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Abstract

Large language models (LLMs) deliver impres-001
sive results but face challenges from increasing002
model sizes and computational costs. Struc-003
tured pruning reduces model size and speeds004
up inference but often causes uneven degra-005
dation across domains, leading to biased per-006
formance. To address this, we propose DR-007
Pruning, a method that dynamically adjusts the008
data distribution during training to restore bal-009
anced performance across heterogeneous and010
multi-tasking data. Experiments in monolin-011
gual and multilingual settings show that DR-012
Pruning surpasses similarly sized models in013
both pruning and continued pretraining over014
perplexity, downstream tasks, and instruction015
tuning. Further analysis demonstrates the ro-016
bustness of DRPruning towards various do-017
mains and distribution shifts. Furthermore,018
DRPruning can determine optimal reference019
losses and data ratios automatically, suggesting020
potential for broader applications. Code and021
scripts are available at https://anonymous.022
4open.science/r/DRPruning.023

1 Introduction024

Large language models (LLMs) have advanced025

rapidly, achieving impressive results across a wide026

range of tasks (Bang et al., 2023; Jiao et al., 2023;027

Frieder et al., 2023; Bian et al., 2024). How-028

ever, this progress has come with increasing model029

sizes, significantly raising computational costs for030

both training and inference, which impacts their031

accessibility. Structured pruning is a promising032

approach to reduce model size (Han et al., 2015;033

Wen et al., 2016), but it often causes uneven per-034

formance degradation across domains, leading to035

biased capabilities and unfair downstream task per-036

formance (Xia et al., 2024).037

Given that LLMs inherently handle heteroge-038

neous, multi-domain data, distribution robustness039

becomes essential. A commonly used approach is040

distributionally robust optimization (DRO; Oren041

et al., 2019; Sagawa et al., 2019), which aims to op- 042

timize worst-case performance across distributions. 043

A reference loss is defined for each domain as a 044

target. Domains with larger deviations from this 045

reference loss are assigned higher weights, while 046

not straying too far from a predefined reference 047

data ratio. However, setting these hyperparameters 048

is challenging, and suboptimal configurations often 049

result in poor outcomes (Zhou et al., 2021). 050

To address this, we propose DRPruning, a dis- 051

tributionally robust pruning method that incorpo- 052

rates DRO to dynamically adjust the data dis- 053

tribution during training. Further, using scaling 054

laws (Kaplan et al., 2020; Ghorbani et al., 2022), 055

we predict the loss after training as the reference 056

loss, where larger deviations indicate poorer perfor- 057

mance, thereby promoting capability recovery in 058

these areas. Additionally, we gradually increase the 059

reference data ratio for domains with greater devia- 060

tions, ensuring robustness across a wider range of 061

distributions, particularly more challenging ones. 062

DRPruning is validated through experiments in 063

monolingual and multilingual settings, which rep- 064

resent varying degrees of distributional shift. DR- 065

Pruning outperforms other data scheduling meth- 066

ods in both pruning and continued pretraining, 067

as measured by perplexity (-5.59%), downstream 068

tasks (+1.52%), and instruction tuning (55.4% win 069

rate). Particularly in multilingual settings, DR- 070

Pruning achieves +2.95% in downstream tasks. To 071

further assess domain-specific performance, we de- 072

velop a sentence continuation benchmark using ex- 073

isting unlabeled data, demonstrating our improved 074

domain-level capabilities (+17.9%). 075

Our contributions are summarized as follows: 076

• DRPruning tackles domain imbalance in struc- 077

tured pruning by introducing a distributionally 078

robust pruning method, that dynamically ad- 079

justs data ratios during training to ensure ro- 080

bustness against distributional shifts. 081
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• We validate DRPruning through extensive ex-082

periments in monolingual and multilingual083

settings. Further analysis confirms its advan-084

tages in handling data heterogeneity and dis-085

tribution shifts.086

• DRPruning offers refined reference losses and087

data ratios, which can be applied more broadly088

to enhance various model training processes089

and contribute to advancements for LLMs.090

2 Background091

2.1 Structured Pruning092

To prune the model to any target configuration, we093

adopt structured pruning based on Sheared Llama094

(Xia et al., 2024). For each granularity i, pruning095

masks Z = {zi | zi ∈ RDi} are learned to deter-096

mine whether substructures are pruned or retained,097

where zij = 0 indicates pruning of the j-th substruc-098

ture. Pruning is applied at various granularities,099

including transformer layers, hidden dimensions,100

attention heads, and FFN intermediate dimensions.101

To parameterize the masks, the ℓ0 regulariza-102

tion method (Louizos et al., 2018) with hard con-103

crete distributions is used to concentrate probability104

mass at 0 or 1. Lagrange multipliers are then used105

to ensure the pruned model meets the target con-106

figuration. Specifically, if exactly ti parameters107

must be retained for zi, the following constraint is108

imposed:109

ℓ̃i = λi

∑
j

zij − ti

+ ϕi

∑
j

zij − ti

2

.

