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ABSTRACT

Collider bias poses a great challenge in estimating the treatment effect from ob-
servational data due to the sample selection mechanism on both treatments and
outcomes. Previous works mainly focused on addressing confounding bias and se-
lection bias caused by covariates only. However, they failed to accurately estimate
the causal effect with collider bias, which is known to be an unidentifiable problem
without further assumptions on the observational data. In this paper, we address
collider bias in the observational data by introducing small-scale experimental
data. Specifically, we treat the collider bias problem from an out-of-distribution
perspective, where the selected observational data comes from an environment
labeled with S = 1, and the unselected data comes from another environment la-
beled with S = 0. The experimental data comes from the entire data space, but the
environment labels are unknown. Then, we propose a novel method named Dual
Counterfactual Generative Model (DCGM), which consists of two generators that
respectively generate the unselected data and the missing S labels, and two discrim-
inators that discriminate between the observational data and data with generated
S = 1 labels, as well as between the generated unselected samples and data with
generated S = 0 labels for training the generators. Combining the observational
data with the unselected samples generated by DCGM, the treatment effect can be
accurately estimated using the existing approaches without considering the collider
bias. Extensive experiments on synthetic and real-world data demonstrate the
effectiveness and the potential application value of the proposed method.

1 INTRODUCTION

Estimating treatment effects from observational data is crucial for explanatory analysis and decision-
making processes (Robins et al., 2000; Angrist & Pischke, 2009; Imbens & Wooldridge, 2009; Emdin
et al., 2017). For example, accurately assessing the treatment effect of specific drugs on each patient
can help doctors decide how to administer drugs to specific individuals, which is a counterfactual
problem since we cannot simultaneously observe the outcomes of an individual taking or not taking
the drugs. The critical challenge of estimating treatment effects is eliminating the presence of biases
in the observational data (Pearl, 2009).

There are two primary sources for biases: confounding bias and selection bias (Greenland, 2003; Guo
et al., 2020; Hernán & Robins, 2020). Let T denote the treatment variable, X denote the pre-treatment
variables, Y denote the outcome variable, and S denote the selection indicator. The confounding bias
results from common causes of treatments and outcomes (T ←X→ Y ), and the selection bias results
from non-random sample selection caused by some certain variables (T ⇢ S ⇠ Y ). Most of the
previous works focused on addressing confounding bias (Bang & Robins, 2005; Shalit et al., 2017;
Louizos et al., 2017; Wager & Athey, 2018) and selection bias caused by only T and X (Bareinboim
& Tian, 2015; Correa et al., 2018), while ignoring collider bias which is a particular form of selection
bias (T → S ← Y ). These methods cannot address collider bias because both T and Y cause S,
which introduces spurious correlations between T and Y , resulting in biased estimation of treatment
effects not only on S = 0 data but also on S = 1 data.
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(a) Experimental data without collider bias (b) Observational data with collider bias

Figure 1: The data form and causal graphs of observation data and experimental data where ✓ denotes
the data is observable and ✗ denotes the data cannot be observed.

Collider bias can be defined as non-random sample selection conditioning on both treatments and
outcomes, as shown in Figure 1(b). The observational data is sampled from the true data distribution
by the sample selection mechanism in Figure 1(b), indicated as S = 1, while the unobserved non-
selected data is indicated as S = 0. In other words, only S = 1 samples can be observed, and for S = 0
data, the values of X, T and Y are all missing. Due to collider bias, the observed data distribution
will differ from the true data distribution. For example, when studying whether vaccination will
protect against contracting COVID-19, where T is whether an individual is vaccinated, Y is whether
an individual contracts COVID-19, and X is an individual’s covariates like gender, age, etc., we
cannot force everyone to test for COVID-19. As a result, we can only observe the data of a specific
population who test for COVID-19. However, whether testing for COVID-19 is not random, people
who are vaccinated and who contract COVID-19 are more willing to test, which means the sample
selection is conditional on the values of T and Y , leading to collider bias. In fact, without further
assumptions about the observational data, treatment effects are unidentifiable with collider bias
(Correa & Bareinboim, 2017; Hernán & Robins, 2020), and thus it is necessary to introduce external
unbiased data to solve collider bias.

Fortunately, we can conduct small experimental studies on randomly selected units in real-world
applications. For instance, online ticketing platforms can provide incentives or rewards for randomly
selected users to rate the movies. This helps to mitigate only the collider bias in the experimental data,
which means that the observed covariates in this dataset can be regarded as the representative units of
the entire population, and the collected experimental dataset has the same data distribution in the sense
that P(X) remains the same. However, conducting such random experiments is expensive. As a result,
when estimating heterogeneous treatment effects, using only the experimental data is insufficient
because of the severe overfitting problem. Nevertheless, combining a small-scale experimental dataset
with a large-scale biased observational dataset to address collider bias is feasible.

In this paper, we present a novel formulation of collider bias as an out-of-distribution problem, as
illustrated in Figure 1. Specifically, we treat the selection indicator S as the environment label, such
that the observational data and the unselected data, respectively, come from an environment labeled
with S = 1 and S = 0, and the experimental data is derived from the entire data space, but with
unknown environment labels. Therefore, to address this challenge, we propose using both datasets

• to generate the missing S = 0 samples of the observational dataset,
• to generate the missing S labels in the experimental dataset,
• to align the distribution of the combined generated S = 0 samples with the observational

dataset to match that of the entire data space.

To achieve the above objectives, we propose a novel method named Dual Counterfactual Generative
Model, called DCGM, which consists of two generators that respectively generate the missing
S = 0 samples and the missing S labels, as well as two discriminators that distinguish between the
observational data and data with generated S = 1 labels, and between the generated unselected samples
and data with generated S = 0 labels. By optimizing the generators using the discriminators, DCGM
can effectively generate missing data while preserving the original data distribution. Combining the
observational data with the unselected samples generated by DCGM, we can flexibly use any existing
treatment effect estimation methods to achieve an accurate estimate. Extensive experiments on
synthetic and real-world datasets have demonstrated the effectiveness of DCGM. By plugging DCGM
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into various treatment effect estimators, we have achieved significant improvements, outperforming
existing state-of-the-art methods.

