
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOCRET: ENHANCING EVICTION IN LONG-CONTEXT
LLM INFERENCE WITH TRAINED RETAINING HEADS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown remarkable advances in supporting
long-context comprehension and processing tasks. However, scaling the genera-
tion inference of LLMs to such long contexts incurs significant additional com-
putation load, and demands a substantial GPU memory footprint to maintain the
key-value (KV) cache of transformer-based LLMs. Existing KV cache compres-
sion methods, such as quantization, face memory bottlenecks as context length
increases, while static-sized caches, such as selective eviction, suffer from in-
efficient policies. These limitations restrict deployment on consumer-grade de-
vices like a single Nvidia 4090 GPU. To overcome this, we propose LOCRET,
an efficient framework for long-context LLM inference that introduces retaining
heads to evaluate the causal importance of KV cache units, allowing for more
accurate eviction within a fixed cache size. LOCRET is fine-tuned on top of
the frozen backbone LLM using a minimal amount of data from standard long-
context SFT datasets. During inference, we evict low-importance cache units
along with a chunked prefill pattern, significantly reducing peak GPU memory
usage. We conduct an extensive empirical study to evaluate LOCRET, where the
experimental results show that LOCRET outperforms the recent popular and com-
petitive approaches, including INFLLM, Quantization, SIRLLM, and MINFER-
ENCE, in terms of memory efficiency and the quality of generated contents —
LOCRET achieves over a 20× and 8× KV cache compression ratio compared to
the full KV cache for Phi-3-mini-128K and Llama-3.1-8B-instruct.
Additionally, LOCRET can be combined with other efficient inference methods,
such as quantization and token merging. To the best of our knowledge, LOCRET is
the first framework capable of deploying Llama-3.1-8B or similar models on
a single Nvidia 4090 GPU, enabling 128K long-context inference without com-
promising generation quality, and requiring little additional system optimizations.

1 INTRODUCTION

Large language models (LLMs) have revolutionized AI development and deployment (Zhao et al.,
2023; Minaee et al., 2024). Recent advancements in LLMs’ ability to handle long-context tasks have
further unlocked the potential of generative AI. State-of-the-art LLMs now support significantly ex-
tended context lengths, with GPT-4o (OpenAI, 2024) and Llama-3.1 (Dubey et al., 2024) handling
128K tokens, Yi (Young et al., 2024) and Claude-3 (Anthropic, 2024) supporting 200K tokens, and
Gemini-1.5 (Reid et al., 2024) reaching 10 million tokens. These advances enable LLMs to tackle
complex tasks like multi-hop reasoning (Li et al., 2024a; Schnitzler et al., 2024), solving needle-
in-a-haystack problems (Guerreiro et al., 2023; Wang et al., 2024a), and powering advanced LLM
agents (Qin et al., 2023; Wang et al., 2024b) and AI-driven operating systems (Mei et al., 2024).
However, deploying generative inference under long-context settings on consumer-grade GPUs re-
quires innovative algorithmic and system optimizations to handle this new paradigm efficiently.

Compared to traditional short-context LLM inference, long-context LLM inference shifts the com-
puting paradigm in two key ways: i) increased computational overhead for attention mechanisms:
as context length grows, the computation required for obtaining attention scores increases quadrati-
cally, which results in a higher ratio of the computational budget in a transformer block; ii) higher
memory footprint for key-value (KV) caching: longer contexts require larger KV caches, which dra-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

matically increases the peak memory usage. These shifts demand innovative techniques to mitigate
computational costs and manage memory usage effectively for long-context LLM inference.

Although various efforts have been made to overcome the bottleneck in LLM inference, these ap-
proaches fail to enable long-context inference on consumer-grade GPUs. Models with compact
architectures, e.g. MiniCPM-128K (Hu et al., 2024b) and Phi-3-mini-128K (Abdin et al.,
2024), reduce the computational load and memory usage, but cannot alleviate the KV cache burden
in long-context scenarios. Similarly, techniques like LLM model weight quantization (Frantar et al.,
2023; Lin et al., 2024; Ma et al., 2024), activation quantization (Dettmers et al., 2022; Xiao et al.,
2023; Zhang et al., 2024c), or sparsification (Liu et al., 2023; Zhang et al., 2022) also fall short in
effectively reducing the memory usage to a level supported by consumer-grade GPUs.

Recently, some specific optimizations have been proposed for long-context LLM inference. For
example, sparse attention mechanisms (Jiang et al., 2024a; Ge et al., 2024; Lou et al., 2024) at-
tempt to reduce runtime memory through conduct selected few calculation, and KV cache quan-
tization (Liu et al., 2024b; Hooper et al., 2024; Zandieh et al., 2024) reduces cache size by ap-
plying low-bit storage. These methods can only offer limited compression rate, of which the core
issue is that the KV cache grows linearly with sequence length, and the above methods do not ade-
quately address this problem. On the contrary, combining chunked prefill with token-dropping tech-
niques (Xiao et al., 2024b; Yang et al., 2024) could offer a more effective solution, as it maintains
a static-sized cache where the memory usage can be bounded. However, current token-dropping
and cache eviction methods (Zhang et al., 2024e; Liu et al., 2024a; Yao et al., 2024), whose to-
ken importance is manually designed according to the inner statistics, suffer from accuracy loss
and performance degradation due to inaccuracies in estimating token importance — The weak-
ening correlation between local and global importance as sequences grow exacerbates this issue.

0.5K1K1.5K2K2.5K3K3.5K4K4.5K5K5.5K6K
Prefix Length

30
40
50
60
70
80
90

100

To
p-

10
%

 C
on

sis
te

nc
y

(%
)

H2O
SnapKV
SirLLM
Locret

Figure 1: The Top-10% Con-
sistency of typical cache im-
portance scoring functions.

Existing scoring functions of token importance, e.g. H2O (Zhang
et al., 2024e) and SNAPKV (Li et al., 2024b), utilize the informa-
tion of the subsequent tokens, making them incompatible to the
chunked prefill pattern. Other scoring functions that do not use the
subsequent information, like SIRLLM (Yao et al., 2024), exhibit
significant performance degradation. Here, we visualize the consis-
tency of the top-10% cache unit labeling among different scoring
functions to show the weakening correlation in Figure 1, and more
details are elaborated in Appendix B. To address these limitations,
we propose a lightweight training-based paradigm that provides
more accurate token importance scoring to tackle the long-context
LLM inference problem. We highlight our contributions below:

Contribution 1: We propose a lightweight training-based paradigm for selective KV cache eviction
for long-context LLM inference, with an offline training cost <1 GPU hours. We tackle the problem
of KV cache eviction by a learning based approach. We introduce the retaining heads, with a small
number of additional parameters, fine-tuned on top of the frozen backbone LLM using a minimal
amount of data from standard long-context SFT datasets to estimate the causal importance of each
cache unit. Such a training paradigm is able to provide accurate token importance scoring prediction
and can be integrated with other efficient inference algorithms, e.g., quantization and token merging.

Contribution 2: We provide an efficient inference system implementation for LOCRET. We inte-
grate the retaining head mechanism into a chunked prefill inference framework, where we maintain
a static-size cache set through evicting cache units with low predicted importance to limit the GPU
memory usage. LOCRET is able to preserve the most important cache units with the trained retain-
ing heads, enabling precise attention approximation without compromising the inference latency.
LOCRET is also applicable to all transformer-based LLMs and various hardware, as it requires min-
imal modifications to the model’s inference process and only utilizes dense operators.

Contribution 3: We conduct an extensive evaluation of LOCRET, which illustrates that
LOCRET can not only obtain a comparable performance but also maintain inference efficiency.
LOCRET achieves over a 20× and 8× KV cache compression ratio for Phi-3-mini-128K
and Llama-3.1-8B-instruct, enabling full comprehension of long contexts on consumer-
grade devices. To the best of our knowledge, LOCRET is the first framework capable of deploying
Llama-3.1-8B or similar models on a single Nvidia 4090 GPU, enabling 128K long-context
inference without compromising generation quality, and requiring little extra system optimizations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Efforts in long-context LLM inference can be categorized by algorithm and system optimizations:

Algorithm optimizations. Optimizations aimed at reducing the size of the KV cache can gen-
erally be classified into three categories: quantization-based methods, token dropping methods,
and sparsity-based methods. Quantization-based methods (Liu et al., 2024b; Hooper et al., 2024;
Zandieh et al., 2024; Zhang et al., 2024a), which store the KV cache in low-bit representations,
require hardware support for these formats and may slow down inference due to the overhead of
dequantization. Token dropping methods typically follow two main strategies: eviction or the use of
an attention pool. Eviction-based approaches, such as H2O (Zhang et al., 2024e), ScissorHands (Liu
et al., 2024a), and SIRLLM (Yao et al., 2024), rank tokens by certain statistical metrics to identify
the most influential ones, discarding others to reduce memory usage. Attention pool-based meth-
ods (Nawrot et al., 2024; Rajput et al., 2024), such as StreamingLLM (Xiao et al., 2024b) and
LOCOCO (Cai et al., 2024a), compress multiple adjacent KV cache units into a single unit using
a specially designed transformation. Sparsity-based methods (Ge et al., 2024; Jiang et al., 2024a;
Yang et al., 2024; Lou et al., 2024; Lv et al., 2024) focus on leveraging the sparsity patterns of
attention heads to reduce both computation and I/O. The combination of these approaches can be
further enhanced by identifying specific attention patterns for each head and layer (Ge et al., 2024).
For surveys of these methods, please refer to (Yuan et al., 2024; Kang et al., 2024; Shi et al., 2024).

