v, u)), computed as:

Tku,k(u, v) = |Nku
(u)|−Tku−1,k(u)−

ku∑
i=1

k∑
j=1

Ii,j(u, v)

For any node pair (u, v), there would be k2 numbers of
Iku,kv

(u, v), k numbers of Tku,k(u, v), and k numbers of
Tkv,k(v, u). Finally, we encode the k−hop graph substruc-
ture surrounding node pair (u, v) as a k−hop substructure
vector Sk(u, v). Sk(u, v) starts with Iku,kv (u, v) for every
pair of ku, kv ≤ k. Next, we fill the rest of the dimen-
sion in Sk(u, v) with Tku,k(u, v) for each ku ≤ k hop and
Tkv,k(v, u) for each kv ≤ k hop.

As we see from Definition 3.1, computing the k−hop sub-
structure vector requires first compute the cardinality of the
k-hop common neighborhood Cku,kv (u, v).

3.2. GIST: Graph Invariant Structural Trait

We define GIST as a three-dimensional matrix defined on
the k-hop common neighborhood Cku,kv

(u, v) (see Defini-
tion 3.1) between every pair of node (u, v) in graph G.

Definition 3.2 (Graph Invariant Structural Trait (GIST)).
Let G = (V, E) denote a graph with n nodes (|V| = n). We
define the k-hop graph invariant structural trait (GIST) as a
matrix S(G) ∈ Rn×n×(k2+2k), where each entry Si,j(G) ∈
Rk2+2k is the k-hop substructure between node vi, vj (see
Definition 3.1). We also use S(G)u,v to represent the GIST
value between node u, v ∈ G.

GIST provides a compact representation of a graph’s struc-
tural properties, encoding its topology and connectivity
patterns by capturing higher-order relational dependencies
among nodes and substructures. This encoding enables
the differentiation of substructures, offering a detailed un-
derstanding of complex higher-order relationships, as illus-
trated in Figure 2 and Section 2. We would like to note one
component of this representation: the diagonal entry Si,i(G),
which essentially encodes the k-hop neighborhood surround-
ing a node vi ∈ V . This local structure provides a positional
reference that differentiates nodes based on their placement
within the global graph topology, enabling the model to
capture long-range dependencies beyond direct connectivity.
Mathematically, GIST represents pairwise node interactions
as a matrix, where each interaction is encoded as a vector of
dimension (k2 +2k). This formulation preserves both local
and global structural information, making GIST a compre-
hensive descriptor of graph architecture suitable for various
analytical and learning-based applications.

3.3. Efficiently Compute GIST with Randomized
Hashing

In this section, we show how to efficiently compute GIST by
reducing the time complexity fromO(k2n4) toO(k2n2). It
is obvious that computing GIST S(G) requires O(k2n4)
time complexity. We note that for a node pair (u, v),
the exact computation of their k-hop common neighbor-
hood Cku,kv

(u, v) incurs a cost of O(n2), while calculat-
ing Su,v(G) requires O(k2n2). Consequently, computing
Su,v(G) for all node pairs in a graph G results in an overall
complexity of O(k2n4). Exact intersection calculations are
computationally expensive, making them impractical for
large graphs. Following (Chamberlain et al., 2022; Le et al.,
2024), we propose to efficiently and unbiasedly estimate the
cardinality of k-hop common neighborhood Cku,kv

(u, v) by
decomposing it as:

|Cku,kv (u, v)| = Jku,kv (u, v) · Uku,kv (u, v) (1)

Here, Jku,kv (u, v) represents the Jaccard similarity between
ku-hop neighborhoods Nku(u) and kv-hop neighborhoods
Nkv

(v). Uku,kv
(u, v) denotes the cardinality of the union

Nku
(u)∪Nkv

(v). Next, we can estimate Jku,kv
(u, v) with

the constant-time collisions of the MinHash signatures of
Nku

(u) and Nkv
(v) as shown in Algorithm 1. We note that

MinHash provides an unbiased estimator to the Jku,kv (u, v)
since the collision probability between the MinHash sig-
natures of Nku

(u) and Nkv
are equal to Jku,kv

(u, v) We
can also estimate Uku,kv

(u, v) with the mergeable Hyper-
LogLog sketch as Algorithm 1. We note that HyperLogLog
also provides an unbiased estimator to Uku,kv (u, v).

