
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LiDAR SCENE GENERATION DYNAMICCITY: LARGE-SCALE OCCUPANCY
GENERATION FROM DYNAMIC SCENES

Anonymous authors
Paper under double-blind review

Command-Driven
Scene Generation

. . .

T=1 T=2 T=3 T=5 T=NT=4

Dynamic Object
Generation

Dynamic Scene InpaintingTrajectory-Guided Generation Layout-Conditioned Generation

1 2

3 4

5 6

1 2

3 4

5 6

Before After

Forward Turn Left

Turn Left Turn Left

Turn Left Forward

Figure 1: Dynamic 4D occupancy generation from DynamicCity. We introduce a new generation
model that generates diverse 4D scenes of large spatial scales (80 × 80 × 6.4 meter3) and long
sequential modeling (up to 128 frames), enabling a diverse set of downstream applications. For more
detailed examples, kindly refer to our Anonymous Project Page: dynamic-city.github.io.

ABSTRACT

LiDAR scene generation has been developing rapidly recently. However, existing
methods primarily focus on generating static and single-frame scenes, overlooking
the inherently dynamic nature of real-world driving environments. In this work,
we introduce DynamicCity, a novel 4D occupancy generation framework capable
of generating large-scale, high-quality dynamic LiDAR scenes with semantics.
DynamicCity mainly consists of two key models. 1) A VAE model for learning
HexPlane as the compact 4D representation. Instead of using naive averaging
operations, DynamicCity employs a novel Projection Module to effectively com-
press 4D LiDAR features into six 2D feature maps for HexPlane construction,
which significantly enhances HexPlane fitting quality (up to 12.56 mIoU gain).
Furthermore, we utilize an Expansion & Squeeze Strategy to reconstruct 3D
feature volumes in parallel, which improves both network training efficiency and
reconstruction accuracy than naively querying each 3D point (up to 7.05 mIoU
gain, 2.06x training speedup, and 70.84% memory reduction). 2) A DiT-based
diffusion model for HexPlane generation. To make HexPlane feasible for DiT
generation, a Padded Rollout Operation is proposed to reorganize all six feature
planes of the HexPlane as a squared 2D feature map. In particular, various condi-
tions could be introduced in the diffusion or sampling process, supporting versatile
4D generation applications, such as trajectory- and command-driven generation,
inpainting, and layout-conditioned generation. Extensive experiments on the Car-

1

https://dynamic-city.github.io

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

laSC and Waymo datasets demonstrate that DynamicCity significantly outperforms
existing state-of-the-art 4D LiDAR generation methods across multiple metrics.
The code will be released to facilitate future research.

1 INTRODUCTION

LiDAR scene generation has garnered growing attention recently, which could benefit various related
applications, such as robotics and autonomous driving. Compared to its 3D object generation
counterpart, generating LiDAR scenes remains an under-explored field, with many new research
challenges such as the presence of numerous moving objects, large-scale scenes, and long temporal
sequences (Huang et al., 2021). For example, in autonomous driving scenarios, a LiDAR scene
typically comprises multiple objects from various categories, such as vehicles, pedestrians, and
vegetation, captured over a long sequence (e.g., 200 frames) spanning a large area (e.g., 80× 80×
6.4 meters3). Although in its early stage, LiDAR scene generation holds great potential to enhance
the understanding of the 3D world, with wide-reaching and profound implications.

Due to the complexity of LiDAR data, many efficient learning frameworks have been introduced for
large-scale 3D scene generation. X 3 (Ren et al., 2024b) utilizes a hierarchical voxel diffusion model
to generate outdoor 3D scenes based on VDB data structure. PDD (Liu et al., 2023a) introduces a
pyramid discrete diffusion model to progressively generate high-quality 3D scenes. SemCity (Lee
et al., 2024) resolves outdoor scene generation by leveraging a triplane diffusion model. Despite
achieving impressive LiDAR scene generation, they primarily focus on generating static and single-
frame 3D occupancy (i.e., dense LiDAR scenes), and hence fail to effectively capture the dynamic
nature of outdoor environments. Recently, a few works (Zheng et al., 2024b; Wang et al., 2024) have
explored 4D LiDAR generation. However, generating high-quality long-sequence 4D LiDAR scenes
is still a challenging and open problem (Nakashima & Kurazume, 2021; Nakashima et al., 2023).

In this work, we propose a novel 4D occupancy generation framework, DynamicCity, enabling
generating large-scale, high-quality dynamic LiDAR scenes, which mainly consists of two stages:
1) a VAE network for learning compact 4D representations, i.e., HexPlanes (Cao & Johnson, 2023;
Fridovich-Keil et al., 2023); 2) a HexPlane Generation model based on DiT (Peebles & Xie, 2023).

VAE for 4D LiDAR. Given a set of 4D LiDAR scenes, DynamicCity first encodes the scene as a 3D
feature volume sequence with a 3D backbone. Afterward, we propose a novel Projection Module
based on transformer operations to compress the feature volume sequence into six 2D feature maps.
In particular, the proposed projection module significantly enhances HexPlane fitting performance,
offering an improvement of up to 12.56% mIoU compared to conventional averaging operations.
After constructing the HexPlane based on the projected six feature planes, we employ an Expansion
& Squeeze Strategy (ESS) to decode the HexPlane into multiple 3D feature volumes in parallel.
Compared to individually querying each point, ESS further improves HexPlane fitting quality (with
up to 7.05% mIoU gain), significantly accelerates training speed (by up to 2.06x), and substantially
reduces memory usage (by up to a relative 70.84% memory reduction).

DiT for HexPlane. Using the encoded HexPlane, we use a DiT-based framework for generating
HexPlane, enabling 4D LiDAR generation. Training a DiT with token sequences naively generated
from HexPlane may not achieve optimal quality, as it could overlook spatial and temporal relationships
among tokens. Therefore, we introduce the Padded Rollout Operation (PRO), which reorganizes
the six feature planes into a square feature map, providing an efficient way to model both spatial
and temporal relationships within the token sequence. Leveraging the DiT framework, DynamicCity
seamlessly incorporates various conditions to guide the 4D generation process, enabling a wide
range of applications including hexplane-conditional generation, trajectory-guided generation,
command-driven scene generation, layout-conditioned generation, and dynamic scene inpainting.

Our contributions can be summarized as follows:

• We propose DynamicCity, a high-quality, large-scale 4D LiDAR scene generation frame-
work consisting of a tailored VAE for HexPlane fitting and a DiT-based network for HexPlane
generation, which supports various downstream applications.

• In the VAE architecture, DynamicCity employs a novel Projection Module to benefit in
encoding 4D LiDAR scenes into compact HexPlanes, significantly improving HexPlane

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

fitting quality. Following, an Expansion & Squeeze Strategy is introduced to decode the
HexPlanes for reconstruction, which improves both fitting efficiency and accuracy.

• Building on fitted HexPlanes, we design a Padded Rollout Operation to reorganize HexPlane
features into a masked 2D square feature map, enabling compatibility with DiT training.

• Extensive experimental results demonstrate that DynamicCity achieves significantly better
4D reconstruction and generation performance than previous SoTA methods across all
evaluation metrics, including generation quality, training speed, and memory usage.

2 RELATED WORK

3D Object Generation has been a central focus in machine learning, with diffusion models playing a
significant role in generating realistic 3D structures. Many techniques utilize 2D diffusion mechanisms
to synthesize 3D outputs, covering tasks like text-to-3D object generation (Ma et al., 2024), image-to-
3D transformations (Wu et al., 2024a), and 3D editing (Rojas et al., 2024). Meanwhile, recent methods
bypass the reliance on 2D intermediaries by generating 3D outputs directly in three-dimensional
space, utilizing explicit (Alliegro et al., 2023), implicit (Liu et al., 2023b), triplane (Wu et al., 2024b),
and latent representations (Ren et al., 2024b). Although these methods demonstrate impressive
3D object generation, they primarily focus on small-scale, isolated objects rather than large-scale,
scene-level generation (Hong et al., 2024; Lee et al., 2024). This limitation underscores the need for
methods capable of generating complete 3D scenes with complex spatial relationships.

LiDAR Scene Generation extends the scope to larger, more complex environments. Earlier works
used VQ-VAE (Zyrianov et al., 2022) and GAN-based models (Caccia et al., 2019; Nakashima et al.,
2023) to generate LiDAR scenes. However, recent advancements have shifted towards diffusion
models (Xiong et al., 2023; Ran et al., 2024; Nakashima & Kurazume, 2024; Zyrianov et al., 2022;
Hu et al., 2024; Nunes et al., 2024), which better handle the complexities of expansive outdoor scenes.
For example, (Lee et al., 2024) utilize voxel grids to represent large-scale scenes but often face
challenges with empty spaces like skies and fields. While some recent works incorporate temporal
dynamics to extend single-frame generation to sequences (Zheng et al., 2024b; Wang et al., 2024),
they often lack the ability to fully capture the dynamic nature of 4D environments. Thus, these
methods typically remain limited to short temporal horizons or struggle with realistic dynamic object
modeling, highlighting the gap in generating high-fidelity 4D LiDAR scenes.

4D Generation represents a leap forward, aiming to capture the temporal evolution of scenes.
Prior works often leverage video diffusion models (Singer et al., 2022; Blattmann et al., 2023) to
generate dynamic sequences (Singer et al., 2023), with some extending to multi-view (Shi et al.,
2023) and single-image settings (Rombach et al., 2022) to enhance 3D consistency. In the context
of video-conditional generation, approaches such as (Jiang et al., 2023; Ren et al., 2023; 2024a)
incorporate image priors for guiding generation processes. While these methods capture certain
dynamic aspects, they lack the ability to generate long-term, high-resolution 4D LiDAR scenes
with versatile applications. Our method, DynamicCity, fills this gap by introducing a novel 4D
generation framework that efficiently captures large-scale dynamic environments, supports diverse
generation tasks (e.g., trajectory-guided (Bahmani et al., 2024), command-driven generation), and
offers substantial improvements in scene fidelity and temporal modeling.

