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ABSTRACT

Multi-label loss functions are usually either non-convex or discontinuous, which
is practically challenging or impossible to optimise directly. Instead, surrogate
loss functions can quantify and approximate the quality of a predicted label set.
However, their consistency with the desired loss functions is not proven. This is-
sue is further exacerbated by the conflicting nature of multi-label loss functions.
To learn from multiple related, yet potentially conflicting multi-label loss func-
tions using a unified representation of a model, we propose a Consistent Lebesgue
Measure-based Multi-label Learner (CLML). We begin by proving that the op-
timisation of the Lebesgue measure directly corresponds to the optimisation of
multiple multi-label losses, i.e., CLML can achieve theoretical consistency under
a Bayes risk framework. Empirical evidence supports our theory by demonstrat-
ing that: (1) CLML can consistently achieve a better rank than state-of-the-art
methods on a wide range of loss functions and datasets; (2) the primary factor
contributing to this performance improvement is the Lebesgue measure design,
as CLML optimises a simpler feedforward model without additional label graph
or semantic embeddings; and (3) an analysis of the results not only distinguishes
CLML’s effectiveness but also highlights inconsistencies between the surrogate
and the desired loss functions. Code and pre-trained weights for CLML are avail-
able at https://github.com/*redacted*.

1 INTRODUCTION

In multi-label data, instances are associated with multiple target labels simultaneously. Multi-label
learning is an important paradigm applicable to many real-world domains such as tabulated learning
(Yeh et al., 2017; Bai et al., 2021; Hang & Zhang, 2022; Lu et al., 2023), functional genomics (Patel
et al., 2022), and computer vision (Wang et al., 2020). Deep learning is responsible for many modern
advancements in multi-label learning problems (Zhou et al., 2021; Liu et al., 2023).

However, multi-label learning is usually considered challenging due to its complex label interac-
tions. Label graph embedding is one such approach that superimposes label interactions on a repre-
sentation, i.e., the weights of a deep learning model. As such, label graph embedding has been the
primary concern of works such as Wang et al. (2020), and Yuan et al. (2023). In works such as Yeh
et al. (2017); You et al. (2020); Hang & Zhang (2022); Yuan et al. (2023), various transformer and
auto-encoder architectures have detected complex forms of feature and label interactions. Generally
speaking, deep learning for multi-label learning is dominated by computer vision methods, therefore
drawing focus away from tabulated problems, an important area of multi-label learning (Yeh et al.,
2017; Bai et al., 2021; Patel et al., 2022; Hang & Zhang, 2022; Lu et al., 2023).

Multi-label learning is challenging due to the complexity of the output space. No existing loss func-
tion can quantify the quality of a label set in a universal manner. To exemplify this, consider the
following loss functions: hamming loss, one minus the label ranking average precision, and one
minus the micro-averaged F1-score. All three loss functions ultimately pertain to multi-label accu-
racy (Han et al., 2023). However, both the interpretation of quality and the learning behaviour can
vary with the loss function selected (Wu & Zhu, 2020; Liu et al., 2021). The situation is worsened
by the conflicting behaviour between loss functions (Wu & Zhu, 2020). Further, multi-label loss
functions are themselves, typically, non-convex and discontinuous, which can be either challenging
or impossible to optimise directly (Gao & Zhou, 2011). As a result, it is common to back-propagate
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on gradients obtained from a manually designed and differentiable surrogate loss function (Rumel-
hart et al., 1986; Liu et al., 2021). However, both the learning behaviour and the solution itself are
prescribed by the gradients of the chosen surrogate loss function, which might not correspond to
desired behaviour according to the desired loss (Raymond et al., 2023). Finally, multi-label learning
with surrogate loss functions is not always consistent with what they are designed to approximate
(Gao & Zhou, 2011; Liu et al., 2021).

These challenges give rise to several interesting research questions. First, how can a model learn
directly from non-convex, discontinuous, or even non-differentiable loss functions without surro-
gates to avoid inconsistency? Second, how can a unified representation, i.e., a single model, learn
using multiple related, yet potentially conflicting loss functions? Third, can such a method achieve
theoretical consistency in the context of multi-label learning? Addressing the above questions is
paramount to progressing the field of multi-label learning, especially tabulated multi-label learning.

These three important research questions motivate the design of a Consistent Lebesgue Measure-
based Multi-label Learner (CLML), offering several advantages. First, CLML learns from multiple
related, yet potentially conflicting, loss functions using a unified representation on tabulated data.
Second, CLML learns to solve the problem without the use of a surrogate loss function. Third,
our experimental findings demonstrate that CLML consistently achieves a 13.4% to 59.4% better
critical distance ranking against competitive state-of-the-art methods on a variety of loss functions
and datasets. The empirical results are supported by our theoretical foundation that proves the con-
sistency of CLML when optimising several multi-label loss functions. The importance of CLML’s
approach is accentuated by its simple representation, validating the importance of a consistent loss
function for multi-label learning. Finally, our analysis of the optimisation behaviour suggests that
CLML can consistently navigate the desired loss landscape while naturally understanding and ac-
counting for their trade-offs.

The major contributions of this work are as follows: (1) a novel approach to achieving tabulated
multi-label learning with multiple loss functions; (2) a novel learning objective for several non-
convex and discontinuous multi-label loss functions without the use of a surrogate loss function; (3)
a proof showing that our method can theoretically achieve consistency; (4) results demonstrating that
CLML with a simpler feedforward model representation can consistently achieve a better ranking
on a wide variety of loss functions and datasets than state-of-the-art methods; (5) analysis to solidify
the importance of consistency in multi-label learning; and (6) an analysis that highlights how CLML
can naturally consider the trade-offs between desired multi-label loss functions and the inconsistency
between surrogate and desired loss functions.

