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Abstract

Surface electromyography (sEMG) at the wrists could enable natural, keyboard-free
text entry, yet the state-of-the-art emg2qwerty baseline still misrecognizes 51.8%
of characters zero-shot on unseen users and 7.0% after user-specific fine-tuning.
We trace much of these errors to mismatched cross-user signal statistics, fragile
reliance on high-order feature dependencies, and the absence of architectural
inductive biases aligned with the bilateral nature of typing. To address these
issues, we introduce three simple modifications: (i) Rolling Time Normalization
which adaptively aligns input distributions across users; (ii) Aggressive Channel
Masking, which encourages reliance on low-order feature combinations more likely
to generalize across users; and (iii) a Split-and-Share encoder that processes each
hand independently with weight-shared streams to reflect the bilateral symmetry
of the neuromuscular system. Combined with a five-fold reduction in spectral
resolution (33→6 frequency bands), these components yield a compact Split-
and-Share model, SplashNet-mini, which uses only ¼ the parameters and 0.6× the
FLOPs of the baseline while reducing character error rate (CER) to 36.4% zero-shot
and 5.9% after fine-tuning. An upscaled variant, SplashNet (½ parameters, 1.15×
FLOPs of the baseline), further lowers error to 35.7% and 5.5%, representing 31%
and 21% relative improvements in the zero-shot and finetuned settings, respectively.
SplashNet therefore establishes a new state-of-the-art without requiring additional
data.

1 Introduction

Translating neuromuscular signals into typed text is a novel but rapidly developing area at the
intersection of human-computer interaction and machine learning. The emg2qwerty dataset (14)
is the first large-scale benchmark specifically for wrist EMG-based touch typing. It contains over
346 hours of data from 108 users typing sentences while wearing electrode bands on each wrist.
This dataset was motivated by the promise of wrist EMG as an always-available input modality
for AR/VR glasses and other scenarios where traditional keyboards are impractical. In parallel,
related benchmarks like emg2pose have been developed for EMG-based hand pose estimation (13),
reflecting a broad interest in neuromotor interfaces for controlling virtual objects, robots, or text entry.
Early explorations of EMG for text input date back at least two decades: for example, Yu et al. (22)
demonstrated an “EMG keyboard” that allowed a forearm amputee to input characters via muscle
signals. These efforts were limited in scale and accuracy, but they proved the principle that muscle
activity alone can convey typing information. Today, with much larger datasets and deep learning
models, the accuracy of EMG-based typing has greatly improved (2; 14; 13), making it a viable
research direction for assistive technology and next-generation user interfaces.
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Figure 1: a) Top row: Peri-stimulus time histograms (PSTHs) for the "e" key with (top) and without
(bottom) RTN for two users. Each PSTH shows the spectral features derived from the left hand, with
spectrograms from the 16 electrodes concatenated together. RTN mitigates the significant differences
in across-user feature scale and bias. b) Top Row: PSTHs for the "e" key from 3 training users. Note
that some of User 4’s features show similar patterns to User 3, while others show similar patterns to
User 5. ACM isolates small feature combinations, which are more often shared across users.

Although promising, EMG interfaces face critical challenges in generalization. EMG interfaces suffer
from substantial domain shift across users and sessions: anatomy, electrode placement, fatigue, and
day-to-day physiology all alter the signal for the same action (14). The emg2qwerty benchmark
probes this shift with (i) a zero-shot test, where one trains on many users and tests on a new one,
and (ii) a personalization test that finetunes on a few target-user samples. Their baseline ASR-style
system (CNN on spectrograms + LM decoding) misrecognized 51.8% of characters zero-shot, but
finetuning cut errors to approximately 7%, showing that most residual errors are systematic, user-
specific variations. Yet even large training pools struggle: Sivakumar et al. (14) estimate O(103)
users are needed for robust out-of-the-box performance, a trend echoed by CTRL-Labs’ gains from
massive data (2).

While scaling may significantly increase the performance of EMG interfaces, collecting these large-
scale datasets is time-consuming and human-resource expensive. We instead present a simpler
and complementary path towards improving sEMG generalization. Our key contribution is to first
identify limitations in sEMG data that form obstacles to zero-shot generalization. We then propose
simple, causal, and computationally inexpensive modifications to address these limitations, resulting
in models that are more invariant to user/session differences. Our rationale for pursuing causal
and computationally inexpensive modifications is to enable sEMG decoders to work on-device, an
important consideration for future wrist EMG devices.

2 Insights into improving sEMG decoding

We summarily make three insights, and subsequently, three simple modifications to sEMG decoding
that substantially improve zero-shot and finetuning performance while reducing computational costs.

Insight 1: sEMG features should be causally normalized per session. sEMG amplitudes routinely
differ by an order of magnitude across participants or sessions (3; 8). Figure 1a highlights this
disparity: the same channels exhibit both higher baselines and greater variance for User 2 than for
User 1. Hence, EMG signals should obviously be normalized between users. However, the method of
normalization is critical. Sivakumar et al. (14) apply batch normalization that computes mean and
variance over the mini-batch, time, and per-electrode frequency bins. Because each mini-batch mixes
data from many users and sessions, these statistics fail to place features from different users/sessions
in a common space during training and remain fixed at inference. We instead employ Rolling Time
Normalization (RTN), a causal z-scoring of every input feature that updates its mean and variance
online. Though simple, this mitigates the scale and shift differences across users, visualized in
Figure 1a. Further, RTN requires no calibration and adds virtually no latency for causal, real-time
inference. We empirically find this significantly improves zero-shot and finetuned performance.
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Figure 2: a) The bilateral structure of keyboard typing. b) The Split-and-Share macro-architecture.

Insight 2: sEMG feature subsets may be conserved across users. Through visualizing sEMG
activity, we empirically find that while two typists rarely share identical high-dimensional EMG
signatures for the same keystroke, they often share subsets of electrodes or frequency bands that
behave similarly. A representative example is shown in Figure 1b, where we present the PSTHs
of sEMG activity from three users. While the full set of features looks fairly different across
users, randomly selected subsets of features have a greater chance of being similar between some
users (Augmented View 1 and 2 in Figure 1b). Decoding strategies that hinge on these low-order
combinations therefore stand a better chance of transferring across users. While there are many ways
to encourage this, we focus on substantially modifying the hyperparameters of dataset augmentation
to achieve this, incurring no test-time computational expense. In particular, we do Aggressive
Channel Masking (ACM) that on average zeros out more than half of the electrodes and removes
broad spectral chunks from the rest. ACM encourages the model to rely on smaller, more universal
feature sets (Figure 1b), which empirically improves zero-shot generalization. We emphasize that
this ‘low-order similarity’ perspective is a working hypothesis rather than a definitive statement about
the structure of EMG representations: the empirical improvements we observe are consistent with
this interpretation but do not prove it.