Finally, we multiply the estimated J̃ku,kv (u, v) and

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Graph Transformers Get the GIST: Graph Invariant Structural Traits for Refined Graph Encoding

Algorithm 1 Algorithm for computing intersection cardi-
nality |Cku,kv

(u, v)|
Input: Graph G = (V, E), max hops k, hops ku, kv, m
MinHash functions H = {h1, . . . , hm}, HyperLogLog
parameter p and regularizer constant αp

Output: Intersection cardinality |Cku,kv
(u, v)|

{Step 1. Pre-compute MinHash signatures}
for v ∈ V, hj ∈ H do
Mv[j, 0]← hj(v) {Initialize MinHash signatures}

end for
for i = 1 to k do

for v ∈ V, hj ∈ H do
Mv[j, i]← min

u∈N (v)

(
Mu[j, i− 1],Mv[j, i− 1]

)
end for

end for
{Step 2. Pre-compute HyperLogLog sketches}
m← 2p

for v ∈ V do
Compute k-hop HyperLogLog sketch Hv ∈ Rm×k

end for
{Step 3. Compute intersection cardinality}
for (u, v) ∈ V × V do
J̃ku,kv (u, v)← JACCARD-EST(ku, kv,m,Mu,Mv)
Ũku,kv

(u, v)← HLL-EST(ku, kv, Hu, Hv)
|Cku,kv

(u, v)| ← J̃ku,kv
(u, v) · Ũku,kv

(u, v)
end for
return |Cku,kv

(u, v)|

Function: JACCARD-EST(ku, kv,m,Mu,Mv)
Input: hops ku, kv, number of MINHASH functions m,
and k−hop MinHash values Mu,Mv

Output: Jaccard similarity J̃ku,kv
(u, v)

J̃ku,kv (u, v)← 0
for j = 1 to m do

if Mu(j, ku) =Mv(j, kv) then
J̃ku,kv

(u, v)← J̃ku,kv
(u, v) + 1

end if
end for
J̃ku,kv

(u, v)← J̃ku,kv
(u, v)/m

return J̃ku,kv (u, v)
EndFunction

Function: HLL-EST(ku, kv, Hu, Hv)
Input: hops ku, kv , HyperLogLog sketches Hu, Hv

Output: Union cardinality Ũku,kv
(u, v)

Hku,kv ← 0m

for j = 1 to m do
Hku,kv

[j]← max
(
Hu[j, ku], Hv[j, kv]

)
end for
Ũku,kv

(u, v)← αpm
2(
∑m

i=0 2
−Hku,kv [i])−1

return Ũku,kv
(u, v)

EndFunction

Ũku,kv
(u, v) together and form an unbiased estimator to

|Cku,kv (u, v)|. This unbiased estimation can serve as an
efficient alternative to exact computation for |Cku,kv (u, v)|.
With MinHash and HyperLogLog, we reduce the computa-
tion time for Su,v(G) from O(k2n2) to O(k2), leading to
O(k2n2) time for compute GIST.

4. Graph Transformers Get the GIST
We see GIST can be naturally integrated into graph tans-
formers for graph structural encoding in the self-attention
mechanism. As a result, we introduce the GIST attention
for graph transformers.

Definition 4.1 (GIST attention). Let G = (V, E) denote
a graph with n nodes (|V| = n). Let xu ∈ Rdn denote
the representation of node u ∈ V . Let yu,v ∈ Rde denote
the representation of edge between nodes u, v ∈ V . Let
wv ∈ Rdn×dn and we ∈ Rdn×d denote the model weight.
Let S(G) denote the k-hop GIST computed from G (see
Definition 3.2). We define the GIST attention as a transform
ψ : Rdn → Rdn on every node feature xu as:

ψ(xu) =
∑
v∈V
Au,v · (wvxv + weÂu,v),

where Âu,v ∈ Rd and attention score Au,v ∈ R are:

eu,v = ϕy(yu,v) + ϕS(Su,v(G))
Au,v = σ

(
⟨wQxu + wKxv + wb, eu,v⟩

)
.

Âu,v = (wQxu + wKxv + wb)⊙ eu,v.

Here ϕy : Rde → Rd and ϕS : Rk2+2k → Rd are MLP
networks that align the representation of edge and GIST (see
Definition 3.2) into same d-dimensional vector for addition.
wQ, wK ∈ Rd×dn and wb ∈ Rd are model weights and
bias, respectively.

GIST attention can be viewed as a graph invariant with the
following statement.

Theorem 4.2 (Informal version of Theorem A.1). Let G =
(V, E) denote a graph with n nodes (|V| = n). Let S(G) ∈
denote the k-hop GIST (see Definition 3.2) computed on G.
We show that the GIST attention (see Definition 4.1) ψ(xu)
for every node u ∈ V is invariant under graph isomorphism.

We provide the formal version of this theorem and proof in
Appendix A. In other words, the permutation of node orders
in the graph does not break the substructure in the graph
due to graph isomorphism. As a result, it does not affect the
value of GIST.