3 PRELIMINARIES

HexPlane (Cao & Johnson, 2023; Fridovich-Keil et al., 2023) is an explicit and structured rep-
resentation designed for efficient modeling of dynamic 3D scenes, leveraging feature planes to
encode spacetime data. A dynamic 3D scene is represented as six 2D feature planes, each
aligned with one of the major planes in the 4D spacetime grid. These planes are represented
as H = [Pxy,Pxz,Pyz,Ptx,Pty,Ptz], comprising a Spatial TriPlane (Chan et al., 2022) with Pxy,
Pxz , and Pyz , and a Spatial-Time TriPlane with Ptx, Pty , and Ptz . To query the HexPlane at a point
p = (t, x, y, z), features are extracted from the corresponding coordinates on each of the six planes
and fused into a comprehensive representation. This fused feature vector is then passed through a
lightweight network to predict scene attributes for p.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4D Scene 𝐐t

…

4D Scene 𝐐0

…

Decoder Decoder

Diffusion

Denoising

DiT … DiT

…

Conditions

(b) HexPlane Diffusion with DiT for 4D Scene Generation

(a) Learning HexPlane as an Efficient 4D Scene Representation

4D Scene 𝐐

…

3D
Backbone Projection Head

HexPlane

Sp
ac
e
-T
im

e
Sp
ac
e

Hadamard
Product

PE(p)

c(p)

Class
Probabilities

…

Figure 2: Pipeline of dynamic LiDAR scene generation. Our DynamicCity framework consists
of two key procedures: (a) Encoding HexPlane with an VAE architecture (cf. Sec. 4.1), and (b) 4D
Scene Generation with HexPlane DiT (cf. Sec. 4.2).

Diffusion Transformers (DiT) (Peebles & Xie, 2023) are diffusion-based generative models using
transformers to gradually convert Gaussian noise into data samples through denoising steps. The
forward diffusion adds Gaussian noise over time, with a noised sample at step t given by xt =√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I), where αt controls the noise schedule. The reverse diffusion,

using a neural network ϵθ, aims to denoise xt to recover x0, expressed as: xt−1 = 1√
αt
(xt −√

1− αtϵθ(xt, t)). New samples are generated by repeating this reverse process.

4 OUR APPROACH

DynamicCity strives to generate dynamic 3D LiDAR scenes with semantic information, which mainly
consists of a VAE for 4D LiDAR encoding using HexPlane (Cao & Johnson, 2023; Fridovich-Keil
et al., 2023) (Sec. 4.1), and a DiT for HexPlane generation (Sec. 4.2). Given a 4D LiDAR scene,
i.e., a dynamic 3D LiDAR sequence Q ∈ RT×X×Y×Z×C , where T , X , Y , Z, and C denote the
sequence length, height, width, depth, and channel size, respectively, the VAE first aims to encode
an efficient 4D representation, HexPlane H = [Pxy,Pxz,Pyz,Ptx,Pty,Ptz], which is then decoded
for reconstructing 4D scenes with semantics. After obtaining HexPlane embeddings, DynamicCity
leverages a DiT-based framework for 4D LiDAR generation. Diverse conditions could be introduced
into the generation process, facilitating a range of downstream applications (Sec. 4.3). The overview
of the proposed DynamicCity pipeline is illustrated in Fig. 2.

4.1 VAE FOR 4D LIDAR SCENES

Encoding HexPlane. As shown in Fig. 3, the VAE could encode a 4D LiDAR scene Q as a HexPlane
H. It first utilizes a shared 3D convolutional feature extractor fθ(·) to extract and downsample
features from each LiDAR frame, resulting in a feature volume sequence Xtxyz ∈ RT×X×Y×Z×C .

To encode and compress Xtxyz into compact 2D feature maps of H, we propose a novel Pro-
jection Module with multiple projection networks h(·). To project a high-dimensional feature
input Xin ∈ RD1

k ×D2
k ×···×Dn

k ×D1
r ×D2

r ×···×Dm
r ×C as a lower-dimensional feature output Xout ∈

RD1
k ×D2

k ×···×Dn
k ×C , the projection network hSr(·) first reshapes Xin into a 3-dimensional feature

X ′
SkSr

∈ RSk×Sr×C by grouping the dimensions into the two new dimensions, i.e., Sk the dimension
that will be kept, and Sr the dimension that will be reduced, where Sk = D1

k ×D2
k × · · · ×Dn

k , and
Sr = D1

r ×D2
r × · · · ×Dm

r . Afterward, hSr(·) utilizes a transformer-based operation to project the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝒇𝜽

…

XYZ

T
𝒫𝑡𝑥

𝒫𝑡𝑦

𝒫𝒕𝒛

𝒉𝒛

𝒉𝒚

𝒉𝒙

𝒉𝒚𝒛

𝒉𝒙𝒛

𝒉𝒙𝒚

𝒉𝒕

Projection Module

Encoding HexPlane

T𝒈𝝓
T

H
ad

am
a

rd

P
ro

d
u

ct

HexPlane ℋ

Space

Space-Time

Expansion

Decoding
HexPlane

…

XYZ

4D Scene 𝐐

…

Reconstructed
4D Scene 𝐐′

…

𝓧𝑡𝑥𝑦𝑧

𝓧𝑡𝑥𝑦𝑧
′

𝓧𝑥𝑦𝑧

Expand ൛ ൟ𝒫𝑥𝑦 , 𝒫𝑥𝑧 , 𝒫𝑦𝑧 , 𝒫𝑡𝑥 , 𝒫𝑡𝑦 , 𝒫𝑡𝑧 𝑡𝑥𝑦𝑧

′

XYZ Feature
Volume

Reconstruction
Loss

Feature Volume
Sequence

𝒫𝑥𝑦

𝒫𝑥𝒛

𝒫𝑦𝑧

Figure 3: VAE for Encoding 4D LiDAR Scenes. We use HexPlane H as the 4D representation. fθ
and gϕ are convolution-based networks with downsampling and upsampling operations, respectively.
h(·) denotes the projection network based on transformer modules.

reshaped feature X ′
SkSr

to X ′′
Sk

∈ RSk×C , which is then reshaped to the expected lower-dimensional
feature output Xout. Formally, the projection network is formulated as:

X {D1
k ×D2

k ×···×Dn
k }×C

out = hSr(X
{D1

k ×D2
k ×···×Dn

k }×{D1
r ×D2

r ×···×Dm
r }×C

in) , (1)

where their feature dimensions are added as the upscript for X in and X out, respectively.

To construct the spatial feature planes Pxy, Pxz , and Pyz , the Projection Module first generates the
XYZ Feature Volume Xxyz = ht(Xtxyz). Rather than directly access the heavy feature volume
sequence Xtxyz , hz(·), hy(·), and hx(·) are applied to Xxyz for reducing the spatial dimensions
of Xxyz along the z-axis, y-axis, and x-axis, respectively. The temporal feature planes Ptx,Pty,
and Ptz are directly obtained from Xtxyz by simultaneously removing two spatial dimensions with
hzy(·),hxz(·), and hxy(·), respectively. Consequently, we could construct the HexPlane H based on
the encoded six feature planes, including Pxy,Pxz,Pyz,Ptx,Pty, and Ptz .

Decoding HexPlane. Based on the HexPlane H = [Pxy,Pxz,Pyz,Ptx,Pty,Ptz], we employ an
Expansion & Squeeze Strategy (ESS), which could efficiently recover the feature volume sequence by
decoding the feature planes in parallel for 4D LiDAR scene reconstruction. ESS first duplicates and
expands each feature plane P to match the shape of Xtxyz , resulting in the list of six feature volume
sequences: {XPxy

txyz,X
Pxz
txyz,X

Pyz

txyz,X
Ptx
txyz,X

Pty

txyz,X
Ptz
txyz} . Afterward, ESS squeezes the corresponding

six expanded feature volumes with Hadamard Product:

X ′
txyz =

∏
Hadamard

{XPxy

txyz,X
Pxz
txyz,X

Pyz

txyz,X
Ptx
txyz,X

Pty

txyz,X
Ptz
txyz} . (2)

Subsequently, the convolutional network gϕ(·) is employed to upsample the volumes for generating
dense semantic predictions Q′:

Q′ = gϕ(Concat(X ′
txyz,PE(Pos(X ′

txyz)))) , (3)

where Concat(·) and PE(·) denote the concatenation and sinusoidal positional encoding, respec-
tively. Pos(·) returns the 4D position p of each voxel within the 4D feature volume X ′

txyz .

Optimization. The VAE is trained with a combined loss LVAE, including a cross-entropy loss, a
Lovász-softmax loss (Berman et al., 2018), and a Kullback-Leibler (KL) divergence loss:

LVAE = LCE(Q,Q′) + αLLov(Q,Q′) + βLKL(H,N (0, I)) , (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

TY

TZ

XY YZ

XZ

TX

Space Space-Time

(a) HexPlane

(b) Padded Rollout

Figure 4: Padded Rollout

Image Conditions

HexPlane Layout

Patchify Patchify

+

Numeric Conditions

Trajectory Command Timestamp

Embedding MLP
Pointw

ise
Feedforw

ard

Layer N
orm

++

Layer N
orm

+

M
ulti-Head

Self-Attention

LayerN
orm

Input Tokens

+

MLP

M
ulti-Head

Cross-Attention

Cross-Attention Conditioning

Scale

Scale, Shift

Scale

Scale, Shift

Conditioning

Figure 5: Condition Injection for DiT

where LCE is the cross-entropy loss between the input Q and prediction Q′, LLov is the Lovász-
softmax loss, and LKL represents the KL divergence between the latent representation H and the
prior Gaussian distribution N (0, I). Note that the KL divergence is computed for each feature plane
of H individually, and the term LKL refers to the combined divergence over all six planes.

4.2 DIFFUSION TRANSFORMER FOR HEXPLANE

After training the VAE, 4D semantic scenes can be embedded as HexPlane H =
[Pxy,Pxz,Pyz,Ptx,Pty,Ptz]. Building upon H, we aim to leverage a DiT (Peebles & Xie, 2023)
model Dτ to generate novel HexPlane, which could be further decoded as novel 4D scenes (see
Fig. 2(b)). However, training a DiT using token sequences naively generated from each feature plane
of HexPlane could not guarantee high generation quality, mainly due to the absence of modeling
spatial and temporal relations among the tokens.