2 RELATED WORKS

Previous works on confounding bias in observational studies include propensity-score-based, con-
founder balancing, tree-based, representation-learning-based, and generative-model-based methods.
The propensity score was introduced in (Rosenbaum & Rubin, 1983) and defined as P(T = 1 ∣X = x).
Based on the propensity score, various estimators have been proposed, such as propensity score
matching (Dehejia & Wahba, 2002), Inverse Probability of Treatment Weighting (IPTW) (Hirano
et al., 2003), and the doubly robust estimator that combines IPTW with regression (Bang & Robins,
2005). Confounder balancing is to learn sample weights that make the confounder distributions of
control and treated units similar through sample re-weighting, such as Entropy Balancing (Hain-
mueller, 2012) and Approximate Residual Balancing (Athey et al., 2018). Tree-based methods like
Causal Forest (Wager & Athey, 2018) build a large number of causal trees with different sub-sampling
rates and then estimate heterogeneous treatment effects by taking an average of the outcomes from
these causal trees. Methods based on deep representation learning were proposed to learn a balanced
representation of covariates, such as Treatment-Agnostic Representation Network, Balancing Neural
Network (Johansson et al., 2016), Counterfactual Regression (Shalit et al., 2017) and Disentangled
Representations for CounterFactual Regression (Hassanpour & Greiner, 2020). Generative methods
include CEVAE (Louizos et al., 2017) that applies variational autoencoders to address hidden con-
founders, and GANITE (Yoon et al., 2018) generates counterfactual outcomes and ITEs. Detailed
discussion on the difference between our proposed method and previous generative-model-based
methods is in Section A.3.

If we are only interested in the treatment effect of S = 1 data, all the above methods can also deal
with selection bias that only leads to spurious correlations between X and T , which has a similar
impact on treatment effect estimation to confounding bias. However, they cannot deal with the more
general scenario that we also need to estimate the treatment effect of S = 0 data. Previous works on
selection bias mainly focus on sample selection caused by only X and T . Suppose there are variables
in the causal graph that satisfy the selection-backdoor criterion. In that case, selection bias can be
addressed by selection-backdoor adjustment (Bareinboim et al., 2014; Bareinboim & Tian, 2015;
Correa & Bareinboim, 2017; Correa et al., 2018). However, these methods cannot solve collider bias
because no valid adjustment can block the non-causal path T → S ← Y , which directly introduces
spurious correlations between X and Y . In fact, without further assumptions about the observational
data, treatment effects are unidentifiable with collider bias (Correa & Bareinboim, 2017; Hernán &
Robins, 2020). To the best of our knowledge, there are currently no methods to solve collider bias
without making further assumptions about the observational data.

3 PROBLEM AND ALGORITHM

3.1 PROBLEM FORMULATION

Let D = {xi, ti, yi}ni=1 be a sample population with n units independently drawn from the true
target data distribution P. For a unit i, ti ∈ {0,1} is the binary treatment, yi is the outcome, and
xi ∈ Rd×1 is the observed pre-treatment variables with d dimensions. We have a large-scale dataset of
observational samples non-randomly drawn from P, denoted as Dobs, and a small-scale experimental
dataset Dexp conducted on units randomly sampled from P. We also use a selection indicator S to
denote whether a unit i is selected into Dobs, i.e., si = 1 if {xi, ti, yi} ∈ Dobs.

Under the potential outcome framework (Imbens & Rubin, 2015), we define the potential outcomes
under treatment as Y (1) and under control as Y (0). With the above datasets, our goal is to estimate
the Conditional Average Treatment effect (CATE), which is defined as:

τ(x) = E[Y (1) − Y (0) ∣X = x]. (1)

For a unit i with ti in D, only the factual outcome Y (ti) is available. Therefore, to make CATE
identifiable, we make the following commonly used assumptions (Imbens & Rubin, 2015):
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Stable Unit Treatment Value Assumption. The distribution of the potential outcome of one unit is
assumed to be independent of the treatment assignment of another unit.

Overlap Assumption. A unit has a nonzero probability of being treated, 0 < P(T = 1 ∣X = x) < 1.

Unconfoundedness Assumption. The treatments are independent of the potential outcomes given
the pre-treatment variables, i.e., Y (1), Y (0) ⊥⊥ T ∣X.

Based on the above assumptions, CATE can be estimated as:
τ(x) = E[Y ∣X = x, T = 1] −E[Y ∣X = x, T = 0]. (2)

Because the sample selection mechanism is not random but is jointly determined by T , X and
Y , P{x,t,y}∼Dobs

(x, t, y) ≠ P{x,t,y}∼D(x, t, y), i.e. P(X, T, Y ∣ S = 1) ≠ P(X, T, Y ), resulting in
collider bias, which hurts CATE estimation in two aspects:

• Biased estimation. Y (1), Y (0) ̸ T ∣X, S because both T and Y cause S, which means
the unconfoundedness assumption is no longer satisfied inDobs, leading to a biased estimate
of CATE using only Dobs.

• Distribution shift. E[Y ∣X = x, T = t, S = 1] ≠ E[Y ∣X = x, T = t] because P(X, T, Y ∣
S = 1) ≠ P(X, T, Y ), making the estimated CATE not only biased on the observational data
Dobs, but also inaccurate on the true data D.