(1)110

The final training loss integrates these con-111

straints with the language modeling loss of the112

pruned model, jointly optimizing the model param-113

eters θ and pruning masks z, with z typically uses114

a higher learning rate. After pruning, the highest-115

scoring components are retained.116

2.2 Distributionally Robust Optimization117

To mitigate uneven domain performance after prun-118

ing, we apply distributionally robust optimization119

(DRO; Oren et al., 2019; Sagawa et al., 2019) to im-120

prove the model’s robustness to distribution shifts.121

DRO seeks a model θ that performs well across a122

set of potential test distributionsQ over n domains.123

Formally:124

minimize
θ

sup
Q∈Q

E(x,y)∼Q[ℓ(x,y; θ)]. (2)125

To solve the min-max optimization, the iterative126

best response algorithm (Fudenberg and Levine,127

1998) is used. Each iteration consists of first per- 128

forming the empirical risk minimization on the cur- 129

rent data distribution qt, followed by updating the 130

data distribution using worst-case weights based 131

on the current parameters. Formally, 132

θt+1 ← argmin
θ

∑
i

qtiℓ (θ;Di) ,

qt+1 ← argmax
q={q1,...,qn}∈Q

∑
i

qiℓ
(
θt+1;Di

)
.

(3) 133

3 Our Proposed DRPruning Method 134

To address the challenges of LLMs in handling 135

heterogeneous and multi-tasking data, we propose 136

DRPruning, illustrated in Figure 1. Each evaluation 137

phase is treated as an iteration: the evaluation loss 138

first updates the reference loss, which, along with 139

the previous reference data ratio, serves as input 140

to the DRO process. This yields a new data pro- 141

portion for the next training step, and the reference 142

data ratio is updated accordingly. 143

3.1 Distributionally Robust Pruning 144

We first introduce the overall procedure by apply- 145

ing naïve DRO to design an effective pruning and 146

continued pretraining method. Specifically, we 147

adopt common techniques (Ma et al., 2023; Li 148

et al., 2024), first applying structured pruning to 149

reduce model parameters, followed by continued 150

pretraining to restore capabilities. Compared to 151

training from scratch, this approach requires fewer 152

unlabeled data to restore the model’s performance 153

(Zhang et al., 2024b). 154

Integrate DRO into pruning and continued pre- 155

training. During training, we use DRO to dynami- 156

cally adjust the data ratio to improve the model’s 157

robustness and convergence speed. Specifically, to 158

prevent overfitting, we compile a validation set and 159

use the evaluation loss as the loss score. After each 160

evaluation, we update the data ratio based on the 161

evaluation loss using the DRO method, as in Eqn. 3, 162

guiding training to focus more on underperforming 163

domains. 164

Further improvement. Next, we optimize the loss 165

function ℓ (Section 3.2) and potential distributions 166

Q (Section 3.3) to ensure robust training, as shown 167

in Figure 1. In contrast, Sheared Llama employs a 168

dynamic scheduling strategy that forces the model 169

to strictly adhere to the relative loss magnitudes 170

of larger LLMs, without placing any constraints 171

on the potential distributions. This leads to subop- 172

timal results, particularly in multilingual settings 173

with significant distribution shifts. 174
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Figure 1: Data proportion update procedure for DRPruning. The gray part represents the standard training process,
the yellow part represents the normal process for DRO, and the blue part represents our newly added module.