Padded Rollout Operation. Given that the feature planes of HexPlane may share spatial or temporal
dimensions, we employ the Padded Rollout Operation (PRO) to systematically arrange all six planes
into a unified square feature map, incorporating zero paddings in the uncovered corner areas. As
shown in Fig. 4, the dimension of the 2D square feature map is (X

dX
+ Z

dZ
+ T

dT
), which minimizes

the area for padding, where dX , dZ , and dT represent the downsampling rates along the X, Z, and T
axes, respectively. Subsequently, we follow DiT to first “patchify” the constructed 2D feature map,
converting it into a sequence of N = ((X

dX
+ Z

dZ
+ T

dT
)/p)2 tokens, where p is the patch size, chosen

so each token holds information from one feature plane. Following patchification, we apply the
frequency-based positional embeddings to all tokens similar to DiT. Note that tokens corresponding
to padding areas are excluded from the diffusion process. Consequently, the proposed PRO offers an
efficient method for modeling spatial and temporal relationships within the token sequence.

Conditional Generation. DiT enables conditional generation through the use of Classifier-Free
Guidance (CFG) (Ho & Salimans, 2022). To incorporate conditions into the generation process,
we designed two branches for condition insertion (see Fig. 5). For any condition c, we use the
adaLN-Zero technique from DiT, generating scale and shift parameters from c and injecting them
before and after the attention and feed-forward layers. To handle the complexity of image-based
conditions, we add a cross-attention block to better integrate the image condition into the DiT block.

4.3 DOWNSTREAM APPLICATIONS

Beyond unconditional 4D scene generation, we explore novel applications of DynamicCity through
conditional generation and HexPlane manipulation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparisons of 4D Scene Reconstruction. We report the mIoU scores of OccSora (Wang
et al., 2024) and our DynamicCity framework on the CarlaSC, Occ3D-Waymo, and Occ3D-nuScenes
datasets, respectively, under different resolutions and sequence lengths. Symbol † denotes score
reported in the OccSora paper. Other scores are reproduced using the official code.

Dataset #Classes Resolution #Frames OccSora Ours
(Wang et al., 2024) (DynamicCity)

CarlaSC
(Wilson et al., 2022)

10 128×128×8 4 41.01% 79.61% (+38.6%)
10 128×128×8 8 39.91% 76.18% (+36.3%)
10 128×128×8 16 33.40% 74.22% (+40.8%)
10 128×128×8 32 28.91% 59.31% (+30.4%)

Occ3D-Waymo
(Tian et al., 2023) 9 200×200×16 16 36.38% 68.18% (+31.8%)

Occ3D-nuScenes
(Tian et al., 2023)

11 200×200×16 16 13.70% 56.93% (+43.2%)
11 200×200×16 32 13.51% 42.60% (+29.1%)
17 200×200×16 32 13.41% 40.79% (+27.3%)
17 200×200×16 32 27.40%† 40.79% (+13.4%)

Table 2: Comparisons of 4D Scene Generation. We report the Inception Score (IS), Fréchet
Inception Distance (FID), Kernel Inception Distance (KID), and the Precision (P) and Recall (R) rates
of OccSora (Wang et al., 2024) and our DynamicCity framework on the CarlaSC and Occ3D-Waymo
datasets, respectively, in both the 2D and 3D spaces.

Dataset Method #Frames Metric2D Metric3D

IS2D↑ FID2D↓ KID2D ↓ P2D↑ R2D↑ IS3D↑ FID3D↓ KID3D↓ P3D↑ R3D↑

CarlaSC
(Wilson et al., 2022)

OccSora 16 1.030 28.55 0.008 0.224 0.010 2.257 1559 52.72 0.380 0.151
Ours 1.040 12.94 0.002 0.307 0.018 2.331 354.2 19.10 0.460 0.170

Occ3D-Waymo
(Tian et al., 2023)

OccSora 16 1.005 42.53 0.049 0.654 0.004 3.129 3140 12.20 0.384 0.001
Ours 1.010 36.73 0.001 0.705 0.015 3.206 1806 77.71 0.494 0.026

First, we showcase versatile uses of image conditions in the conditional generation pipeline: 1)
HexPlane: By autoregressively generating the HexPlane, we extend scene duration beyond temporal
constraints. 2) Layout: We control vehicle placement and dynamics in 4D scenes using conditions
learned from bird’s-eye view sketches.

To manage ego vehicle motion, we introduce two numerical conditioning methods: 3) Command:
Controls general ego vehicle motion via instructions. 4) Trajectory: Enables fine-grained control
through specific trajectory inputs.

Inspired by SemCity (Lee et al., 2024), we also manipulate the HexPlane during sampling to: 5)
Inpaint: Edit 4D scenes by masking HexPlane regions and guiding sampling with the masked areas.
For more applications and implementation details, kindly refer to Sec. A.5 in the Appendix.

5 EXPERIMENTS

5.1 EXPERIMENTAL DETAILS

Datasets. We train the proposed model on the 1Occ3D-Waymo, 2Occ3D-nuScenes, and 3CarlaSC
datasets. The former two from Occ3D (Tian et al., 2023) are derived from Waymo (Sun et al., 2020)
and nuScenes (Caesar et al., 2020), where LiDAR point clouds have been completed and voxelized to
form occupancy data. Each occupancy scene has a resolution of 200× 200× 16, covering a region
centered on the ego vehicle, extending 40 meters in all directions and 6.4 meters vertically. The
CarlaSC dataset (Wilson et al., 2022) is a synthetic occupancy dataset, with a scene resolution of
128× 128× 8, covering a region 25.6 meters around the ego vehicle, with a height of 3 meters.

Implementation Details. Our experiments are conducted using eight NVIDIA A100-80G GPUs.
The global batch size used for training the VAE is 8, while the global batch size for training the DiT
is 128. Our latent HexPlane H is compressed to half the size of the input Q in each dimension, with
the latent channels C = 16. The weight for the Lovász-softmax and KL terms are set to 1 and 0.005,
respectively. The learning rate for the VAE is 10−3, while the learning rate for the DiT is 10−4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Occ3D-Waymo CarlaSC

T=1

T=16

T=8

T=1

T=8

T=16

T=1 T=1

T=8

T=16

T=1

T=8 T=8

T=16 T=16

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

Figure 6: Dynamic Scene Generation Results. We provide unconditional generation scenes from
the 1st, 8th, and 16th frames on Occ3D-Waymo (Left) and CarlaSC (Right), respectively. Kindly
refer to the Appendix for complete sequential scenes and longer temporal modeling examples.

Evaluation Metrics. The mean intersection over union (mIoU) metric is used to evaluate the
reconstruction results of VAE. For DiT, Inception Score, FID, KID, Precision, and Recall are
calculated for evaluation. Specifically, we follow prior work (Lee et al., 2024; Wang et al., 2024) by
rendering 3D scenes into 2D images and utilizing conventional 2D evaluation pipelines for assessment.
Additionally, we train the 3D Encoder to directly extract features from the 3D data and calculate the
metrics. For more details, kindly refer to Sec. A.2 in the Appendix.

5.2 4D SCENE RECONSTRUCTION & GENERATION

Reconstruction. To evaluate the effectiveness of the proposed VAE in encoding the 4D LiDAR
sequence, we compare it with OccSora (Wang et al., 2024) using the CarlaSC, Occ3D-Waymo, and
Occ3D-nuScenes datasets. As shown in Tab. 1, DynamicCity outperforms OccSora on these datasets,
achieving mIoU improvements of 38.6%, 31.8%, and 43.2% respectively, when the input number of
frames is 16. These results highlight the superior performance of the proposed VAE.

Generation. To demonstrate the effectiveness of DynamicCity in 4D scene generation, we compare
the generation results with OccSora (Wang et al., 2024) on the Occ3D-Waymo and CarlaSC datasets.
As shown in Tab. 2, the proposed method outperforms OccSora in terms of perceptual metrics in both
2D and 3D spaces. These results show that our model excels in both generation quality and diversity.
Fig. 6 and Fig. 16 show the 4D scene generation results, demonstrating that our model is capable
of generating large dynamic scenes in both real-world and synthetic datasets. Our model not only
exhibits the ability to generate moving scenes with static semantics shifting as a whole, but it is also
capable of generating dynamic elements such as vehicles and pedestrians.

Applications. Fig. 7 presents the results of our downstream applications. In tasks that involve
inserting conditions into the DiT, such as command-conditional generation, trajectory-conditional
generation, and layout-conditional generation, our model demonstrates the ability to generate reason-
able scenes and dynamic elements while following the prompt to a certain extent. Additionally, the
inpainting method proves that our HexPlane has explicit spatial meaning, enabling direct modifica-
tions within the scene by editing the HexPlane during inference.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Layout-Conditioned Scene Generation

T=1 T=1

T=8 T=8

T=16 T=16

Dynamic Object Inpainting

Trajectory-Guided Generation

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

T=1 T=1

T=8 T=8

T=16 T=16

T=1 T=1

Before After

T=8 T=8

T=16 T=16

T=1

T=8

T=16

T=1

T=8

T=16

Command-Driven Scene Generation

T=1

Turn Left

T=8

T=16

Turn Right

T=1

T=8

T=16

Forward

T=1

T=8

T=16

Static

T=1

T=8

T=16

Figure 7: Dynamic Scene Generation Applications. We demonstrate the capability of our model on
a diverse set of downstream tasks. We show the 1st, 8th, and 16th frames for simplicity. Kindly refer
to the Appendix for complete sequential scenes and longer temporal modeling examples.

5.3 ABLATION STUDIES

We conduct ablation studies to demonstrate the effectiveness of the components of DynamicCity.

VAE. The effectiveness of the VAE is driven by two key innovations: Projection Module and Expan-
sion & Squeeze Strategy (ESS). As shown in Tab. 3, the proposed Projection Module substantially
improves HexPlane fitting performance, delivering up to a 12.56% increase in mIoU compared
to traditional averaging operations. Additionally, compared to querying each point individually,
ESS enhances HexPlane fitting quality with up to a 7.05% mIoU improvement, significantly boosts
training speed by up to 2.06x, and reduces memory usage by a substantial 70.84%.