Previous works on sample selection bias aim to either model the sample selection mechanism for
reweighting or regression adjustment (Heckman, 1979; Cole & Stuart, 2010) or find variable sets
that satisfy the selection-backdoor criterion for backdoor adjustment (Bareinboim & Tian, 2015).
However, they cannot solve collider bias in our scenario where T , X and Y all cause S even Dexp

that satisfies Px∼Dexp(x) = Px∼D(x) is available. This is because in Dobs, samples with S = 0
are missing, and for all units in Dexp, S labels are missing. As a result, we can neither estimate
P(S,Y ∣ X = x, T = t) nor find variables that satisfy the backdoor criterion. Using only Dexp

to estimate the outcomes or generate more samples for estimation directly is not applicable either
because the sample size ofDexp is too small, which makes the model suffer from the severe overfitting
problem. Therefore, we need to leverage both Dobs and Dexp to help solve collider bias.

3.2 MOTIVATION

To address collider bias, we formulate it as an Out-of-Distribution (OOD) problem, as shown in
Figure 1. We notice that the non-random sample selection caused by collider bias mainly results in
the S = 0 data, i.e., the unselected data, completely missing in Dobs; And the critical problem in
Dexp is that the selection indicators are unknown. Therefore, we consider the selection indicators S
as the environment labels. In this way, the observational data can be regarded as samples from an
environment labeled with S = 1, the missing unselected data can be regarded as samples from an
environment labeled with S = 0, and the experimental data can be regarded as samples from the entire
data space but the environment labels are unknown. From an OOD perspective, we wish to recover
the distribution of D from Dobs and Dexp as much as possible, which means we need to recover the
missing parts of Dobs and Dexp by two generators respectively:

• Unselected samples generator Gd. It generates the missing S = 0 data in the observational
dataset from the experimental dataset.

• Selection indicator generator Gs. It generates the missing S labels in the experimental
dataset from the observational dataset.

To optimize the above generators, we need a discriminator to align the distribution of the generated S =
0 data and that of the data in D with S = 0. Because we cannot observe S = 0 data in D, we use data
in Dexp with generated S = 0 labels as an approximation since Dexp satisfies P{x,t,y}∼Dexp

(x, t, y) =
P{x,t,y}∼D(x, t, y). However, since the data corresponding to the two distributions we need to align
is either directly or indirectly generated by the generators, the effectiveness of this discriminator
depends entirely on the performance of the generators, which means it is not sufficient to achieve
the objective of distribution alignment. Therefore, we introduce an additional discriminator that
leverages supervised information of Dobs to help align the distribution, and the two discriminators
perform the following tasks respectively:

• Selected data discriminator Do. It makes the distribution of Dobs the same as that of data
in Dexp with S = 1 labels generated by Gs.
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Figure 2: Overview of DCGM architecture.

• Unselected data discriminator Du. It makes the distribution of the S = 0 samples generated
by Gd the same as that of data in Dexp with S = 0 labels generated by Gs.

To further ensure that the distribution of the combination of the generated S = 0 samples and Dobs is
the same as that of D, we also need an additional constraint during optimization to make the ratio
of the generated samples of the observational data the same as that of the experimental data with
generated S = 0 labels to the experimental data with generated S = 1 labels.

By jointly optimizing the two generators and the two discriminators with the above constraint, we can
achieve the objective of recovering the distribution of D by combining the generated S = 0 samples
with the original observational data, which can be used as the training data for any existing treatment
effect estimation methods to achieve a better CATE estimate. Naturally, a Generative Adversarial
Nets (GAN) (Goodfellow et al., 2014) based framework can achieve this optimization task.

3.3 DCGM: DUAL COUNTERFACTUAL GENERATIVE MODEL

Based on the above motivation, we propose a novel method named Dual Counterfactual Generative
Model (DCGM), as shown in Figure 2. DCGM consists of two generators Gd and Gs and two
discriminators Do and Du, as mentioned earlier. The details are as follows:

Unselected samples generator Gd. This generator aims to generate samples whose distribution is the
same as that of S = 0 data inD. Gd takes random noises Z = {zi ∼ N (0,1)}ngen

i=1 as inputs to generate
Dgen = {xi, ti, yi}ngen

i=1 , denoted as {Gd(zi)}ngen

i=1 , where ngen is the size of the generated samples.
The objective is to optimize Gd to make P{x,t,y}∼Dgen∪Dobs

(x, t, y) = P{x,t,y}∼D(x, t, y), i.e., to
minimize the distance between Pz∼N (0,1)ngen (Gd(z)) and P{x,t,y,s}∼D(x, t, y ∣ s = 0). Because we
cannot observe S = 0 labeled data in D, we cannot directly optimize Gd with the above objective.
Instead, we achieve this objective through two discriminators.

Selection indicator generator Gs. This generator aims to generate selection indicators S for data in
Dexp. Gs takes (x, t, y) ∼ Dexp ∪Dgen as inputs to generate the corresponding S labels, denoted as
Gs(x, t, y). The objective is to optimize Gs to maximize the probability of correctly labeling the data
with S ,i.e., to make P{x,t,y}∼Dexp

(x, t, y,Gs(x, t, y)) = P{x,t,y,s}∼D(x, t, y ∣ s). The key problem is
that P{x,t,y,s}∼D(x, t, y ∣ s) is unknown because we can only observe S = 1 labeled data. As a result,
we cannot directly optimize Gs with the above objective either but use two discriminators instead.

Selected data discriminator Do. This discriminator aims to discriminate between data with generated
S = 1 labels in Dexp and the observed S = 1 data in Dobs. Following (Goodfellow et al., 2014),
we regard Dobs as the original dataset, and data in Dexp and Dgen labeled with S = 1 by Gs as the
generated dataset. Therefore, Do takes (x, t, y) ∼ Dobs ∪ ((Dexp ∪Dgen) ∣ Gs(x, t, y) = 1) as inputs
and returns the probability that (x, t, y) is from Dobs, denoted as Do(x, t, y). The objective is to
optimize Do to maximize the probability of correctly determining whether a sample comes from
Dobs or (Dexp ∪Dgen) ∣ Gs(Dexp ∪Dgen) = 1. The objective function is as follows:

min
Gs,Gd

max
Do

E{x,t,y}∼Dobs
[log(Do(x, t, y))] + E{x,t,y}∼Dexp[Gs(x, t, y) ⋅ log(1 −Do(x, t, y))]

+ Ez∼N(0,1)ngen [Gs(Gd(z)) ⋅ log(1 −Do(Gd(z)))].