We use GIST attention as the building blocks and form a
graph transformer with multiple GIST attention blocks. We
view GIST attention as a way of modelling node interactions
with the awareness of the graph structure.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Graph Transformers Get the GIST: Graph Invariant Structural Traits for Refined Graph Encoding

5. Experiment
In this section, we aim to rigorously evaluate the effec-
tiveness of GIST by addressing the following key research
questions and providing corresponding insights:

• RQ 1: How well does GIST facilitate the learning and dif-
ferentiation of substructures in graph classification tasks?

• RQ 2: To what extent does GIST enable long-range de-
pendencies in Graph Transformers?

• RQ 3: How sensitive is GIST to the maximum hop dis-
tance for computing intersection cardinality?

5.1. Settings

We evaluate the proposed method on three benchmark suites
comprising a total of 12 datasets, spanning small-scale to
large-scale settings: the Long-Range Graph Benchmark
(LRGB) (Dwivedi et al., 2022c), MoleculeNet (Wu et al.,
2017), ZINC (Dwivedi et al., 2022a), and ZINC-full (Irwin
et al., 2012). These datasets are specifically curated to
emphasize challenges in structural encoding and long-range
dependency modeling, with diverse applications in domains
such as chemistry and biology.

Baselines. We benchmark the performance of our method
against recent state-of-the-art baselines across multiple
categories, including Graph Transformers, Graph Neu-
ral Networks (GNNs), hybrid models combining Trans-
formers and GNNs, as well as pretrained graph models:
GraphGPS (Rampášek et al., 2022), GRIT (Ma et al.,
2023), Subgraphormer (Bar-Shalom et al., 2024), Frag-
Net (Wollschlager et al., 2024), GatedGCN (Dwivedi et al.,
2022c), SAN (Kreuzer et al., 2021), Graphormer (Ying et al.,
2021), Graphormer-GD (Zhang et al., 2023b), GCN (Kipf
& Welling, 2017), GIN (Xu et al., 2018), NGNN (Zhang &
Li, 2021), DS-GNN (Bevilacqua et al., 2022), DSS-GNN
(Bevilacqua et al., 2022), GNN-AK (Zhao et al., 2022),
GNN-AK+ (Zhao et al., 2022), SUN (Frasca et al., 2022),
OSAN (Qian et al., 2022), DS-GNN (Bevilacqua et al.,
2023), GNN-SSWL (Zhang et al., 2023a), GNN-SSWL+
(Zhang et al., 2023a), GraphMVP (Liu et al., 2022), MGSSL
(Zhang et al., 2021), and GraphFP (Luong & Singh, 2023).

Experimental Settings. For each dataset, we train our pro-
posed method on the training set and select the epoch with
the best validation performance. We then report the test re-
sults corresponding to this selected epoch. The performance
of our method is presented as the mean ± standard deviation
over 5 runs with different random seeds. The performance
metrics for each baseline are obtained either directly from
their original publications or reproduced by us using the
best hyperparameters reported in their studies.

Hyperparameters. Particularly for our method, we perform
a grid search to find the optimal hyperparameter combina-
tion for each dataset whenever feasible. The intersection

features are within [1,2,3,4,5,6]-hops of each node, the batch
size is chosen among [32, 64, 128, 256], the number of lay-
ers is chosen among [2, 4, 6, 8], the number of heads is
chosen among [2, 4, 8, 16, 32], the number of hidden dimen-
sions is chosen among [16, 32, 64, 128], and learning rate is
chosen among [0.0001, 0.0003, 0.0005, 0.002]. The chosen
optimizer is AdamW. Our model is trained at 200 epochs for
all datasets, except for MUV and HIV, where it is trained
for 100 epochs. All model training and evaluations were
conducted on NVIDIA A100 GPUs with 80G memory.

Dataset Statistics. We provide the statistics of 12 datasets
used in our experiments to evaluate the performance of our
proposed GIST in Table 1.

Table 1. Datasets’ Statistics
Dataset # Graphs Avg. # nodes Avg. # edges Prediction task Metric

BBBP 2,050 23.9 51.6 binary classification ROC-AUC
Tox21 7,831 18.6 38.6 12-task classification ROC-AUC
Toxcast 8,597 18.7 38.4 617-task classification ROC-AUC
Sider 1,427 33.6 70.7 27-task classification ROC-AUC
Clintox 1,484 26.1 55.5 2-task classification ROC-AUC
Bace 1513 34.1 73.7 binary classification ROC-AUC
MUV 93,087 24.2 52.6 17-task classification ROC-AUC
HIV 41,127 25.5 54.9 binary classification ROC-AUC

Peptides-func 15,535 150.94 307.30 10-task classification Avg. Precision
Peptides-struct 15,535 150.94 307.30 11-task regression Mean Abs. Error

Zinc Subset 12,000 23.2 49.8 regression Mean Abs. Error
Zinc Full 249,456 23.2 49.8 regression Mean Abs. Error