3.2 Dynamic Loss Function175

To stabilize DRO training and prevent domains176

with slow convergence from disproportionately177

influencing the weights, the use of a reference178

loss ℓR is a common approach (Oren et al., 2019;179

Zhou et al., 2021). This reference loss establishes180

the minimum acceptable performance for a do-181

main. Furthermore, we update the loss score as182

ℓ (θ;D) ← ℓ (θ;D) − ℓR. Proper tuning of ℓR183

can significantly improve performance (Jiao et al.,184

2022). However, determining an appropriate value185

remains a challenging task.186

Minimum performance estimation. To address187

this, we predict the model’s loss at the end of train-188

ing as an estimate of the minimum acceptable per-189

formance. Specifically, we leverage scaling laws190

to capture training dynamics and forecast the loss191

based on evaluation loss trends (Kaplan et al., 2020;192

Zhang et al., 2024a). Given the number of parame-193

ters P and the current training step T , the predicted194

training loss is estimated by:195

ℓ̂(P, T ) = A · 1

Pα
· 1

T β
+ E, (4)196

where A, E, α, and β are trainable parameters. For197

each domain, after each evaluation, we collect a198

data point, refit the curve to all collected points,199

and use the predicted curve to estimate the loss at200

the end of training as the predicted minimum per-201

formance. Following Hoffmann et al. (2022a), we202

estimate using the Huber loss (δ = 0.001) and the203

L-BFGS algorithm, and select the average of the204

best-fitting three from a grid of initializations. To205

ensure sufficient data points, we start predictions206

only after 20% of training is complete.207

Reference loss adjustment. Subsequently, we set208

the reference loss using the predicted minimum209

performance. In our preliminary experiments, this210

approach exhibits strong numerical stability. To ac-211

celerate convergence, we adopt the minimum value212

as the reference loss. This dynamically evaluates213

domains with poorer performance, allowing DRO214

to assign higher weights to these domains, thereby215

promoting faster model convergence. 216

3.3 Dynamic Potential Distribution 217

Sagawa et al. (2019) consider robustness to arbi- 218

trary subpopulations, which is overly conservative 219

and degenerates into training only on the highest- 220

loss domain. To address this issue, Zhou et al. 221

(2021) propose a more reasonable assumption by 222

restricting Q in Eqn. 2 to an f -divergence ball 223

(Csiszár, 1967) around a reference data ratio pR. 224

This yields promising results, better ensuring do- 225

main balance (Jiao et al., 2022). Formally, 226

Q =
{
q : χ2 (q,pR) ≤ ρ

}
. (5) 227

However, this assumption can be too restrictive, 228

necessitating a carefully chosen reference data ra- 229

tio pR. An unreasonable choice may reduce the 230

model’s robustness to distributional shifts. 231

Reference data ratio adjustment. To address this, 232

we propose a method that combines the strengths 233

of the aforementioned approaches. We still employ 234

Eqn. 5 to constrain the distribution within a limited 235

range, while gradually shifting the reference data 236

ratio towards domains with higher losses to im- 237

prove the model’s robustness to more challenging 238

distributions. To ensure adequate training across 239

all traversed potential distributions, we gradually 240

update the reference ratio. 241

Compared to existing reference ratios, the DRO 242

method dynamically assigns higher weights q to 243

domains with higher losses. This method shows 244

good numerical stability, which we leverage to up- 245

date the reference ratio. Formally, we update: 246

pt+1
R = δ · qt + (1− δ) · pt

R. (6) 247

Finally, to prevent the method from degenerating 248

into training solely on the highest-loss domain, we 249

constrain the reference ratio of each domain to lie 250

between 1
n and n times the initial ratio. Formally, 251

we set 1
n ·p

0
R ≤ pt

R ≤ n·p0
R. We apply this method 252

after 40% of the training is completed, ensuring 253

the model sufficiently converges near the initial 254

reference ratio and that the reference loss stabilizes. 255
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4 Experiments256