System optimizations. The challenge of long-context inference can also be alleviated from a
system-level perspective. Offloading-based methods (Sheng et al., 2023; Xiao et al., 2024a; Wu
et al., 2024; Sun et al., 2024) store the KV cache in CPU memory, retrieving only the most relevant
chunks to the GPU before computing a new chunk. This approach reduces peak GPU memory us-
age, though at the cost of slower inference. Hardware-aware algorithms, such as flash attention (Dao
et al., 2022; Dao, 2024; Shah et al., 2024) and page attention (Kwon et al., 2023), exploit GPU ar-
chitecture (Ghorpade et al., 2012) to enable more efficient runtime memory management. In addi-
tion, reimplementing inference infra-structure in a more efficient programming language (llama.cpp;
llama2.c; rustformers), or adopting disaggregated inference (Jiang et al., 2024b; Zhong et al., 2024;
Qin et al., 2024; Hu et al., 2024a), can greatly enhance inference efficiency. Algorithmic optimiza-
tions can be seamlessly integrated into such systems (Agrawal et al., 2023; Lee et al., 2024). For
instance, KTransformers (KVCache.AI, 2024) adopts the chunked offloading technique from IN-
FLLM (Xiao et al., 2024a). However, system optimizations primarily focus on extending context
length by leveraging hardware resources, rather than directly reducing the size of the KV cache.

3 LOCRET

3.1 PRELIMINARIES

Transformer architecture. We define the model inference of transformer-based LLMs as follows.
Given a token sequence t1, t2, · · · , tn, we denote the output hidden state of layer i as H(i) and H(0) is
the embeddings. Each transformer layer consists of an attention layer and an MLP layer. We assume
the model follows a grouped-query attention (GQA) architecture (Ainslie et al., 2023), with h query
heads and a group size of g. For multi-head attention (MHA), g is set to 1. The attention score of
layer i’s head j is calculated by A

(i)
j = softmax

(
Q

(i)
j K

(i)T
⌈j/g⌉/

√
dm

)
·V(i)

⌈j/g⌉, where dm represents

the hidden size for each head and
[
Q

(i)
j ,K

(i)
j ,V

(i)
j

]
= H(i−1) ·

[
W

Q(i)
j ,W

K(i)
j ,W

V (i)
j

]
. Next,

we compute A(i) =
[
A

(i)
1 , · · · ,A(i)

h

]
·WO(i), finally followed by H(i) = MLP(A(i)).

KV cache and chunked prefill. During the prefill stage, all prompt tokens are processed in a single
forward pass, where Q(i), K(i), and V(i) each have a sequence length of n. In the decoding stage,
only a single token is processed across layers, utilizing the KV cache units to reduce computation.
Chunked prefill is a method for reducing peak memory consumption by processing tokens in chunks
over multiple passes, with the assistance of the KV cache. Taking both KV cache and chunked
prefill into account, the attention calculation can be modified as Equation 1, where B represents the
number of tokens processed in a single model pass. For decoding, B = 1, while for chunked prefill,
B corresponds to the chunk size. We denote the attention output for tokens n+1, n+2, · · · , n+B

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: The framework of LOCRET. “R” represents the retaining head. Pi and Ai correspond to
the i-th prompt token and answer token. “t” represents the time step in chunked prefill, “b” represents
the budget size, and “ns” represents the length of the stabilizers.

as A[n+ 1: n+B], and the attention output for the k-th token as A[k].

A[n+ 1: n+B](i)j = softmax

(
Q[n+ 1: n+B](i)j K[1 : n+B]

(i)T

⌈j/g⌉√
dm

)
·V[1 : n+B]

(i)

⌈j/g⌉. (1)

Cache eviction. Cache eviction in long-context inference is defined as follows. Here, we slightly
abuse the notation of heads and layers, and treat the key-value vector pair of a single token within one
head as the smallest cache unit. We denote the cache unit for the k-th token as ck = (K[k],V[k]).
Assume a memory budget b, representing the maximum number of cache units that can be stored
in GPU memory at any given time. The abstract form of attention can then be written as ck =
f(c1, c2, · · · , ck−1). With limited cache capacity, this calculation can only be approximated by
c̃k = f(c̃p1

, c̃p2
, · · · , c̃pb′), where b′ ≤ b, and p1, p2 · · · , pb′ ∈ {1, 2, · · · , k − 1}. Intuitively, the

number of prior cache units involved cannot exceed the memory budget. When b′ = b, indicating
the cache is full, one cache unit must be evicted. We select the unit to be evicted using a policy
pv = Policy(c̃p1

, · · · , c̃pb
; c̃k). In such stated problem, the key challenge of cache eviction is to

develop an effective policy function that minimizes the approximation error ∥c̃k − ck∥.

3.2 LOCRET FRAMEWORK

LOCRET is a training-based KV cache compression framework that works in conjunction with chun-
ked prefill. As illustrated in Figure 2, LOCRET operates in two stages: training and inference. In
the training stage, we modify the original LLM by appending a retaining head R to each attention
module. We then train the retaining heads R while keeping the LLM backbone frozen. During
chunked prefill inference, the retaining heads R are used to calculate the importance of each cache
unit in the chunk. We retain the cache units with higher scores, along with stabilizers (i.e., the last
tokens), in the cache pool located in GPU memory. Through this process, the retaining heads R
learn and predict the patterns discovered by existing methods, as detailed in Appendix L.

From a mathematical perspective, cache eviction is performed by assigning each cache unit an im-
portance score that reflects its influence on the calculation of subsequent tokens. We refer to this
estimation as the causal importance score (CIS) since it is computed in a causal manner. The CIS
of cache unit k is calculated as sk = S(c1, c2, · · · , ck). By applying top-b sparse attention based on

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

dIH

17.5

20.0

22.5

25.0

L-
Ev

al
 S

co
re

21.45

256

21.09

512

21.33

1024

21.52

2048

21.81

4096

24.42

Locret
FullAttn

Figure 3: L-Eval scores with different inter-
mediate size of retaining head dR.

Table 1: L-Eval scores of LOCRET trained on
various datasets.

Dataset LongAlpaca LongAlign Anti-Haystack

L-Eval 21.33 22.00 20.72

the CIS, we can ensure that the trace (i.e. retaining and eviction) of each cache unit can be fit within
a cache with a given memory budget. Further details can be found in Appendix K.

However, since not all tokens can be stored in the cache simultaneously, calculating the actual CIS
on-chip is impractical. Instead, we use a heuristic approximation for CIS, defined as follows: s̃k =
S(c̃p1

, c̃p2
, · · · , c̃pb′), where b is the cache budget, all c̃pi

are approximated cached units, and b′ ≤ b.
We hypothesize that if the scoring function for causal importance is sufficiently accurate, it will
consistently select the most critical cache units, resulting in a negligible difference between the
heuristic and the actual score. Thus, we use the terms heuristic CIS and actual CIS interchangeably.

3.3 TRAINING THE RETAINING HEADS

In this section, we introduce LOCRET’s model architecture modifications and the corresponding
training recipe. We add additional parameters to compute the CIS sk (or s̃k for on-chip inference)
with respect to all previous cache units. Specifically, we inject a retaining head, consisting of a
small MLP, into each layer. From our observation, such small MLPs do not slow down model
inference, with details elaborated in Appendix J. The retaining head predicts the CIS for each
head of the corresponding layer based on the concatenation of [Q,K,V]. Formally, with a slight
abuse of notation, let the retaining head for layer i be denoted as R. The CIS at head j of layer
i is then calculated as: S̃ = R([Q,K,V]) = σ([Q,K,V]W1)W2. In this equation, W1 ∈
R(dm+2dkv)×dR and W2 ∈ RdR×h

g are the tunable parameters of R, σ is the activation function and
S̃[k]j is the predicted CIS of the k-th token at head j of layer i. This architecture implies that the
importance estimation for a single head is not performed in isolation but rather considers all heads
together. Note that for GQA models, there are only h/g output values corresponding to the number
of heads in the KV cache.

We train the retaining head Rs on a small Question-Answer (QA) supervised fine-tuning (SFT)
dataset, where each entry consists of a single prompt and one answer. We define the CIS sk for the
k-th token as the maximum attention score, before softmax, from all the answer tokens toward the
k-th token. Formally, for the k-th token at head j of layer i, we approximate the predicted value
S̃[k]

(i)
j to the ground truth S[k]

(i)
j := maxp

(
Q

(i)
j K

(i)T
j

)
p,k

, where nq(d) ≤ p ≤ nq(d) + na(d),

and nq(d) and na(d) represent the lengths of the prompt and answer in data d, respectively. For an
MHA model with L layers and h heads, the training objective is described in Equation 2. For GQA
models, we take the maximum attention score before softmax across different query heads within
the same group as the ground truth for the corresponding KV head.

argmin
W

(i)
1 ,W

(i)
2 ,i=1,2··· ,L

Ed∈D

 L∑
i=1

h∑
j=1

nq(d)∑
k=1

L
(
S̃[k]

(i)
j ,S[k]

(i)
j

) (2)

The training loss consists of a regression loss and a smoothing loss. We apply the Smooth-L1 norm
between the predicted values and the ground truth. Since important segments in natural language
typically consist of adjacent tokens, we also apply the L2 norm between each pair of adjacent pre-
dicted values to enforce smoothness. The complete training loss for LOCRET is given by Equation 3.

L
(
S̃[k]

(i)
j ,S[k]

(i)
j

)
= Smooth-L1

(
S̃[k]

(i)
j ,S[k]

(i)
j

)
+ αL2

(
S̃[k]

(i)
j , S̃[k + 1]

(i)
j

)
(3)

From our observations, the training of LOCRET exhibits strong robustness. The performance varia-
tions shown in Figure 3 and Table 1 are minimal, despite changes in dR and the dataset. Details can
be found in Appendix F. Training statistics, including loss dynamics, are recorded in Appendix M.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000
ns

0

20

40

60

80

100

Ac
cu

ra
cy

(a)

2.0

2.5

3.0

3.5 Layer 8

9.2

9.4

9.6

9.8Layer 16

0 1000 2000 3000
15.0

17.5

20.0

22.5

25.0 Layer 24

0 1000 2000 3000
1.5

2.0

2.5

3.0

3.5Layer 32

ns

M
ax

 A
bs

. E
rro

r o
f L

as
t H

id
de

n
St

at
e

(b)

0.2

0.3

0.4
Layer 8
Head 8

0.35

0.40

0.45

0.50Layer 16
Head 16

0 1000 2000 3000
0.35

0.40

0.45

0.50

0.55 Layer 24
Head 24

0 1000 2000 3000

0.26

0.28

0.30
Layer 32
Head 32

ns

M
ea

n
Ab

s.
Er

ro
r o

f P
re

di
ct

ed
 C

IS

(c)

Figure 4: R.Number with different stabilizer lengths ns. (a) Task accuracy under different ns. (b)
Maximum absolute error of the last hidden state. (c) Mean absolute error of the predicted CIS. We
conduct this experiment on entries 101-120 of R.Number using the Phi-3-mini-128K backbone.