Insight 3: an inductive bias for bilateral typing. Keyboard typing is fundamentally bilateral:
each keystroke is driven solely by the muscles of its own wrist, while the neuromuscular map-
ping from activation to finger motion is almost mirror-symmetric across hands. We therefore
propose a Split-and-Share architecture that accounts for these two facts in the model. Separate,
but weight-shared, subnets encode left- and right-hand sEMG streams in parallel, converging only
at the final linear layer where a single vocabulary-level softmax decodes the character (Figure 2).
This enforces hand-specific locality, but prevents the encoder from entangling spurious cross-hand
correlations. Further, re-use of parameters reduces resource demands: the compact Split-and-Share
model uses 0.25× the parameters and approximately 60% of the FLOPs of a conventional joint-hand
encoder while matching zero-shot accuracy.

Summarily, our new, lightweight architecture built on simple modifications from these three insights
reduces zero-shot generalization by 31% and finetuning performance by 21% over the prior state-of-
the-art in Sivakumar et al. (14). Together, we both increase performance while reducing computational
cost, providing a more feasible path towards on-device, performant computation for sEMG interfaces.

3 Related Works

Per-Session Normalization in EMG: The EMG and brain-computer interface (BCI) literature com-
monly normalize input signals prior to decoding to account for variability. For instance, prior EMG
studies expressed amplitudes as a percentage of a reference contraction (maximum voluntary contrac-
tion) or applied z-score normalization based on a calibration recording (15). These normalizations
enable comparisons across muscles and subjects (3; 8), and several works have normalized EMG
features per session for machine learning pipelines (15; 10; 7; 20; 16; 6). In BCI literature, Willett
et al. (19) show that continuously updating z-score statistics on spiking features within each session
is essential for their high-performance speech neuroprosthesis, and Jarosiewicz et al. (5) used online
bias correction to improve a point-and-click BCI. As described in Section 2, an important insight is
not whether sEMG activity should be normalized, but how it is normalized. We ultimately find RTN
significantly outperforms batch normalization.
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Masking-Based Regularization for sEMG: SpecAugment, first introduced for speech recognition,
has recently been ported to EMG decoding pipelines (12; 14). The version used by Sivakumar et al.
(14) is relatively mild: on average only ∼ 6% of inputs are masked per training sample, with a given
electrode’s spectrogram never being masked across more than ∼ 24% of the frequencies. ACM
corresponds to hyperparameters that are intentionally harsher, with at least half of the electrodes
completely blanked in most mini-batches and ∼ 55% of input features masked on average. This
encourages the model to infer keystrokes from small, overlapping subsets of channels, discouraging
brittle reliance on the full spatiotemporal feature pattern.

Multi-stream architectures and weight sharing: The concept of processing multiple information
streams independently before later integration has been established in Automatic Speech Recognition
(ASR), where multi-stream systems effectively handle speech at various resolutions or from multiple
arrays (9). Similarly, in Sign Language Recognition (SLR), previous works have implemented
separate processing streams for each hand (11; 17). Leveraging anatomical symmetry through weight
sharing has shown success in pose estimation (21) and SLR (17). In the domain of EMG-based hand-
pose recognition, Salter et al. (13) combined data from both hands into a unified dataset for single-
model training, though this addresses an inherently unimanual task. For bimanual keystroke decoding,
past methods have processed signals from both hands jointly (14; 18; 1). Our Split-and-Share
architecture keeps the two wrists separate to respect biomechanics, yet ties the weights, effectively
training a single-hand encoder with data from both hands. To our knowledge, this has not been
explored in EMG keyboard decoding.

4 Methods

4.1 Reduced Spectral Granularity

Let xc(t) denote the raw 2 kHz EMG signal from electrode c. Following Sivakumar et al. (14) we
first form a log-power spectrogram

Sc(t, f) = log10

(∣∣STFT(xc)
∣∣2
t,f

+ 10−6
)
, f = 1, . . . , 33,

using a 64-point FFT (33 linearly spaced bins up to 1 kHz) and a hop size of 16. We instead aggregate
the 33 bins into six broader, roughly log-spaced bands, using the same frequency ranges as in (2). We
refer to this aggregation as reduced spectral granularity (RSG).

B1 = [31.25, 62.5], B2 = [62.5, 125], B3 = [125, 250],

B4 = [250, 375], B5 = [375, 687.5], B6 = [687.5, 1000] Hz.
For each electrode the reduced spectrogram is obtained by

Rc(t, b) =
∑
f∈Bb

Sc(t, f), b = 1, . . . , 6.

Hence, we reduce the spectral dimensionality of each electrode from 33 to 6. This represents an
over five-fold reduction in features, and empirically equals or improves performance. This also leads
SpecAugment to mask significantly more frequencies, even prior to ACM.

4.2 Rolling Time Normalization

Sivakumar et al. (14) normalizes each electrode’s spectrogram with batch-norm over the entire
mini-batch, frequency, and time axes. This collapses all features recorded on an electrode into a
single distribution and, crucially, re-uses statistics gathered during training at inference time—an
issue when the test session (or user) drifts from the training distribution. RTN replaces this with a
causal, per-feature normalizer that is computed independently for every sample, band, electrode
channel and frequency bin. Let

xt,n,b,c,f ∈ R, t = 0 . . . T − 1, n = 0 . . . N − 1,

denote the log-power value at time-step t, mini-batch index n, band b, electrode c and frequency
bin f . RTN maintains cumulative statistics

µt =
1

t+ 1

t∑
s=0

xs,n,b,c,f , σt =

√√√√( 1

t+ 1

t∑
s=0

x2
s,n,b,c,f

)
− µ2

t + ε,
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which are cheap to update via running sums in streaming settings. During a warm-up period of
Tw = 125 frames (the first 1 second) the statistics are frozen to those computed over the entire
warm-up window. The normalized output is

x̂t,n,b,c,f =
xt,n,b,c,f − µ̃t

σ̃t
,

where µ̃t and σ̃t denote the warm-up-frozen statistics for t < Tw and the cumulative statistics above
for t ≥ Tw. RTN adapts continuously to session-specific non-stationarities, avoids batch-level or
training-level statistics, and is causal.