2 METHODOLOGY

2.1 NOTATIONS FOR MULTI-LABEL CLASSIFICATION

Multi-label learning is a supervised classification task, where an instance can be associated with
multiple class labels simultaneously. Let X ∈ RD, Y ∈ {0, 1}K , and Ω ∈ RL respectively denote
the input, output, and learnable parameter space for D features, K labels, and L parameters. Let
P be a joint probability distribution of samples over X × Y . Let f : RD → RK represent a deep
neural network drawn from Ω ∈ RL, and trained on N samples drawn from P . An input vector
x ∈ X , where X ∈ RD, can be associated with an output vector that is a subset of Y ∈ {0, 1}K ,
i.e., y = {y1, ..., yK}, where yl = 1 if label l is associated with x, and is otherwise zero. We define
the input feature and label data as X ∈ XN and Y ∈ YN , respectively. Given x ∈ X , we denote
p(y|x)y∈Y as the conditional probability of y. We additionally define κ as the set of all conditional
probabilities:

κ = {p(y|x) :
∑
y∈Y

p(y|x) = 1 ∧ p(y|x) ≥ 0}. (1)
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Figure 1: The overall proposed approach of CLML is outlined as follows. (a) illustrates the repre-
sentation of f . (b) illustrates the contribution of each f i toward the improvement over all three loss
functions L(f i) = (L1(f

i),L2(f
i),L3(f

i)), which is quantified as the non-overlapping volume of
space that L(f i) uniquely covers over a set of W models F = ∪Wi=1{f i}, and a reference vector
R = {1}3. (c) illustrates the overall Lebesgue measure over F , which is the aggregate volume of
all f i ∈ F .

and the conditional risk of f given surrogate loss (ψ), loss (L), the conditional probability of sample
x and the label set y:

Lc(p(y|x), f) =
∑
y∈Y

p(y|x)L(f(x), y)

ψc(p(y|x), f) =
∑
y∈Y

p(y|x)ψ(f(x), y).
(2)

2.2 THE REPRESENTATION OF CLML

Throughout this paper, we use a standard feedforward model to represent f , which is illustrated
in Figure 1. However, in comparison to a standard feedforward neural network, our model takes
matrices as inputs and outputs, rather than individual vectors. This is due to the tabular nature of
the data, allowing us to handle all samples simultaneously. First, the encoding layer E : RN×D →
RN×C with bias WE

b , compresses the input signal to C embedding dimensions, where C << D. An
ablation study of C is given in Section A.3. Note that positional encoding is not required due to the
tabulated nature of the data (Vaswani et al., 2017). The compressed input is then row-standardised
(γ) before being passed through a feedforward layer (L) with weights WL and bias WL

b . We repeat
standardisation before passing each row to the decoder D : RN×C → RN×K with bias WD

b . The
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full equation for generating the prediction matrix Ŷ is given by:

Ŷ = σ(σ(γ(σ(γ(XE + WE
b ))W

L + WL
b ))D + WD

b ). (3)

We apply a sigmoid activation function (σ) after each layer (and in particular the output layer,
wherein a softmax is not appropriate for multi-label data). The sigmoid function ensures bounded
activations, which suits CLML’s shallow and matrix-based representation. Furthermore, activation
functions such as ReLU and GELU are more tailored to deeper architectures and address specific
issues such as vanishing gradients, which is not as relevant in this paper. Tight-bound complexity
scales linearly with the parameters in the encoding Θ(NDC) and decoding stages Θ(NKC), and
quadratically with the parameters of the feedforward step Θ(NC2). Note the complexity assumes a
naive implementation of matrix multiplication. We deliberately choose a simpler and shallow model
to demonstrate the effectiveness of the consistent Lebesgue measure, described in the following
subsection.

2.3 A LEBESGUE MEASURE FOR SURROGATE-FREE MULTI-LABEL LEARNING

The Lebesgue measure is widely used for multi-criteria, multi-task, and multi-objective prob-
lems (Igel et al., 2007; Bader et al., 2010; Bader & Zitzler, 2011). We assume the learning
task maps a batch (i.e., matrix) of input vectors XN×D toward a batch of target labels YN×K .
Let L(f(X),Y) : RN×D → Ro be a series of loss functions that map X to a vector of losses
L(f(X),Y) = (L1(f(X),Y), · · · ,Lo(f(X),Y)) given the objective space Z ⊆ Ro and a repre-
sentation of a neural-network f . Given o = 3, let L1,L2, and L3 respectively, without loss of
generality, represent the following widely-used multi-label loss functions: hamming loss, one minus
label-ranking average precision, and one minus micro F1, all of which should be minimised (see
Liu et al. (2021)). Let R ⊂ Z denote a set of mutually non-dominating1 loss vectors; F , the set of
representations of functions; and H(F,R) ⊆ Z, the set of loss vectors that dominate at least one
element of R and are dominated by at least one element of F :

H(F,R) := {z ∈ Z | ∃f ∈ F, ∃r ∈ R : L(f(X),Y) ≺ z ≺ r}. (4)

The Lebesgue measure is defined as λ(H(F,R)) =
∫
Ro 1H(F,R)(z)dz, where 1H(F,R) is the indica-

tor function of H(F,R). The contribution of f toward the improvement (minimisation) of a set of
loss functions L can be quantified by first measuring the improvement of x via the partition function
P (f):

P (f) = H({f}, R)\H(F\{f}, R). (5)

Hence, the Lebesgue contribution of f , λ(P (f)) =
∫
Ro 1P (f)(z)dz, describes it’s contribution to

minimising L. Ultimately, λ(H(F,R)), and therefore L, is sought to be optimised via λ(P (f))
(see Lemma A.1), i.e., f is guided by evaluating its Lebesgue contribution λ(P (f)), which can be
efficiently estimated using Monte Carlo sampling (Bader et al., 2010). R is initialised to the unit
loss vector {1}3. Optimisation of CLML using the Lebesgue measure is achieved via covariance
matrix adaptation (Hansen & Ostermeier, 1996), a standard non-convex optimiser (Smith-Miles &
Geng, 2020; Sarafian et al., 2020; Nomura et al., 2021). Please refer to Section A.1 for an expanded
technical exposition on covariance matrix adaptation (see Section A.1.1), Lebesgue measure esti-
mation using Monte Carlo sampling (see Section A.1.2) and the optimisation process (see Section
A.1.3 and Algorithm 1).

3 CONSISTENCY OF THE LEBESGUE MEASURE

There are many definitions of consistency including infinite-sample consistency in Zhang (2004)
and edge consistency in Duchi et al. (2010). In this work, we define consistency as the Bayes risk,
following Gao & Zhou (2011). We provide the following key definitions before introducing multi-
label consistency.

1f dominates f ′ (f ≺ f ′) iff ∀i : 1 ≤ i ≤ o : Li(f(X),Y) ≤ Li(f
′(X),Y), and ∃Li : Li(f(X),Y) <

Li(f
′(X),Y)
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Definition 3.1 (Conditional Risk). The expected conditional risk R, and the Bayesian risk RB , of a
model representation f given both L and surrogate loss ψ is defined as:

R(f) = E(x,y)∼P [Lc(p(y|x), f)] RB(f) = E(x,y)∼P [inf
f ′
[Lc(p(y|x), f ′)]]

Rψ(f) = E(x,y)∼P [ψ
c(p(y|x), f)] RBψ (f) = E(x,y)∼P [inf

f ′
[ψc(p(y|x), f ′)]].