Algorithm 1: LOCRET Inference
Input: Model M, Prompt tokens x, Local length nloc, Stablizer length ns, Budget b, Chunk size B
Output: Generated tokens xgen

// Leave the last nloc out to make sure they are not evicted.
chunk positions← split chunk(0, x.length() −nloc, B)
K cache, V cache, score cache← [], [], []
for chunk ∈ chunk positions do

begin pos, end pos← chunk.begin pos, chunk.end pos
K chunk, V chunk, score chunk←M(x[begin pos:end pos],K cache, V cache)
K cache← Concat(K cache, K chunk)
V cache← Concat(V cache, V chunk)
score cache← Concat(score cache, score chunk)
if chunk is not the last chunk then

// Keep the last ns caches to maintain higher context continuity.
score cache[score cache.length()-ns:score cache.length()]← +∞

end if
indices← top-b(score cache).indices
K cache, V cache, score cache = K cache[indices], V cache[indices], score cache[indices]

end for
K cache, V cache, score cache←M(x[x.length()−nloc:x.length()], K cache, V cache)
xgen ←M.generate(K cache, V cache)
return xgen

3.4 INFERENCE IMPLEMENTATION OF LOCRET

During the inference stage, we use the chunked prefill pattern and perform cache eviction based
on the predicted CIS. Since the predicted value S̃[k]

(i)
j depends solely on Q[k]

(i)
j , K[k]

(i)
j , and

V[k]
(i)
j , and because attention in decoder-only models is causal, S̃[k](i)j remains consistent once

calculated. Thus, we store the KV cache units along with their corresponding causal importance
values. When the cache is full, we evict the units with lower causal importance values, as they
are deemed less useful for future computations. Cache eviction introduces context discontinuity,
meaning some cache units at certain positions may be absent. This can degrade generation quality
and increase the error between the predicted and accurate CIS, as LLMs are typically not trained
on such contexts. To mitigate this, we retain the last tokens of the current chunk at each step of the
chunked prefill process, ensuring a local and continuous context to minimize errors. To demonstrate
the effectiveness of this design, we perform an ablation study on the length of stabilizers ns, shown
in Figure 4. Smaller ns results in severe performance degradation, and the model fails entirely when
stabilizers are absent, as context discontinuity leads to instability in CIS prediction, causing errors
in cache eviction and amplifying errors in hidden states. More details are discussed in Appendix I.

We maintain a cache pool with a capacity of b cache units, discarding units that exceed this limit.
For each chunk, the model processes the chunked input tokens alongside the current cache pool.
The newly generated KV pairs and their predicted scores are then concatenated with the existing
cache. Once the cache pool is full, only the b cache units with the highest CIS values are retained.
At each chunked prefill step, except for the final step, we retain the stabilizers, i.e. the last ns

cache units. Additionally, we do not compress the last nloc tokens of the prompt, as they are critical
for maintaining high generation quality due to their strong correlation with the query. Finally, the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

answer is generated according to the compressed KV cache. Algorithm 1 provides the pseudocode
for LOCRET, where we formally describe the LOCRET inference process.

The GPU memory usage during LOCRET inference can be effectively bounded. GPU memory for
KV cache storage is limited to O(b+ nloc), and the runtime memory usage of the attention mecha-
nism is bounded by O(B×(b+B+nloc)). For comparison, while processing an input with n tokens,
full attention prefill requires O(n) for KV cache storage and O(n2) for runtime memory, whereas
chunked prefill requires O(n) for KV cache storage and O(nB) for runtime memory consumption.

4 EXPERIMENTS

In this section, we present the experiments conducted to evaluate the proposed framework, LOCRET,
aiming to address the following questions:

(Q1) Can LOCRET obtain better end-to-end task performance compared to popular and competitive
long-conetext inference approaches within similar or less peak memory?

(Q2) Can LOCRET improve inference speed compared to other approaches?

(Q3) What are the characteristics of LOCRET’s hyperparameters?

4.1 EXPERIMENTAL SETUP

Models and training dataset. We evaluate LOCRET on two long-context LLMs:
Phi-3-mini-128K (Abdin et al., 2024) and Llama-3.1-8B-instruct (Dubey et al., 2024).
Both models can process up to 128K context tokens, are suitable for deployment on consumer-
grade devices, and follow MHA and GQA architectures, respectively. We inject retaining heads
R into each layer, setting the intermediate size dR to 1024 for both models. The retaining
heads are trained on the LongAlpaca dataset (Chen et al., 2024) for 3000 steps , with a 5e-
4 learning rate, 10240 sequence length, and α set to 2.5e-3. Training LOCRET is lightweight,

Table 2: Hyperparameters in LOCRET’s inference
stage. “b” refers to cache budget, “B” refers to
chunk size of chunked prefill, “ns” refers to stabi-
lizers length and “nloc” refers to local length.

Model b B ns nloc

Phi-3-mini-128K 6000 3072 2500 100
Llama-3.1-8B-instruct 16384 1024 2500 100

with the tunable parameters comprising 8% and
2.5% of the total for the two models, respec-
tively. The complete training process takes 0.47
and 0.80 GPU hours on a single A800 GPU for
each corresponding model. Important hyperpa-
rameters are listed in Table 2. More details on
hyperparameters as well as the system environ-
ment, can be found in Appendix A.

Benchmarks. We evaluate LOCRET on selected subsets of ∞Bench (Zhang et al., 2024b) and
L-Eval (An et al., 2024). For ∞Bench, we select R.PassKey, R.Number, E.Sum, E.QA, E.MC,
Z.QA, E.Dia, C.Debug, and M.Find. All selected subsets, except Z.QA, have an average length of
approximately 100K tokens, while Z.QA has a longer average length of around 2000K tokens. We
exclude R.KV because it can be easily handled by calling a Python interpreter. We also exclude
C.Run and M.Calc due to their complexity for all methods, including full attention inference. For
L-Eval, we filter out all tasks with an average length shorter than 16384 tokens and evaluate on
CodeU, NQ, CUAD, NarrativeQA, QMSum, and SPACE. Metrics are reported according to the
recommendations of the two frameworks, with further details provided in Appendix A. We also
report the peak memory usage, i.e. the average peak memory measured for the first entry of each
task in the corresponding dataset, for reference. Apart from the experiments above, we also evaluate
LOCRET on extremely long context dataset, R.PassKey with 10 million tokens, in Appendix G. The
experimental results under the multi-turn conversation setting are in Appendix H.

Baselines. As discussed in Section 2, existing algorithms for memory-efficient long-context in-
ference can be categorized into offloading-based, quantization-based, token-dropping, and sparsity-
based methods. For each category, we select one representative method as the baseline. We compare
LOCRET against full attention inference (denoted as FullAttn), INFLLM (Xiao et al., 2024a), KV
cache quantization (Turganbay, 2024), SIRLLM (Yao et al., 2024), and MINFERENCE (Jiang et al.,
2024a). For quantization, we use Hugging Face Quanto (Hugging-Face) implementation, referring
to the 2-bit quantization method as HF-2BITS. We omit HF-4BITS and benchmark this combination
in Section E. We do not include attention pool-based token-dropping methods in this benchmark, as

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

20 40 60 80
Total Memory (GB)

0

20

40

Ac
cu

ra
cy

 (%
) Phi-3-mini-128K

20 30 40
Total Memory (GB)

20

40

Ac
cu

ra
cy

 (%
) Llama-3.1-8B-instruct

20 30 40 50
GPU Memory (GB)

0

20

40

Ac
cu

ra
cy

 (%
)

20 30
GPU Memory (GB)

20

40

Ac
cu

ra
cy

 (%
)

Bench

InfLLM HF-2bits SirLLM MInference Locret
Model Weights Model Weights + Full KV Cache FullAttn Accuracy

10 20 30
Total Memory (GB)

0

10

20

Ac
cu

ra
cy

 (%
) Phi-3-mini-128K

15 20 25 30
Total Memory (GB)

20

30

Ac
cu

ra
cy

 (%
) Llama-3.1-8B-instruct

10 20 30
GPU Memory (GB)

0

10

20

Ac
cu

ra
cy

 (%
)

15 20 25 30
GPU Memory (GB)

20

30

Ac
cu

ra
cy

 (%
)

L-Eval

InfLLM HF-2bits SirLLM MInference Locret
Model Weights Model Weights + Full KV Cache FullAttn Accuracy

Figure 5: Memory Statistics vs. Task Performance. The red lines correspond to the theoretical size
of the model weights, while the blue lines represent the total theoretical size of the model weights
and the full KV cache without any compression. The purple lines indicate the accuracies of FullAttn.
“Total Memory” represents the total memory usage of both GPU and CPU memory.

they are orthogonal to our approach; further discussion is provided in Section E. Detailed introduc-
tions to the selected baselines can be found in Appendix A. We also discuss the comparison between
the trained LOCRET and the randomly initialized retaining heads R in Appendix C.

4.2 END-TO-END BENCHMARK

We compare our method with the baselines on both ∞Bench and L-Eval to address Q1. As shown
in Table 3, LOCRET outperforms all baselines in terms of end-to-end performance.

In the ∞Bench tests, while all methods experience performance degradation compared to FullAttn
inference, LOCRET, INFLLM, and MINFERENCE exhibits better performance than other methods,
with only a modest drop in performance given the reduced memory usage. Quantization, on the
other hand, shows significant degradation and fails on all tasks. SIRLLM performs well on compre-
hensive tasks such as E.Sum and E.MC, but struggles with tasks that require precise memory, such
as R.PassKey and R.Number. LOCRET not only excels in context retrieval tasks but also achieves
strong results in comprehensive tasks, earning the highest overall score among all competitors.