4.1 Experimental Setup257

Model. Llama2-7B model (Touvron et al., 2023b)258

is used as the base model. We employ the same259

target architecture as Sheared Llama for structured260

pruning to ensure a fair comparison. We com-261

pare our method, i.e., DRPruning, to strong open-262

source models of similar sizes, including Pythia-263

1.4B and 2.8B (Biderman et al., 2023) and Sheared264

Llama-1.3B and 2.7B. Additionally, we reproduce265

Sheared Llama, using the same data settings to266

control for other variables (ReSheared). Further267

details are provided in Appendix A.1.268

Data. To ensure comparability with Sheared269

Llama, we align most of our settings with its ap-270

proach. However, due to insufficient documenta-271

tion of its data filtering method, we are unable to272

replicate the results under the 2.7B setting. There-273

fore, our comparison primarily focuses on ReS-274

heared and DRPruning, using a similar data setting275

for our reproduction. We allocate 0.4 billion to-276

kens for pruning, utilizing the publicly available277

pruning dataset of Sheared Llama. We employ 50278

billion tokens for continued pretraining, and use279

SlimPajama (Shen et al., 2023), a filtered version of280

RedPajama (Computer, 2023), and use its training281

split for continued pretraining.282

Downstream task evaluation. We use the lm-283

evaluation-harness package (Gao et al., 2024) to284

evaluate on an extensive suite of downstream tasks:285

• We follow Llama2 to report the 0-shot per-286

formance on PIQA (Bisk et al., 2020), Wino-287

Grande (WinoG, Sakaguchi et al., 2020), ARC288

Easy (ARCE, Clark et al., 2018), SQuAD (Ra-289

jpurkar et al., 2018), BoolQ (Clark et al.,290

2019), TruthfulQA (TruthQA, Lin et al.,291

2022), and 5-shot performance on Natural292

Questions (NQ, Kwiatkowski et al., 2019) and293

TriviaQA (TriQA, Joshi et al., 2017).294

• We follow Pythia to report the 0-shot perfor-295

mance of LAMBADA (LAMB, Paperno et al.,296

2016), LogiQA (Liu et al., 2020), SciQ (Welbl297

et al., 2017), and WSC (Kocijan et al., 2020).298

• We follow Sheared Llama to report perfor-299

mance of the tasks used by Open LLM Leader-300

board, including 10-shot HellaSwag (HelS,301

Zellers et al., 2019), 25-shot ARC Chal-302

lenge (ARCC, Clark et al., 2018), and 5-shot303

MMLU (Hendrycks et al., 2021).304

Method From To PPL ↓ Task ↑

Sheared Llama 7B 1.3B 10.05 34.89
ReSheared 7B 1.3B 10.42 34.85
DRPruning 7B 1.3B 9.83 35.60

Sheared Llama 7B 2.7B 7.64 39.75
ReSheared 7B 2.7B 7.83 39.98
DRPruning 7B 2.7B 7.40 40.18

Table 1: Perplexity (PPL) and downstream task per-
formance (Task) of pruned models. “From” and “To”
denote model size before and after pruning.
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ReSheared 2.7B
DRPruning 2.7B

Figure 2: The curve of PPL changes during pruning
from 7B. Over the first 640 iterations (the vertical dash
line), the model size is gradually reduced from 7B to
the target size, which causes an initial increase in PPL.

Instruction tuning evaluation. To further 305

explore the potential applications of the base 306

model, we follow Sheared Llama by training with 307

10k instruction-response pairs sampled from the 308

ShareGPT dataset and using another 1k instruc- 309

tions for evaluation. We follow Wang et al. (2024) 310

and Sheared Llama to employ LLMs, specifically 311

GPT-4o, as an evaluator to compare the responses 312

of the two models and report the win rates. 313

4.2 Main Results for Pruning 314

Our method surpasses ReSheared during pruning 315

in PPL and downstream tasks. 316

DRPruning promotes convergence by increas- 317

ing the weight of underperformed domains. To 318

demonstrate this, we record the average PPL across 319

different domains on the validation set. Table 1 320

shows that our method achieves lower PPL. Fig- 321

ure 2 confirms faster convergence as pruning pro- 322

ceeds, with further potential in later training stages, 323

suggesting additional gains with extended training. 324

Our method better preserves the original 325

model’s performance during pruning. For a com- 326

prehensive analysis, we evaluate the model’s down- 327

stream task performance post-pruning. Across 15 328

tasks, our method significantly improves perfor- 329

mance on average, with +1.53% over the open- 330
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Tasks
7B 2.7B 1.3B

Llama2† Pythia† Sheared† ReSheared DRPrun. Pythia† Sheared† ReSheared DRPrun.