(6)

Definition 3.2 (Bayes Predictors). The set of Bayes predictors B(p(y|x)) = {f : Lc(p(y|x), f) =
inf
f ′
[Lc(p(y|x), f ′)]} determine that ψ can be multi-label consistent w.r.t. L if the following holds for

every p(y|x) ∈ κ:
RBψ (p(y|x)) < inf

f
{Rψ(p(y|x)) : ∀f ∈ Ω, f /∈ B}. (7)

Theorem 3.1 (Multi-label Consistency). ψ can only be multi-label consistent w.r.t. L iff it holds for
any sequence of f (n) that:

Rψ(f
(n)) → RBψ (f) then RL(f

(n)) → RBL (f). (8)

The proof of Theorem 3.1 is available in Gao & Zhou (2011).
Definition 3.3 (Pareto optimal set). A Pareto optimal set of functions PB contain the following
functions:

PB = {f : {f ′ : f ′ ≺ f ∀f ′, f ∈ Ω, f ′ ̸= f} = ∅}. (9)

Recall that f is said to dominate f ′ (f ≺ f ′) iff ∀i : 1 ≤ i ≤ o : Li(f(X),Y) ≤ Li(f ′(X),Y), and
∃Li : Li(f(X),Y) < Li(f ′(X),Y).

Theorem 3.2 (A Consistent Lebesgue Measure). Given a sequence F (n), the maximisation of the
Lebesgue measure λ(H(F (n), R)) is consistent with the minimisation of L1,L2, and L3:

lim
n→∞

λ(H(F (n), R)) → λ(H(PB , R)) then

RL1
(f (n)) → RBL1

(f) ∧RL2
(f

′(n)) → RBL2
(f ′) ∧RL3

(f
′′(n)) → RBL3

(f ′′).
(10)

In other words, the maximisation of λ(H(F (n), R)) tends to the convergence toward the Bayes risk
for each loss function Li ∀i : 1 ≤ i ≤ 3, f (n), f

′(n), f
′′(n) ∈ F (n) and that f, f ′, f ′′ ∈ PB .

The proof of theorem 3.2 is available in Section A.6. The following section provides significant
empirical evidence to support the consistency of the Lebesgue measure.

4 EVALUATION OF THE MULTI-LABEL CLASSIFICATION PERFORMANCE

4.1 COMPARATIVE STUDIES

We compare CLML against several state-of-the-art and benchmark methods using the recommended
parameter configurations in their papers.

Our first comparative method is, to the best of our knowledge, the current state-of-the-art and best
tabulated multi-label learner to date: collaborative learning of label semantics and deep label-specific
features (CLIF) (Hang & Zhang, 2022). CLIF exploits label interactions using label graph embed-
ding. Label graphs are encoded using a graph isomorphism network, where the respective embed-
dings are used to weigh the latent representation of each instance. Label graph embeddings are
adjusted during the learning process via backpropagation. CLIF has achieved state-of-the-art results
in comparison to many well-known tabulated multi-label learners (Zhang & Wu, 2014; Huang et al.,
2015; 2017; Yeh et al., 2017; Ma & Chow, 2020; Bai et al., 2021).

Our second comparative method learns deep latent spaces for multi-label classification (C2AE) (Yeh
et al., 2017), which jointly encodes features and labels into a shared semantic space via an autoen-
coder network. Our third comparison method is MLkNN, which is a multi-label variant of kNN
that estimates labels based on Bayesian inference (Zhang & Zhou, 2007). The final two comparison
methods are based on Gaussian Naive Bayes with binary relevance (GNB-BR) and classifier chain
(GNB-CC) transformations (Read et al., 2011).
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Table 1: Averages and medians of the geometric
means, for all methods across all datasets.

f µ(µg(L(f))) Med(µg(L(f))
GNB-BR 0.381 ± 0.130 0.371
GNB-CC 0.361 ± 0.096 0.376
MLkNN 0.246 ± 0.087 0.239
C2AE 0.466 ± 0.233 0.419
CLIF 0.232 ± 0.087 0.269
CLML 0.232 ± 0.073 0.237

Table 2: Friedman statistic of each measure for
all comparative methods across all datasets.

Measure Statistic Critical Value
λ(P (f)) 2.542

15.507
µg(L(f)) 30.000
L1(f) 39.022
L2(f) 26.222
L3(f) 29.600

4.2 STATISTICAL ANALYSIS

We compare CLML against CLIF, C2AE, MLkNN, GNB-CC, and GNB-BR using several multi-
label loss functions on nine different, commonly used open-access datasets. The experimental pro-
tocol and dataset summary are described in detail in Section A.2.

4.2.1 AGGREGATED PERFORMANCES

The geometric mean of the loss vector L(f(X),Y), µg(L(f(X),Y)) = (
∏3
i=1 Li(f(X),Y))

1
3 , de-

termines the aggregate performance of the loss functions. Owing to its multiplicative nature, the
geometric mean can be sensitive to very low values among the loss functions, which can result in a
lower aggregate value than the arithmetic mean, which accords each value with equal importance.
This sensitivity grants the geometric mean with finer granularity, which is beneficial when: (1) the
range and magnitude of values among the loss functions are comparable in scale, and (2) distinguish-
ing solutions that exhibit exemplary performance on a subset of the loss functions is a priority. Table
1 includes the summary values of the geometric means over all datasets for each of the comparative
methods.

CLML achieves the lowest (median) geometric mean, indicating the best performance when bal-
ancing all three loss functions. Even though CLML and CLIF achieve the same average score, the
geometric mean variability of CLML is lower by 16.1%, indicating that CLML achieves the best
performance more consistently.

4.2.2 NON-PARAMETRIC TESTS

We employ the widely-used non-parametric Friedman test Demšar (2006) to measure any statisti-
cally significant performance differences between the methods with respect to the Lebesgue con-
tribution, the geometric mean, and each individual loss function. Table 2 exhibits the significant
differences between the geometric means and each individual loss function across all comparative
methods and datasets. Interestingly, Table 2 shows that the Friedman test of the Lebesgue contribu-
tions did not reflect these differences. Note that these observations do not indicate uniformity in the
performance of all methods. For example, while different methods may contribute solutions of dif-
ferent qualities, said solutions may intersect in terms of their Lebesgue contributions. This is evident
in the supplementary Tables 6 and 7, where all dominated methods have a Lebesgue contribution of
zero. For this reason, we propose another analysis.