5.2. Long-Range Graph Benchmark (LRGB)

We evaluate the ability of our proposed GIST to learn long-
range dependencies using two graph classification datasets
from LRGB (Dwivedi et al., 2022c): Peptides-func and
Peptides-struct. These datasets provide a robust benchmark
for assessing graph classification methods in handling long-
range dependencies and addressing structural challenges
such as over-squashing and over-smoothing of many GNNs.
As shown in Table 2, GIST significantly enhances the ca-
pability of Transformers, achieving state-of-the-art perfor-
mance on LRGB. This demonstrates that encoding struc-
tural information into Transformer-based architectures can
mitigate the limitations of existing GNNs in capturing long-
range interactions. Regarding RQ2, our results demonstrate
that GIST effectively captures long-range dependencies by
encoding structural relationships beyond local neighbor-
hoods, leading to improved classification performance.

5.3. ZINC and ZINC-full

We further evaluate our proposed GIST on two molecular
property prediction datasets: ZINC (Dwivedi et al., 2022a)
and ZINC-full (Irwin et al., 2012). These datasets are widely
used benchmarks for assessing the ability of graph-based
models to learn molecular representations and predict chem-
ical properties. ZINC, with its constrained molecular struc-
tures and well-defined tasks, serves as a standard benchmark

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Graph Transformers Get the GIST: Graph Invariant Structural Traits for Refined Graph Encoding

Table 2. Performance of GIST on Peptides datasets from LRGB:
Top-3 Results Highlighted in Red, Blue, and Orange.

Model Peptides-struct Peptides-func
MAE ↓ AP ↑

GCN (Kipf & Welling, 2017) 0.3496± 0.0013 0.5930± 0.0023
GIN (Xu et al., 2018) 0.3547± 0.0045 0.5498± 0.0079
Subgraphormer (Bar-Shalom et al., 2024) 0.2494± 0.0020 0.6415± 0.052
FragNet (Wollschlager et al., 2024) 0.2462± 0.0021 0.6678 ± 0.0050
GatedGCN+RWSE (Dwivedi et al., 2022c) 0.3357± 0.0006 0.6069± 0.0035
GRIT (Ma et al., 2023) 0.2460± 0.0012 0.6988± 0.0082
GraphGPS (Rampášek et al., 2022) 0.2500± 0.0012 0.6535± 0.0041
SAN+LapPE (Kreuzer et al., 2021) 0.2683 ± 0.0043 0.6384 ± 0.0121
SAN+RWSE (Kreuzer et al., 2021) 0.2545± 0.0012 0.6439± 0.0075
GNN-SSWL+ (Zhang et al., 2023a) 0.2570± 0.006 0.5847± 0.0050

GIST (ours) 0.2442 ± 0.0011 0.6783 ± 0.0087

for evaluating a model’s effectiveness in capturing molecu-
lar topology and learning chemically relevant features. In
contrast, ZINC-full provides a large-scale and more diverse
dataset, offering a more rigorous test of a model’s gener-
alization capability across a broader range of molecular
structures and chemical compositions. As shown in Table
3, our approach significantly improves the ability of Trans-
formers to learn molecular graph representations, achieving
superior predictive performance. These results demonstrate
that incorporating structural priors into Transformer archi-
tectures can enhance molecular property prediction, making
GIST a promising approach for advancing deep learning
methods in computational chemistry and drug discovery.

Table 3. Performance of GIST on ZINC and ZINC-full: Top-3
Results Highlighted in Red, Blue, and Orange.

Model ZINC ZINC-full
MAE ↓ MAE ↓

GCN (Kipf & Welling, 2017) 0.367± 0.011 0.113± 0.002
GIN (Xu et al., 2018) 0.526± 0.051 0.088± 0.002

NGNN (Zhang & Li, 2021) 0.111± 0.003 0.029± 0.001
DS-GNN (Bevilacqua et al., 2022) 0.116± 0.009 -
DSS-GNN (Bevilacqua et al., 2022) 0.102± 0.003 0.029± 0.003
GNN-AK (Zhao et al., 2022) 0.105± 0.010 -
GNN-AK+ (Zhao et al., 2022) 0.091± 0.002 -
SUN (Frasca et al., 2022) 0.083± 0.003 0.024± 0.003
OSAN (Qian et al., 2022) 0.154± 0.008 -
DS-GNN (Bevilacqua et al., 2023) 0.087± 0.003 -
GNN-SSWL (Zhang et al., 2023a) 0.082± 0.003 0.026± 0.001
GNN-SSWL+ (Zhang et al., 2023a) 0.070 ± 0.005 0.022 ± 0.001