In the L-Eval tests, all methods show some degree of performance degradation. Nevertheless,
LOCRET achieves the best overall result, obtaining the highest score on most tasks. L-Eval is a
shorter but more complex dataset, where SIRLLM performs particularly well. Quantization fails on
most tasks, resulting in the lowest overall score. Both INFLLM and MInference suffer significant
performance drops compared to FullAttn inference. LOCRET consistently surpasses all competitors.

We also report memory consumption in Figure 5. In the extreme long-context scenario (∞Bench),
LOCRET uses relatively less memory while achieving the best overall performance. INFLLM per-
forms well with limited GPU memory usage, but it requires a significant amount of CPU memory
to store the full KV cache. Quantization and SIRLLM can achieve low memory consumption in
some settings, but quantization introduces severe performance degradation. MINFERENCE employs
sparse attention patterns but does not compress the KV cache. As a result, its minimum memory
requirement equals the sum of the model weights and the full KV cache. In the shorter context sce-
nario (L-Eval), a similar phenomenon is observed. For Phi-3-mini-128K, which has a larger
KV cache, INFLLM and MINFERENCE exhibit higher memory consumption due to the need to store
the full KV cache. Other methods have similar memory footprints, with LOCRET achieving the best
overall performance while using the least memory. For Llama-3.1-8B-instruct, whose full
KV cache is smaller, the memory bottleneck shifts to runtime computational memory for attention
and other calculations. All methods exhibit similar memory footprints, with LOCRET delivering the
best overall performance. Our experiments demonstrate that LOCRET is both effective and efficient,
outperforming all baselines on multiple datasets and models while using less GPU memory.

4.3 SPEED TEST ON REAL CONSUMER-GRADE DEVICES

In this section, we examine the processing speed to demonstrate that LOCRET achieves its strong
performance without compromising inference speed, addressing question Q2. We evaluate the in-
ference speed on the R.PassKey task from ∞Bench and compare LOCRET against all the baselines
introduced in Section 4.1, using a single Nvidia 4090 GPU with 24GB of memory, which is typical
for consumer-grade AI devices. We report the inference speed as the total number of tokens in the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: The experimental results of LOCRET compared with all the baselines on ∞Bench and L-
Eval, where higher score represents better performance. “Avg.” represents the average score across
all tasks. The highest score in each column is marked in bold, and the second highest is underlined.
LOCRET achieves the highest overall score among all competitors in every setting.

Method R.PassKey R.Number E.Sum E.QA E.MC Z.QA E.Dia C.Debug M.Find Avg.↑
Phi-3-mini-128K on∞Bench

FullAttn 98.64 97.12 17.92 11.16 55.46 14.83 8.00 23.10 17.43 38.18

INFLLM 100.00 97.12 14.35 4.97 38.86 11.04 3.50 25.38 15.14 34.48
HF-2BITS 0.00 0.00 13.80 1.44 1.75 0.20 0.50 0.00 0.57 2.03
SIRLLM 3.39 3.39 21.06 6.32 44.98 11.99 5.00 22.34 21.71 15.58
MINFERENCE 99.32 95.93 14.44 8.11 40.61 10.60 9.00 15.48 15.43 32.25
LOCRET 100.00 97.46 16.82 7.61 46.29 11.31 10.00 27.92 29.71 34.73

Llama-3.1-8B-instruct on∞Bench

FullAttn 100.00 99.32 26.79 15.06 68.12 13.40 17.00 20.56 34.00 43.81

INFLLM 100.00 100.00 24.24 14.21 51.97 10.76 11.00 26.25 35.71 41.57
HF-2BITS 36.78 6.95 8.77 4.05 27.95 3.09 5.50 13.20 22.00 14.25
SIRLLM 1.69 1.69 25.60 8.95 55.46 10.38 9.50 23.10 3.71 15.56
MINFERENCE 100.00 98.47 20.64 14.35 59.83 12.20 20.50 25.89 35.43 43.03
LOCRET 100.00 99.49 27.28 20.90 58.82 11.85 13.00 27.16 32.86 43.48

Method CodeU NQ CUAD NarrativeQA QMSum SPACE Avg.↑
Phi-3-mini-128K on L-Eval

FullAttn 8.89 59.14 30.34 17.59 16.05 14.51 24.42

INFLLM 5.56 34.32 14.53 14.80 13.31 14.81 16.22
HF-2BITS 0.00 1.69 6.40 2.04 2.73 3.34 2.70
SIRLLM 8.89 37.92 20.89 14.51 13.70 14.46 18.40
MINFERENCE 7.78 25.21 26.64 15.14 15.78 14.87 17.57
LOCRET 8.89 51.49 22.23 16.42 14.86 14.06 21.33

Llama-3.1-8B-instruct on L-Eval

FullAttn 10.0 66.84 38.91 23.11 18.76 16.86 29.08

INFLLM 6.67 54.77 33.76 20.35 17.62 16.73 24.98
HF-2BITS 1.11 29.79 18.98 9.46 14.02 13.73 14.52
SIRLLM 5.56 58.00 35.41 21.21 17.32 16.44 25.66
MINFERENCE 7.78 31.80 36.93 19.44 18.14 16.76 21.81
LOCRET 8.89 63.03 37.21 23.59 18.17 16.87 27.96

input and output sequences divided by the processing time, along with the accuracy of the measured
task. Since the original settings of some algorithms might lead to Out Of Memory (OOM) errors,
we remove some tokens from the middle of the input sequence in those cases, marking these settings
with ∗, and report the valid context length in such scenario. For settings without ∗, we maximize the
chunk size for higher speed when the method utilizes the chunked prefill pattern.

R.PassKey is a task where the model retrieves a 5-digit number from a large amount of irrelevant
text, a task we believe to be relatively simple for humans. Thus, we consider the task to have failed
if the accuracy falls below 95%. As shown in Table 4, aside from the settings that fail on this
task, LOCRET achieves the highest inference speed among all methods that can correctly process
R.PassKey. Due to its MHA architecture, Phi-3-mini-128K has a larger KV cache, which leads
to failures for both HF-2BITS and MINFERENCE. Storing the full KV cache on a single 4090 GPU
is infeasible, as it requires 48GB of memory. Although the quantized KV cache is reduced to 6GB,
the converting processes between representations requires significant GPU memory for intermediate
states, resulting in the failure of HF-2BITS. While INFLLM can run in memory-limited scenarios,
its offloading process slows down inference, with I/O becoming the bottleneck in attention calcula-
tion. SIRLLM fails due to its inaccurate eviction policy, which cannot correctly identify the 5-digit
number. In the GQA model (Llama-3.1-8B-instruct), which has a smaller KV cache, the
quantized cache can fit within the GPU memory. However, the quantization and dequantization pro-
cesses become the bottleneck, leading to significantly slower speeds. The performance of INFLLM,
SIRLLM, and MINFERENCE is similar to that seen with Phi-3-mini-128K. Although MIN-
FERENCE benefits from faster encoding speeds, it fails on this task because it cannot process the
entire input sequence at once. LOCRET strikes a balance between inference speed and performance,
making it a far more suitable solution for long-context scenarios on consumer-grade devices.

4.4 HYPERPARAMETER ANALYSIS

To address Q3, we examine three key hyperparameters: budget, stabilizer length, and chunk size.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Executing R.PassKey on an Nvidia 4090. “tok/s” represents the inference speed, “C.Len”
stands for the context length after truncation, and “Acc.” represents task accuracy. The highest score
among 128K context is marked in bold.

Method FullAttn INFLLM HF-2BITS SIRLLM MINFERENCE LOCRET HF-2BITS∗ MINFERENCE∗

Phi-3-
mini-128K

tok/s↑ - 2276.38 - 2352.20 - 5080.85 1098.51 4099.92
C.Len.↑ 128K 128K 128K 128K 128K 128K 30K 14K
Acc.↑ OOM 99.83 OOM 1.69 OOM 100.00 0.00 13.56

Llama-3.1-
8B-instruct

tok/s↑ - 2287.66 1365.51 1589.75 - 3209.10 3680.06 5135.74
C.Len.↑ 128K 128K 128K 128K 128K 128K 30K 25K
Acc.↑ OOM 100.00 35.59 1.69 OOM 100.00 26.78 20.34

1000 1500 2000 2500 3000 3500 4000
Budget

30

35

Lo
ng

Be
nc

h
Sc

or
e

SnapKV
Locret

(a)

0 1000 2000 3000 4000 5000 6000
ns

15

20

QM
Su

m

(b)

1000 2000 3000 4000
Chunk Size

20

30

40

50

60

NQ

NQ

(c)
Figure 6: Scores of LOCRET under (a) various budgets; (b) various ns; (c) various chunk size.

Budget. To evaluate the robustness of LOCRET under different budget constraints, we compare the
proposed method with SNAPKV (Li et al., 2024b) using chunked prefill on LongBench (Bai et al.,
2024b). As shown in Figure 6a, when the budget size increases, LOCRET demonstrates a faster
performance improvement compared to SNAPKV.

Stabilizers Length. As discussed in Figure 4, stabilizers play a crucial role in context retrieval tasks.
However, in NLU tasks, the stability of ns remains relatively high. We evaluate the QMSum dataset
from LongBench with different stabilizer lengths ns, with the budget set at 6000. As illustrated in
Figure 6b, performance remains consistent when ns is small. The observed performance degradation
at larger ns values is due to the reduced space available for other cache units.

Chunk Size. Executing long-context inference on hardware with varying GPU memory limitations
necessitates different chunk sizes. When the chunk size changes, LOCRET demonstrates stable
performance. We conduct experiments on the NQ dataset from L-Eval using multiple chunk sizes
ranging from 256 to 4096. The results, shown in Figure 6c, highlight the stability of ns.

4.5 ORTHOGONALITY TO OTHER METHODS

We evaluate the combination of LOCRET with quantization, token merging and head-wise budget
allocation to further enhance LOCRET’s efficiency. The experiments demonstrate the compatibility
of LOCRET with the aforementioned methods. Further details can be found in Appendix E.