Unselected data discriminator Du. This discriminator aims to discriminate between the generated
S = 0 samples and the S = 0 data in D. However, since we cannot observe S = 0 data in D, we can
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only use data with generated S = 0 labels as approximations. We regard data from Dgen and Dexp
labeled with S = 0 by Gs as the original dataset, and all data from Dgen as the generated dataset.
Therefore, Du takes (x, t, y) ∼ Dgen ∪ (Dexp ∣ Gs(x, t, y) = 0) as inputs and returns the probability
that (x, t, y) is from (Dgen ∪ Dexp) ∣ Gs(x, t, y) = 0, denoted as Du(x, t, y). The objective is to
optimize Du to maximize the probability of correctly determining whether a sample comes from
(Dexp ∪Dgen) ∣ Gs(Dexp ∪Dgen) = 0 or Dgen. The objective function is as follows:

min
Gs,Gd

max
Du

Ez∼N(0,1)ngen [log(1 −Du(Gd(z))] + Ez∼N(0,1)ngen [(1 −Gs(Gd(z))) ⋅ log(Du(Gd(z)))]

+ E{x,t,y}∼Dexp[(1 −Gs(x, t, y)) ⋅ log(Du(x, t, y))].

Following (Goodfellow et al., 2014), with the above objective functions, the discriminators Do, Du
and the generators Gs, Gd can be iteratively optimized using mini-batch gradient descent. In each
batch, we first fix the parameters of both generators to optimize both discriminators simultaneously,
then fix the parameters of both discriminators to optimize both generators simultaneously. Specifically,
when fixing the parameters of the generators, the two objective functions are equivalent to minimize
the following loss functions simultaneously:

LDo = − E{x,t,y}∼Dobs
[log(Do(x, t, y))] − E{x,t,y}∼Dexp[Gs(x, t, y) ⋅ log(1 −Do(x, t, y))]

− Ez∼N(0,1)ngen [Gs(Gd(z)) ⋅ log(1 −Do(Gd(z)))],
LDu = − Ez∼N(0,1)ngen [log(1 −Du(Gd(z))] − Ez∼N(0,1)ngen [(1 −Gs(Gd(z))) ⋅ log(Du(Gd(z)))]

− E{x,t,y}∼Dexp[(1 −Gs(x, t, y)) ⋅ log(Du(x, t, y))],

and we train the discriminators by minimizing LDo +LDu . Given the parameters of the discriminators,
the two objective functions are equivalent to minimize the following loss functions simultaneously:

LGs = Ez∼N(0,1)ngen [(1 −Gs(Gd(z))) ⋅ log(Du(Gd(z)))] + E{x,t,y}∼Dexp[Gs(x, t, y) ⋅ log(1 −Do(x, t, y))]
+ E{x,t,y}∼Dexp[(1 −Gs(x, t, y)) ⋅ log(Du(x, t, y))] + Ez∼N(0,1)ngen [Gs(Gd(z)) ⋅ log(1 −Do(Gd(z)))],

LGd = Ez∼N(0,1)ngen [Gs(Gd(z)) ⋅ log(1 −Do(Gd(z)))] + Ez∼N(0,1)ngen [log(1 −Du(Gd(z))]
+ Ez∼N(0,1)ngen [(1 −Gs(Gd(z))) ⋅ log(Du(Gd(z)))],

and we train the generators by minimizing LGs +LGd
. We iteratively optimize the discriminators and

the generators and update ngen with nobs⋅n0

n1
, where nobs is the sample size of Dobs, n0 and n1 is the

count of units in Dexp with Gs(x, t, y) = 0 and Gs(x, t, y) = 1 respectively. The iteration terminates
when the maximum number of iterations reaches or the distance between P{x,t,y}∼Dexp

(x, t, y) and
P{x,t,y}∼Dobs∪Dgen

(x, t, y) is less than a given threshold. Combining the generated samples Dgen and
the observational data Dobs, we then fit a based CATE estimator to achieve CATE estimation. Note
that DCGM can be flexibly plugged into any existing CATE estimator to further estimate treatment
effects. The pseudo-code of DCGM is in Appendix A.1.

4 EXPERIMENTS

4.1 BASELINES

As mentioned above, the samples generated by our proposed DCGM can be used in any existing
CATE estimator to achieve better performance. To evaluate the effectiveness of the proposed
method, we use Balancing Neural Network (BNN) (Johansson et al., 2016), Treatment-Agnostic
Representation Network (TARNet) and CounterFactual Regression (CFR) (Shalit et al., 2017) as our
based estimators. We compare the proposed method with the following baselines: (1) Doubly Robust
(Bang & Robins, 2005), (2) Causal Forest (Wager & Athey, 2018), (3) Causal Effect Variational
Autoencoder (CEVAE) (Louizos et al., 2017), (4) Generative Adversarial Nets for inference of
Individualized Treatment Effects (GANITE) (Yoon et al., 2018), (5) BNN, (6) TARNet and (7) CFR.
Based on the estimated CATE, we use the Precision in Estimation of Heterogeneous Effect (PEHE)
(Shalit et al., 2017; Louizos et al., 2017) to evaluate the performance of the above methods, where
PEHE = 1

N ∑
N
i=1((ŷi(1) − ŷi(0)) − (yi(1) − yi(0))2. Note that we use the Wasserstein distance