HexPlane Dimensions. The dimensions of HexPlane have a direct impact on both training efficiency
and reconstruction quality. Table 4 provides a comparison of various downsample rates applied to
the original HexPlane dimensions, which are 16 × 128 × 128 × 8 for CarlaSC and 16 × 200 ×
200 × 16 for Occ3D-Waymo. As the downsampling rates increase, both the compression rate and
training efficiency improve significantly, but the reconstruction quality, measured by mIoU, decreases.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Ablation Study on VAE Network Structures. We report the mIoU scores, training time
(second-per-iteration), and training-time memory consumption (VRAM) of different Encoder and
Decoder configurations on CarlaSC and Occ3D-Waymo, respectively. Note that “ESS” denotes
“Expansion & Squeeze”. The best and second-best values are in bold and underlined.

Encoder Decoder CarlaSC Occ3D-Waymo
mIoU↑ Time (s)↓ VRAM (G)↓ mIoU↑ Time (s)↓ VRAM (G)↓

Average Pooling Query 60.97% 0.236 12.46 49.37% 1.563 69.66
Average Pooling ESS 68.02% 0.143 4.27 55.72% 0.758 20.31

Projection Query 68.73% 0.292 13.59 61.93% 2.128 73.15
Projection ESS 74.22% 0.205 5.92 62.57% 1.316 25.92

Table 4: Ablation Study on HexPlane Downsampling (D.S.) Rates. We report the compression
ratios (C.R.), mIoU scores, training speed (seconds per iteration), and training-time memory consump-
tion on CarlaSC and Occ3D-Waymo. The best and second-best values are in bold and underlined.

D.S. Rates CarlaSC Occ3D-Waymo
dT dX dY dZ C.R.↑ mIoU↑ Time (s)↓ VRAM (G)↓ C.R.↑ mIoU↑ Time (s)↓ VRAM (G)↓

1 1 1 1 5.78% 84.67% 1.149 21.63 Out-of-Memory >80
1 2 2 1 17.96% 76.05% 0.289 8.49 38.42% 63.30% 1.852 32.82
2 2 2 2 23.14% 74.22% 0.205 5.92 48.25% 62.37% 0.935 24.9
2 4 4 2 71.86% 65.15% 0.199 4.00 153.69% 58.13% 0.877 22.30

Table 5: Ablation Study on Organizing HexPlane as Image Tokens. We report the Inception Score
(IS), Fréchet Inception Distance (FID), Kernel Inception Distance (KID), and the Precision (P) and
Recall (R) rates on CarlaSC. The best values are highlighted in bold.

Method Metric2D Metric3D

IS2D↑ FID2D↓ KID2D ↓ P2D↑ R2D↑ IS3D↑ FID3D↓ KID3D↓ P3D↑ R3D↑

Direct Unfold 2.496 205.0 0.248 0.000 0.000 2.269 9110 723.7 0.173 0.043

Vertical Concatenation 2.476 12.79 0.003 0.191 0.042 2.305 623.2 26.67 0.424 0.159

Padded Rollout 2.498 10.96 0.002 0.238 0.066 2.331 354.2 19.10 0.460 0.170

To achieve the optimal balance between training efficiency and reconstruction quality, we select a
downsampling rate of dT = dX = dY = dZ = 2.

Padded Rollout Operation. We compare the Padded Rollout Operation with different strategies
for obtaining image tokens: 1) Direct Unfold: directly unfolding the six planes into patches and
concatenating them; 2) Vertical Concat: vertically concatenating the six planes without aligning
dimensions during the rollout process. As shown in Tab. 5, Padded Rollout Operation (PRO) efficiently
models spatial and temporal relationships in the token sequence, achieving optimal generation quality.

6 CONCLUSION

We present DynamicCity, a framework for high-quality 4D LiDAR scene generation that captures
the temporal dynamics of real-world environments. Our method introduces HexPlane, a compact
4D representation generated using a VAE with a Projection Module, alongside an Expansion &
Squeeze Strategy to enhance reconstruction efficiency and accuracy. Additionally, our Masked
Rollout Operation reorganizes HexPlane features for DiT-based diffusion, enabling versatile 4D scene
generation. Extensive experiments demonstrate that DynamicCity surpasses state-of-the-art methods
in both reconstruction and generation, offering significant improvements in quality, training speed,
and memory efficiency. DynamicCity paves the way for future research in dynamic scene generation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Antonio Alliegro, Yawar Siddiqui, Tatiana Tommasi, and Matthias Nießner. Polydiff: Generating 3d
polygonal meshes with diffusion models. arXiv preprint arXiv:2312.11417, 2023. 3

Sherwin Bahmani, Xian Liu, Yifan Wang, Ivan Skorokhodov, Victor Rong, Ziwei Liu, Xihui Liu,
Jeong Joon Park, Sergey Tulyakov, Gordon Wetzstein, Andrea Tagliasacchi, and David B. Lindell.
Tc4d: Trajectory-conditioned text-to-4d generation. arXiv preprint arXiv:2403.17920, 2024. 3

Maxim Berman, Amal Rannen Triki, and Matthew B Blaschko. The lovász-softmax loss: A tractable
surrogate for the optimization of the intersection-over-union measure in neural networks. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4413–4421, 2018. 5

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22563–22575, 2023. 3

Lucas Caccia, Herke van Hoof, Aaron Courville, and Joelle Pineau. Deep generative modeling of lidar
data. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5034–5040,
2019. 3

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11621–11631, 2020. 7, 15

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 130–141, 2023. 2, 3, 4

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware
3d generative adversarial networks. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16123–16133, 2022. 3

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 3075–3084, 2019. 16

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In Advances in Neural Information Processing
Systems, volume 35, pp. 16344–16359, 2022. 17

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023. 2, 3, 4

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022. 6, 17

Fangzhou Hong, Lingdong Kong, Hui Zhou, Xinge Zhu, Hongsheng Li, and Ziwei Liu. Unified
3d and 4d panoptic segmentation via dynamic shifting networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(5):3480–3495, 2024. 3

Qianjiang Hu, Zhimin Zhang, and Wei Hu. Rangeldm: Fast realistic lidar point cloud generation. In
European Conference on Computer Vision, pp. 115–135, 2024. 3

Siyuan Huang, Yichen Xie, Song-Chun Zhu, and Yixin Zhu. Spatio-temporal self-supervised
representation learning for 3d point clouds. In IEEE/CVF International Conference on Computer
Vision, pp. 6535–6545, 2021. 2

Yanqin Jiang, Li Zhang, Jin Gao, Weimin Hu, and Yao Yao. Consistent4d: Consistent 360° dynamic
object generation from monocular video. arXiv preprint arXiv:2311.02848, 2023. 3

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jumin Lee, Sebin Lee, Changho Jo, Woobin Im, Juhyeong Seon, and Sung-Eui Yoon. Semcity:
Semantic scene generation with triplane diffusion. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 28337–28347, 2024. 2, 3, 7, 8, 18, 21, 22

Yuheng Liu, Xinke Li, Xueting Li, Lu Qi, Chongshou Li, and Ming-Hsuan Yang. Pyramid diffusion
for fine 3d large scene generation. arXiv preprint arXiv:2311.12085, 2023a. 2

Zhen Liu, Yao Feng, Michael J. Black, Derek Nowrouzezahrai, Liam Paull, and Weiyang Liu.
Meshdiffusion: Score-based generative 3d mesh modeling. In International Conference on
Learning Representations, 2023b. 3

Zhiyuan Ma, Yuxiang Wei, Yabin Zhang, Xiangyu Zhu, Zhen Lei, and Lei Zhang. Scaledreamer:
Scalable text-to-3d synthesis with asynchronous score distillation. In European Conference on
Computer Vision, pp. 1–19, 2024. 3

Kazuto Nakashima and Ryo Kurazume. Learning to drop points for lidar scan synthesis. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 222–229, 2021. 2

Kazuto Nakashima and Ryo Kurazume. Lidar data synthesis with denoising diffusion probabilistic
models. In IEEE International Conference on Robotics and Automation, pp. 14724–14731, 2024.
3

Kazuto Nakashima, Yumi Iwashita, and Ryo Kurazume. Generative range imaging for learning scene
priors of 3d lidar data. In IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
1256–1266, 2023. 2, 3

Lucas Nunes, Rodrigo Marcuzzi, Benedikt Mersch, Jens Behley, and Cyrill Stachniss. Scaling
diffusion models to real-world 3d lidar scene completion. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14770–14780, 2024. 3

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32:
8026–8037, 2019. 17

William Peebles and Saining Xie. Scalable diffusion models with transformers. In IEEE/CVF
International Conference on Computer Vision, pp. 4195–4205, 2023. 2, 4, 6

Haoxi Ran, Vitor Guizilini, and Yue Wang. Towards realistic scene generation with lidar diffusion
models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14738–14748,
2024. 3

Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao, Gang Zeng, and Ziwei Liu. Dreamgaus-
sian4d: Generative 4d gaussian splatting. arXiv preprint arXiv:2312.17142, 2023. 3

Jiawei Ren, Kevin Xie, Ashkan Mirzaei, Hanxue Liang, Xiaohui Zeng, Karsten Kreis, Ziwei Liu,
Antonio Torralba, Sanja Fidler, Seung Wook Kim, and Huan Ling. L4gm: Large 4d gaussian
reconstruction model. arXiv preprint arXiv:2406.10324, 2024a. 3

Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams. Xcube:
Large-scale 3d generative modeling using sparse voxel hierarchies. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4209–4219, 2024b. 2, 3, 17

Sara Rojas, Julien Philip, Kai Zhang, Sai Bi, Fujun Luan, Bernard Ghanem, and Kalyan Sunkavall.
Datenerf: Depth-aware text-based editing of nerfs. arXiv preprint arXiv:2404.04526, 2024. 3

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684–10695, 2022. 3

Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view
diffusion for 3d generation. arXiv preprint arXiv:2308.16512, 2023. 3