We proceed to further analyse model performance using a Bonferroni-Dunn test and a critical differ-
ence analysis with α = 0.05 (Dunn, 1961; Hang & Zhang, 2022). We perform a pairwise compari-
son between the average ranks of each algorithm, with CLML set as a control algorithm. The critical
difference plots in Figure 2 illustrate the rankings of each algorithm. The rankings are presented in
ascending order, where the best method is on the leftmost side of the plot.

In summary, CLML achieves the lowest aggregate rank of 1.94 (aggregated among all measures and
datasets presented in Figure 2), compared to 2.24 of CLIF (+13.4%), 3.1 of MLkNN (+37.4%),
4.36 of C2AE (+55.5%), 4.6 of GNB-CC (+57.8%), and 4.78 of GNB-BR (+59.4%). The only
ranking that CLML is not the best at is with respect to L1 (losing to CLIF by 0.2). CLML and CLIF
obtain the same ranking with respect to L3. Furthermore, in most cases, the Bonferroni-Dunn test
does not detect a significant difference between CLML and CLIF, even though CLML achieves a
better rank than CLIF in most cases. This largely stems from CLIF being the current state-of-the-art,
remaining competitive with CLML in most cases.
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Figure 2: Bonferroni-Dunn test critical difference plots. A crossbar is drawn between CLML and
any method if their difference in average ranking is less than the critical difference (CD = 2.266
with K = 6 methods and T = 9 datasets).
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Figure 3: The training curves of CLML plotted against L1(f(X),Y), L2(f(X),Y), and
L3(f(X),Y). The colour represents the averaged binary cross-entropy loss L4(f(X),Y), which
is tracked independently during the optimisation process. The red line shows the moving average
trajectory of CLML. A zoom-in plot is presented at the top right of each subplot to highlight the area
of convergence.

These results are significant due to the simple feedforward representation of CLML, which does
not include the label graph embedding or semantic embedding techniques seen in CLIF or C2AE,
respectively. This highlights the influence and importance of a consistent loss function that properly
directs optimisation behaviour and quality of multi-label learners. To further support this claim, the
next section provides further analysis to examine the relationship between the average binary cross
entropy and the loss functions that are optimised by CLML.

5 EFFECTIVENESS OF THE LEBESGUE MEASURE OVER SURROGATE LOSS

This section analyses the relationship between the loss functions: L1, L2, and L3, and the averaged
binary cross entropy loss representing a standard surrogate loss function (Yeh et al., 2017; Bai et al.,
2021; Hang & Zhang, 2022), denoted L4. The following key observations can be made.
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Figure 4: Label distributions and calibration curves of CLML on the emotions dataset. Subplot (a)
shows two label probability distributions. The leftmost plot is the distribution of CLML’s incumbent
label probabilities after 1 epoch. The plot to the right is the distribution of the predicted label proba-
bilities after training is complete. Subplot (b) shows the calibration curve of the incumbent solution
of CLML after the first epoch (left) and its state after training is complete (right). The number of
bins for the distributions and the calibration plots are BD = 50 and BC = 10, respectively.

Moving average trajectory. Figure 3 plots the training trajectory of CLML with respect to the four
loss functions during training on the CAL500 and emotions datasets. The remaining training curves
are available in Figures 7 and 8 in Section A.5. The red line traces the moving average trajectory of
CLML on the approximate loss landscape defined by the three loss functions L1, L2, and L3, while
the point colour denotes the L4 loss.

The moving average trajectory indicates a distinct and consistent decline of all the desired loss
functions L1, L2, and L3. Recall that CLML specifically optimises the Lebesgue contribution
λ(P (f)), i.e., the contribution toward the improvement of the Lebesgue measure λ(H(F,R)). In
this case, by empirical observation, maximising the Lebesgue contribution directly corresponds to
the minimisation of the desired loss functions. Furthermore, despite a degree of stochasticity, the
overarching trend indicates that all three loss functions can be optimised in tandem despite their
conflicting nature (see Wu & Zhu (2020) for an analysis of the conflicting nature of multi-label loss
functions). This is primarily due to the inherent nature of the Lebesgue measure, which naturally
considers the trade-offs between the different multi-label loss functions. Hence, the optimisation
behaviour of CLML naturally follows a path that understands and accounts for the best trade-offs
between these loss functions. Furthermore, Figure 3 draws attention to the increase in L4 near the
point of convergence on both CAL500 and emotions. On both datasets, the minimisation of L1,
L2, and L3 does not directly correspond to the minimisation of L4, which suggests a discrepancy
between the surrogate and desired loss functions.

Label confidence vs. label accuracy. Figures 4(a) and (b) plot the distributions of CLML’s incum-
bent label probabilities and the calibration curve of CLML’s incumbent solution respectively, after
one epoch (left) and after training (right).

We first discuss the distributions after one epoch. Both correct and incorrect label probability dis-
tributions are uni-modal and share a similar shape, with noticeable variation in confidence ranging
from 0.5 to 0.8. This suggests that CLML is initially less confident in its prediction of the absence
of labels than its prediction of the presence of labels (irrespective of correctness). After training,
the distributions are heavily skewed and bi-modal, which suggests that CLML is very confident in
predicting labels. This bi-modal shape applies to both the correct and incorrect label distributions.
Notably, the value of L4 after one epoch increases from 3.382 to 3.677 after training, an undesired
effect. This increase can be attributed to CLML’s increased degree of confidence in the incorrectly
classified labels. However, L1, L2, and L3 are desirably lower after training, which is further sup-
ported by the improvement in the calibration curve of CLML after training in Figure4(b). These
observations highlight the discrepancy between confidence and accuracy, which underscores the
importance of directly handling accuracy (without surrogacy) in multi-label learning.

6 RELATED WORKS

Multi-label Learning. Multi-label learning is a common problem, including computer vision (You
et al., 2020; Wang et al., 2020; Zhou et al., 2021; Yuan et al., 2023; Liu et al., 2023), functional ge-
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nomics (Patel et al., 2022), and tabulated learning (Yeh et al., 2017; Bai et al., 2021; Hang & Zhang,
2022; Lu et al., 2023). Earlier work on multi-label learning transformed a multi-label problem into a
series of single-label problems, or by sequentially classifying each label, where previously classified
labels are incorporated at each classification step (Liu et al., 2021). However, such a transformation
does not typically perform well, as valuable label interactions are lost. CLML’s universal perfor-
mance gain over both GNB-BR and GNB-CC highlights this property of multi-label learning, as it
does not transform the multi-label problem into a single-label problem.