5 CONCLUSION & LIMITATION

We propose LOCRET, a lightweight training-based method that enables memory-efficient infer-
ence of long contexts on consumer-grade devices. LOCRET introduces retaining heads to predict
the CIS of each cache unit during chunked prefill and performs cache eviction based on the pre-
dicted CIS. We conduct extensive experiments across different models and multiple datasets to
compare LOCRET with major efficient inference techniques, and results show that LOCRET out-
performs all baselines, using less GPU memory and without requiring offloading to CPU mem-
ory. The framework of LOCRET, including both training and inference, highlights its suitability
for low-resource computing scenarios. LOCRET can be applied to various application scenarios,
such as end-side multi-modal model inference and context compression during disaggregated in-
ference. In this paper, we explore LOCRET based on two models: Phi-3-mini-128K and
Llama-3.1-8B-instruct, within MHA and GQA architectures, respectively. Future work will
involve testing LOCRET on other model architectures, such as encoder-decoder models and multi-
latent models. Currently, LOCRET has been evaluated on only two hardware platforms (A800/H800
and 4090), and we plan to extend performance evaluations to other popular hardwares. Addition-
ally, we observe that when the cache budget is extremely limited, LOCRET can degrade to the
StreamingLLM pattern (Figure 7). In future work, we will investigate enhancement methods for
such scenarios. Additionally, we are interested in integrating LOCRET with other efficient meth-
ods, such as offloading and speculative decoding. We also plan to explore how to combine existing
query-aware algorithms with LOCRET to achieve more accurate eviction of local tokens.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical
report: A highly capable language model locally on your phone. arXiv:2404.14219, 2024.

Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S Gulavani, and Ra-
machandran Ramjee. Sarathi: Efficient llm inference by piggybacking decodes with chunked
prefills. arXiv:2308.16369, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. Proceedings of EMNLP, 2023.

Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong,
and Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models.
Proceedings of ACL, 2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. URL https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei Hou, Jie Tang, Yuxiao Dong, and Juanzi
Li. Longalign: A recipe for long context alignment of large language models. Proceedings of
EMNLP, 2024a.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. Proceedings of ACL, 2024b.

Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi Chen. Lococo: Dropping in convolutions
for long context compression. Proceedings of ICML, 2024a.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024b.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. Proceedings of ICLR, 2024.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. Proceed-
ings of ICLR, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Proceedings of NeurIPS, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale. Proceedings of NeurIPS, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv:2407.21783, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. Proceedings of ICLR, 2023.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. Proceedings of ICLR, 2024.

Jayshree Ghorpade, Jitendra Parande, Madhura Kulkarni, and Amit Bawaskar. Gpgpu processing in
cuda architecture. Proceedings of ACIJ, 2012.

Nuno M Guerreiro, Elena Voita, and André FT Martins. Looking for a needle in a haystack: A
comprehensive study of hallucinations in neural machine translation. Proceedings of EACL, 2023.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv:2401.18079, 2024.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, et al. Inference without interference: Disaggregate llm
inference for mixed downstream workloads. arXiv:2401.11181, 2024a.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. Proceedings of COLM, 2024b.

Hugging-Face. URL https://github.com/huggingface/optimum-quanto.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Proceedings of ICML, 2024a.

Youhe Jiang, Ran Yan, Xiaozhe Yao, Yang Zhou, Beidi Chen, and Binhang Yuan. Hexgen: Gener-
ative inference of large language model over heterogeneous environment. Proceedings of ICML,
2024b.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of
llm. arXiv:2403.05527, 2024.

KVCache.AI. Ktransformers: A flexible framework for experiencing cutting-edge llm inference
optimizations, 2024. URL https://github.com/kvcache-ai/ktransformers.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. Proceedings of SOSP, 2023.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. Proceedings of
OSDI, 2024.

Yanyang Li, Shuo Liang, Michael R Lyu, and Liwei Wang. Making long-context language models
better multi-hop reasoners. Proceedings of ACL, 2024a.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv:2404.14469, 2024b.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of MLSys, 2024.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. Proceedings of ICML, 2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Proceedings of NeurIPS, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. Proceedings
of ICML, 2024b.

llama2.c. URL https://github.com/karpathy/llama2.c.

llama.cpp. URL https://github.com/ggerganov/llama.cpp.

12

https://github.com/huggingface/optimum-quanto
https://github.com/kvcache-ai/ktransformers
https://github.com/karpathy/llama2.c
https://github.com/ggerganov/llama.cpp

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

I Loshchilov. Decoupled weight decay regularization. Proceedings of ICLR, 2019.

Chao Lou, Zixia Jia, Zilong Zheng, and Kewei Tu. Sparser is faster and less is more: Efficient sparse
attention for long-range transformers. arXiv:2406.16747, 2024.

Junlin Lv, Yuan Feng, Xike Xie, Xin Jia, Qirong Peng, and Guiming Xie. Critiprefill: A segment-
wise criticality-based approach for prefilling acceleration in llms. arXiv:2409.12490, 2024.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv:2402.17764, 2024.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and Yongfeng Zhang. Aios: Llm
agent operating system. arXiv:2403.16971, 2024.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey. arXiv:2402.06196, 2024.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Proceed-
ings of NeurIPS, 2024.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention. arXiv:2404.07143, 2024.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dynamic
memory compression: Retrofitting llms for accelerated inference. arXiv:2403.09636, 2024.

OpenAI. Openai gpt-4o, 2024. URL https://platform.openai.com/docs/models/
gpt-4o.

Wenbo Pan. Anti-haystack, 2024. URL https://huggingface.co/datasets/
wenbopan/anti-haystack.

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xinran
Xu. Mooncake: Kimi’s kvcache-centric architecture for llm serving. arXiv:2407.00079, 2024.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu
Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li,
Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao,
Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tong-
shuang Wu, Heng Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models.
arXiv:2304.08354, 2023.

Shashank Rajput, Ying Sheng, Sean Owen, and Vitaliy Chiley. Inference-friendly models with
mixattention. arXiv:2409.15012, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
arXiv:2403.05530, 2024.

rustformers. URL https://github.com/rustformers/llm.

Julian Schnitzler, Xanh Ho, Jiahao Huang, Florian Boudin, Saku Sugawara, and Akiko Aizawa.
Morehopqa: More than multi-hop reasoning. arXiv:2406.13397, 2024.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri
Dao. Flashattention-3: Fast and accurate attention with asynchrony and low-precision.
arXiv:2407.08608, 2024.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. Proceedings of ICML, 2023.

13

https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://huggingface.co/datasets/wenbopan/anti-haystack
https://huggingface.co/datasets/wenbopan/anti-haystack
https://github.com/rustformers/llm

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on
methods to optimize llm’s kv-cache consumption. Proceedings of COLM, 2024.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024.

Raushan Turganbay. Unlocking longer generation with key-value cache quantization, 2024. URL
https://huggingface.co/blog/kv-cache-quantization.

Hengyi Wang, Haizhou Shi, Shiwei Tan, Weiyi Qin, Wenyuan Wang, Tunyu Zhang, Akshay Nambi,
Tanuja Ganu, and Hao Wang. Multimodal needle in a haystack: Benchmarking long-context
capability of multimodal large language models. arXiv:2406.11230, 2024a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024b.

Jianbo Wu, Jie Ren, Shuangyan Yang, Konstantinos Parasyris, Giorgis Georgakoudis, Ignacio La-
guna, and Dong Li. Lm-offload: Performance model-guided generative inference of large lan-
guage models with parallelism control. Blog of PASA Lab, 2024.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for under-
standing extremely long sequences with training-free memory. Proceedings of NeurIPS, 2024a.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and efficient post-training quantization for large language models. Proceedings of
ICML, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. Proceedings of ICLR, 2024b.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer:
Pyramid kv cache compression for high-throughput llm inference. Proceedings of ACL, 2024.

Yao Yao, Zuchao Li, and Hai Zhao. Sirllm: Streaming infinite retentive llm. Proceedings of ACL,
2024.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv:2403.04652,
2024.

Jiayi Yuan, Hongyi Liu, Yu-Neng Chuang, Songchen Li, Guanchu Wang, Duy Le, Hongye Jin,
Vipin Chaudhary, Zhaozhuo Xu, Zirui Liu, et al. Kv cache compression, but what must we
give in return? a comprehensive benchmark of long context capable approaches. Proceedings of
EMNLP, 2024.

Amir Zandieh, Majid Daliri, and Insu Han. Qjl: 1-bit quantized jl transform for kv cache quantiza-
tion with zero overhead. arXiv:2406.03482, 2024.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per channel:
Efficient large language model inference with coupled quantization. arXiv:2405.03917, 2024a.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al. ∞ bench: Extending long context evaluation
beyond 100k tokens. Proceedings of ACL, 2024b.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. MoEfication:
Transformer feed-forward layers are mixtures of experts. Proceedings of ACL, 2022.

Zhengyan Zhang, Chaojun Xiao, Qiujieli Qin, Yankai Lin, Zhiyuan Zeng, Xu Han, Zhiyuan Liu,
Ruobing Xie, Maosong Sun, and Jie Zhou. Exploring the benefit of activation sparsity in pre-
training. Proceedings of ICML, 2024c.

14

https://huggingface.co/blog/kv-cache-quantization

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Atlas Wang. Q-hitter:
A better token oracle for efficient llm inference via sparse-quantized kv cache. Proceedings
MLSys, 2024d.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Proceedings of NeurIPS, 2024e.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian
Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models.
arXiv:2303.18223, 2023.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. Distserve: Disaggregating prefill and decoding for goodput-optimized large language
model serving. Proceedings of OSDI, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A HYPERPARAMETERS, ENVIRONMENT AND BASELINES

A.1 TRAINING

During the training stage, we first insert retaining head Rs to each layar. A retaining head is a
small FFN consist of two linear transformations, and the non-linear function is aligned with other
non-linears of the conresponding model, with an intermediate size of 1024. We train the appended
retaining head Rs on the LongAlpaca for 3000 steps with batch size set to 1 and maximum sequence
length set to 10240. We use the AdamW scheduler (Loshchilov, 2019) and the learning rate is set to
5e-4. We conduct the training with a linear learning rate scheduler, whose warmup step number is
set to 2000. The balance factor between two training loss α is set to 0.0025.