Subgraphormer (Bar-Shalom et al., 2024) 0.063 ± 0.001 0.023 ± 0.001
FragNet (Wollschlager et al., 2024) 0.078 ± 0.005 0.024
GatedGCN-LSPE (Dwivedi et al., 2022c) 0.090± 0.001 -
GRIT (Ma et al., 2023) 0.059 ± 0.002 0.023 ± 0.001
GraphGPS (Rampášek et al., 2022) 0.070± 0.004 -
SAN (Kreuzer et al., 2021) 0.139± 0.006 -
Graphormer (Kreuzer et al., 2021) 0.122± 0.006 0.052 ±0.005
Graphormer-GD (Kreuzer et al., 2021) 0.081± 0.009 0.025 ±0.004

GIST (ours) 0.055 ± 0.002 0.019 ± 0.002

5.4. MoleculeNet Benchmark

To further evaluate the effectiveness of our proposed GIST
in molecular representation learning, we extend our exper-

iments to the MoleculeNet benchmark (Wu et al., 2017).
MoleculeNet encompasses a diverse collection of graph-
based molecular property prediction tasks, specifically de-
signed to assess a model’s ability to capture chemical inter-
actions, molecular toxicity, and bioactivity. These tasks span
a range of real-world applications, including drug discovery,
environmental toxicity assessment, and material science,
making MoleculeNet a comprehensive benchmark for eval-
uating graph-based learning approaches. As shown in Table
5, GIST consistently outperforms—or at least maintains
competitive performance against—existing state-of-the-art
pre-trained graph models and Graph Transformers across
multiple tasks. These results highlight GIST’s strong capa-
bility in molecular representation learning, demonstrating
that structural information can be effectively integrated into
Transformer-based architectures without the need for ex-
tensive pretraining, making it a promising approach for
molecular property prediction in low-data regimes.

5.5. Ablation Study on different k−hop

Finally, to analyze the impact of different k-hop neighbor-
hood sizes in our proposed GIST, we conduct an ablation
study on the ZINC dataset. The value of k influences how
much local and long-range information is incorporated into
the model. For RQ3, results from our ablation study on
the ZINC dataset (Table 4) indicate that GIST is robust to
variations in the maximum hop distance k. While perfor-
mance improves as k increases from 1 to 3, capturing richer
structural dependencies, the fluctuations beyond k = 3
remain minimal, suggesting that GIST maintains stability
across different neighborhood sizes. The slight decrease in
performance at higher k is marginal, indicating that GIST
effectively balances local expressiveness and global aggre-
gation without being overly sensitive to the choice of k.

Table 4. Ablation study on different k-hop neighborhood sizes in
GIST on the ZINC dataset.

k-hop 1 2 3 4 5

MAE ↓ 0.100 0.058 0.054 0.065 0.063

For RQ1, our competitive results in Tables 5, 2, and 3
show that GIST effectively facilitates the learning and dif-
ferentiation of substructures in graph classification tasks by
encoding rich structural relationships through intersection
cardinality. This enables Graph Transformers to capture
fine-grained substructure information and complex substruc-
ture relationships, leading to improved performance.

6. Related Works
Graph Substructures Modeling. Modeling graph sub-
structures is crucial for capturing fine-grained structural pat-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Graph Transformers Get the GIST: Graph Invariant Structural Traits for Refined Graph Encoding

Table 5. Performance of GIST on MoleculeNet benchmark: Top-3 Results Highlighted in Red, Blue, and Orange.
Model BBBP Tox21 Toxcast Sider Clintox Bace MUV HIV Avg. AUC

AttrMasking (Hu et al., 2020a) 64.3 ± 2.8 76.7 ± 0.4 64.2 ± 0.5 61.0 ± 0.7 71.8 ± 4.1 79.3 ± 1.6 74.7 ± 1.4 77.2 ± 1.1 71.2
GRIT (Ma et al., 2023) 69.9 ± 1.3 75.9 ± 0.6 65.6 ± 0.4 60.3 ± 1.2 85.9 ± 2.9 84.4 ± 1.2 77.1 ± 1.7 77.3 ± 1.5 74.8
GraphGPS (Rampášek et al., 2022) 56.2 ± 4.4 71.4 ± 0.7 60.6 ± 1.0 60.2 ± 1.1 79.2 ± 3.6 71.5 ± 6.0 65.2 ± 1.6 66.0 ± 9.4 66.3
GraphLoG (Xu et al., 2021) 67.8 ± 1.9 75.1 ± 1.0 62.4 ± 0.2 59.5 ± 1.5 65.3 ± 3.2 80.2 ± 3.5 73.6 ± 1.2 73.7 ± 0.9 69.7
GraphCL (You et al., 2020) 69.7 ± 0.7 73.9 ± 0.7 62.4 ± 0.6 60.5 ± 0.9 76.0 ± 2.7 75.4 ± 1.4 69.8 ± 2.7 78.5 ± 1.2 70.8
G-Motif (Rong et al., 2020) 66.9 ± 3.1 73.6 ± 0.7 62.3 ± 0.6 61.0 ± 1.5 77.7 ± 2.7 73.0 ± 3.3 73.0 ± 1.8 73.8 ± 1.2 70.2
G-Contextual (Rong et al., 2020) 69.2 ± 3.0 75.0 ± 0.6 62.8 ± 0.7 58.7 ± 1.0 60.6 ± 5.2 79.3 ± 1.1 72.1 ± 0.7 76.3 ± 1.5 69.3
GPT-GNN (Hu et al., 2020b) 64.5 ± 1.4 74.9 ± 0.3 62.5 ± 0.4 58.1 ± 0.3 58.3 ± 5.2 77.9 ± 3.2 75.9 ± 2.3 65.2 ± 2.1 67.2
GraphFP (Luong & Singh, 2023) 72.0 ± 1.7 74.0 ± 0.7 63.9 ± 0.9 63.6 ± 1.2 84.7 ± 5.8 80.5 ± 1.8 75.4 ± 1.9 78.0 ± 1.5 74.0
MGSSL (Zhang et al., 2021) 68.9 ± 2.5 74.9 ± 0.6 63.3 ± 0.5 57.7 ± 0.7 67.5 ± 5.5 82.1 ± 2.7 73.2 ± 1.9 75.7 ± 1.3 70.4
GraphMVP (Liu et al., 2022) 68.5 ± 0.2 74.5 ± 0.4 62.7 ± 0.1 62.3 ± 1.6 79.0 ± 2.5 76.8 ± 1.1 75.0 ± 1.4 74.8 ± 1.4 71.7