Deep learning has advanced the multi-label learning field (Liu et al., 2017). Researchers have
followed this trend, exploiting feature interactions using self-attention mechanisms on transform-
ers (Xiao et al., 2019), and deep latent space encoding of features and labels using auto-encoders
(C2AE) (Yeh et al., 2017). CLML demonstrates that a relatively straightforward architecture, with-
out such deep encoding mechanisms, can be state-of-the-art. This highlights the overarching impor-
tance of the consistent Lebesgue measure to multi-label learning.

Collaborative learning of label semantics and deep label-specific features (CLIF) (Hang & Zhang,
2022) exploits label interactions using label graph embedding. CLIF has achieved state-of-the-
art results in multi-label learning, significantly outperforming many prior state-of-the-art methods.
CLIF utilises a label graph embedding procedure that weighs the latent representation of the input.
With a simple representation, CLML achieves an overall lower ranking (better) than CLIF across a
variety of loss functions and datasets (a 13.4% improvement). This is particularily significant given
the state-of-the-art performance of CLIF, which significantly outperforms many prior state-of-the-
art works such as LIFT (Zhang & Wu, 2014), LLSF (Huang et al., 2015), JFSC (Huang et al., 2017),
C2AE (Yeh et al., 2017), TIFS (Ma & Chow, 2020), and MPVAE (Bai et al., 2021).

Consistency. All multi-label loss functions are ultimately related to measuring the predicted label
accuracy. However, their interpretation of quality, and therefore their consistency, can vary. A
robust multi-label model should account for the inconsistencies between the multiple related, yet
potentially conflicting, loss functions in multi-label learning (Gao & Zhou, 2011; Wu & Zhu, 2020;
Liu et al., 2021). Consistency in multi-label learning has been investigated in prior works Gao &
Zhou (2011) and Wu & Zhu (2020), showing both that we can only partially approximate some loss
functions and that feasibility of a consistent loss approximation remains an open-ended research
question. In this paper, we have theoretically and empirically shown that the Lebesgue measure,
over a series of multi-label loss functions (L1, L2, and L3), is consistent with the loss functions
themselves. As a result, CLML circumvents the issues surrounding surrogate loss functions.

7 CONCLUSIONS

Deep learning techniques have advanced the field of multi-label learning, and have thus become
state-of-the-art. Despite the success achieved by deep learning-based multi-label learning methods,
inconsistencies remain between surrogate loss functions and multi-label functions and have sel-
dom been addressed. This motivates the proposed Consistent Lebesgue Measure-based Multi-label
Learner (CLML). In this paper, we proposed a highly novel approach to tabulated multi-label learn-
ing that considers multiple loss functions simultaneously. These multiple non-convex and discon-
tinuous loss functions are optimised using a novel Lebesgue measure-based learning objective. By
analysis, we proved that CLML is theoretically Bayes consistent with the underlying loss functions
that are optimised. Furthermore, empirical evidence supports our theory by demonstrating a 13.4%
to 59.4% improvement in the critical distance rankings of CLML in comparison to state-of-the-art
methods. These results are especially significant due to the simplicity of CLML, which achieves
state-of-the-art results without the need to explicitly consider label interactions via label graphs
or latent semantic embeddings. Lastly, our analysis shows that CLML can naturally account for
the best trade-offs between multiple multi-label loss functions that are known to exhibit conflicting
behaviour. CLML’s state-of-the-art performance further highlights the importance of optimisation
consistency over model complexity. Thus, the findings of this paper analytically emphasises the
overall significance of consistency and goal alignment in multi-label learning.
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8 REPRODUCIBILITY STATEMENT

The code and pre-trained weights for CLML will be made available upon submission. All datasets
are open access at https://mulan.sourceforge.net/datasets-mlc.html.
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A APPENDIX

A.1 OPTIMISATION PROCESS

The overall optimisation procedure using covariance matrix adaptation and the Lebesgue measure is
described clearly in the following sections.

A.1.1 COVARIANCE MATRIX ADAPTATION

Co-variance Matrix Adaptation Evolutionary Strategy (CMA-ES) Hansen & Ostermeier (2001) is
a gradient-free numerical optimisation technique well-suited for non-convex and non-differentiable
optimisation problems. Suppose the representation of a learner f can be denoted as a vector con-
sisting of its learnable parameters θf . CMA-ES works by sampling λ solutions from a multi-variate
normal distribution as follows:

θfi ∼ m + σNi(0,C) ∀i, 1 ≤ i ≤ λ (11)

where θfi is the learnable parameters of the ith learner, m is a mean-vector which represents the ex-
pected density of parameters of f , σ the step-size, and C the covariance matrix. CMA-ES therefore
iteratively updates m and C via the following:

mt+1 = mt + σ

µ∑
i=1

wiθ
ftop

i (12)

Ct+1 = (1− ccov)Ct + ccov

µ∑
i=1

wiθ
ftop

i (

µ∑
i=1

wiθ
ftop

i )T (13)

(14)

where ccov is the learning rate,
∑µ
i=1 wiθ

ftop

i is the weighted sum of the µ-highest ranked solutions
at time t, where the weights w1 > w2 > · · · > wµ > 0 and

∑µ
i=1 wi = 1. It is also deemed that

solutions θf
top

i ∼ m + σNi(0,C) are ranked such that θf
top

1 ≺ · · · ≺ θf
top

µ and that the µ ranked
solutions are a subset of the total number of sampled solutions, i.e. µ < λ. This method is referred
to rank-one update. CMA-ES can also be updated using the cumulation (or search trajectory), hence
the covariance matrix is updated as follows using the rank-one method:

Ct+1 = (1− ccov)Ct + ccov

µ∑
i=1

wiptcp
t
c
T (15)

pt+1
c = (1− cc)ptc +

√
1− (1− cc)2

√
µteff

µ∑
i=1

wiθ
f top (16)

µteff =
1√∑µ
i=1 w

2
i

µ∑
i=1

wiθ
f top (17)

where cc is the prescribed learning rate for the cumulation update.