4.3 Aggressive Channel Masking

We apply ACM on the reduced spectral granularity features with B = 6 bands. We mask inputs in 2/3
of mini-batches. For each mini-batch we draw the number of frequency masks, nf ∼ Unif{0, 1, 2}.
Each mask is then sampled independently for every electrode and sample in the batch:

1. Width w ∼ Unif{0, . . . , fmax − 1}, with fmax=12. The implementation clamps the width
to the number of bands, w ← min(w,B). Thus the probability that a single mask erases the
entire electrode is Pr[w = B] = fmax−B

fmax
= 0.5.

2. Start index f0 ∼ Unif{0, . . . , B − w}.
3. Set Xt,c,f0:f0+w−1 ← 0 for all timesteps t.

An individual mask already removes a channel with probability 0.5, while two masks remove a
channel with probability 0.75. Remaining electrodes lose large spectrally-coherent chunks. By
forcing the network to succeed even when so many electrodes are fully masked, the augmentation
discourages brittle high-order feature dependencies and promotes low-order motifs that transfer
across users.

4.4 EMG Encoder Architectures

Following spectrogram normalization, all architectures apply a two-stage encoder composed of a
Rotation-Invariant MLP and a Time-Depth Separable Convolution (TDSConv) stack, with a linear
character prediction layer following the last TDSConv block. These architectures were first presented
in Sivakumar et al. (14) and are reproduced here for completeness.

Rotation Invariant MLP. Let x ∈ RT×N×B×C×F denote the input, where T is the number of
time steps, N is the batch size, B = 2 denotes the number of bands (hands), C = 16 is the number
of electrode channels per band, and F is the number of spectral frequency bins. Each band is passed
through a Rotation-Invariant MLP, which applies a multi-layer perceptron to rotated versions of the
electrode channels to ensure robustness to cyclic spatial shifts:

hb =
1

|O|
∑
o∈O

MLP(roll(xb, o)), O = {−1, 0, 1},

where each rotated input is flattened across C × F before the MLP is applied. This results in an
embedding hb ∈ RT×N×D per band. Concatenating the left and right hand features yields a total
input of shape h ∈ RT×N×2D to the TDSConv blocks in the baseline model, whereas each hand is
processed independently in the Split-only and Split-and-Share variants.

TDSConv block architecture. The TDSConv stack (4) is composed of alternating temporal
convolution and fully connected blocks. Each convolutional block first reshapes the input from
RT×N×D to RN×K×H×T , where D = K ·H denotes the total feature dimension, K is the number
of convolution channels, and H is the per-channel hidden width. A 2-D convolution with kernel size
1× w is then applied along the time axis:

z[n, k, h, t] =

w−1∑
i=0

K∑
k′=1

θk,k′,i h[n, k
′, h, t− i], θ ∈ RK×K×1×w.
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Figure 3: EMG encoder architectures. Left (blue) and right (red) hand specific modules only process
inputs from a single hand, with hand-specific weights. Joint (purple) modules jointly process inputs
from both hands. Shared (gray) modules process inputs from either hand using identical weights.
a) Joint-Hand baseline architecture of Sivakumar et al. (14), b) Split-only architecture, in which
hand-specific modules process signals from each hand separately. c) Split-and-Share architecture,
where shared-weight modules process signals from each hand separately.

Because the kernel height is 1, the same weights are reused at every hidden-width position h. The
convolution still mixes all K input channels to produce each of the K output channels, giving the layer
K2w parameters. The output is passed through ReLU, summed with the residual, and normalized
using LayerNorm. The subsequent fully connected block consists of two linear layers with a ReLU
in between and a residual connection:

zfc = LayerNorm(FC2(ReLU(FC1(zconv))) + zconv).

Architecure variants. In the architecture of Sivakumar et al. (14), which we refer to as the Joint-
Hand architecture, both hands are processed jointly following the Rotation-Invariant MLP, yielding
a post-MLP embedding of 2D = 768. The TDSConv stack operates with this full dimensionality
throughout. In contrast, both the Split-only and Split-and-Share models operate on embeddings of
D = 384 per hand, and apply the TDSConv blocks separately to each hand’s input. This reduces the
width of all fully connected layers from 768 × 768 to 384 × 384, leading to a four-fold reduction
in parameters per FC layer, while preserving expressiveness by keeping the number of convolution
channels K = 24 and kernel width w = 32 unchanged. Despite duplicating the encoder, the
Split-only model has lower total FLOPs—approximately 60% of the baseline—due to the narrower
per-hand embeddings. The Split-and-Share model uses the same dual-stream structure but shares
all encoder weights between hands. This model has roughly half the parameters of the Split-only
model, since almost all parameters (excluding the final prediction layer) are shared between the two
encoders. Notably, the Split-only and Split-and-Share models have the same FLOPs.

To evaluate whether representational capacity might further enhance the strong performance of the
Split-and-Share architecture, we also test an Upscaled Split-and-Share variant. This model increases
the per-hand embedding size to D = 528 and expands the number of convolution channels in the
final two TDS blocks from 24 to 48. Nonetheless, the total number of parameters remains about half
that of the baseline, and the FLOPs are only modestly higher (about 15%). We refer to the Upscaled
Split-and-Share model as SplashNet and the smaller Split-and-Share model as SplashNet-mini

4.5 Backspace-aware beam search with 6-gram Character LM

For decoding we adopt the backspace-aware beam search of Sivakumar et al. (14), which keeps the
50 most-probable CTC label prefixes at each frame. Blank transitions simply update the score of
an unchanged prefix, while the highest-scoring non-blank characters extend each hypothesis and
are re-ranked with a 6-gram character LM prior. When a backspace symbol appears, the algorithm
retracts the last language-model contribution, letting deletions correct earlier mistakes without extra
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Table 1: Zero-shot CER (%, mean ± s.d. across participants), GFLOPs, and parameters. Columns in
gray correspond to training domain validation results, which are reported for transparency but not
used as indicators of generalization.