(Cuturi & Doucet, 2014) as the Integral Probability Metric (IPM) to implement BNN and CFR. We
implement the baselines in the PyTorch environment with Python 3.9, with the CPU being 13th Gen
Intel(R) Core(TM) i7-13700K and the GPU being NVIDIA GeForce RTX 3080 with CUDA 12.1,
and we split each dataset into 60/20/20 train/validation/test datasets.
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Table 1: The results (mean ± std of
√
PEHE) of

treatment effect estimation on synthetic data.
Estimator S = 1 samples S = 0 samples

Regression on Dexp 4.265±0.747 3.651±0.170

Doubly Robust 7.410±4.602 8.496±2.995
Causal Forest 4.929±0.073 6.153±0.074
CEVAE 4.051±0.047 5.296±0.026
GANITE 4.139±0.071 4.997±0.148
BNN 2.893±0.427 3.196±0.360
TARNet 2.023±0.223 2.830±0.261
CFR 2.035±0.054 2.923±0.077

DCGM+BNN 0.898±0.028 1.123±0.036
DCGM+TARNet 0.826±0.079 1.022±0.145
DCGM+CFR 0.933±0.053 1.185±0.098 Figure 3: Wasserstein distance between data

from Dexp and data from Dgen ∪Dobs.

4.2 EXPERIMENTS ON SYNTHETIC DATA

4.2.1 DATASETS

In order to evaluate the effectiveness of our method against collider bias, we generate a large-
scale confounding biased dataset and a small-scale experimental dataset with the same outcome
models. Specifically, we first generate continuous pre-treatment variables X ∈ Rn×d with independent
Gaussian distributions as X i.i.d.∼ N (0,1), where d = 20. For the confounding biased data, we generate
binary treatments T ∈ Rn×1 from a logistic function as T ∼ Bernoulli(1/(1 + e−t(X))), where
Bernoulli(⋅) denotes the Bernoulli distribution, t(X) = ∑d

i=1(1(mod(i,2) ≡ 1) − 1(mod(i,2) ≠
1))⋅(mod(i,2)+1)⋅Xi/d)+ϵt, 1(⋅) is the indicator function, function mod(a, b) returns the modulus
after division of a by b and ϵt ∼ N (0,1). For the experimental data, we generate treatments simply by
T ∼ Bernoulli(0.5). Next, we generate continuous outcomes Y ∈ Rn×1 from a non-linear function as
Y = T +∑d

i=1(T ⋅Xi+(1(mod(i,2) ≠ 1)−1(mod(i,2) ≡ 1)) ⋅(mod(i,2)+1) ⋅(Xi+X2
i )/d)+ ϵy,

where ϵy ∼ N (0,1). To further introduce collider bias, we sample the confounding biased data by a
binary selection variable S ∈ Rn×1, which comes from a logistic function as S ∼ Bernoulli(1/(1 +
e−s(X,T ))), where s(X, T ) = Y − 3 ⋅ T +∑d

i=1(1(mod(i,2) ≡ 1) − 1(mod(i,2) ≠ 1)) ⋅Xi/d) + ϵs,
ϵs ∼ N (0,1) and a unit is selected into the sample only when S = 1. The ground truth CATE can be
calculated easily by the above functions.

4.2.2 RESULTS

To demonstrate the effectiveness of the proposed method, we first use 500 experimental data and
10000 observational data to generate S = 0 samples by DCGM and then use only the observational
data for training and validation of the baselines and use a combination of the observational data
and generated samples for training and validation of the based estimator we choose. We also use
only the experimental data for regression to estimate the CATE. We independently performed 20
experiments and regenerated the dataset for each experiment. We compare their performance and
report the mean and standard deviation (std) of

√
PEHE on S = 1 and S = 0 data separately, as

shown in Table 1. The results show that the performance of only using the experimental data for
regression is not good because of the overfitting problem. Only using observed samples with collider
bias for training has poor performance on both S = 1 and S = 0 data for all baselines, among which
the performance of Doubly Robust and Causal Forest is even worse than only using the experimental
data for regression due to severe collider bias in observational data. Note that the performance on
S = 0 data is inferior to that on S = 1 data for all estimators because of the distribution shift problem
caused by collider bias. Using the samples generated by our method for training achieves significant
performance improvement on all based estimators. It proves that our proposed method can effectively
address collider bias and achieve more accurate CATE estimation.

To further evaluate the effectiveness of our method under different proportions of experimental data,
we conduct ablations with three different sample sizes of the observational data and experimental
data, namely {10000,500}, {10000,200} and {10000,100}. We conduct experiments using only
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Table 2: The results (mean ± std of
√
PEHE) under different proportions of experimental data.

nobs ∶ ne = 10000 ∶ 500 nobs ∶ ne = 10000 ∶ 200 nobs ∶ ne = 10000 ∶ 100

Data+Estimator S = 1 samples S = 0 samples S = 1 samples S = 0 samples S = 1 samples S = 0 samples
Regression on Dexp 4.265±0.747 3.651±0.170 4.393±0.470 3.685±0.408 4.652±0.602 3.967±0.350

Dobs+BNN 2.893±0.427 3.196±0.360 2.889±0.488 3.167±0.201 2.934±0.926 3.448±0.664
Dobs&Dexp+BNN 2.159±0.073 3.049±0.111 2.158±0.070 2.971±0.088 2.178±0.078 3.007±0.075
DCGM+BNN 0.898±0.028 1.123±0.036 1.186±0.134 1.559±0.157 1.361±0.119 1.857±0.103
Dobs+TARNet 2.023±0.223 2.830±0.261 1.903±0.237 2.751±0.382 1.813±0.221 2.580±0.397
Dobs&Dexp+TARNet 1.704±0.076 2.206±0.130 1.787±0.240 2.512±0.377 2.094±0.039 2.892±0.149
DCGM+TARNet 0.826±0.079 1.022±0.145 1.242±0.349 1.695±0.620 1.459±0.480 1.948±0.754
Dobs+CFR 2.035±0.054 2.923±0.077 1.896±0.244 2.686±0.304 2.107±0.147 2.934±0.151
Dobs&Dexp+CFR 1.646±0.055 2.214±0.097 1.903±0.070 2.634±0.052 2.262±0.196 3.043±0.137
DCGM+CFR 0.933±0.053 1.185±0.098 1.316±0.415 1.770±0.577 1.464±0.414 1.886±0.591