A.2 INFERENCE

The inference hyperparameters of LOCRET is listed in Table 2. Here, we follow the notations in
Algorithm 1. b stands for the cache budget, B is the chunk size of chunked prefill, ns is the length of
stabilizers, and nloc represents the length of locally retained tokens at the end of the input sequence.

Hyperparameters of other baselines are as follows. For INFLLM, we use the recommended settings
for Llama-3 to evaluate Llama-3.1. Since there is no recommendations of Phi-3-mini-128K,
we use the settings for MiniCPM, whose architechture and size is similar to Phi-3-mini-128K,
to conduct all the experiments. For Quantization, we use the official implementation (Quanto
backend) of Hugging Face. For SIRLLM, we set the start size to 4, recent size to 1000 for
both models. We set the token entropy size to 6000 and 16384 for Phi-3-mini-128K and
Llama-3.1-8B-instruct respectively. The chunk size of chunked prefill is also 3072 and
1024 for the corresponding model. For MINFERENCE, we utilize the recommended settings for
both models.

A.3 SYSTEM ENVIRONMENT

For all the experiments except the 4090 experiments in Section 4.3, we use a workstation with
8×Nvidia A800/H800 GPUs and 104 Intel(R) Xeon(R) Platinum 8470 CPUs. We only use 1 GPU
from the cluster for training, as the GPU requirements are less than 80GB for all training procedures.

The device has 1.0 TB CPU memory. The operating system is Red Hat 4.8.5. We conduct all
experiments except the full attention full KV cache inference on a single GPU, and 2 GPUs for full
attention settings.

For Section 4.3, we conduct the experiments on a single Nvidia 4090 GPU. The device has 512
AMD EPYC 9754 128-Core Processors and 1.0 TB CPU memory. GPUs and CPUs are connected
through PCIe Gen 4, which has 16GT/s transmission speed. The operating system is Ubuntu 9.4.0.

A.4 BASELINES

We compare LOCRET with full attention inference, INFLLM, Quantization, SIRLLM and MINFER-
ENCE. FullAttn inference is performed using vllm (Kwon et al., 2023), which includes automatic
tensor parallelism. INFLLM is a representative of the offloading-based methods, where the full KV
cache is offloaded to CPU, and the most relavant blocks are retrieved to GPU during inference. For
quantization method, we use the Hugging Face implementation of 2-bits KV cache quantization,
which is inspired by Liu et al. (2024b), where quantization is conducted along channels instead of
tokens. We denote this method as HF-2BITS. SIRLLM is an eviction-based token dropping algo-
rithm, where tokens with low token-entropy is evicted once the cache is fullfilled. We use the official
implementation of SirLLM, which includes some CPU operations including importance sorting.
MINFERENCE is a typical method of reducing peak GPU memory consumption through rule-based
sparse attention, but it does not reduce the size of KV cache. Note that INFLLM, HF-2BITS and
SIRLLM does not have official implementation on Phi-3-mini-128K, thus we implement these
three methods according to the original algorithm. We only use the short factor of RoPE for IN-
FLLM, and no further model modification is conducted for HF-2BITS and SIRLLM.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B THE GLOBAL AND LOCAL DISCREPANCY OF SCORING FUNCTIONS

Cache importance scoring functions can generally be categorized into two types: causal and non-
causal. Non-causal functions, e.g. H2O and SNAPKV, require information from subsequent cache
units to determine the importance score of a cache unit, making them dependent on prefilling the
entire sequence. On the other hand, causal functions, e.g. SIRLLM and LOCRET, predict cache
importance without relying on subsequent information. Non-causal scoring functions are incompat-
ible with chunked prefill because they cannot calculate scores without access to the full sequence. If
such functions are integrated with chunked prefill, they often face a significant discrepancy between
the local importance score (without considering subsequent information) and the global importance
score (with full context).

To investigate this discrepancy, we measure the consistency of the top 10% most important cache
positions identified in prefixes of various lengths compared to the full context. For reference, the full
context is truncated to 6K tokens. The results shown in Figure 1 highlights that scoring functions
requiring future information, such as H2O and SNAPKV, suffer from significant discrepancies when
subsequent cache units are not considered. SIRLLM, while also causal, shows notable inaccuracies,
leading to performance degradation as demonstrated in Table 3 and Table 4.

We also evaluate the end-to-end performance using H2O and SNAPKV with chunked prefill on
∞Bench, shown in Table 5. The results demonstrate that discrepancies between local and global im-
portance scores in H2O and SNAPKV lead to severe performance drops, particularly in R.Number. It
is this discrepancy that leads to the failure of H2O and SNAPKV in accurately retrieving information
from the context. Specifically, the model is unable to identify the importance of certain cache units
at the time they are first encountered. LOCRET, however, avoids such inconsistencies and achieves
superior performance.

Table 5: ∞Bench scores of H2O, SNAPKV and LOCRET.

Phi-3-mini-128K on∞Bench

Method R.Number E.Sum E.MC C.Debug Avg.↑
FullAttn 97.12 17.92 55.46 23.10 48.40

H2O 3.39 15.35 45.41 20.57 21.18
SNAPKV 2.54 15.44 41.92 21.43 20.33
LOCRET 97.46 16.82 46.29 29.71 47.57

C THE EFFECT OF TRAINING

Table 6: The results of LOCRET compared with randomly initialized retaining head Rs on ∞Bench
and L-Eval.

Phi-3-mini-128K on∞Bench

Method R.PassKey R.Number E.Sum E.QA E.MC Z.QA E.Dia C.Debug M.Find Avg.

Random 0.00 34.00 5.09 2.68 18.34 1.54 0.00 13.71 2.57 4.92
LOCRET 100.00 97.46 16.82 7.61 46.29 11.31 10.00 27.92 29.71 34.73

We compare the trained LOCRET to appending randomly initialized retaining head Rs on ∞Bench.
The results in Table 6 show that LOCRET training is effective. Randomly initialized of retaining
heads give random predictions and evict arbitary cache units at each step, resulting the failure on all
tasks.

D EVALUATION ON LONGBENCH

We conduct additional experiments to evaluate Locret on LongBench (Bai et al., 2024b), comparing
it with baselines such as Full Attention, MInference, InfLLM, and SirLLM. For this evaluation, we
used Phi-3-mini-128Kwith a retained head trained on LongAlign. To ensure a fair comparison,
we excluded all Chinese subtasks from LongBench and focused solely on the English subtasks, as

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Phi-3-mini-128K was not specifically trained on Chinese corpora. The results are presented
below. For LOCRET , we follow the hyperparameters presented in Table 2.

Table 7: LongBench scores of LOCRET compared with baselines.

Method gov
report triviaqa narrative

qa qmsum musique 2wikimqa multifield
qa en

repobench
-p qasper hotpotqa multi

news trec passage
retrieval en

passage
count samsum lcc Avg.↑

FullAttn 33.35 86.38 18.21 19.51 19.82 33.37 49.82 58.02 41.07 43.06 26.57 67.00 93.50 2.97 23.15 51.86 41.73

MINFERENCE 32.94 86.87 19.46 19.57 18.85 33.30 49.14 58.98 40.31 43.56 26.35 68.00 89.00 2.10 25.58 53.68 41.73
SIRLLM 32.92 85.61 21.08 21.59 24.32 34.97 48.52 59.15 40.17 47.00 26.44 65.50 63.00 3.00 23.11 51.83 40.51
INFLLM 25.96 84.87 20.83 19.61 13.63 27.43 41.29 55.73 30.51 38.05 25.36 64.50 10.00 7.50 0.28 61.59 32.95
LOCRET 33.46 82.39 24.56 23.35 25.12 35.93 52.77 57.16 40.17 48.70 26.41 62.00 83.00 3.00 26.37 52.61 42.31

We also report the maximum memory usage, including the GPU memory, the CPU memory, and the
total maximum memory, alongside the average score on LongBench. For FullAttn, we exclude the
maximum memory usage, aligning with Figure 5.

Table 8: Comparison of methods on LongBench and memory usage.

Method LongBench Max GPU Memory Max CPU Memory Total Max Memory

FullAttn 41.73 - - -

MINFERENCE 41.73 27.63 0.17 27.80
SIRLLM 40.51 18.29 0.05 18.34
INFLLM 32.95 20.03 8.95 28.98
LOCRET 42.31 17.71 0.15 17.86

From the experiments above, LOCRET demonstrates the best overall performance and excels in the
majority of subtasks. It outperforms all the baselines without any noticeable performance degrada-
tion while consuming less memory. Although MInference also avoids performance drops, it requires
more GPU memory compared to LOCRET. SirLLM achieves comparable memory usage but shows
some performance decline compared to FullAttn and LOCRET. InfLLM exhibits the most significant
performance drop, and its offloading mechanism results in the highest CPU memory usage, making
it the method with the largest total memory consumption. These results highlight LOCRET as an
outstanding approach for evaluation on LongBench.

E ORTHOGONALITY TO OTHER METHODS

Table 9: Quantization with FullAttn and
LOCRET. “M” represents Method and “−∆”
represents the gap of average L-Eval score.

Setting M M-4bits −∆

M=FullAttn 29.08 28.52 0.56
M=LOCRET 27.96 27.11 0.85

Table 10: The average L-Eval scores of LO-
COCO, LOCRET, and the combination of
LOCOCO and LOCRET.

Method LOCOCO LOCRET Combination
L-Eval 26.01 27.96 28.70

KV cache quantization. According to Zhang et al. (2024d), eviction-based methods like H2O
struggle with compatibility when combined with KV cache quantization. Quantization introduces
significant disturbance in the estimation of heavy-hitters, leading to severe performance degradation.
However, LOCRET is not affected by such issues and can be combined with quantization while main-
taining most of its performance. Here, we compare the performance degradation caused by quantiza-
tion on LOCRET with that of the full attention method using the same metrics. We use Quanto as the
quantization backend and report the average L-Eval score with Llama-3.1-8B-instruct as
the model backbone. Table 9 shows that the performance drop caused by quantization on LOCRET is
only slightly higher than that observed with the full attention method, indicating that LOCRET is a
quantization-friendly approach. More details of the experiment are provided in Appendix E.1.