Method
Train

domain
val

Other
domain

val

Test
domain

val

Test
domain

test

GFLOPs
(30 s) Params

Sivakumar et al. 2024 12.14 72.07 52.10± 5.54 51.78± 4.61 61.61 5.29M
+ RSG 13.52 67.48 47.26± 5.26 47.18± 5.19 54.15 4.96M
+ RTN 13.09 61.95 39.49± 7.45 39.15± 6.20 54.15 4.96M
+ ACM 23.47 63.08 42.62± 7.18 42.62± 7.10 54.15 4.96M
+ RTN + ACM 21.71 58.85 36.41± 7.21 36.42± 7.11 54.15 4.96M
+ Split 23.93 58.64 37.28± 6.91 37.37± 7.34 36.84 2.68M
+ Share (SplashNet-mini) 26.44 58.20 36.46± 7.09 36.41± 7.30 36.84 1.38M
+ Upscale (SplashNet) 20.59 56.95 35.49± 7.56 35.67± 6.79 71.38 2.58M

passes. After the final frame any open LM context is closed, and the best-scoring prefix provides the
decoded keystroke sequence. All beam-search parameters are the same as in Sivakumar et al. (14)

4.6 Dataset Splits

The official emg2qwerty protocol introduced by Sivakumar et al. (14) assigns 100 participants to the
training pool and eight to a held-out test pool. For the 96 training participants with ≥ 4 recording
sessions, every session except the final two is used to train generic models, while those last two
sessions form the authors’ validation set; models are selected on this set before being evaluated on
the eight held-out participants.

Because the validation data come from the same individuals seen during training, this procedure
encourages models that memorize participant-specific idiosyncrasies rather than ones that generalize
across users. To illustrate this effect while limiting computational cost, we evaluate training domain
validation performance using the validation sessions from 18 of the 96 training users, which we term
the training domain validation set. The same 18 users are also used in Appendix A.8, where they are
fully held out from training to provide a more appropriate validation signal.

To obtain a validation signal that better predicts zero-shot performance in the main experiments, we
instead exploit the four training-pool participants who recorded < 4 sessions and were therefore
excluded from model fitting in the original setup. We take the final session of each of these four
participants and combine them into what we term the other domain validation set. These participants
exhibit noisier EMG data than those in the official test pool, providing a harder proxy for real-world
generalization. Nonetheless, they provide a way of validating zero-shot generalization without
requiring a complete restructuring of the official dataset splits.

5 Results

5.1 Zero-shot model performance

Before turning to the main cross-user generalization results, we first highlight a key discrepancy
between training domain validation and held-out user evaluation. As shown in Table 1, the CERs on
the training domain validation set are not only lower, but the relative ranking of models follows a
markedly different pattern than on held-out user evaluation sets. This illustrates why training domain
validation provides a misleading signal for cross-user generalization and should not be used for model
selection. In Appendix A.8, we further show that when these same 18 users are held out entirely, their
CERs rise substantially and align closely with the held-out evaluation trends shown here.

Our analysis centers on beam-search decoding using the same 6-gram character LM as in Sivakumar
et al. (14); corresponding greedy-decoding results appear in Appendix A.3. All reported p-values
were obtained from one-tailed paired t-tests across participants.
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Table 2: Finetuned CER (%, mean ± s.d. across participants), GFLOPs, and parameters.

Method
Test

domain
val

Test
domain

test

GFLOPs
(30 s) Params

Sivakumar et al. 2024 8.31 ± 3.19 6.95 ± 3.61 61.61 5.29M
+ RSG 6.70 ± 3.22 6.92 ± 3.79 54.15 4.96M
+ RTN 6.47 ± 2.92 6.63 ± 3.58 54.15 4.96M
+ ACM 7.18 ± 3.33 7.45 ± 3.87 54.15 4.96M
+ RTN + ACM 6.55 ± 2.91 6.53 ± 3.27 54.15 4.96M
+ Split 6.04 ± 2.81 6.10 ± 3.32 36.84 2.68M
+ Share (SplashNet-mini) 6.13 ± 2.96 5.87 ± 3.04 36.84 1.38M
+ FT Unshare 5.85 ± 2.83 5.96 ± 3.28 36.84 2.68M
+ Upscale (SplashNet) 5.46 ± 2.60 5.51 ± 2.81 71.38 2.58M
+ FT Unshare 5.57 ± 2.65 5.67 ± 2.97 71.38 5.06M

First, we apply RSG to replace the 33-bin spectrogram with six coarser frequency bands. RSG leads
to a modest but consistent improvement in CER from 51.78% to 47.18% (p = 7e-5). Part of this
performance improvement may stem from the implicit amplification of frequency masking under
SpecAugment (due to the lower spectral resolution).

Second, we replace batch-level normalization with RTN. RTN significantly improves zero-shot
generalization (p = 6e-4), reducing the CER to 39.15%. This suggests that input scale and shift
differences across users are a primary obstacle to cross-user generalization in EMG decoding.

Third, we apply ACM, which encourages the model to rely on lower-order combinations of input
features. Without RTN, ACM reduces zero-shot CER to 42.6% (p = .02 vs. +RSG only). Combined
with RTN, ACM reduces zero-shot CER to 36.42% (p = 5e-3 vs. +RSG+RTN), providing a strong
Joint-Hand baseline.

Fourth, we explore architectural modifications that better reflect the causal and bilateral structure of
EMG typing. We evaluate a Split-only model that encodes each hand separately without parameter
sharing, achieving a CER of 37.37%. Despite having only half the parameters and 66% of the FLOPs
of our Joint-Hand baseline, this model performs competitively, though its lack of shared parameters
may limit data efficiency. We then evaluate SplashNet-mini, where both hands are encoded via
identical weight-shared encoders. This model achieves a 36.41% CER—on par with the Joint-Hand
baseline—while using just a quarter of its parameters and 66% of the FLOPs. Finally, by increasing
the embedding width and expanding the final convolutional layers, we create SplashNet, with similar
FLOPs to the baseline of Sivakumar et al. (14) but still half the parameters. This yields a further
improvement, reducing the CER to 35.67% (p = .049 vs. SplashNet-mini).

Together, these results demonstrate that a combination of architectural priors, per-session normaliza-
tion and principled regularization can significantly improve zero-shot EMG decoding.