GIST (ours) 70.6 ± 1.8 77.2 ± 0.4 67.3 ± 0.9 61.3 ± 2.7 88.2 ± 2.2 86.0 ± 1.9 75.5 ± 3.2 77.0 ± 0.2 75.4

terns and improving representation learning in graph-based
tasks. However, GNNs remain fundamentally constrained
by their reliance on localized message passing, which lim-
its their ability to capture long-range dependencies and
effectively model complex substructure interactions, due
to over-smoothing and over-squashing issues (Xu et al.,
2018; Alon & Yahav, 2021). To address this, later works
have introduced spectral features (Balcilar et al., 2021),
motif-based methods (Rong et al., 2020; Zhang et al., 2021;
Bar-Shalom et al., 2024; Wollschlager et al., 2024), and
Weisfeiler-Lehman (WL) kernel-based approaches (Morris
et al., 2019) to improve graph representation learning by ex-
plicitly capturing local and global structural patterns. While
motif-based methods improve expressivity by incorporat-
ing recurring substructures, they often depend on predefined
motifs, restricting their adaptability to unseen graph patterns.
Similarly, WL kernel-based approaches enhance structural
discrimination but struggle with distinguishing graphs that
are structurally different yet WL-equivalent. Furthermore,
spectral features capture global graph properties but intro-
duce additional computational complexity, making them
less practical for large-scale applications. These limitations
underscore the need for alternative architectures that can
more effectively integrate structural biases while maintain-
ing both scalability and expressiveness in graph learning.

Graph Transformers. Transformers have demonstrated
remarkable success in natural language processing and com-
puter vision by leveraging self-attention to model long-range
dependencies effectively (Vaswani et al., 2017). More re-
cently, their adaptation to graph-structured data has led to
the emergence of Graph Transformers, where self-attention
replaces traditional message-passing mechanisms to enable
more flexible and expressive learning (Zhang et al., 2020;
Dwivedi & Bresson, 2021). However, a fundamental chal-
lenge in applying Transformers to graphs is the absence of
a natural node ordering, making it difficult to encode struc-
tural information directly. To address this, positional encod-
ings have been introduced to assign meaningful node repre-
sentations within the graph topology. Among these, Lapla-

cian eigenvector-based encodings (LapPE) (Dwivedi et al.,
2022a) and random walk positional encodings (RWPE)
(Dwivedi et al., 2022b) inject global structural awareness,
enhancing the model’s ability to differentiate nodes with
similar local neighborhoods. Beyond positional encodings,
researchers have explored incorporating structural biases
into self-attention to ensure that Graph Transformers respect
the underlying graph topology. GPS (Rampášek et al., 2022)
combines message passing with attention, allowing models
to capture both local and global dependencies within the
graph. More recently, GRIT (Ma et al., 2023) introduced a
fully Transformer-based framework that eliminates explicit
message passing while embedding structure-aware atten-
tion, achieving state-of-the-art performance across multiple
graph learning benchmarks. These advancements reflect a
growing shift toward pure Transformer architectures that ef-
fectively incorporate graph-specific inductive biases, paving
the way for more scalable and expressive models in graph
representation learning.