Token merging. As described in Section 2, token dropping can also be implemented through an
attention pool. Attention pool-based methods (Xiao et al., 2024b; Cai et al., 2024a; Mu et al., 2024;
Munkhdalai et al., 2024) merge adjacent tokens or cache units into an attention pool, maintaining a

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

static cache size. These methods are orthogonal to LOCRET , as the evicted tokens can be merged
into a small cache pool and retained in GPU memory. We conduct the following experiment to
demonstrate that LOCRET can serve as an effective plug-in scoring function within such frame-
works, enhancing performance without increasing memory budget. We select LOCOCO (Cai et al.,
2024a) as a representative of the latest attention pool-based methods. LOCOCO maintains a cache
set consisting of two parts: the heavy hitters and the convolved non-heavy hitters. During each
chunked prefill step, LOCOCO first identifies a set of heavy hitters according to H2O (Zhang et al.,
2024e), then applies 1-D convolution to the non-heavy hitters to compress them into a static size. By
replacing H2O’s heavy-hitter scoring function with LOCRET, we retain the cache units with high CIS
and convolve the others. We compare this combination with standalone LOCOCO and LOCRET on
L-Eval using the Llama-3.1-8B-instruct backbone and report the average score across all
selected tasks. As shown in Table 10, LOCRET achieves a higher score than LOCOCO, and the
combined algorithm outperforms both standalone methods. This suggests that LOCRET provides
a more accurate scoring function compared to H2O, and the two methods complement each other,
demonstrating their orthogonality. Further details of the experiment are provided in Appendix E.2.

Head-wise Budget Allocation. Since LOCRET evict cache units across the attention heads indepen-
dently, it is compatible with head-wise budget allocation. Here, we combine LOCRET with PYRA-
MIDKV (Cai et al., 2024b). PYRAMIDKV assumes that identifing the important cache in deeper
layers are simpler than shallow layers, thus it allocates more budget to the shallow layers. We eval-
uate LOCRET+PYRAMIDKV on the following subtasks of ∞Bench using Phi-3-mini-128K.
Results presented in Figure 11 shows the compatibility of the two methods.

Table 11: ∞Bench scores of the combination of LOCRET and PYRAMIDKV.

Phi-3-mini-128K on∞Bench

Method R.Number E.Sum E.MC C.Debug Avg.↑
LOCRET 97.46 16.82 46.29 29.71 47.57
LOCRET+PYRAMIDKV 99.66 15.82 48.03 30.00 48.38

E.1 COMBINATION WITH QUANTIZATION

Table 12: L-Eval scores of FullAttn, FullAttn-4bits, LOCRET and LOCRET-4bits. (Detailed)

Llama-3.1-8B-instruct on L-Eval

Method CodeU NQ CUAD NarrativeQA QMSum SPACE Avg.↑
FullAttn 10.0 66.84 38.91 23.11 18.76 16.86 29.08
FullAttn-4bits 7.78 66.64 38.25 22.76 18.85 16.84 28.52

LOCRET 8.89 63.03 37.21 23.59 18.17 16.87 27.96
LOCRET-4bits 4.44 63.22 36.95 22.80 18.43 16.81 27.11

We compare the combination of LOCRET and HF-4BITS quantization with the full attention method
and the standalong HF-4BITS quantization. We utilize the official implementation of Hugging
Face, with Quanto as the backend of quantization. Other hyperparameters are kept same as de-
scribed in Section 4.1. We conduct the experiment on L-Eval and report the average score, with
Llama-3.1-8B-instruct backend. The results in Table 12 shows that the degradation caused
by quantization is not significantly high, showing that LOCRET exhibits good robustness on data
representation and it is friendly to quantization.

E.2 COMBINATION WITH LOCOCO

Table 13: L-Eval scores of LOCOCO, LOCRET and the combination LOCOCO+LOCRET. (Detailed)

Llama-3.1-8B-instruct on L-Eval

Method CodeU NQ CUAD NarrativeQA QMSum SPACE Avg.↑
FullAttn 10.0 66.84 38.91 23.11 18.76 16.86 29.08

LOCOCO 4.44 61.10 35.84 19.83 18.15 16.71 26.01
LOCRET 8.89 63.03 37.21 23.59 18.17 16.87 27.96
LOCOCO+LOCRET 7.78 66.33 38.01 24.85 18.31 16.92 28.70

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We compare the combination of LOCOCO and LOCRET with the standalone methods. For LO-
COCO, we train the convolution head with the size of convolved cache set to 2048. We ex-
tend the context length through chunked prefill training to 64K, which is longer than all tasks’
average input length. The convolution kernel is set to 21, and we train the newly-added con-
volution and layer norms for 200 steps, following the original setting. Since the original
Llama-3.1-8B-instruct supports 128K context length, we do not modify its positional em-
bedding. During Inference, we keep a cache budget size of 16384. In the standalone LOCOCO
setting, there are 2048 cache units are convolved, while the others are the heavy-hitters selected by
H2O. In the combined algorithm, we replace H2O to LOCRET. We select 14336 cache units with
the highest CIS, and convolve the other evicted tokens into 2048 cache units. In all methods, we set
the local length to 0, following the original setting.

F TRAINING ROBUSTNESS

LOCRET demonstrates high robustness to the training settings, suggesting that there is no need for
careful tuning of training hyperparameters or meticulous selection of datasets. Here, we ablate the
intermediate size of the retaining heads dR and train the retaining head Rs on various long-context
tuning datasets to demonstrate the stability of results across different training settings.

F.1 INTERMEDIATE SIZE OF THE RETAINING HEAD

We align all the training settings as described in Section 4.1 and only change the interme-
diate size of retaining heads dR ∈ {256, 512, 1024, 2048, 4096} with the backbone model
Phi-3-mini-128K. The trained model is evaluated on L-Eval and we report the average L-Eval
score corresponding to each intermediate size. Results are listed in Figure 3. The performance
variations among all the settings are minimal compared to the changes in the intermediate size, sur-
passing all baselines in Table 3. This indicates that out method exhibits good performance stability
regardless of the intermediate size of the retaining head Rs.

Table 14: L-Eval scores with different intermediate size of the retaining head dR. (Detailed)

Phi-3-mini-128K on L-Eval

dR CodeU NQ CUAD NarrativeQA QMSum SPACE Avg.↑
256 8.89 51.52 23.05 16.21 15.26 13.77 21.45
512 6.67 50.61 23.33 16.67 15.02 14.23 21.09
1024 8.89 51.49 22.23 16.42 14.86 14.06 21.33
2048 7.78 54.09 21.91 16.46 15.00 13.89 21.52
4096 10.00 52.33 23.52 16.15 14.81 14.02 21.81

We train different retaining head Rs with dR ∈ {256, 512, 1024, 2048, 4096}. We keep all the other
hyperparameters same, and train on the same dataset. From Table 14, LOCRET shows stability to
the intermediate size, in both overall performance and the performance of each single task. While
increasing the intermediate size, we observe very slight overall performance enhancement. However,
the performance variance is negligible compared to the increase of parameter size, thus we choose
to maintain the intermediate size in a small scope to take balance of performance and efficiency.

F.2 TRAINING DATA INSENSITIVITY

We also consider the sensitivity of the training data, which leads us to ablate the training dataset by
training on LongAlign (Bai et al., 2024a) and Anti-Haystack (Pan, 2024), comparing these results
with those from LongAlpaca (Chen et al., 2024) in the original training setting. We also align
other settings to the original setting and choose the backbone model to be Phi-3-mini-128K.
We report the average L-Eval score for each training dataset. The results in Table 1 shows that
LOCRET has high insensitivity towards different training data. The performance impact of different
data recipes is minimal, indicating that our method can be trained on any long-context tuning dataset.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 15: L-Eval scores of LOCRET trained on various dataset. (Detailed)

Phi-3-mini-128K on L-Eval

Dataset CodeU NQ CUAD NarrativeQA QMSum SPACE Avg.↑
LongAlpaca 8.89 51.49 22.23 16.42 14.86 14.06 21.33
LongAlign 10.00 55.13 21.34 16.40 15.01 14.09 22.00
Anti-Haystack 8.89 52.91 20.87 13.73 13.84 14.10 20.72

We conduct training on various datasets and benchmark the trained weights on L-Eval with
Phi-3-mini-128K backbone, to show the stability towards training datasets. For each datasets,
we set the training hyperparameters same and truncate the context to 10240 tokens. We train the first
3000 steps of LongAlpaca and LongAlign. Since Anti-Haystack is a relatively smaller dataset, we
utilize the whole dataset, which consist of 2424 entries. The results in Table 15 shows that different
training dataset recipe exhibits minor effect towards the overall performance. LOCRET can obtain
competitive performance without delicately selecting the training data.

G EXTREMELY LONG CONTEXT EVALUATION

We create a dataset similar to ∞Bench’s R.Number, with an average length of 10 million tokens.
Each data point contains a 10-digit number string inserted into an irrelevant context, and the task
is to retrieve the inserted number. The dataset consists of 50 examples, with the number strings
uniformly distributed throughout the context. We used the hyperparameters from Table 2, with the
exception of setting the chunk size to 10240 to speed up inference. The results, presented below in
Table 16, show that Locret can efficiently process extremely long contexts. In this experiment, the
cache budget is set to 6000, and the compression ratio is 1747.6×.

Table 16: Inference speed with Retaining Heads.

Phi-3-mini-128K on 10M context

Dataset R.PassKey 10M

LOCRET 100.00

H COMPRESSING MULTI-TURN CONVERSATIONS

Compared to query-aware eviction methods, such as SNAPKV (Li et al., 2024b), LOCRET is a
more suitable solution for multi-turn conversation scenarios. This is because the evaluation of cache
importance in LOCRET is based on the cache itself, rather than being dependent on the subsequent
query. To demonstrate this, we evaluate LOCRET on the Rock-Paper-Scissors benchmark introduced
in SIRLLM (Yao et al., 2024). Since SIRLLM is specifically designed for such scenarios, we use it
as our baseline in this benchmark. Results in Table 17 show that Locret is also effective in multi-turn
conversation contexts.