5.2 Finetuned Model Performance

We next evaluate the performance of models finetuned on user-specific data. As in Sivakumar et al.
(14), we maintain identical training hyperparameters during both generic pretraining and finetuning.
While this simplifies the analysis, we note that the optimal hyperparameters for finetuning likely
differ from those used during pretraining, and further gains may be achievable through phase-specific
hyperparameter tuning. We also note that, because each recording session involved doffing and re-
donning the wristbands, the finetuning experiments inherently probe generalization across electrode
placements in different sessions.

We report all results using beam search with an external character-level language model (LM), which
remains the standard for achieving state-of-the-art performance in CTC-based decoding pipelines.
While our models consistently outperform the baseline of Sivakumar et al. (14) under beam search,
we observe slightly worse performance under greedy decoding. We attribute this in part to the more
aggressive channel masking induced by our reduced spectral representation (§4), which we discuss
further in Appendix A.3.
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Figure 4: Zero-shot and finetuned CER distribution across users. Each of the 8 test users are
represented by a dot, with lines connecting the same user across models. Boxplots depict median and
interquartile ranges. Our methods improve performance for all participants relative to the baseline
of Sivakumar et al. (14), with some participants showing very large improvements: two users reach
CER between 20-30% in the zero-shot setting, and one user attains a CER below 2% when finetuned.

First, we assess whether the same methods that improved zero-shot generalization also enhance
performance in the finetuned setting. Using RSG alone yields similar performance to the baseline of
Sivakumar et al. (14), with a CER of 6.91%, while adding RTN yields a significantly improved CER
of 6.63% (p = .028 vs. +RSG). Interestingly, applying ACM in isolation—without RTN—leads to
worse performance than the baseline of Sivakumar et al. (14), whereas the Joint-Hand baseline model,
with both ACM and RTN, matches the model with RTN alone (6.53% CER). This suggests that
masking-induced variability may hinder learning when the model lacks an appropriate normalization
strategy to stabilize the input feature space. Moreover, unlike the generic case, finetuned models may
rely more on higher-order feature correlations that are relatively stable across sessions for the same
user, diminishing the benefits of aggressive masking.

We next examine architectural changes that explicitly encode inductive biases about the bilateral and
causal structure of EMG typing. Both the Split-only and SplashNet-mini models yield substantial
improvements over the Joint-Hand baseline, with CERs of 6.10% and 5.87% (p = 6e-3 and p = 2e-3,
respectively). For the latter, we evaluate two strategies during finetuning: either maintaining shared
weights or duplicating them to allow separate adaptation per hand. Interestingly, both strategies
yield similar performance, suggesting that hand-specific encoder weights are unnecessary even in the
finetuned setting, although it is possible that unsharing weights could become advantageous with
more user-specfic data for finetuning.

Finally, we evaluate the SplashNet model. Again, we do not find any benefit from unsharing the
weights during finetuning. With the weights kept shared, SplashNet achieves the best performance
overall with a CER of 5.51% (p = .02 vs. SplashNet-mini), establishing a new state-of-the-art for
user-specific EMG keystroke decoding in this benchmark.

6 Discussion

The central contribution of this work is instilling simple, well-motivated priors through preprocessing,
augmentation and architecture that can close a surprising fraction of the generalization gap in
wrist-EMG typing. SplashNet-mini and SplashNet both achieve large absolute and relative CER
reductions (-15.4 pp / -31.1% zero-shot; -1.44 pp / -20.7% after fine-tuning) while cutting parameters
to ¼–½ of the baseline and FLOPs to 0.6–1.15×. These gains are on par with (and complementary to)
the ∼ 25% error reduction CTRL-Labs at Reality Labs et al. (2) reported from doubling dataset size
in a handwriting task, suggesting that principled inductive biases are as potent as raw data scaling for
sEMG.

A practical ambition articulated in Sivakumar et al. (14) is to run the entire decoder on the wristbands
themselves, thereby mitigating concerns around latency, privacy, and robustness to Bluetooth inter-
ference. Achieving on-band inference will require an architecture that is not only light-weight but
also fully split—able to process and output keystrokes from each wrist independently, without any
cross-hand coupling. SplashNet moves part-way toward this goal by duplicating (and sharing) the
encoder streams, yet it still merges information at the final linear output layer, so each wrist must
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communicate its embeddings to the other. Removing this last dependency, or replacing it with a
low-bandwidth handshake, remains an open engineering challenge and a fruitful direction for future
model architecture work. Another promising direction is exploring hybrid cross-hand architectures
that retain split-and-share components but introduce limited, structured interactions between the
hands, potentially offering a middle ground between the Split-and-Share and Joint-Hand extremes.

Beyond these concrete results, our study points to several avenues. Normalization: RTN is a
single-pass causal z-score; richer adaptive schemes (momentum updates, learnable affine transforms,
or brief self-supervised calibration) may yield further robustness. Structured masking: ACM already
improves zero-shot CER, but spatially contiguous electrode “drop-blocks”, global time masks, or
anatomical adjacency priors could guide the network toward even more transferable features. Model
scale and self-supervision: SplashNet shows that capacity can be reinvested profitably once good
priors are in place; coupling larger split-and-share encoders with masked-prediction pre-training may
unlock still-higher accuracy without additional labels.

Two limitations deserve emphasis. First, our models are developed for the practical beam-search +
LM pipeline; under pure greedy decoding, the Joint-Hand baseline scores the best on unseen users,
and ACM dents finetuned accuracy (details and discussion in Appendix A.3). This likely reflects
the fact that the Joint-Hand baseline can exploit cross-hand co-articulatory patterns, which tend to
correlate strongly with character bi- and tri-grams. These weak statistical regularities effectively act as
an implicit language model under greedy decoding. By contrast, Split-and-Share models do not have
access to these bilateral dependencies, and ACM further suppresses within-user cues by enforcing
lower-order feature reliance. Once an external 6-gram LM is applied, however, its much stronger
prior readily compensates for both the lost co-articulatory signal of the Split-and-Share models
and the reduced within-user discriminability induced by ACM, thereby revealing the underlying
generalization advantage of our approach. Second, all experiments use healthy participants; the extent
to which our priors transfer to populations with motor or limb differences (where electrode placement
and muscle recruitment differ markedly) remains to be tested.