A.1.2 LEBESGUE MEASURE ESTIMATION USING MONTE CARLO SAMPLING

The Lebesgue measure λ(H(F,R)) described in Eq. 4 integrates the area covered by a set of loss
function vectors in a multi-dimensional objective space. This measure is comprised of three sets: F ,
R, and Z. F denotes the set of representations of functions (which map the input data to a vector
of loss function values). R denotes the set of mutually non-dominating loss vectors. Initially, R is
set to the unit loss vector {1}3, which denotes the worst possible performance for Hamming-loss,
one minus the Micro-F1, and one minus the label ranking average precision. Last, Z denotes the
set containing all possible loss function vectors in the applicable multi-dimensional loss objective
space.

The Lebesgue contribution λ(P (f)) of a function f measures the new marginal improvement of a
function’s loss vector over a set of previous loss vectors. In this paper, we use the Lebesgue contri-
bution to quantify candidate functions found by CLML during the optimisation process. However,
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to efficiently calculate the Lebesgue contribution (especially when the set of functions F and R are
sparsely populated during the early stages of the optimisation), we estimate the Lebesgue measure
using Monte Carlo sampling. First, a sampling space S ⊆ Z is defined that entirely contains P (f),
i.e., P (f) ⊆ S ⊆ Z. The sampling space can be problem-specific, however, in this paper, it is
defined to contain all possible loss vectors between {0}3 and {1}3. Following, g samples are drawn
from si ∈ S randomly and with uniform probability. Given {s1, · · · , sg}, the Lebesgue contribution
is estimated via λ̂(P (f)) via the following:

λ̂(P (f)) = λ(S(f)) =
|{si|si ∈ P (f)}|

g
(18)

where |{si|si ∈ P (f)}| is denoted as the number of randomly sampled solutions that exist in P (f),
also known as hits. The probability p of a sample being hit is i.i.d. Bernoulli distributed, therefore,
λ̂(P (f)) converges to λ(P (f)) with 1√

pg Laplace (1814).

A.1.3 OPTIMISATION OF THE LEBESGUE MEASURE USING COVARIANCE MATRIX
ADAPTATION

The optimisation process is described in Algorithm 1. Starting with an initial covariance matrix and
density vector, CLML optimises the Lebesgue contribution of newly generated candidate functions
obtained by perturbing a density vector and covariance matrix. Each function is evaluated using the
Hamming-loss (L1), one minus the label ranking average precision (L2), one minus the micro-F1

(L3). The density vector is updated toward the density of the current solutions, and the covariance
matrix is updated using a rank-one method. CLML maintains an archive of solutions based on the
validation fitness values that are derived from the prescribed loss functions. Ultimately, CLML
returns the incumbent solutions (in terms of validation loss) for each of the loss functions from the
archive and the final incumbent solution.

Algorithm 1: Consistent Lebesgue Measure-based Multi-label Learner

Input: Initial covariance matrix C0, and density vector m0, and maximum number of epoch T
Initialise R0 to unit vector {1}3;
Initialise F 0 = {∅};
Set t = 0;
Set f0 = m0;
while t < T do

Generate f i ∼ mt + σNi(0,Ct), 1 ≤ i ≤ λ;
Set F t+1 =

⋃λ
i=1{f i};

for f i ∈ F t+1 do
Calculate the training (tra) and validation (val) loss values for each loss function:
L1(f

i), L2(f
i), and L3(f

i);
Estimate λ(P (f i)) using the Monte Carlo method over loss functions Ltra1 (f i),
Ltra2 (f i), and Ltra3 (f i), and prescribe it as the fitness for f i;

Archive the loss values Lval1 (f i), Lval2 (f i), and Lval3 (f i), and corresponding function
f i;

Update density mt+1 to the average of the newly generated solutions ∀f i ∈ F t+1;
Update Ct+1 via rank-one method using the prescribed λ(P (f i)) as fitness values
∀f i ∈ F t+1;

Update Rt+1 by calculating the mutually non-dominated solutions in Rt ∪ F t+1;
Set f t+1 to the best solution in F t+1 according to its prescribed fitness value;

return Incumbent solutions for each loss function from archive: Lval1 (f i), Lval2 (f j), and
Lval3 (fk), and the final incumbent solution fT ;
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A.2 EXPERIMENTAL PROTOCOL

We conduct the experiments on nine widely-used multi-label datasets, shown in Table 3. Kµ (the
cardinality) of an instance measures the average number of associated class labels; DK/Kµ, the
theoretical maximum complexity of an instance, (i.e., the instance-level average dispersion of fea-
ture to label interactions); and DKµ, the average feature to label interactions of an instance. There
are two important cases to consider. First, if dispersion is less than the average interaction, i.e.,
DK/Kµ < DKµ, then the dataset contains high concentrations of rich instance-level feature-to-
label interactions that are not apparent when examining the dataset as a whole. This can indicate
that there are clusters of instances that share similar feature-to-label interactions, and therefore a less
diverse dispersion of the possible feature-to-label interactions. Second, if dispersion is higher than
the average interaction, i.e., DK/Kµ > DKµ, the dataset as a whole has a greater expression of
feature-to-label interactions than a given individual instance. Put differently, the dataset’s individual
instances each contain a subset of the total dataset interactions. The latter case is particularly chal-
lenging as it indicates a high number and variability of potential patterns and interactions between
features and labels. The first case occurs in both Flags and Yeast and the second case occurs in the
remaining datasets.

For each dataset, 30% are partitioned to the test set (Sechidis et al., 2011). The remaining 70% is
further split such that 20% is used as a validation set, and the remaining is used for training. We
apply normalisation to all numerical features before training.

Table 3: Summary of datasets used in this paper. D,N , andK correspond to the number of features,
instances, and labels, respectively.

Dataset D N K DK Kµ DK/Kµ DKµ

flags 19 194 7 133 3.392 39.21 64.45
CAL500 68 502 174 251, 000 26.044 9, 637.54 1, 770.99
emotions 72 593 6 432 1.869 231.14 134.57

yeast 103 2417 14 1442 4.237 340.335 436.411
scene 294 2407 6 1764 1.074 1, 642.46 315.756

corel5k 499 5000 374 186, 626 3.522 52, 988.64 1, 757.48
enron 1001 1702 53 53, 053 3.378 15, 705.45 3, 381.38

genbase 1186 662 27 32, 022 1.252 25, 576.68 1, 484.87
medical 1449 978 45 65, 205 1.245 52, 373.49 1, 804.01

A.3 ABLATION STUDY

We trial the embedding dimension C at eight separate values. It is important to note that the la-
tent space does not need to express spatial relationships of tabulated data, hence the embedding
dimension can be quite small (in contrast to computer vision in works such as Gong et al. (2022)).
In addition to L1,L2, and L3, we set L4 as the averaged binary cross-entropy loss and track its
progress during optimisation. For each experiment, we set O = 750 (the maximum number of
epochs). Here, we present the results for each of the embedding dimensions.