The hyperparameters are aligned with those used in SIRLLM, with the cache budget set to 1024, and
no stabilizers are retained, as SIRLLM does not retain local tokens in this benchmark. We perform
2000 turns as same as the original SIRLLM settings. The results are presented below.

Table 17: Rock-Paper-Scissors scores of LOCRET and SIRLLM.

Phi-3-mini-128K on Rock-Paper-Scissors

Preference Rock Paper Scissors Avg.
win tie lose win tie lose win tie lose win↑ lose↓

SIRLLM 40.00 31.75 28.25 27.5 36.55 35.96 29.35 25.15 45.50 32.28 36.57
LOCRET 18.95 50.00 31.05 30.35 19.45 50.20 52.05 27.25 20.70 33.78 33.98

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

I DISCONTINUOUS CONTEXT AND STABLIZERS

Evicting cache units results in context discontinuity, which causes unstable CIS prediction and inac-
curate calculation of later tokens. Thus, we always retain the stabilizers, which are consist of the last
ns cache units in each chunked prefill step. We ablate ns on R.Number of ∞-Bench in the proposed
algorithm to demonstrate the necessity of incorporating stabilizers in the design. The results in Fig-
ure 4a show that lower stabilizer length ns causes severe performance degredation and the model
fails completely when the stabilizers are absent. We report the maximum absolute error of the last
hidden state of the input prompt across different layers in Figure 4b. Large errors can be observed
when the stabilizers are short or absent. We also report the mean absolute error of the predicted
causal importance values with different stabilizer lengths, compared to the case without evicting any
cache units, in Figure 4c. We also observe high errors when the stabilizer length is limited. This
explains the reason for failure when the stabilizers are short or absent: context discontinuity leads to
instability in the prediction of CIS, resulting in errors during cache eviction and amplifying errors
in the hidden states.

J RETAINING HEADS DO NOT SLOW DOWN INFERENCE

We evaluate the model’s forward throughput under varying context lengths, both with and without
retaining heads. The results are summarized below in Table 18. “R” represents the retaining heads,
and the throughput is reported in tokens per second (tok/s) in the format “Avg. / Std.”

Table 18: Inference speed with Retaining Heads.

Context Length 1024 2048 3072 4096

w/o R Speed 18674 / 443 19743 / 464 19982 / 402 20304 / 187
w/ R Speed 17118 / 1117 18503 / 546 19054 / 283 19153 / 174

From the results, no significant latency increase is observed when using retaining heads. The nu-
merical differences are attributed to systematic variations rather than additional overhead introduced
by retaining heads during inference.

K CAUSAL IMPORTANCE SCORE SIMULATES A CACHE PROBLEM

In this section, we show that assigning each cache unit a CIS and calculate each cache units with
top-b cache units simulates a cache problem, i.e. the calculation process can be done in a cache.
Thus, LOCRET mathmatically equals to top-b sparse attention.
Definition K.1. (Causal Calculation) Given a sequence of objects c1, c2, · · · , cn, if

∀1 ≤ i ≤ n, ci = f(c1, c2, · · · , ci−1)

then f is a causal calculation. c1, c2, · · · , cn is the generated sequence respective to f .

For all causal calculations, we can easily split the function into two parts: a selection function and a
another function. Formally,

∀ causal calculation f, ∃ function g, Sel,

g : 2{c1,c2,··· ,cn} → {c1, c2, · · · , cn},

Sel : 2{c1,c2,··· ,cn} → 2{c1,c2,··· ,cn}; X 7→ Y ⊆ X,

s.t. f = g ◦ Sel.
Definition K.2. (Causal Importance Score) Given a causal calculation f and c1, c2, · · · , cn is the
generated sequence of f . s1, s2, · · · , sn ∈ R is a sequence of numbers. If

si = h(ci),

then {si} is a CIS of sequence {ci}. h is a causal importance scoring function.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Definition K.3. (Cache Problem) Given a causal calculation f = g ◦ Sel, its generated sequence
{ci} and a positive number b ∈ Z+, if f satisfies the following two condion, then (f, b, {ci}) is a
cache problem with budget b.

• ∀1 ≤ i ≤ n, |Sel(c1, · · · , cn)| ≤ b,

• ∀1 ≤ m1 < m2 ≤ n, Sel(c1, · · · , cm2)\Sel(c1, · · · , cm1) ⊆ {cm1+1, · · · , cm2}.
Theorem K.1. (Calculating cache units with Top-b CIS is a cache problem.) Given a causal calcu-
lation f = g◦Sel, and its generated sequence {ci}, a CIS si = h(ci) and a positive number b ∈ Z+,
if the selection function Sel satisfies the following condition,

Sel(c1, c2, · · · , ci) = {cp1
, cp2

· · · , cpb′}, sp1
, sp2

· · · , spb′ ∈ Top-b(s1, s2, · · · , si)

then (f, b, {ci}) is a cache problem with budget b.

Proof. (1) For all i of 1 ≤ i ≤ n, |Sel(c1, · · · , ci)| = |{cp1 · · · , cpb′}| = |{sp1 , · · · , spb′}|. Since
sp1 , sp2 · · · , spb′ ∈ Top-b(s1, s2, · · · , si), |{sp1 , · · · , spb′}| ≤ b. Thus |Sel(c1, · · · , ci)| ≤ b.

(2) For all 1 ≤ m1, < m2,≤ n,

Sel(c1, · · · , cm2
)\Sel(c1, · · · , cm1

) ⊆ {cm1+1, · · · , cm2
}

⇐⇒ {sp1
, · · · , spm2

}\{sq1 , · · · , sqm1
} ⊆ {sm1+1, · · · , sm2

}.

Assume ∃s ∈ {sp1
, · · · , spm2

}\{sq1 , · · · , sqm1
} but s /∈ {sm1+1, · · · , sm2

}. Since
sp1

, · · · , spm2
= Top-b(s1, · · · , sm2

), s ∈ {s1, · · · , sm2
}. Thus s ∈ {s1, · · · , sm1

}. s is
not in the Top-b values of first m1 scores, thus there exists b values larger than s, denote as
sl1 , · · · , slb . Then, sp1

, · · · , spm2
= Top-b(sl1 , · · · , slb , sm1+1, · · · , sm2

). From this, we can ob-
tain that min{spm2

} ≥ min{sl1 , · · · , slb} > s, s /∈ {sp1 , · · · , spm2
}. Contradiction. Finally, there

must be s ∈ {sm1+1, · · · , sm2
}. From (1)(2), f satisfies the two conditions of cache problem. Thus,

calculating cache units with Top-b CIS is a cache problem.

L RETAINED PATTERNS OF LOCRET

We investigate the retained patterns of LOCRET. We trace the cache units at each attention
head through the chunked prefill on R.Number, M.find and E.MC of ∞Bench with backbone
Phi-3-mini-128K, and investigate the pattern variation among different layers on R.Number.
We display the results in Figure 7 and Figure 8. The yellow parts are the retained cache, where the
y-axis represents cache position and x-axis is the time axis.

Figure 7 shows that the pattern is mostly decided by the tasks, where both heads shows similar
pattern in the same task. In R.Number, we are able to observe a strong signal between token 10000
and 15000, which is the position of the inserted number string, indicating that LOCRET can identify
the potentially answer-related parts by giving high predicted values of CIS. In M.Find, we can
observe the StreamingLLM (Xiao et al., 2024b) pattern, where the tokens at the beginning of the
sequence are always important. This is also mentioned as the Λ-pattern in MINFERENCE. We can
also discover the vertical lines in the middle of the sequence. This pattern is also approached by
MINFERENCE (Jiang et al., 2024a) by the pattern “vertical-and-slash”. In E.MC, H2O (Zhang et al.,
2024e) and ScissorHands (Liu et al., 2024a) pattern can be observed, following the assumption that
if a token is activated at some point, it will continue to be activated in the consequencing process.
Noticing that the vertical lines always come in groups, which is the fundament of INFLLM (Xiao
et al., 2024a) retrieving blocks to calculate. The comparison between two heads also shows that
different heads exhibits different features. Head 22 of layer 11 shows stronger vertical lines at some
point, where retained pattern of head 14 layer 11 is more even. Head 14 of layer 11 also gives
stronger signal to the initial tokens, where this effect is less strong in head 22 layer 11. We also
conduct experiments to investigate the patterns across layers. In Figure 8, we show that the pattern
variance of the same head in different layers can be large. In shallow layers, e.g. layer 1 and 5, the
retained cache units appears to be periodical and semantic independent. However, in middle layers,
e.g. layer 13 and 17, the position of the inserted number string is strongly highlighted, indicating
that semantic takes over to be the dominant factor. In the deepest layers, e.g. 21, 25 and 29, the
highlighted vertical line at the position of the inserted string becomes more accurate.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

The retained pattern at different layers shows various features, which might be a good handle to
investigate how LLMs understand and process natural language queries.

Figure 7: Head patterns across multiple tasks.

Figure 8: Layer patterns of R.Number

M THE TRAINING PROCESS OF LOCRET

Here, we present changing trend of loss and accuracy during training in Figure 9.

Figure 9: Training loss and accuracy during the training process.

24

	Introduction
	Related Work
	Locret
	Preliminaries
	Locret Framework
	Training the Retaining Heads
	Inference Implementation of Locret

	Experiments
	Experimental Setup
	End-to-end Benchmark
	Speed Test on Real Consumer-Grade Devices
	Hyperparameter Analysis
	Orthogonality to Other Methods

	Conclusion & Limitation
	Hyperparameters, Environment and Baselines
	Training
	Inference
	System Environment
	Baselines

	The Global and Local Discrepancy of Scoring Functions
	The Effect of Training
	Evaluation on LongBench
	Orthogonality to Other Methods
	Combination with Quantization
	Combination with LoCoCo

	Training Robustness
	Intermediate Size of the retaining head
	Training Data Insensitivity

	Extremely Long Context Evaluation
	Compressing Multi-turn Conversations
	Discontinuous Context and Stablizers
	Retaining Heads Do not Slow Down Inference
	Causal Importance Score Simulates a Cache Problem
	Retained Patterns of Locret
	The Training Process of Locret