In sum, we show that the long-standing vision of “keyboard-quality” EMG typing can be advanced
not only by more data but also by better assumptions. By pairing causal normalization, aggressive yet
structured regularization, and a symmetry-aware encoder, we make significant strides towards truly
out-of-the-box wrist-sEMG typing—paving the way for real-world assistive and AR/VR interfaces.
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A Technical Appendices and Supplementary Material

A.1 Training Details

All models were trained for 150 epochs with the hyperparameter configuration of Sivakumar et al.
(14). we used the same optimizer (Adam), the same LR schedule (linear warmup from 1e-8 to 1e-3 for
first 10 epochs, followed with cosine annealing to 1e-6 until epoch 150), and the same augmentations.
These included a rotation augmentation, which shifts all electrodes on each band one electrode to the
left or right for each training sample, and a temporal alignment jitter augmentation, which jitters the
EMG signals from each hand by a maximum offset of 60 ms. We only made two modifications to
hyperparameters:

1. Input window length. We employ 16 s training windows, rather than the 4 s clips used by
Sivakumar et al. (14). This was done to speed up training.

2. SpecAugment settings.
• With ACM. We raise the maximum frequency mask width to 12 and disable time

masking.
• Without ACM. We retain the original SpecAugment parameters of Sivakumar et al. (14)

(maximum frequency mask width = 4; up to 3 time masks per electrode per sample,
each masking out up to 200 ms).

A.2 Evaluation Details

All validation and test sessions were loaded as a single sample (i.e. with batch size of 1). By
comparison, Sivakumar et al. (14) loaded validation (but not test) sessions as shortened chunks.
Although this is unlikely to have affected their greedy decoding results as their architecture (and
ours) has a receptive field of only 1 second, this might have affected the validation performance
they reported with an external LM, which would lose the character history between each chunk
and therefore make poorer predictions. This might explain why the validation CER they report
with beam-search (8.31% CER) is conspicuously higher than their test performance (6.95% CER)
compared to the gaps we see between validation and test sessions.
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A.3 Greedy vs. Beam-Search Decoding

Our main text focuses on beam-search decoding with an external 6-gram language model (LM),
because this is the configuration most relevant to realistic, latency-constrained deployment. For
completeness, we also report greedy CTC decoding results,i.e. decoding without any LM.

Table 3: Zero-shot CER (%, mean across participants). Columns in gray correspond to training domain
validation results, which are reported for transparency but not used as indicators of generalization.
Note that the training domain validation results shown here with greedy decoding were computed
over all 96 training users; the beam search decoding results are computed on the 18 user subset.

Method

Train
domain

val
(greedy)

Train
domain

val
(beam)

Other
domain

val
(greedy)

Other
domain

val
(beam)

Test
domain

val
(greedy)

Test
domain

val
(beam)

Test
domain

test
(greedy)

Test
domain

test
(beam)

Sivakumar et al. 2024 22.51 12.14 72.44 72.07 55.57 52.10 55.38 51.78
+ RSG 23.59 13.52 68.55 67.48 52.24 47.26 52.27 47.18
+ RTN 23.49 13.09 64.19 61.95 46.31 39.49 46.07 39.15
+ ACM 34.77 23.47 65.60 63.08 48.87 42.62 49.23 42.62
+ RTN + ACM 32.85 21.71 61.82 58.85 43.72 36.41 43.80 36.42
+ Split 35.59 23.93 61.74 58.64 45.73 37.28 45.69 37.37
+ Share (SplashNet-mini) 37.72 26.44 61.07 58.20 45.33 36.46 45.26 36.41
+ Upscale (SplashNet) 33.57 20.59 60.16 56.95 44.79 35.49 44.78 35.67

Zero-shot generalization. Table 3 shows that, in the zero-shot regime (i.e. on non-training
domains), the joint-hand architecture with RTN and ACM often surpasses the Split-and-Share
architecture under greedy decoding, even though the ranking reverses once beam search is applied.
The most plausible explanation is that the joint-hand encoder can observe both wrists simultaneously
and therefore learns a stronger implicit LM, capturing bi- and tri-gram dependencies spread across
hands. While that emergent linguistic prior is helpful when no external LM is available, it becomes
redundant—and potentially counter-productive—once a more reliable 6-gram LM is introduced at
inference time.

Table 4: Finetuned CER (%) with and without beam search.

Method

Test
domain

val
(greedy)

Test
domain

val
(beam)

Test
domain

test
(greedy)

Test
domain

test
(beam)

Sivakumar et al. 2024 11.39 8.31 11.28 6.95
+ RSG 12.11 6.70 12.50 6.92

+ RTN 11.83 6.47 11.75 6.63
+ ACM 14.24 7.18 14.74 7.45
+ RTN + ACM 12.70 6.55 12.90 6.53

+ Split 12.67 6.04 12.89 6.10
+ Share 13.01 6.13 13.22 5.87

+ FT Unshare 12.68 5.85 13.07 5.96
+ Upscale (SplashNet) 12.10 5.47 12.39 5.51

+ FT Unshare 11.80 5.57 12.13 5.67

Fine-tuned models. A different pattern emerges after user-specific fine-tuning (Table 4). None of
our variants fully match the baseline of Sivakumar et al. (14) under greedy decoding, despite decisive
gains once beam search is enabled. Because the only changes between the baseline and the "+ RSG"
model are (i) four-fold longer clips during training, (ii) coarser spectral resolution, and (iii) a five-fold
higher probability of channel masking, the degradation must stem from one (or a combination) of
these factors.
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Two clues implicate aggressive channel masking (ACM). First, the model with RTN but not ACM
achieves the best greedy scores, whereas the model with just ACM but not RTN yields the worst
greedy performance. Second, the performance gap between the model with just RTN and the model
with both RTN and ACM vanishes under beam search, indicating that the external LM compensates
for information lost when ACM forces the network to rely on low-order feature combinations. We
therefore hypothesize that ACM, while beneficial for cross-user generalization, removes within-user
cues that help distinguish confusable keystrokes, a weakness that beam-search decoding can largely
recover.

To confirm that the implicitly increased channel masking in the "+ RSG" model (and all other models)
is largely responsible for the uniformly worse greedy decoding performance we see compared to
the baseline of Sivakumar et al. (14), we ran an additional experiment in which we trained a model
similar to our +RSG model, but apply SpecAugment on the 33-bin spectrograms from each channel
before the bin aggregation of RSG (rather than after). This keeps the extent of masking equivalent
to that of Sivakumar et al. 2024 while also allowing us to use the RSG frontend. This model does
not perform significantly worse than the baseline of Sivakumar et al. 2024 with greedy decoding,
confirming our suspicion that the core reason for the worse greedy decoding results in the finetuned
case is increased channel masking.