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2015. 16

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang,
Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video: Text-to-
video generation without text-video data. In International Conference on Learning Representations,
2022. 3

Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual, Iurii Makarov, Filippos Kokkinos, Naman
Goyal, Andrea Vedaldi, Devi Parikh, Justin Johnson, and Yaniv Taigman. Text-to-4d dynamic
scene generation. arXiv preprint arXiv:2301.11280, 2023. 3

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam,
Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang,
Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. Scalability in perception for autonomous
driving: Waymo open dataset. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 2446–2454, 2020. 7, 15

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2818–2826, 2015. 16

Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin, Hanrui Wang, and Song Han. Search-
ing efficient 3d architectures with sparse point-voxel convolution. In European Conference on
Computer Vision, pp. 685–702, 2020. 16

Xiaoyu Tian, Tao Jiang, Longfei Yun, Yucheng Mao, Huitong Yang, Yue Wang, Yilun Wang, and
Hang Zhao. Occ3d: A large-scale 3d occupancy prediction benchmark for autonomous driving. In
Advances in Neural Information Processing Systems, volume 36, pp. 64318–64330, 2023. 7, 15,
20, 21, 22, 23, 25, 26

Lening Wang, Wenzhao Zheng, Yilong Ren, Han Jiang, Zhiyong Cui, Haiyang Yu, and Jiwen Lu.
Occsora: 4d occupancy generation models as world simulators for autonomous driving. arXiv
preprint arXiv:2405.20337, 2024. 2, 3, 7, 8, 20, 21, 22, 30

Joey Wilson, Jingyu Song, Yuewei Fu, Arthur Zhang, Andrew Capodieci, Paramsothy Jayakumar,
Kira Barton, and Maani Ghaffari. Motionsc: Data set and network for real-time semantic mapping
in dynamic environments. IEEE Robotics and Automation Letters, 7(3):8439–8446, 2022. 7, 15,
20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32

Kailu Wu, Fangfu Liu, Zhihan Cai, Runjie Yan, Hanyang Wang, Yating Hu, Yueqi Duan, and
Kaisheng Ma. Unique3d: High-quality and efficient 3d mesh generation from a single image.
arXiv preprint arXiv:2405.20343, 2024a. 3

Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao Yao.
Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer. arXiv preprint
arXiv:2405.14832, 2024b. 3

Yuwen Xiong, Wei-Chiu Ma, Jingkang Wang, and Raquel Urtasun. Ultralidar: Learning compact
representations for lidar completion and generation. arXiv preprint arXiv:2311.01448, 2023. 3

Wenzhao Zheng, Weiliang Chen, Yuanhui Huang, Borui Zhang, Yueqi Duan, and Jiwen Lu. Occworld:
Learning a 3d occupancy world model for autonomous driving. In European Conference on
Computer Vision, pp. 55–72. Springer, 2024a. 20

Zehan Zheng, Fan Lu, Weiyi Xue, Guang Chen, and Changjun Jiang. Lidar4d: Dynamic neural
fields for novel space-time view lidar synthesis. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5145–5154, 2024b. 2, 3

Vlas Zyrianov, Xiyue Zhu, and Shenlong Wang. Learning to generate realistic lidar point clouds. In
European Conference on Computer Vision, pp. 17–35, 2022. 3

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

In this appendix, we supplement the following materials to support the findings and conclusions
drawn in the main body of this paper.

A Additional Implementation Details 15

A.1 Datasets . 15

A.2 DiT Evaluation Metrics . 16

A.3 Model Details . 17

A.4 Classifier-Free Guidance . 17

A.5 Downstream Applications . 18

B Additional Quantitative Results 20

B.1 Per-Class Generation Results . 20

B.2 Occupancy Forecasting Results . 20

B.3 User Study . 21

B.4 Model Stats . 21

B.5 Comparisons with SemCity . 21

C Additional Qualitative Results 23

C.1 Unconditional Dynamic Scene Generation . 23

C.2 HexPlane-Guided Generation . 25

C.3 Layout-Guided Generation . 26

C.4 Command- & Trajectory-Guided Generation . 27

C.5 Dynamic Inpainting . 29

C.6 Comparisons with OccSora . 30

C.7 Dynamic Outpainting . 31

C.8 Single Frame Occupancy Conditional Generation 32

D Potential Societal Impact & Limitations 33

D.1 Societal Impact . 33

D.2 Broader Impact . 33

D.3 Known Limitations . 33

E Public Resources Used 34

E.1 Public Datasets Used . 34

E.2 Public Implementations Used . 34

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide additional implementation details to assist in reproducing this work.
Specifically, we elaborate on the details of the datasets, DiT evaluation metrics, the specifics of our
generation models, and discussions on the downstream applications.

A.1 DATASETS

Our experiments primarily utilize two datasets: Occ3D-Waymo (Tian et al., 2023) and CarlaSC (Wil-
son et al., 2022). Additionally, we also evaluate our VAE on Occ3D-nuScenes (Tian et al., 2023).

The Occ3D-Waymo dataset is derived from real-world Waymo Open Dataset (Sun et al., 2020) data,
where occupancy sequences are obtained through multi-frame fusion and voxelization processes.
Similarly, Occ3D-nuScenes is generated from the real-world nuScenes (Caesar et al., 2020) dataset
using the same fusion and voxelization operations. On the other hand, the CarlaSC dataset is
generated from simulated scenes and sensor data, yielding occupancy sequences.

Using these different datasets demonstrates the effectiveness of our method on both real-world
and synthetic data. To ensure consistency in the experimental setup, we select 11 commonly used
semantic categories and map the original categories from both datasets to these 11 categories. The
detailed semantic label mappings are provided in Tab. 6.

Table 6: Summary of Semantic Label Mappings. We unify the semantic classes between Car-
laSC (Wilson et al., 2022), Occ3D-Waymo (Tian et al., 2023), and Occ3D-nuScenes (Tian et al., 2023)
datasets for semantic scene generation.

Class CarlaSC Occ3D-Waymo Occ3D-nuScenes

■ Building Building Building Manmade

■ Barrier Barrier, Wall, Guardrail - Barrier

■ Other Other, Sky, Bridge, Rail
track, Static, Dynamic,

Water

General Object General Object

■ Pedestrian Pedestrian Pedestrian Pedestrian

■ Pole Pole, Traffic sign, Traffic
light

Sign, Traffic light, Pole,
Construction Cone

Traffic cone

■ Road Road, Roadlines Road Drivable surface

■ Ground Ground, Terrain - Other flat, Terrain

■ Sidewalk Sidewalk Sidewalk Sidewalk

■ Vegetation Vegetation Vegetation, Tree trunk Vegetation

■ Vehicle Vehicle Vehicle Bus, Car, Construction
vehicle, Trailer, Truck

■ Bicycle - Bicyclist, Bicycle,
Motorcycle

Bicycle, Motorcycle

• Occ3D-Waymo. This dataset contains 798 training scenes, with each scene lasting approxi-
mately 20 seconds and sampled at a frequency of 10 Hz. This dataset includes 15 semantic
categories. We use volumes with a resolution of 200× 200× 16 from this dataset.

• CarlaSC. This dataset contains 6 training scenes, each duplicated into Light, Medium,
and Heavy based on traffic density. Each scene lasts approximately 180 seconds and is
sampled at a frequency of 10 Hz. This dataset contains 22 semantic categories, and the
scene resolution is 128× 128× 8.

• Occ3D-nuScenes. This dataset contains 600 scenes, with each scene lasting approximately
20 seconds and sampled at a frequency of 2 Hz. Compared to Occ3D-Waymo and CarlaSC,
Occ3D-nuScenes has fewer total frames and more variation between scenes. This dataset
includes 17 semantic categories, with a resolution of 200× 200× 16.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 DIT EVALUATION METRICS

Inception Score (IS). This metric evaluates the quality and diversity of generated samples using a
pre-trained Inception model as follows:

IS = exp
(
EQ∼pg

[DKL(p(y|Q) ∥ p(y))]
)
, (5)

where pg represents the distribution of generated samples. p(y|Q) is the conditional label distribution
given by the Inception model for a generated sample Q. p(y) =

∫
p(y|Q)pg(Q) dQ is the marginal

distribution over all generated samples. DKL(p(y|Q) ∥ p(y)) is the Kullback-Leibler divergence,
defined as follows:

DKL(p(y|Q) ∥ p(y)) =
∑
i

p(yi|Q) log
p(yi|Q)

p(yi)
. (6)

Fréchet Inception Distance (FID). This metric measures the distance between the feature distribu-
tions of real and generated samples:

FID = ∥µr − µg∥2 +Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)

, (7)

where µr and Σr are the mean and covariance matrix of features from real samples. µg and Σg are
the mean and covariance matrix of features from generated samples. Tr denotes the trace of a matrix.

Kernel Inception Distance (KID). This metric uses the squared Maximum Mean Discrepancy
(MMD) with a polynomial kernel as follows:

KID = MMD2(ϕ(Qr), ϕ(Qg)) , (8)
where ϕ(Qr) and ϕ(Qg) represent the features of real and generated samples extracted from the
Inception model.

MMD with a polynomial kernel k(x, y) = (x⊤y + c)d is calculated as follows:

MMD2(X,Y) =
1

m(m− 1)

∑
i ̸=j

k(xi, xj) +
1

n(n− 1)

∑
i̸=j

k(yi, yj)−
2

mn

∑
i,j

k(xi, yj) , (9)

where X = {Q1, . . . ,Qm} and Y = {y1, . . . ,yn} are sets of features from real and generated
samples.

Precision. This metric measures the fraction of generated samples that lie within the real data
distribution as follows:

Precision =
1

N

N∑
i=1

I
(
(fg − µr)

⊤Σ−1
r (fg − µr) ≤ χ2

)
, (10)

where fg is a generated sample in the feature space. µr and Σr are the mean and covariance of the real
data distribution. I(·) is the indicator function. χ2 is a threshold based on the chi-squared distribution.