7. Conclusion
This paper introduces the Graph Invariant Structural Trait
(GIST) to enhance Graph Transformers by improving their
ability to encode graph structures. GIST estimates pairwise
node intersections to capture substructures within a graph,
integrating this information into the attention mechanism.
This refinement enables Graph Transformers to better repre-
sent structural relationships that traditional all-to-all atten-
tion struggles to capture. Theoretical analysis and empirical
results confirm that GIST effectively preserves essential
structural information critical for graph classification. Ex-
tensive experiments across multiple datasets demonstrate
that incorporating GIST into Graph Transformers consis-
tently improves performance over state-of-the-art methods.
These findings highlight the importance of structural encod-
ing in enhancing Graph Transformers, contributing to more
robust and interpretable graph-based learning models across
scientific domains.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Graph Transformers Get the GIST: Graph Invariant Structural Traits for Refined Graph Encoding

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Alon, U. and Yahav, E. On the bottleneck of graph neural

networks and its practical implications. In The Tenth
International Conference on Learning Representations,
2021.

Balcilar, M., Héroux, P., Gaüzère, B., Vasseur, P., Adam,
S., and Honeine, P. Breaking the limits of message pass-
ing graph neural networks. In The 38th International
Conference on Machine Learning, 2021.

Bar-Shalom, G., Bevilacqua, B., and Maron, H. Sub-
graphormer: Unifying subgraph gnns and graph trans-
formers via graph products. In The Forty-first Interna-
tional Conference on Machine Learning, 2024.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai,
C., Balamurugan, G., Bronstein, M. M., and Maron, H.
Equivariant subgraph aggregation networks. In Interna-
tional Conference on Learning Representations (ICLR),
2022.

Bevilacqua, B., Eliasof, M., Meirom, E., Ribeiro, B., and
Maron, H. Efficient subgraph gnns by learning effec-
tive selection policies. In International Conference on
Learning Representations (ICLR), 2023.

Black, M., Wan, Z., Nayyeri, A., and Wang, Y. Under-
standing oversquashing in gnns through the lens of effec-
tive resistance. In International Conference on Machine
Learning, pp. 2528–2547. PMLR, 2023.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks? In The Eleventh International Con-
ference on Learning Representations, 2022.

Chamberlain, B. P., Shirobokov, S., Rossi, E., Frasca, F.,
Markovich, T., Hammerla, N. Y., Bronstein, M. M., and
Hansmire, M. Graph neural networks for link prediction
with subgraph sketching. In The Eleventh International
Conference on Learning Representations, 2022.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2021.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio,
Y., and Bresson, X. Benchmarking graph neural networks.
In Journal of Machine Learning Research, 2022a.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bres-
son, X. Graph neural networks with learnable structural
and positional representations. In The Eleventh Interna-
tional Conference on Learning Representations, 2022b.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Recipe for a general,
powerful, scalable graph transformer. In 36th Conference
on Neural Information Processing Systems, 2022c.

Frasca, F., Bevilacqua, B., Bronstein, M., and Maron, H. Un-
derstanding and extending subgraph gnns by rethinking
their symmetries. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 35, pp. 31376–31390,
2022.

Han, X., Jiang, Z., Liu, N., and Hu, X. G-mixup: Graph
data augmentation for graph classification. In Interna-
tional Conference on Machine Learning, pp. 8230–8248.
PMLR, 2022.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neu-
ral networks. In International Conference on Learning
Representations (ICLR), 2020a.

Hu, Z., Dong, Y., Wang, K., Chang, K.-W., and Sun, Y. Gpt-
gnn: Generative pre-training of graph neural networks.
In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining
(KDD), 2020b.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and
Coleman, R. G. Zinc: a free tool to discover chemistry
for biology. In Journal of Chemical Information and
Modeling, 2012.

Keriven, N. Not too little, not too much: a theoretical
analysis of graph (over) smoothing. Advances in Neural
Information Processing Systems, 35:2268–2281, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https://
openreview.net/forum?id=SJU4ayYgl.

Kreuzer, D., Beaini, D., Hamilton, W. L., Letourneau, V.,
and Tossou, P. Rethinking graph transformers with spec-
tral attention. In 35th Conference on Neural Information
Processing Systems, 2021.

Le, D., Zhong, S. H., Liu, Z., Xu, S., Chaudhary, V., Zhou,
K., and Xu, Z. Knowledge graphs can be learned with
just intersection features. In The Forty-first International
Conference on Machine Learning, 2024.

9

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Graph Transformers Get the GIST: Graph Invariant Structural Traits for Refined Graph Encoding

Liu, S., Wang, H., Liu, W., Lasenby, J., Guo, H., and Tang,
J. Pre-training molecular graph representation with 3d
geometry. In The Eleventh International Conference on
Learning Representations, 2022.