Table 5: Finetuned CER (%) under greedy decoding. Values are mean ± standard deviation.

Method

Test
domain

val
(greedy)

Test
domain

test
(greedy)

Sivakumar 2024 11.39± 4.28 11.28± 4.45
+ RSG 12.11± 4.67 12.50± 4.97
+ RSG w/ pre-aggregation masking 11.02± 4.32 11.53± 4.70

In summary, greedy decoding accentuates two complementary inductive biases: (1) joint-hand
encoders learn a useful internal LM, an advantage that vanishes once an external LM is applied, and (2)
aggressive masking of input channels trades cross-user generalization for within-user discriminability,
a trade-off that RTN and beam-search decoding can effectively offset.

A.4 Calculation of FLOPs

FLOPs were measured using FlopTensorDispatchMode in PyTorch with an arbitrary 30-second input.

A.5 Additional Ablations on ACM Masking, RTN Sliding Windows, and RSG

Table 6: Zero-shot CER (%, mean ± s.d. across participants) for ablations on ACM mask width and
RTN sliding window. “-RSG” corresponds to applying ACM on the full-resolution spectrogram as
described in the text.

Method
Other

domain
val

Test
domain

val

Test
domain

test

SplashNet-Mini 58.20± 10.50 36.46± 7.09 36.41± 7.30
+ 4s SW inference 60.43± 7.86 37.57± 7.18 37.71± 7.47
+ 4s SW train + inference 60.43± 7.70 36.95± 7.89 36.69± 7.80
+ 16s SW inference 57.24± 11.00 36.43± 7.30 36.73± 7.40
+ mask width = 8 58.12± 11.72 36.57± 7.02 36.05± 6.74
+ mask width = 16 57.65± 10.47 36.66± 7.21 36.92± 7.40
- RSG 60.70± 11.23 37.90± 6.58 37.19± 6.33

Joint-Hand baseline (+ RSG + RTN + ACM) 58.85± 10.50 36.41± 7.21 36.42± 7.11
+ mask width = 8 59.41± 10.63 37.55± 6.97 37.30± 6.90
+ mask width = 16 57.17± 11.32 36.95± 7.62 36.47± 7.96
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Table 7: Finetuned CER (%, mean ± s.d. across participants) for ablations on ACM mask width and
RTN sliding window.

Method
Test

domain
val

Test
domain

test

SplashNet-Mini 6.13± 2.96 5.87± 3.04
+ 4s SW inference 6.10± 2.91 6.28± 3.09
+ 4s SW train + inference 6.34± 2.86 6.37± 3.10
+ 16s SW inference 5.76± 2.64 5.74± 2.86
+ mask width = 8 5.85± 2.72 6.02± 3.11
+ mask width = 16 6.09± 2.88 5.72± 2.96
- RSG 5.87± 2.73 5.75± 3.06

Joint-Hand baseline (+ RSG + RTN + ACM) 6.55± 2.91 6.53± 3.27
+ mask width = 8 6.14± 2.85 6.56± 3.60
+ mask width = 16 6.55± 3.09 6.45± 3.18

We conducted additional ablations to examine the sensitivity of model performance to the strength of
ACM, the presence of RSG, and the temporal window used for RTN normalization. Unless otherwise
noted, none of the differences reported here reached significance under a two-tailed paired t-test
across participants.

ACM mask width. In our main experiments, ACM uses a maximum frequency mask width of 12
bins, while models without ACM use a maximum width of 4. Here, we trained SplashNet-mini and
the Joint-Hand baseline with maximum mask widths of 8 and 16. As shown in Tables 6 and 7, these
variations produced small, nonsignificant changes in CER in both the zero-shot and finetuned settings,
indicating that performance is not particularly sensitive to the precise mask width within this range.

-RSG. We also evaluated a variant without RSG, in which ACM was applied to the full-resolution
spectrogram by masking a 6-bin dummy vector and inverting the 33-to-6 bin mapping used in
RSG to obtain a 33-bin mask. Although performance differences relative to the standard RSG
configuration were small and nonsignificant, this variant considerably increases both compute and
memory requirements since it has more than sixfold greater input feature dimensionality.

RTN sliding window. Our original RTN normalization uses all past time points within a sample to
compute normalization statistics. We additionally evaluated inference-time sliding-window variants
with 4-second and 16-second windows. Using a 4-second window led to a small but statistically
significant degradation in zero-shot performance (p < 0.05, two-tailed), while a 16-second window
yielded performance comparable to the default setting. This likely reflects the fact that models were
trained on 16-second samples and benefited from matching normalization context at test time. When
models were also trained with a 4-second RTN sliding window, this degradation disappeared, and
differences were no longer significant in either the zero-shot or finetuned settings.

Summary. Across all tested configurations, performance differences were small and generally
nonsignificant. ACM is robust to maximum frequency mask width changes in the range of 8–16 bins.
Removing RSG does not significantly degrade performance but incurs higher compute and memory
costs. RTN performance remains stable across temporal windows when training and inference are
matched, with only a modest increase in CER when using 4 second windows at inference time alone.
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A.6 Aggressive channel masking with mean imputation

Table 8: CER (%, mean ± s.d. across participants) for different ACM masking configurations.

Method
Test

domain
val

Test
domain

test

Sivakumar et al. 2024 52.10± 5.54 51.78± 4.61
+ RSG 47.26± 5.26 47.18± 5.19
+ ACM 42.62± 7.18 42.62± 7.10
+ ACM (mean impute) 47.59± 7.16 48.43± 6.24
+ RTN + ACM 36.41± 7.21 36.42± 7.11

We performed an ablation to test whether RTN might interact with ACM by stabilizing input features
such that the default masking value of 0 corresponds to their per-session mean. When using ACM
with RTN, the default mask value of 0 corresponds to the per-sample mean for each feature, whereas
under BatchNorm this same value can be far out of distribution for a given feature from a given sample.
To test whether it is important that the masking value is the per-sample feature mean, we replaced
RTN with standard BatchNorm while setting the ACM masking value to the per-sample mean of each
feature, training a Joint-Hand model with RSG, BatchNorm, and ACM using per-channel sample
mean imputation.