WSC 36.54 38.46 48.08 36.54 46.15 36.54 36.54 40.38 50.00
TriQA (5) 64.16 27.17 42.92 40.14 43.33 18.19 26.03 24.98 28.10
NQ (5) 25.98 7.12 14.85 13.49 15.82 4.79 8.75 8.39 10.44
TruthQA 32.09 28.79 30.21 28.41 30.13 30.75 29.12 28.09 29.68
LogiQA 30.11 28.11 28.26 26.27 28.73 27.50 27.50 28.11 28.88
BoolQ 77.71 64.50 65.99 64.92 65.08 63.30 62.05 61.01 63.36
LAMB 73.90 64.76 68.21 66.18 66.91 61.67 61.09 58.84 60.28
MMLU (5) 44.18 27.09 26.63 25.70 26.99 26.75 25.70 26.60 27.28
SciQ 94.00 88.50 91.10 90.10 89.80 86.70 87.00 86.40 87.70
ARCE 76.35 64.27 67.34 67.72 67.13 60.40 60.90 60.35 60.90
ARCC (25) 52.65 36.35 42.66 40.10 40.53 33.02 33.96 34.30 33.62
PIQA 78.07 73.88 76.12 76.71 75.19 70.84 73.50 74.59 72.69
WinoG 69.06 59.83 65.04 63.38 64.72 57.38 57.85 60.06 58.01
SQuAD 40.02 26.81 49.26 49.17 44.69 22.66 29.57 37.59 35.06
HelS (10) 78.95 60.81 71.24 72.03 69.22 53.49 61.05 63.06 58.88

Average 58.25 46.43 52.53 50.72 51.63 43.60 45.37 46.18 46.99

Table 2: Performances of different models across 15 downstream tasks. “Sheared” refers to Sheared Llama.
“ReSheared” is our reproduction of Sheared Llama. “DRPrun.” refers to our method. The number of shots is
indicated in parentheses, with 0-shot used when unspecified. A model marked with † indicates training on different
data. Bold and underlined represent the best and second-best results, respectively, for each model size.

source model and +1.27% in a fair comparison.331

The pruning similarity analysis is detailed in Ap-332

pendix B.1, and Appendix B.2 shows that pruning333

larger LLMs offers no advantage.334

4.3 Main Results for Continued Pretraining335

DRPruning outperforms ReSheared on average336

across LM benchmarks and instruction tuning.337

LLMs recovered by our method are better foun-338

dation models after continued pretraining. Ta-339

ble 2 presents the downstream performance of mod-340

els with similar sizes, showing that our model sur-341

passes most open-source models. We are unable to342

replicate the results of the 2.7B Sheared Llama due343

to differences in data, where our approach yields344

worse performance. Nevertheless, we outperform345

other open-source LLMs. On average, we achieve346

an improvement of +4.95% comparing to open-347

source LLMs. Additionally, under consistent exper-348

imental conditions, our method outperforms ReS-349

heared, achieving +1.78% on average. Its statistical350

significance is confirmed by t-test in Appendix B.3.351

Moreover, we achieve significantly lower perplex-352

ity: 5.61 vs 5.97 for 1.3B, and 5.00 vs 5.27 for353

2.7B, averaging a -5.60% reduction.354

The effectiveness of DRPruning is further355

demonstrated by instruction tuning. We com-356

pare the win rates of our instruction-tuned model357

with Sheared Llama and ReSheared. Figure 3358

shows our model achieves a 55.4% win rate, sur-359

passing both the open-source Sheared Llama and360

ReSheared. This highlights that DRPruning offers361

43.4% 56.6%

Sheared Llama 1.3B
DRPruning 1.3B

46.3% 53.7%

ReSheared 1.3B
DRPruning 1.3B

45.2% 54.8%

Sheared Llama 2.7B
DRPruning 2.7B

43.5% 56.5%

ReSheared 2.7B
DRPruning 2.7B

Figure 3: Win rate during instruction tuning. DRPrun-
ing outperforms Sheared Llama and ReSheared.

a stronger foundation for further use. 362

Additionally, DRPruning introduces no extra 363

GPU computation, with the only overhead stem- 364

ming from data ratio calculation, contributing to 365

less than 1.5% of the training time. Furthermore, 366

we implemented parallel data ratio computation 367

and demonstrated that it does not impact perfor- 368

mance, as detailed in Appendix B.4. 369

5 Analysis 370

5.1 Ablation Study 371

We assess the impact of our dynamic data schedul- 372

ing on 1.3B models, comparing it to constant 373

scheduling and the naïve DRO method. 374

DRPruning significantly outperforms DRO 375

method. As shown in Figure 4, our method consis- 376

tently reduces PPL compared to the constant and 377

DRO approach. In downstream tasks, DRPruning 378

also outperforms both baselines, with performance 379

improving steadily in the mid to late stages of train- 380

ing (-0.26 for DRO, +0.95 for ours). This under- 381
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CC C4 GitHub Book Wiki ArXiv StackEx

D
at

a
R

at
io Constant 67.0% 15.0% 4.5% 4.5% 4.5% 2.5% 2.0%

DRO 54.6% 29.0% 3.7% 5.0% 3.8% 1.9% 1.9%
DRPruning 55.7% 15.6% 2.4% 3.7% 18.4% 2.1% 2.1%