Luong, K.-D. and Singh, A. Fragment-based pretraining
and finetuning on molecular graphs. In 37th Conference
on Neural Information Processing Systems, 2023.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania,
P. K., Coates, M., Torr, P. H., and Lim, S.-N. Graph
inductive biases in transformers without message passing.
In The Fortieth International Conference on Machine
Learning, 2023.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and le-
man go neural: Higher-order graph neural networks.
In Proceedings of the 33rd AAAI Conference on Arti-
ficial Intelligence (AAAI), pp. 4602–4609, 2019. URL
https://arxiv.org/abs/1810.02244.

Qian, C., Rattan, G., Geerts, F., Niepert, M., and Morris,
C. Ordered subgraph aggregation networks. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 35, pp. 21030–21045, 2022.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. In 36th Conference on Neural
Information Processing Systems, 2022.

Rong, Y., Bian, Y., Xu, T., Xie, W., Wei, Y., Huang, W.,
and HUang, J. Self-supervised graph transformer on
large-scale molecular data. In 34th Conference on Neural
Information Processing Systems, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In 31th Conference on Neural Information
Processing Systems, 2017.

Wang, Y. and Zhang, M. An empirical study of realized gnn
expressiveness. In Forty-first International Conference
on Machine Learning, 2024.

Wollschlager, T., Kemper, N., Hetzel, L., Sommer, J., and
Gunneman, S. Expressivity and generalization: Fragment-
biases for molecular gnns. In The Forty-first International
Conference on Machine Learning, 2024.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: A benchmark for molecular machine learn-
ing. In Chemical Science, 2017.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In The Seventh International
Conference on Learning Representations, 2018.

Xu, M., Wang, H., Ni, B., Guo, m. H., and Tang, J. Self-
supervised graph-level representation learning with local
and global structure. In The 38th International Confer-
ence on Machine Learning, 2021.

Yang, C., Liu, M., Zheng, V. W., and Han, J. Node, mo-
tif and subgraph: Leveraging network functional blocks
through structural convolution. In International Confer-
ence on Advances in Social Network Analysis and Mining,
2018.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do transformers really perform bad
for graph representation? In 35th Conference on Neural
Information Processing Systems, 2021.

You, Y., Chen, T., Shen, Y., and Wang, Z. Graph contrastive
learning with augmentations. In 34th Conference on
Neural Information Processing Systems, 2020.

Yu, Z. and Gao, H. Molecular representation learning via
heterogeneous motif graph neural networks. In Proceed-
ings of the 39th International Conference on Machine
Learning, 2022.

Zhang, B., Feng, G., Du, Y., He, D., and Wang, L. A
complete expressiveness hierarchy for subgraph gnns via
subgraph weisfeiler-lehman tests. In International Con-
ference on Machine Learning (ICML), 2023a.

Zhang, B., Luo, S., Wang, L., and He, D. Rethinking
the expressive power of gnns via graph biconnectivity.
In The Twelfth International Conference on Learning
Representations, 2023b.

Zhang, M. and Li, P. Nested graph neural networks.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 34, 2021.

Zhang, Z., Cui, P., and Zhu, W. Graph-bert: Only attention is
needed for learning graph representations. arXiv preprint
arXiv:2001.05140, 2020.

Zhang, Z., Liu, Q., Wang, H., Lu, C., and Lee, C.-K. Motif-
based graph self-supervised learning for molecular prop-
erty prediction. In 35th Conference on Neural Informa-
tion Processing Systems, 2021.

Zhao, L., Jin, W., Akoglu, L., and Shah, N. From stars to
subgraphs: Uplifting any gnn with local structure aware-
ness. In International Conference on Learning Represen-
tations (ICLR), 2022.

10

https://arxiv.org/abs/1810.02244

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Graph Transformers Get the GIST: Graph Invariant Structural Traits for Refined Graph Encoding

A. Proofs
Theorem A.1 (Formal version of Theorem 4.2). Let G = (V, E) denote a graph with n nodes (|V| = n). Let S(G) ∈ denote
the k-hop GIST (see Definition 3.2) computed on G. We show that the GIST attention ψ(xu) for every node u ∈ V (see
Definition 4.1) is invariant under graph isomorphism.

Proof. Let f denote isomorphic transform on nodes V such that if u and v are adjacent in G, f(u) and f(v) are also adjacent.
Without loss of generally, we see that Cku,kv (f(u), f(v)) = Cku,kv (u, v).

Following Definition 3.1, we show that Iku,kv
(f(u), f(v)) = Iku,kv

(u, v), Tku,kv
(f(u), f(v)) = Tku,kv

(u, v).

As a result, we show that Sf(u),f(v)(f(G)) = Su,v(f(G)).

Following Definition 4.1, since the order of node v does not affect the computation of ψ(xu), we show that ψ(xf(u)) =
ψ(xu).

As a result, we show that the isomorphic transform f does not change ψ(xu), making ψ a graph invariant.

11