the experimental data to estimate CATE, using only the observational data to estimate CATE with
different estimators, using a combination of the experimental data and the observational data to
estimate CATE with different estimators, and using a combination of the experimental data, the
observational data and the samples generated by our method to estimate CATE with different based
estimators. The results are shown in Table 2: As the proportion of experimental data decreases, the
performance of using the experimental data, using both the experimental data and the observational
data, as well as using a combination of the experimental data, the observational data, and the generated
samples gets worse for all based estimators. However, in all settings, combining the experimental
data, the observational data, and the samples generated by our methods to estimate CATE achieves
significant improvement in performance. Note that the variance of our method increases as the
number of samples in the experimental dataset decreases because our method is based on generative
models, which are known to be hard to train, especially with small-size high-dimensional data.
Therefore, when the number of samples is smaller, the generative models become more challenging
to train, resulting in a relatively more significant standard deviation of the final result. However, the
performance of DCGM is still much better than the baselines. It proves the robustness of our method
in scenarios where the experimental data is hard to obtain. We provide more ablation studies that
demonstrate the necessity of each module in the framework of DCGM in Appendix A.2.

Note that the objective of DCGM is to generate S = 0 samples Dgen such that combining with the ob-
servational dataDobs, the distribution of which is the same as that ofD. To demonstrate that DCGM in-
deed achieves the objective, we visualize the Wasserstein distance between P{x,t,y}∼Dobs∪Dgen

(x, t, y)
and P{x,t,y}∼Dexp

(x, t, y) in the training process since P{x,t,y}∼Dexp
(x, t, y) = P{x,t,y}∼D(x, t, y),

as shown in the Figure 3. The Wasserstein distance is an IPM measure of distance between two
distributions; the smaller the Wasserstein distance, the more similar the two distributions are. It
can be seen that as the number of iterations increases, the Wasserstein distance gradually decreases,
proving that the optimization process of DCGM can achieve the above objective.

4.3 EXPERIMENTS ON REAL-WORLD DATA

4.3.1 DATASETS

IHDP dataset: The original experimental data of the Infant Health and Development Program
(IHDP) aims to evaluate the effect of specialist home visits on the future cognitive test scores of
premature infants (Brooksgunn et al., 1992). Following previous studies Hill (2011); Shalit et al.
(2017), we remove a non-random subset of the treated group and use simulated outcomes1 to introduce
confounding bias. To obtain the experimental data, we randomly select 30 samples from the original
dataset and use their noised treated and control outcomes as the factual outcomes of the treated and
control groups, respectively. To introduce collider bias into the IHDP dataset, we set S = 0 for T = 0
units that both the mother boozes and the infant’s score is lower than the mean value. We sample 557
units from the S = 1 data as the observational dataset. Intuitively, unlike the treated group which can
carefully design and regularly follow up to ensure the collection of effective test results, the control
group is more likely to have sample selection bias. For those mothers with boozing problems and
whose children have weaker cognitive abilities, it is more likely that they will not take their children

1The dataset is available at http://www.fredjo.com/
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Table 3: The results (mean ± std of
√
PEHE) of treatment effect estimation on real-world datasets.

IHDP Twins
Estimator S = 1 samples S = 0 samples S = 1 samples S = 0 samples
Regression on Dexp 3.162±0.241 3.146±0.225 0.512±0.063 0.510±0.071

Doubly Robust 1.391±0.288 1.630±0.342 0.485±0.052 0.529±0.031
Causal Forest 1.305±0.095 1.490±0.114 0.378±0.021 0.421±0.010
CEVAE 3.078±0.129 4.397±0.140 0.512±0.031 0.537±0.043
GANITE 3.063±0.158 3.160±0.382 0.329±0.022 0.331±0.061
BNN 1.970±0.465 2.086±0.441 0.332±0.014 0.384±0.054
TARNet 2.124±0.260 2.147±0.225 0.532±0.074 0.534±0.086
CFR 2.278±0.306 2.405±0.345 0.435±0.038 0.438±0.031

DCGM+BNN 0.910±0.186 0.897±0.199 0.310±0.008 0.308±0.014
DCGM+TARNet 1.083±0.063 1.064±0.101 0.315±0.021 0.308±0.015
DCGM+CFR 1.086±0.224 1.070±0.202 0.321±0.021 0.311±0.009

to participate in the cognitive test, resulting in collider bias. The final observational dataset comprises
557 units (139 treated, 418 control), and the experimental dataset comprises 60 units (30 treated, 30
control) with 26 pre-treatment variables related to the infants and their families.

Twins dataset: The original data of twins birth in the USA between 1989-1991 aims at evaluating the
effect of low birth weight on the mortality of infants in their first year of life (Almond et al., 2005).2
Following (Louizos et al., 2017), we select the twins whose gender is the same and weight is less
than 2000kg into records. The treatment is being the heavier one in the twins, and the outcome is
the one-year mortality. Because both treated (the heavier one in the twin) and control (the lighter
one in the twin) outcomes are observed, we randomly select 180 samples as our experimental data.
We also use the same simulation as previous works to introduce confounding bias (Louizos et al.,
2017). To introduce collider bias into the dataset, we set S = 0 for T = 1 units that both the mother
uses tobacco and the twin is alive. We sample 3000 units from the S = 1 data as our observational
dataset. Intuitively, parents seldom take relatively healthy infants to the hospital, so it is more difficult
to record the data of these infants, resulting in collider bias. The final observational dataset comprises
3000 units (1348 treated, 1652 control), and the experimental dataset comprises 180 units (148
treated, 152 control) with 48 pre-treatment variables related to the twins and their families.