Somewhat surprisingly, this variant performed on par with the model with RSG alone and substantially
worse than the RSG + BatchNorm + ACM configuration with standard zero imputation. This suggests
that simply matching the mask value to the per-session mean is not sufficient to reproduce the
performance benefits obtained with RTN + ACM, let alone to obtain the benefits of ACM in the
absence of RTN. More generally, these results indicate that the choice of masking value being stable
across samples (rather than corresponding to the per-sample mean) appears to be the more important
factor for ACM’s effectiveness in this setting.

A.7 UMAP analyses on early intermediate representations

+RSG +RSG+ACM +RSG+ACM+RTN SplashNet-mini

Figure 5: UMAP visualization of model activations after the first TDSConv block for four models
(+RSG, +RSG+ACM, +RSG+ACM+RTN, and SplashNet-mini). We extracted activations from every
100th timestep from one session of each of the 8 held-out users. Colors indicate the user identity of
each point. In the models without RTN, some users’ representations occupy largely disjoint regions of
the activation manifold, whereas models with RTN (+RSG+ACM+RTN and SplashNet-mini) produce
markedly more overlapping per-user representations, indicating improved cross-user alignment in the
learned feature space.
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A.8 Alternative train-test split analyses

Table 9: CER (%, mean ± s.d. across participants) with a new 78/18 train/validation split. The first
column shows performance on the same 18 users when they were included in the original training
set (i.e., the previous training domain validation performance), while the remaining columns show
results when these 18 users are held out for validation. The test set remains the same 8 held-out users.

Method Train domain
val (prev. split)

Train domain
val (18 held-out)

Test domain
val (18 held-out)

Test domain
test (18 held-out)

+ RSG 13.52± 7.59 58.42± 10.43 47.89± 6.36 49.01± 5.35
+ RTN 13.09± 6.32 53.99± 11.14 42.81± 6.75 42.62± 6.89
+ ACM 23.47± 9.74 55.95± 10.46 44.59± 6.47 45.10± 7.26
+ RTN + ACM 21.71± 9.67 51.25± 11.49 38.72± 6.63 39.05± 7.22
+ Split 23.93± 10.99 51.57± 11.78 39.81± 6.72 40.14± 7.16
+ Share 26.44± 10.64 49.84± 12.57 38.60± 7.52 38.45± 7.86

A.9 Analyses on emg2pose dataset

Table 10: Mean angular error (degrees) and landmark distance (mm) under different generalization
regimes. All results are in the "tracking" setting.

Generalization Model Angular
Error

Landmark
Dist

User RTN+ACM 7.5951 10.1567
Stage RTN+ACM 11.1243 15.2404
User, Stage RTN+ACM 10.8433 15.3644
User RTN 7.6007 10.1641
Stage RTN 11.1627 15.2241
User, Stage RTN 10.9085 15.3851
User ACM 7.6388 10.2394
Stage ACM 11.2601 15.4489
User, Stage ACM 11.0343 15.6413
User Baseline 7.6549 10.2585
Stage Baseline 11.2892 15.4360
User, Stage Baseline 11.1222 15.7388

Although the focus of this work is on EMG keystroke decoding, we also performed preliminary exper-
iments to assess how RTN and ACM transfer to the emg2pose benchmark (13). A key consideration
is that the baseline model of Salter et al. (13) uses a learned convolutional featurizer that immediately
mixes signals across all electrodes, rather than spectrogram-based per-electrode features as in our
keystroke decoding setting. This architectural difference makes a direct application of RTN and ACM
less straightforward.

To adapt these methods, we applied RTN and ACM to the outputs of the first convolutional layer
in the featurizer. Since these intermediate features are not spectrograms, ACM was implemented
by randomly zeroing out 50% of the features in one-third of training samples and 75% in another
third. The resulting performance, summarized in Table 10, shows minimal differences relative to
the baseline in both mean angular error and landmark distance across user, stage, and combined
generalization regimes.

These findings are somewhat unsurprising: applying ACM after early feature mixing likely limits its
ability to enforce robust low-order structure, and RTN is less meaningful without clear per-electrode
feature boundaries. Future work should explore applying these methods directly to the raw EMG
signal before featurization, or using architectures with explicit per-electrode feature streams (e.g.,
spectrogram-based or structured learned featurizers), where RTN and ACM may have stronger effects.
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A.10 Compute Resources

All experiments were run on a single RTX 4090 (with 24GB VRAM) GPU. Each generic model
took roughly 24 hours to train. Finetuning took 20-30 minutes for each of the 8 test users, and an
additional 30 minutes to evaluate with beam search for each of the 8 test users.

A.11 Dataset License

The emg2qwerty dataset (14) is available under the CC-BY-NC-4.0 license, which this work is
compliant with.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction claim that Rolling Time Normalization, Aggres-
sive Channel Masking, and Split-and-Share Encoders all help for EMG keystroke decoding,
which we show in our results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the Discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We have no theoretical results. Everything is empirical.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our methods in detail, including exactly how our methods differ
from Sivakumar et al. (14). We detail our architecture, preprocessing, and augmentation
methods, as well as how we developed our models and our dataset splits.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code is provided in the supplementary material, along with instructions on
how to use the code to reproduce our results and evaluate our models.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all of these details in the Appendix, and state that they were almost
all taken from Sivakumar et al. (14) except for some exceptions, which we provide reasons
for.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide standard deviation values in our tables to give an indication of the
distribution of the performance of our models across users, following Sivakumar et al. (14),
and we state explicitly that the metrics in the tables are mean and standard deviation. We
also show the per-participant CERs for our key models. Statistical significance is reported
using appropriate tests (1-tailed paired t-tests across participants).

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe our compute resources and the time taken for each experiment in
the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The models we propose have no straightforward route to being misused, we do
not conduct research with human participants, and we mention the limitations of the dataset
we use in that it is not representative of users with motor impairments.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: We discuss positive societal impacts, such as always-available typing interfaces
for AR/VR. We also make note of concerns around user privacy with such a device that
streams biological signals to a computer, which motivates a future direction for our work
towards fully on-device keystroke recognition.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We propose methods to improve decoding of keystrokes from EMG wristbands,
which we do not believe has any straightforward risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of the emg2qwerty dataset are explicitly credited and cited
throughout the paper. The CC-BY-NC-4.0 license is mentioned in the appendix, and we do
not violate its terms.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the code for our models, along with documentation of how to use
it.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
We use a previously released dataset in compliance with its terms.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in any of our methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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