Figures 5 and 6 plot the Lebesgue measure of the sequence of functions obtained by CLML as n→
O (i.e., the archive of non-dominated solutions obtained by CLML in O epoch). Smaller embedding
dimensions (i.e., C ≤ 80) result in the best validation scores of λ(H(F,R)). To exemplify this, we
tabulate the incumbent solution of the function sequence in terms of its L1, L2, and L3 scores on
the validation set, against L4 according to each (non-normalised) value of C in Table 4 and 5. When
C = 20, we observe the lowest L1, L2, and L3 validation loss scores on the emotions dataset,
and the lowest λ(H(F,R)) score on the CAL500 dataset. This observation indicates that CLML
converges toward a better approximation of the Bayes predictors of L1, L2, and L3 on the emotions
dataset, while on CAL500, CLML finds functions with more desirable trade-offs between the variant
loss functions, hence the higher Lebesgue measure. These values motivate our recommendation to
set the number of embedding dimensions to C = 20.
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Figure 5: The best Lebesgue measure obtained
on CAL500 at each embedding dimension of the
sequence of function sets lim

n→O
λ(H(F (n), R)).

Table 4: Best validation loss values of the in-
cumbent solution for each embedding dimen-
sion on CAL500.

C L1 L2 L3 L4

20.0 0.169 0.523 0.509 138.068
40.0 0.171 0.522 0.518 143.809
60.0 0.169 0.523 0.520 144.201
80.0 0.161 0.527 0.525 149.604

100.0 0.196 0.529 0.534 157.877
120.0 0.171 0.529 0.539 155.555
140.0 0.167 0.528 0.534 151.250
160.0 0.168 0.526 0.533 153.533

20 40 60 80 100 120 140 160
C

0.275

0.300

0.325

0.350

0.375

0.400

λ(
H
(F
,R

))

Figure 6: The best Lebesgue measure ob-
tained on emotions at each embedding di-
mension of the sequence of function sets
lim
n→O

λ(H(F (n), R)).

Table 5: Best validation loss values of the in-
cumbent solution for each embedding dimen-
sion on emotions.

C L1 L2 L3 L4

20.0 0.187 0.283 0.178 3.399
40.0 0.199 0.307 0.197 3.246
60.0 0.192 0.299 0.196 3.255
80.0 0.196 0.306 0.196 3.910
100.0 0.199 0.302 0.199 3.742
120.0 0.210 0.333 0.212 3.557
140.0 0.202 0.313 0.193 4.380
160.0 0.250 0.398 0.252 5.758

A.4 EXTENDED EVALUATION OF MULTI-LABEL CLASSIFICATION PERFORMANCES

Tables 6 and 7 show the expanded view of the loss values (L1, L2, and L3), the Lebesgue contri-
bution (λ(P (f))), the normalised Lebesgue contribution, and geometric means of each comparative
method on each dataset. A zero value on the Lebesgue contribution indicates that a given func-
tion is dominated by all other functions on the given dataset, i.e., it does not contribute toward the
improvement of the volume over L(f(X),Y).

Table 6: Lebesgue measure contribution of each f on datasets: CAL500 to enron

Dataset f (L1,L2,L3) λ(P (f)) Normalised λ(P (f)) µg(L(f(X),Y))
CAL500 GNB-BR (0.547, 0.713, 0.647) 0 0 0.631976
CAL500 GNB-CC (0.273, 0.641, 0.749) 0 0 0.507895
CAL500 MLkNN (0.150, 0.637, 0.554) 0.000351 0.020338 0.375585
CAL500 C2AE (0.258, 0.536, 0.534) 0 0 0.419409
CAL500 CLIF (0.137, 0.681, 0.502) 0.007068 0.409162 0.360752
CAL500 CLML (0.168, 0.526, 0.520) 0.009856 0.570499 0.358231
yeast GNB-BR (0.319, 0.472, 0.351) 0 0 0.375014
yeast GNB-CC (0.325, 0.488, 0.428) 0 0 0.407721
yeast MLkNN (0.213, 0.375, 0.298) 0 0 0.287821
yeast C2AE (0.221, 0.358, 0.272) 0.003081 0.425447 0.278355
yeast CLIF (0.227, 0.391, 0.275) 0 0 0.290108
yeast CLML (0.211, 0.364, 0.266) 0.004160 0.574553 0.273480
corel5k GNB-BR (0.035, 0.808, 0.899) 0 0 0.293086
corel5k GNB-CC (0.023, 0.796, 0.900) 0.000374 0.050347 0.256293
corel5k MLkNN (0.012, 0.878, 0.808) 0 0 0.202247
corel5k C2AE (0.027, 0.800, 0.730) 0.001417 0.190763 0.251250
corel5k CLIF (0.010, 0.820, 0.701) 0.005621 0.756548 0.179956
corel5k CLML (0.021, 0.801, 0.798) 0.000017 0.002343 0.236797
enron GNB-BR (0.198, 0.725, 0.776) 0 0 0.481206
enron GNB-CC (0.125, 0.639, 0.742) 0 0 0.390116
enron MLkNN (0.056, 0.529, 0.436) 0 0 0.238964
enron C2AE (0.189, 0.665, 0.487) 0 0 0.393941
enron CLIF (0.053, 0.499, 0.381) 0.014309 0.702718 0.216576
enron CLML (0.054, 0.488, 0.411) 0.006053 0.297282 0.220966
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Table 7: Lebesgue measure contributions of each f on datasets: genbase to medical