4.3.2 RESULTS

We use the same training, validation, and test methods as the experiments on synthetic data. We
independently perform 20 experiments and report the mean and standard deviation (std) of

√
PEHE

on S = 1 and S = 0 data separately, as shown in Table 3. The results show that using a combination
of the observational data and samples generated by DCGM for training achieves better performance
than the baselines on both S = 0 and S = 1 data. Note that DCGM achieves the best performance
regardless of which based estimator is used. It proves that the proposed method can solve collider
bias in real-world scenarios and achieve a more precise treatment effect estimation.

5 CONCLUSION

In this paper, we focus on the collider bias problem in heterogeneous treatment effect estimation,
which previous works failed to address. We propose a novel Dual Counterfactual Generative Model
(DCGM) that leverages small-scale unbiased experimental data and large-scale biased observation
data to estimate CATE. DCGM consists of two generators and two discriminators, which can be
jointly optimized in a dual way. Combining the samples generated by DCGM with the observational
data, we can fit any existing CATE estimators to achieve an accurate estimate. Experiments on
synthetic and real-world data demonstrate our method’s effectiveness and potential application value.
One main limitation is that DCGM relies on generative models to generate unselected samples in
observations. Training generative models can be difficult, particularly when dealing with complex
and high-dimensional data with limited samples.

2The dataset is available at https://www.nber.org/research/data/linked-birthinfant-death-cohort-data
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A APPENDIX

A.1 PSEUDO-CODE

As mentioned in Section 3, we propose a novel DCGM method, which consists of two generators that
respectively generate the missing S = 0 samples and the missing S labels, as well as two discriminators
that align the distribution of the combined generated S = 0 samples with the observational dataset to
match that of the entire data space. By optimizing the generators and discriminators, DCGM can
effectively generate missing data following the original distribution. Specifically, the pseudo-code of
DCGM is detailed in Algorithm 1.

Algorithm 1: Dual Counterfactual Generative Model
Data: the observational dataset Dobs, the experimental dataset Dexp, distance threshold α.
Result: generated samples Dgen.
nobs ← the sample size of Dobs;
ngen ← nobs;
initialization of parameters in Gs, Gd, Do, Du;
while the distance between P{x,t,y}∼Dexp

(x, t, y) and P{x,t,y}∼Dobs∪Dgen
(x, t, y) is greater than

α and convergence of training loss of Gs, Gd, Do, Du do
use mini-batch gradient descent to iteratively optimize Gs, Gd, Do, Du by

❶ min
Do,Du

− E{x,t,y}∼Dobs
[log(Do(x, t, y))] − E{x,t,y}∼Dexp[Gs(x, t, y) ⋅ log(1 −Do(x, t, y))]

− Ez∼N(0,1)ngen [Gs(Gd(z)) ⋅ log(1 −Do(Gd(z)))] − Ez∼N(0,1)ngen [log(1 −Du(Gd(z))]
− Ez∼N(0,1)ngen [(1 −Gs(Gd(z))) ⋅ log(Du(Gd(z)))] − E{x,t,y}∼Dexp[(1 −Gs(x, t, y)) ⋅ log(Du(x, t, y))]
❷ min

Gs,Gd

Ez∼N(0,1)ngen [(1 −Gs(Gd(z))) ⋅ log(Du(Gd(z)))] + E{x,t,y}∼Dexp[Gs(x, t, y) ⋅ log(1 −Do(x, t, y))]

+ E{x,t,y}∼Dexp[(1 −Gs(x, t, y)) ⋅ log(Du(x, t, y))] + Ez∼N(0,1)ngen [Gs(Gd(z)) ⋅ log(1 −Do(Gd(z)))]
+ Ez∼N(0,1)ngen [Gs(Gd(z)) ⋅ log(1 −Do(Gd(z)))] + Ez∼N(0,1)ngen [log(1 −Du(Gd(z))]
+ Ez∼N(0,1)ngen [(1 −Gs(Gd(z))) ⋅ log(Du(Gd(z)))];

n0 ← the count of units in Dexp with Gs(x, t, y) = 0;
n1 ← the count of units in Dexp with Gs(x, t, y) = 1;
ngen ← nobs⋅n0

n1
;

Dgen ← {Gd(zi ∼ N (0,1))}ngen

i=1 ;
end

A.2 ABLATION STUDIES OF EACH MODULE IN DCGM

To further demonstrate the necessity of each module in the dual framework of DCGM, we compare
our DCGM with the following ablation version of DCGM:

• DCGM w/o Dobs, uses only the experimental dataset Dexp to generate samples for estimat-
ing CATE,

• DCGM w/o Gd, uses only Gs to generate missing S labels,
• DCGM w/o Do, uses only Du to optimize the generators,
• DCGM w/o Do, uses only Do to optimize the generators,

Note that DCGM w/o Gd estimate sample selection probability for estimating CATE using IPSW
(Cole & Stuart, 2010), which reweights each observational sample with its inverse probability of
sample selection. Then, we conduct the experiments on the same datasets with the same based
estimators as those mentioned in Section 4.1 and Section 4.2.1, and compare the performance among
the above different generative approaches with different based estimators. We report the mean and
standard deviation (std) of

√
PEHE on S = 1 and S = 0 data separately. From the experimental

results shown in Table 4, we can observe that each module is essential for achieving high performance
in DCGM. Removing any of the modules leads to a significant decrease in performance. The
observations and detailed analysis of each module are presented below.
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Table 4: The results (mean ± std of
√
PEHE) of different generative approaches with different based

estimators.
+BNN +TARNet +CFR

Methods S = 1 samples S = 0 samples S = 1 samples S = 0 samples S = 1 samples S = 0 samples
DCGM 0.898±0.028 1.123±0.036 0.826±0.079 1.022±0.145 0.933±0.053 1.185±0.098
w/o Dobs 1.561±0.242 1.823±0.409 2.708±0.252 3.411±0.218 2.772±0.565 3.519±0.296
w/o Gd 1.752±0.587 2.081±0.855 2.186±0.531 1.906±0.305 2.167±0.994 1.989±0.760
w/o Do 2.052±0.736 2.083±0.787 2.122±0.506 2.386±0.503 2.134±0.456 2.258±0.345
w/o Du 1.344±0.392 1.567±0.508 2.241±0.429 2.506±0.295 2.312±0.495 2.387±0.275