Recall. This metric measures the fraction of real samples that lie within the generated data distribution
as follows:

Recall =
1

M

M∑
j=1

I
(
(fr − µg)

⊤Σ−1
g (fr − µg) ≤ χ2

)
, (11)

where: fr is a real sample in the feature space. µg and Σg are the mean and covariance of the
generated data distribution. I(·) is the indicator function. χ2 is a threshold based on the chi-squared
distribution.

2D Evaluations. We render 3D scenes as 2D images for 2D evaluations. To ensure fair comparisons,
we use the same semantic colormap and camera settings across all experiments. Fig. 8 shows an
example of a rendered 2D semantic colormap. We use an InceptionV3 (Szegedy et al., 2015) model
to compute the Inception Score (IS), Fréchet Inception Distance (FID), and Kernel Inception Distance
(KID) scores, while Precision and Recall are computed using a VGG-16 (Simonyan & Zisserman,
2015) model. We train both 2D backbones using semantic colormap data.

3D Evaluations. For 3D data, we train a MinkowskiUNet (Choy et al., 2019) as an autoencoder. We
adopt the latest implementation from SPVNAS (Tang et al., 2020), which supports optimized sparse
convolution operations. The features were extracted by applying average pooling to the output of the
final downsampling block.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Example of 2D Evaluation Rendering.

A.3 MODEL DETAILS

General Training Details. We implement both the VAE and DiT models using PyTorch (Paszke
et al., 2019). We utilize PyTorch’s mixed precision and replace all attention mechanisms with
FlashAttention (Dao et al., 2022) to accelerate training and reduce memory usage. AdamW is used as
the optimizer for all models.

We train the VAE with a learning rate of 10−3, running for 20 epochs on Occ3D-Waymo and 100
epochs on CarlaSC. The DiT is trained with a learning rate of 10−4, and the EMA rate for DiT is set
to 0.9999.

VAE. Our encoder projects the 4D input Q into a HexPlane, where each dimension is a compressed
version of the original 4D input. First, a 3D CNN is applied to each frame for feature extraction
and downsampling, with dimensionality reduction applied only to the spatial dimensions (X , Y , Z).
Next, the Projection Module projects the 4D features into the HexPlane. Each small transformer
within the Projection Module consists of two layers, and the attention mechanism has two heads.
Each head has a dimensionality of 16, with a dropout rate of 0.1. Afterward, we further downsample
the T dimension to half of its original size.

During decoding, we first use three small transpose CNNs to restore the T dimension, then use an
ESS module to restore the 4D features. Finally, we apply a 3D CNN to recover the spatial dimensions
and generate point-wise predictions.

Diffusion. We set the patch size p to 2 for our DiT models. The Waymo DiT model has a hidden size
of 768, 18 DiT blocks, and 12 attention heads. The CarlaSC DiT model has a hidden size of 384, 16
DiT blocks, and 8 attention heads.

Discussion on VAE Structure Improvements. Some prior work utilizes sparse 3D structures to
enhance the efficiency of their backbones. For example, XCube (Ren et al., 2024b) employs a fully
sparse 3D encoder, significantly improving model efficiency. Similarly, our VAE could potentially
improve the 3D convolutional feature extractor fθ(·) by adopting sparse convolution. However, using
sparse convolution offers only limited efficiency gains, as convolution accounts for only a small
portion of our VAE. Moreover, like XCube, we cannot apply sparse convolution in our decoder. In
the future, we plan to explore more efficient operations to further optimize our 3D backbone.

A.4 CLASSIFIER-FREE GUIDANCE

Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) could improve the performance of conditional
generative models without relying on an external classifier. Specifically, during training, the model

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

simultaneously learns both conditional generation p(x|c) and unconditional generation p(x), and
guidance during sampling is provided by the following equation:

x̂t = (1 + w) · x̂t(c)− w · x̂t(∅) , (12)

where x̂t(c) is the result conditioned on c, x̂t(∅) is the unconditioned result, and w is a weight
parameter controlling the strength of the conditional guidance. By adjusting w, an appropriate
balance between the accuracy and diversity of the generated scenes can be achieved.

A.5 DOWNSTREAM APPLICATIONS

This section provides a comprehensive explanation of five tasks to demonstrate the capability of our
4D scene generation model across various scenarios.

HexPlane. Since our model is based on Latent Diffusion Models, it is inherently constrained to
generate results that match the latent space dimensions, limiting the temporal length of unconditionally
generated sequences. We argue that a robust 4D generation model should not be restricted to producing
only short sequences. Instead of increasing latent space size, we leverage CFG to generate sequences
in an auto-regressive manner. By conditioning each new 4D sequence on the previous one, we
sequentially extend the temporal dimension. This iterative process significantly extends sequence
length, enabling long-term generation, and allows conditioning on any real-world 4D scene to predict
the next sequence using the DiT model. Theoretically, our HexPlane conditional generation can
model sequence of arbitrary length, but less stable generation may occur when generating very long
sequences.

We condition our DiT by using the HexPlane from T frames earlier. For any condition HexPlane,
we apply patch embedding and positional encoding operations to obtain condition tokens. These
tokens, combined with other conditions, are fed into the adaLN-Zero and Cross-Attention branches
to influence the main branch.

Layout. To control object placement in the scene, we train a model capable of generating vehicle
dynamics based on a bird’s-eye view sketch. We apply semantic filtering to the bird’s-eye view of
the input scene, marking regions with vehicles as 1 and regions without vehicles as 0. Pooling this
binary image provides layout information as a T ×H ×W tensor from the bird’s-eye perspective.
The layout is padded to match the size of the HexPlane, ensuring that the positional encoding of the
bird’s-eye layout aligns with the XY plane. DiT learns the correspondence between the layout and
vehicle semantics using the same conditional injection method applied to the HexPlane.

Command. While we have developed effective methods to control the HexPlane in both temporal
and spatial dimensions, a critical aspect of 4D autonomous driving scenarios is the motion of the ego
vehicle. To address this, we define four commands: STATIC, FORWARD, TURN LEFT, and TURN
RIGHT, and annotate our training data by analyzing ego vehicle poses. During training, we follow
the traditional DiT approach of injecting class labels, where the commands are embedded and fed
into the model via adaLN-Zero.

Trajectory. For more fine-grained control of the ego vehicle’s motion, we extend the command-
based conditioning into a trajectory condition branch. For any 4D scene, the XY coordinates of the
trajectory traj ∈ RT×2 are passed through an MLP and injected into the adaLN-Zero branch.

Inpaint. We demonstrate that our model can handle versatile applications by training a conditional
DiT for the previous tasks. Extending our exploration of downstream applications, and inspired
by (Lee et al., 2024), we leverage the 2D structure of our latent space and the explicit modeling
of each dimension to highlight our model’s ability to perform inpainting on 4D scenes. During
DiT sampling, we define a 2D mask m ∈ RX×Y on the XY plane, which is extended across all
dimensions to mask specific regions of the HexPlane.

At each step of the diffusion process, we apply noise to the input Hin and update the HexPlane using
the following formula:

Ht = m⊙Ht + (1−m)⊙Hin
t , (13)

where ⊙ denotes the element-wise product. This process inpaints the masked regions while preserving
the unmasked areas of the scene, enabling partial scene modification, such as turning an empty street
into one with heavy traffic.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Outpaint. Outpainting extends the spatial dimensions of a given occupancy sequence. We use the
same procedure for outpainting as we do for inpainting. Specifically, we mask half of the scene, shift
the latent representation, and apply the inpainting process. Consequently, we could obtain a larger
scene with consistent dynamics.

Single frame occupancy. We apply the same procedure for single-frame occupancy conditional
generation as for HexPlane conditional generation. Specifically, we preprocess the data, encode the
first frame of each training sequence as a HexPlane, and fine-tune our HexPlane generation model for
single-frame conditional generation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B ADDITIONAL QUANTITATIVE RESULTS

In this section, we present additional quantitative results to demonstrate the effectiveness of our VAE
in accurately reconstructing 4D scenes.

B.1 PER-CLASS GENERATION RESULTS

We include the class-wise IoU scores of OccSora (Wang et al., 2024) and our proposed DynamicCity
framework on CarlaSC (Wilson et al., 2022). As shown in Tab. 7, our results demonstrate higher
IoU across all classes, indicating that our VAE reconstruction achieves minimal information loss.
Additionally, our model does not exhibit significantly low IoU for any specific class, proving its
ability to effectively handle class imbalance.

Table 7: Comparisons of Per-Class IoU Scores. We compared the performance of OccSora (Wang
et al., 2024), and our DynamicCity framework on CarlaSC (Wilson et al., 2022) across 10 semantic
classes. The scene resolution is 128×128×8. The sequence lengths are 4, 8, 16, and 32, respectively.

Method mIoU B
ui

ld
in

g

B
ar

ri
er

O
th

er

Pe
de

st
ri

an

Po
le

R
oa

d

G
ro

un
d

Si
de

w
al

k

Ve
ge

ta
tio

n

Ve
hi

cl
e

Resolution: 128× 128× 8 Sequence Length: 4
OccSora 41.009 38.861 10.616 6.637 19.191 21.825 93.910 61.357 86.671 15.685 55.340

Ours 79.604 76.364 31.354 68.898 93.436 87.962 98.617 87.014 95.129 68.700 88.569

Improv. 38.595 37.503 20.738 62.261 74.245 66.137 4.707 25.657 8.458 53.015 33.229

Resolution: 128× 128× 8 Sequence Length: 8
OccSora 39.910 33.001 3.260 5.659 19.224 19.357 93.038 57.335 85.551 30.899 51.776

Ours 76.181 70.874 50.025 52.433 87.958 85.866 97.513 83.074 93.944 58.626 81.498

Improv. 36.271 37.873 46.765 46.774 68.734 66.509 4.475 25.739 8.393 27.727 29.722

Resolution: 128× 128× 8 Sequence Length: 16
OccSora 33.404 19.264 2.205 3.454 11.781 9.165 92.054 50.077 82.594 18.078 45.363

Ours 74.223 66.852 51.901 49.844 79.410 82.369 96.937 84.484 94.082 58.217 78.134

Improv. 40.819 47.588 49.696 46.390 67.629 73.204 4.883 34.407 11.488 40.139 32.771

Resolution: 128× 128× 8 Sequence Length: 32
OccSora 28.911 16.565 1.413 0.944 6.200 4.150 91.466 43.399 78.614 11.007 35.353

Ours 59.308 52.036 25.521 29.382 56.811 57.876 94.792 78.390 89.955 46.080 62.234

Improv. 30.397 35.471 24.108 28.438 50.611 53.726 3.326 34.991 11.341 35.073 26.881

B.2 OCCUPANCY FORECASTING RESULTS

We train our HexPlane conditional generation pipeline on Occ3D-nuScenes (Tian et al., 2023) as an
occupancy forecasting model. We set T = 4 to ensure the model receives a HexPlane with a context
length of 2 seconds, aligning with OccWorld (Zheng et al., 2024a), and generates the next 2 seconds
for evaluation. As shown in Tab. 8, our model outperforms OccWorld on most metrics.