Dataset f (L1,L2,L3) λ(P (f)) Normalised λ(P (f)) µg(L(f(X),Y))
genbase GNB-BR (0.052, 0.479, 0.538) 0 0 0.237314
genbase GNB-CC (0.058, 0.639, 0.575) 0 0 0.277332
genbase MLkNN (0.033, 0.454, 0.331) 0 0 0.170749
genbase C2AE (0.345, 0.823, 0.561) 0 0 0.542500
genbase CLIF (0.046, 0.793, 0.539) 0 0 0.269161
genbase CLML (0.020, 0.239, 0.117) 0.305516 1.000000 0.082065
scene GNB-BR (0.233, 0.431, 0.351) 0 0 0.327976
scene GNB-CC (0.208, 0.485, 0.360) 0 0 0.331290
scene MLkNN (0.096, 0.277, 0.193) 0 0 0.172696
scene C2AE (0.153, 0.439, 0.240) 0 0 0.252437
scene CLIF (0.085, 0.244, 0.125) 0.077641 1.000000 0.137482
scene CLML (0.124, 0.358, 0.192) 0 0 0.204266
emotions GNB-BR (0.410, 0.458, 0.271) 0 0 0.370604
emotions GNB-CC (0.363, 0.469, 0.313) 0 0 0.376465
emotions MLkNN (0.268, 0.497, 0.361) 0 0 0.363696
emotions C2AE (0.537, 0.556, 0.488) 0 0 0.526199
emotions CLIF (0.223, 0.412, 0.246) 0 0 0.282547
emotions CLML (0.205, 0.328, 0.224) 0.070462 1.000000 0.246669
flags GNB-BR (0.443, 0.560, 0.439) 0 0 0.477465
flags GNB-CC (0.443, 0.560, 0.428) 0 0 0.473409
flags MLkNN (0.307, 0.302, 0.233) 0 0 0.278388
flags C2AE (1.000, 1.000, 1.000) 0 0 1.000000
flags CLIF (0.298, 0.316, 0.217) 0 0 0.273610
flags CLML (0.281, 0.285, 0.205) 0.025526 1.000000 0.254035
medical GNB-BR (0.033, 0.576, 0.694) 0 0 0.236867
medical GNB-CC (0.030, 0.569, 0.686) 0 0 0.226807
medical MLkNN (0.018, 0.372, 0.284) 0 0 0.124836
medical C2AE (0.286, 0.858, 0.607) 0 0 0.530094
medical CLIF (0.013, 0.278, 0.134) 0.175332 1.000000 0.079506
medical CLML (0.028, 0.643, 0.496) 0 0 0.207179

A.5 EXTENDED RESULTS OF TRAINING CURVES AGAINST SURROGATE LOSS
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Figure 7: The training curves of CLML on datasets enron through scene (c-f).
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Figure 8: The training curves of CLML on datasets yeast through flags (g-i).

19



Under review as a conference paper at ICLR 2024

A.6 PROOF OF THEOREM 3.2

Here we show several useful and interesting Corollaries and Lemmas before proving Theorem 3.2.

Definition A.1 (Metric Risk). We define the conditional and Bayes risk of L1,L2, and L3 given X
and Y for i = 1, 2, 3 as follows:

RLi
(f) =

1

N

N∑
j=1

∑
yj∈Y

p(yj |xj)Li(f(xj), yj) RBLi
(f) =

1

N

N∑
j=1

inf
f ′
[
∑

yj∈Y
p(yj |xj)Li(f ′(xj), yj)]

(19)

The overall risk and Bayes risk is given by:

RL(f) = (RL1
(f), RL2

(f), RL3
(f)) RBL(f) = (RBL1

(f), RBL2
(f), RBL3

(f)) (20)

Corollary A.0.1 (Below-bounded and Interval). The Lebesgue measure is naturally below-bounded
and interval, i.e., for any F, F ′ and R,R′ ⊂ Z, λ(H(F,R)) = λ(H(F ′, R′)) or |λ(H(F,R)) −
λ(H(F ′, R′))| > 0, which is naturally inherited from the underlying below-bounded and interval
properties of L1,L2 and L3 following Gao & Zhou (2011).

Lemma A.1 (The Lebesgue Contribution Equals Lebesgue Improvement). Let λ(H(F,R)) denote
the Lebesgue measure over a set F . The overall improvement toward the minimisation of L1,L2, and
L3, is prescribed by the volume of λ(H(F,R)), which can be expressed as the sum of contributions
of losses for each function representation f ∈ F :

λ(H(F,R)) =
∑
f∈F

λ(P (f)) =
∑
f∈F

∫
Ro

1H({f},R)\H(F\{f},R)(z)dz (21)

Proof. Consider a redefined Lebesgue measure as the union of non-overlapping (disjoint) contribu-
tion regions for each f ∈ F . By substitution:

λ(H(F,R)) =

∫
Ro

1H(F,R)(z)dz =

∫
Ro

1∪f∈FH({f},R)\H(F\{f},R)(z)dz (22)

The integral can be re-written to express the sum over disjoint contribution regions:∫
Ro

1∪f∈FH({f},R)\H(F\{f},R)(z)dz =
∑
f∈F

∫
Ro

1H({f},R)\H(F\{f},R)(z)dz =
∑
f∈F

λ(P (f)).

(23)

Proof of Theorem 3.2. Recall the claim given a sequence F (n), the maximisation of the Lebesgue
measure λ(H(F (n), R)) is consistent with the minimisation of L1,L2, and L3:

lim
n→∞

λ(H(F (n), R)) → λ(H(PB , R)) then

RL1
(f (n)) → RBL1

(f) ∧RL2
(f

′(n)) → RBL2
(f ′) ∧RL3

(f
′′(n)) → RBL3

(f ′′).
(24)

In other words, the maximisation of λ(H(F (n), R)) tends to the convergence toward the Bayes risk
for each loss function Li ∀i : 1 ≤ i ≤ 3, f (n), f (n)

′
, f (n)

′′ ∈ F (n) and that f, f ′, f ′′ ∈ PB .

We proceed by contradiction. Suppose the following function exists: fγ /∈ PB , fγ ∈ Ω s.t. ∃v :
RLv

(fγ) = RBLv
(fγ), i.e., fγ is a Bayes predictor for the vth loss Lv given p(y|x). Now suppose

another function fβ ∈ Ω exists s.t. fβ ∈ PB . By this condition, fβ ≺ fγ as fγ /∈ PB , hence
∀i : 1 ≤ i ≤ o : Li(fβ) ≤ Li(fγ), and ∃Lk : Lk(fβ) < Lk(fγ). This result has two implications:

1. If k = v then Lk(fβ) < Lk(fγ) would contradict fγ being a Bayes predictor. This would
imply a Bayes predictor cannot exist outside PB .
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2. If k ̸= v, then ∀i : 1 ≤ i ≤ o : Li(fβ) ≤ Li(fγ). For this condition to hold, when i = v,
Li(fβ) ≤ Li(fγ) would imply that fβ is also a Bayes predictor of Li, when there is strict
equality, and implication 1 when there is inequality. Therefore, the Bayes predictor of Li
already exists within PB .

The Pareto optimal set of representations therefore contains a set of Bayes predictors, one for
each loss dimension. Hence, given a sequence F (n), the maximisation of the Lebesgue measure
λ(H(F (n), R)) is eventually consistent with the minimisation of L1,L2, and L3.
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