Experimental data is limited, and observational data can provide more information. Compared
the results of DCGM with DCGM without Dobs, we can find that using only the experimental
dataset to generate samples suffers from limited information and can not provide an accurate CATE
estimation. Thus, we must use observational data to supplement more observations for generating
unselected samples. As mentioned in Section 3.1, although Dexp is randomly sampled from D and
thus using only Dexp seems to be able to achieve unbiased CATE estimation because the sample size
of Dexp is too small, whether using it to estimate CATE directly or to generate more samples, the
performance will still suffer from severe overfitting problem. Therefore, it is necessary to use not
only Dexp but also Dobs to generate samples to achieve a better CATE estimate.

Both generators are necessary, and the absence of either generator will result in the other
generator not working. DCGM without Gd, using only Gs for IPSW, achieves better performance
on only the S = 0 data while the performance on the S = 1 data gets even worse, and the variance is
very high because such reweighting-based methods suffer from inaccurate estimation of the sample
selection probability. It proves the necessity of using both generators. Suppose we only use Gd to
generate S = 0 samples. In that case, it is not feasible because there is no S = 0 labeled data in
both Dobs and Dexp for the discriminators to use as real samples for discrimination. If we only use
Gs to generate missing S labels of Dexp, the first question is what we can do with these labels, or
rather, what we can do with this selection indicator generator. In fact, we can use the optimized
Gs as a sample selection probability estimator to estimate P(S = 1 ∣ X = x, T = t, Y = y) of
each observational sample, and use reweighting based methods such as IPSW for CATE estimation.
The question now becomes whether we can achieve accurate P(S = 1 ∣ X = x, T = t, Y = y)
estimation using only Gs. Unlike the previous case, we do have observational data with S = 1
labels for the selected data discriminator Do to use as real S = 1 samples for discrimination, making
P{x,t,y}∼Dexp

(x, t, y ∣ Gs(x, t, y) = 1) = P{x,t,y}∼Dobs
(x, t, y). However, missing S = 0 labeled data

makes the unselected data discriminator Du, infeasible to achieve P{x,t,y}∼Dexp
(x, t, y ∣ Gs(x, t, y) =

1) = P{x,t,y,s}∼D(x, t, y ∣ s = 0), leading to infeasible P(S = 1 ∣X = x, T = t, Y = y) estimation.

Both discriminators are necessary for matching the distributions of D and Dobs ∪Dgen. The
performance on the S = 0 data of using only one of the two discriminators to optimize the generators
is better than simply combining the experimental and observational datasets, as shown in Table 2.
However, it is still not good and stable enough compared with DCGM. It proves the necessity of
using both discriminators. As mentioned in Section 3.2 and Section 3.3, the objective of DCGM is
to make the distribution of the combination of the generated S = 0 samples and Dobs the same as
that of D. To achieve this objective, we claim that it is necessary to use both discriminators to make
the distribution of Dobs the same as that of data from Dexp with generated S = 1 labels, as well as
the distribution of the generated S = 0 samples the same as that of data from Dexp with generated
S = 0 labels. If we only use Du to match the distribution of the generated samples and that of data
from Dexp with generated S = 0 labels, since the generators either directly or indirectly generate
the data corresponding to the two distributions we need to match, the performance of Du depends
entirely on the performance of the generators, which means it is not sufficient to achieve the objective
of distribution alignment. If we only use Do to match the distribution of Dobs and that of data from
Dexp with generated S = 1 labels, even though we can use Gs to label the samples generated by Gd as
well to make Gd participate in the entire optimization process simply by matching the distribution of
Dobs and that of data from Dexp ∪Dgen with generated S = 1 labels, it is still not enough to achieve
the objective since Do does not have any constraints on samples generated by Gd.
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The above observations and analysis demonstrate that the design of DCGM is reasonable, and each
module in DCGM is practical and necessary.

A.3 DISCUSSION ON THE DIFFERENCES BETWEEN DCGM AND PREVIOUS GENERATIVE
MODEL BASED CAUSAL INFERENCE METHODS

Our method is different from previous generative-model-based causal methods (Louizos et al., 2017;
Yoon et al., 2018) in the following aspects:

1) The solved problems are different. Previous methods use generative models to solve
confounding bias, while our work focuses on collider bias, which was overlooked in previous
works.

2) The targets generated by the generated models are different. Previous methods use
generative models to generate counterfactual outcomes (Y (1 − t)) to address confounding
bias, while our work aims to use generative models to generate the S = 0 data (X, T, Y )
that were not selected into the observational samples. To achieve this goal, we introduce an
additional experimental dataset and use generative models to generate missing S labels in
experimental data to generate S = 0 samples better.

3) The termination conditions are different. Previous methods only use a single generative
model to generate counterfactual samples, and their termination conditions are mostly the
same as those of the based generative models, such as GAN. However, our proposed model
consists of two dually optimized generators and two dually optimized discriminators. There-
fore, in addition to meeting the primary constraints of GAN, our model also needs to ensure
that the distribution of the final generated S = 0 samples plus the original observational sam-
ples is the same as the whole population distribution. Therefore, the termination condition
also involves constraints of the distance between the above distributions.

To the best of our knowledge, we are the first to introduce GANs to solve collider bias, which is
entirely different from the previous works using GANs to solve confounding bias.
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