Table 8: 4D Occupancy Forecasting Performance. We compare the performance of Occ-
World (Zheng et al., 2024a) and our proposed DynamicCity framework on Occ3D-nuScenes (Tian
et al., 2023).

Method mIoU IoU
T = 0 T = 1 T = 2 T = 0 T = 1 T = 2

OccWorld-O 66.38 25.78 15.14 62.29 34.63 25.07
Ours 80.52 26.18 16.94 67.64 34.12 25.82

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.3 USER STUDY

We conduct a user study comparing OccSora (Wang et al., 2024) with our proposed DynamicCity.
The study includes 20 samples, with 10 from each method. Participants rate each sample on four
metrics: 1) overall quality, 2) time consistency, 3) background quality, and 4) foreground quality.
Ratings range from 1 to 5, with 5 being the highest. We collect results from 42 volunteers and get 840
valid scores in total, as shown in Tab. 9. Our method receives better user feedback across all metrics.

Table 9: User Study Results. We conduct user study comparing OccSora (Wang et al., 2024) and
DynamicCity. The rating is of scale 1-5, the higher the better.

Method Overall Quality Time Consistency Background Quality Foreground Quality
OccSora 2.21 2.05 2.17 2.11

Ours 4.03 4.02 3.95 4.04

B.4 MODEL STATS

We compare the training speed, inference speed, training VRAM, and inference VRAM of Occ-
Sora (Wang et al., 2024) and DynamicCity. The results are presented in Tab. 10, Tab. 11, Tab. 12,
and Tab. 13. While some of our models may be slightly slower and consume more memory compared
to OccSora, they achieve significantly better performance. We also compare the total model size of
OccSora and our model in Tab. 14. Our model is significantly smaller than OccSora while achieving
superior performance.

Table 10: VAE Model Statistics on CarlaSC Dataset (Wilson et al., 2022). We compare the training
time, inference time, training VRAM, inference VRAM of OccSora (Wang et al., 2024) and our
DynamicCity.

Method Training Time (s)↓ Inference Time (s)↓ Training VRAM (G)↓ Inference VRAM (G)↓

OccSora 0.36 0.21 4.86 3.25

Ours 0.21 0.41 5.92 1.43

Table 11: VAE Model Statistics on Occ3D-Waymo Dataset (Tian et al., 2023). We compare the
training time, inference time, training VRAM, inference VRAM of OccSora (Wang et al., 2024) and
our DynamicCity.

Method Training Time (s)↓ Inference Time (s)↓ Training VRAM (G)↓ Inference VRAM (G)↓

OccSora 0.63 0.21 10.05 3.93

Ours 0.94 0.54 24.90 4.62

B.5 COMPARISONS WITH SEMCITY

We compare the generation quality of SemCity (Lee et al., 2024) and our DynamicCity in Tab. 15.
Despite using a more compact latent representation and generating dynamic scenes, our model
outperforms SemCity on most metrics.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 12: DiT Model Statistics on CarlaSC Dataset (Wilson et al., 2022). We compare the training
time, inference time, training VRAM, inference VRAM of OccSora (Wang et al., 2024) and our
DynamicCity.

Method Training Time (s)↓ Inference Time (s)↓ Training VRAM (G)↓ Inference VRAM (G)↓

OccSora 0.19 6.10 1.50 1.15

Ours 0.19 3.91 10.22 1.28

Table 13: DiT Model Statistics on Occ3D-Waymo Dataset (Tian et al., 2023). We compare the
training time, inference time, training VRAM, inference VRAM of OccSora (Wang et al., 2024) and
our DynamicCity.

Method Training Time (s)↓ Inference Time (s)↓ Training VRAM (G)↓ Inference VRAM (G)↓

OccSora 0.35 6.09 15.16 1.15

Ours 0.45 4.41 22.33 1.29

Table 14: Model Size. We compare the total model size of OccSora (Wang et al., 2024) and our
DynamicCity.

Dataset Method Model Size (M)

CarlaSC OccSora 169.1
Ours 44.7

Occ3D-Waymo OccSora 174.2
Ours 45.6

Table 15: Comparisons of 2D and 3D Evaluation Metrics. We report the Inception Score (IS),
Fréchet Inception Distance (FID), Kernel Inception Distance (KID), and the Precision (P) and Recall
(R) rates for SemCity (Lee et al., 2024) and our method in both the 2D and 3D spaces.

Method Metric2D Metric3D

IS↑ FID↓ KID↓ P↑ R↑ IS↑ FID↓ KID↓ P↑ R↑

SemCity 1.039 35.40 0.010 0.213 0.058 2.288 1113 53.948 0.253 0.787
Ours 1.040 12.94 0.002 0.307 0.018 2.331 427.5 27.869 0.460 0.170

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C ADDITIONAL QUALITATIVE RESULTS

In this section, we provide additional qualitative results on the Occ3D-Waymo (Tian et al., 2023) and
CarlaSC (Wilson et al., 2022) datasets to demonstrate the effectiveness of our approach.

C.1 UNCONDITIONAL DYNAMIC SCENE GENERATION

First, we present full unconditional generation results in Fig. 9 and 10. These results demonstrate that
our generated scenes are of high quality, realistic, and contain significant detail, capturing both the
overall scene dynamics and the movement of objects within the scenes.

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

T=1

Waymo unconditional1 scene 18

T=2 T=3 T=4

T=5T=6T=7T=8

T=9 T=10 T=11 T=12

T=13T=14T=15T=16

Figure 9: Unconditional Dynamic Scene Generation Results. We provide qualitative examples of a
total of 16 consectutive frames generated by DynamicCity on the Occ3D-Waymo (Tian et al., 2023)
dataset. Best viewed in colors and zoomed-in for additional details.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

T=1 T=2 T=3 T=4

T=5T=6T=7T=8

T=9 T=10 T=11 T=12

T=13T=14T=15T=16

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

Figure 10: Unconditional Dynamic Scene Generation Results. We provide qualitative examples of
a total of 16 consectutive frames generated by DynamicCity on the CarlaSC (Wilson et al., 2022)
dataset. Best viewed in colors and zoomed-in for additional details.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C.2 HEXPLANE-GUIDED GENERATION

We show results for our HexPlane conditional generation in Fig. 11. Although the sequences are
generated in groups of 16 due to the settings of our VAE, we successfully generate a long sequence
by conditioning on the previous one. The result contains 64 frames, comprising four sequences, and
depicts a T-intersection with many cars parked along the roadside. This result demonstrates strong
temporal consistency across sequences, proving that our framework can effectively predict the next
sequence based on the current one.

64

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

63 62 61 60 59 58 57

5655545352515049

48 47 46 45 44 43 42 41

4039383736353433

32 31 30 29 28 27 26 25

2423222120191817

16 15 14 13 12 11 10 9

87654321

Figure 11: HexPlane-Guided Generation Results. We provide qualitative examples of a total of 64
consectutive frames generated by DynamicCity on the Occ3D-Waymo (Tian et al., 2023) dataset.
Best viewed in colors and zoomed-in for additional details.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C.3 LAYOUT-GUIDED GENERATION

The layout conditional generation result is presented in Fig. 12. First, we observe that the layout
closely matches the semantic positions in the generated result. Additionally, as the layout changes,
the positions of the vehicles in the scene also change accordingly, demonstrating that our model
effectively captures the condition and influences both the overall scene layout and vehicle placement.

T=1 T=2 T=3

T=4T=5T=6

T=7

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

T=8 T=9

T=10T=11T=12

T=13 T=14 T=15

Figure 12: Layout-Guided Generation Results. We provide qualitative examples of a total of 16
consectutive frames generated by DynamicCity on the Occ3D-Waymo (Tian et al., 2023) dataset.
Best viewed in colors and zoomed-in for additional details.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C.4 COMMAND- & TRAJECTORY-GUIDED GENERATION

We present command conditional generation in Fig. 13 and trajectory conditional generation in
Fig. 14. These results show that when we input a command, such as "right turn," or a sequence of
XY-plane coordinates, our model can effectively control the motion of the ego vehicle and the relative
motion of the entire scene based on these movement trends.

T=1 T=2 T=3 T=4

T=5T=6T=7T=8

T=9 T=10 T=11 T=12

T=13T=14T=15T=16

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

Turn Right Turn Right Turn Right Turn Right

Turn Right Turn Right Turn Right Turn Right

Turn Right Turn Right Turn Right Turn Right

Turn Right Turn Right Turn Right Turn Right

Figure 13: Command-Guided Scene Generation Results. We provide qualitative examples of
a total of 16 consectutive frames generated under the command RIGHT by DynamicCity on the
CarlaSC (Wilson et al., 2022) dataset. Best viewed in colors and zoomed-in for additional details.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

T=1 T=2 T=3 T=4

T=5T=6T=7T=8

T=9 T=10 T=11 T=12

T=13T=14T=15T=16

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

Figure 14: Trajectory-Guided Scene Generation Results. We provide qualitative examples of a
total of 16 consectutive frames generated by DynamicCity on the CarlaSC (Wilson et al., 2022)
dataset. Best viewed in colors and zoomed-in for additional details.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

C.5 DYNAMIC INPAINTING

We present the full inpainting results in Fig. 15. The results show that our model successfully
regenerates the inpainted regions while ensuring that the areas outside the inpainted regions remain
consistent with the original scene. Furthermore, the inpainted areas seamlessly blend into the original
scene, exhibiting realistic placement and dynamics.

T=2T=1 T=3

T=5T=6 T=4

T=8T=7 T=9

T=11T=12 T=10

T=14T=13 T=15

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

Before After Before After Before After

Before AfterBefore AfterBefore After

Before After Before After Before After

Before AfterBefore AfterBefore After

Before After Before After Before After

Figure 15: Dynamic Inpainting Results. We provide qualitative examples of a total of 16 consectu-
tive frames generated by DynamicCity on the CarlaSC (Wilson et al., 2022) dataset. Best viewed in
colors and zoomed-in for additional details.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

C.6 COMPARISONS WITH OCCSORA

We compare our qualitative results with OccSora (Wang et al., 2024) in Fig. 16, using a similar
scene. It is evident that our result presents a realistic dynamic scene, with straight roads and complete
objects and environments. In contrast, OccSora’s result displays unreasonable semantics, such as
a pedestrian in the middle of the road, broken vehicles, and a lack of dynamic elements. This
comparison highlights the effectiveness of our method.

T=2T=1 T=3

T=5T=6 T=4

T=8T=7 T=9

T=11T=12 T=10

T=14T=13 T=15

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

OccSora Ours OccSora Ours OccSora Ours

OccSora OursOccSora OursOccSora Ours

OccSora Ours OccSora Ours OccSora Ours

OccSora OursOccSora OursOccSora Ours

OccSora Ours OccSora Ours OccSora Ours

Figure 16: Comparisons of Dynamic Scene Generation. We provide qualitative examples of a total
of 16 consectutive frames generated by OccSora (Wang et al., 2024) and our proposed DynamicCity
framework on the CarlaSC (Wilson et al., 2022) dataset. Best viewed in colors and zoomed-in for
additional details.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

C.7 DYNAMIC OUTPAINTING

We present the full outpainting results in Fig. 17. The results demonstrate that our model can extend
a scene into a larger dynamic scene.

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

T=2T=1 T=3

T=5T=6 T=4

T=8T=7 T=9

T=11T=12 T=10

T=14T=13 T=15

Figure 17: Dynamic Outpainting Results. We provide qualitative examples of a total of 16
consectutive frames generated by DynamicCity on the CarlaSC (Wilson et al., 2022) dataset. Best
viewed in colors and zoomed-in for additional details.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

C.8 SINGLE FRAME OCCUPANCY CONDITIONAL GENERATION

We present the results of generating frames based on a single-frame occupancy condition in Fig. 18.
The results demonstrate good temporal consistency with the condition frame, highlighting our model’s
ability to condition on easily accessible data.

Build BarrierVehicle GroundPed VegRoad OtherSidewalk Pole

Condition T=2 T=3 T=4

T=5T=6T=7T=8

T=9 T=10 T=11 T=12

T=13T=14T=15T=16

Figure 18: Single Frame Occupancy Conditional Generation Results. We provide qualitative
examples of a total of 16 consectutive frames generated by DynamicCity on the CarlaSC (Wilson
et al., 2022) dataset. Best viewed in colors and zoomed-in for additional details.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

D POTENTIAL SOCIETAL IMPACT & LIMITATIONS

In this section, we elaborate on the potential positive and negative societal impact of this work, as
well as the broader impact and some potential limitations.

D.1 SOCIETAL IMPACT

Our approach’s ability to generate high-quality 4D LiDAR scenes holds the potential to significantly
impact various domains, particularly autonomous driving, robotics, urban planning, and smart city
development. By creating realistic, large-scale dynamic scenes, our model can aid in developing
more robust and safe autonomous systems. These systems can be better trained and evaluated against
diverse scenarios, including rare but critical edge cases like unexpected pedestrian movements or
complex traffic patterns, which are difficult to capture in real-world datasets. This contribution
can lead to safer autonomous vehicles, reducing traffic accidents, and improving traffic efficiency,
ultimately benefiting society by enhancing transportation systems.

In addition to autonomous driving, DynamicCity can be valuable for developing virtual reality (VR)
environments and augmented reality (AR) applications, enabling more realistic 3D simulations
that could be used in various industries, including entertainment, training, and education. These
advancements could help improve skill development in driving schools, emergency response training,
and urban planning scenarios, fostering a safer and more informed society.

Despite these positive outcomes, the technology could be misused. The ability to generate realistic
dynamic scenes might be exploited to create misleading or fake data, potentially undermining trust
in autonomous systems or spreading misinformation about the capabilities of such technologies.
However, we do not foresee any direct harmful impact from the intended use of this work, and ethical
guidelines and responsible practices can mitigate potential risks.

D.2 BROADER IMPACT

Our approach’s contribution to 4D LiDAR scene generation stands to advance the fields of autonomous
driving, robotics, and even urban planning. By providing a scalable solution for generating diverse
and dynamic LiDAR scenes, it enables researchers and engineers to develop more sophisticated
models capable of handling real-world complexity. This has the potential to accelerate progress in
autonomous systems, making them safer, more reliable, and adaptable to a wide range of environments.
For example, researchers can use DynamicCity to generate synthetic training data, supplementing
real-world data, which is often expensive and time-consuming to collect, especially in dynamic and
high-risk scenarios.

The broader impact also extends to lowering entry barriers for smaller research institutions and
startups that may not have access to vast amounts of real-world LiDAR data. By offering a means to
generate realistic and dynamic scenes, DynamicCity democratizes access to high-quality data for
training and validating machine learning models, thereby fostering innovation across the autonomous
driving and robotics communities.

However, it is crucial to emphasize that synthetic data should be used responsibly. As our model
generates highly realistic scenes, there is a risk that reliance on synthetic data could lead to models
that fail to generalize effectively in real-world settings, especially if the generated scenes do not
capture the full diversity or rare conditions found in real environments. Hence, it’s important to
complement synthetic data with real-world data and ensure transparency when using synthetic data in
model training and evaluation.

D.3 KNOWN LIMITATIONS

Despite the strengths of DynamicCity, several limitations should be acknowledged. First, our model’s
ability to generate extremely long sequences is still constrained by computational resources, leading
to potential challenges in accurately modeling scenarios that span extensive periods. While we
employ techniques to extend temporal modeling, there may be degradation in scene quality or
consistency when attempting to generate sequences beyond a certain length, particularly in complex
traffic scenarios.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Second, the generalization capability of DynamicCity depends on the diversity and representativeness
of the training datasets. If the training data does not cover certain environmental conditions, object
categories, or dynamic behaviors, the generated scenes might lack these aspects, resulting in incom-
plete or less realistic dynamic LiDAR data. This could limit the model’s effectiveness in handling
unseen or rare scenarios, which are critical for validating the robustness of autonomous systems.

Third, while our model demonstrates strong performance in generating dynamic scenes, it may face
challenges in highly congested or intricate traffic environments, where multiple objects interact
closely with rapid, unpredictable movements. In such cases, DynamicCity might struggle to capture
the fine-grained details and interactions accurately, leading to less realistic scene generation.

Lastly, the reliance on pre-defined semantic categories means that any variations or new object
types not included in the training set might be inadequately represented in the generated scenes.
Addressing these limitations would require integrating more diverse training data, improving the
model’s adaptability, and refining techniques for longer sequence generation.

E PUBLIC RESOURCES USED

In this section, we acknowledge the public resources used, during the course of this work.

E.1 PUBLIC DATASETS USED

• nuScenes1 . CC BY-NC-SA 4.0
• nuScenes-devkit2 . Apache License 2.0
• Waymo Open Dataset3 . Waymo Dataset License
• CarlaSC4 . MIT License
• Occ3D5 . MIT License

E.2 PUBLIC IMPLEMENTATIONS USED

• SemCity6 . Unknown
• OccSora7 . Apache License 2.0
• MinkowskiEngine8 . MIT License
• TorchSparse9 . MIT License
• SPVNAS10 . MIT License
• spconv11 . Apache License 2.0

1https://www.nuscenes.org/nuscenes
2https://github.com/nutonomy/nuscenes-devkit
3https://waymo.com/open
4https://umich-curly.github.io/CarlaSC.github.io.
5https://tsinghua-mars-lab.github.io/Occ3D.
6https://github.com/zoomin-lee/SemCity.
7https://github.com/wzzheng/OccSora.
8https://github.com/NVIDIA/MinkowskiEngine.
9https://github.com/mit-han-lab/torchsparse.

10https://github.com/mit-han-lab/spvnas.
11https://github.com/traveller59/spconv.

34

https://www.nuscenes.org/nuscenes
https://github.com/nutonomy/nuscenes-devkit
https://waymo.com/open
https://umich-curly.github.io/CarlaSC.github.io
https://tsinghua-mars-lab.github.io/Occ3D
https://github.com/zoomin-lee/SemCity
https://github.com/wzzheng/OccSora
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/mit-han-lab/torchsparse
https://github.com/mit-han-lab/spvnas
https://github.com/traveller59/spconv

	Introduction
	Related Work
	Preliminaries
	Our Approach
	VAE for 4D LiDAR Scenes
	Diffusion Transformer for HexPlane
	Downstream Applications

	Experiments
	Experimental Details
	4D Scene Reconstruction & Generation
	Ablation Studies

	Conclusion
	Additional Implementation Details
	Datasets
	DiT Evaluation Metrics
	Model Details
	Classifier-Free Guidance
	Downstream Applications

	Additional Quantitative Results
	Per-Class Generation Results
	Occupancy Forecasting Results
	User Study
	Model Stats
	Comparisons with SemCity

	Additional Qualitative Results
	Unconditional Dynamic Scene Generation
	HexPlane-Guided Generation
	Layout-Guided Generation
	Command- & Trajectory-Guided Generation
	Dynamic Inpainting
	Comparisons with OccSora
	Dynamic Outpainting
	Single Frame Occupancy Conditional Generation

	Potential Societal Impact & Limitations
	Societal Impact
	Broader Impact
	Known Limitations

	Public Resources Used
	Public Datasets Used
	Public Implementations Used