Reference Ratio vs. Constant 47.1% 30.5% 2.9% 3.5% 9.1% 3.9% 3.0%
L

os
s Evaluation Loss vs. Constant +0.011 -0.010 +0.030 +0.007 -0.123 +0.003 +0.001

Reference Loss vs. Constant +0.067 +0.162 +0.093 +0.094 -0.108 +0.014 -0.053

Table 3: Data usage ratios, hyperparameter adjustments, and domain-specific loss for Constant, naïve DRO, and
our strategy. The first three rows show the total data usage ratios during training, while the last three rows represent
the hyperparameters and the evaluation loss at the end of training.
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Figure 4: Effectiveness of our method compared to
constant scheduling and naïve DRO during the 1.3B
continued pretraining. Left figure: PPL trends; Right:
average performance across 15 downstream tasks.

scores the sensitivity of DRO to hyperparameters382

and the necessity of dynamic adjustments.383

Our strategy dynamically identifies underper-384

forming domains. To highlight how our method385

differs from DRO, Table 3 presents data usage386

ratios, hyperparameter adjustments, and domain-387

specific loss. Our strategy identifies Wiki as un-388

derperforming compared to optimal, assigning it389

a lower reference loss (-0.11) and a higher refer-390

ence ratio (+4.6%). This reduces loss on Wiki391

(-0.12) while keeping loss stable in other domains392

(maximum increase of +0.03). Besides, by dynam-393

ically adjusting the reference ratio, we improve the394

model’s robustness across the full range of ratios395

from the initial to the new reference distribution.396

Compared to DRO, this offers robustness to a wider397

range of distribution shifts. Appendix B.5 further398

demonstrates the variations and reliability of DR-399

Pruning during training.400

5.2 Robustness across Different Domains401

While our method shows clear advantages in PPL,402

a gap remains between PPL and downstream per-403

formance. The lack of domain-specific test sets404

also limits further analysis. To address this, we405

create downstream tasks from unlabeled datasets406

for detailed domain-specific evaluation.407

Automatic construction of sentence continua-408

Figure 5: The generation procedure for our sentence
continuation task. The orange nodes represent data stor-
age nodes, while the blue trapezoidal nodes represent
data processing nodes.

Question If the latter described their efforts to adapt to
European conditions,

Right
Option

the former insisted that Muslims adhere to proper
canons of learning and textual interpretation.

Wrong
Option

it also highlighted the resilience and ingenuity
that had brought them this far despite challenges.

Table 4: Case For the sentence continuation task.

tion tasks across domains. To assess base model 409

performance, we use sentence continuation tasks 410

where the model selects the better continuation 411

between two options. As shown in Figure 5, we 412

use the SlimPajama test set as the correct sentence 413

and have the model generate the incorrect alterna- 414

tives. First, “LLM Filtering” selects consecutive 415

sentences with a causal relationship, then “Split” 416

each sentence into two parts: the first as the ques- 417

tion, and the second as the right option. For this 418

large-scale filtering, we use GPT-4o-mini. 419

Next, “LLM Rewrite” generates incorrect op- 420

tions. Since LLMs struggle to create incorrect but 421

related content, we follow Deng et al. (2024) to first 422

generate a reasonable continuation, then modify it 423

to create an incorrect version. Finally, “LLMs Ver- 424

ification” scores both options and filters out cases 425

where the scores don’t match the true answers. We 426

use GPT-4o in these procedures. We further select 427

questions with the largest score differences. In to- 428

tal, we select 400 questions per domain. A case is 429

shown in Table 4. 430
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Model CC C4 GitHub Book Wiki ArXiv StackExchange Average

1.
3B

Constant 35.00 40.00 88.00 47.75 21.75 82.00 72.50 55.29
Sheared Llama 21.75 26.00 93.75 33.50 29.50 38.50 56.50 42.79
ReSheared 30.50 30.25 89.25 32.00 23.00 81.00 47.50 47.64
DRPruning 44.00 51.50 94.75 48.00 33.50 86.50 90.00 64.04

2.
7B

Sheared Llama 81.25 89.50 95.50 96.50 89.25 90.50 82.75 89.32
ReSheared 61.75 60.25 96.00 73.00 80.50 93.75 92.00 79.61
DRPruning 82.25 77.75 99.00 86.75 87.50 79.50 89.25 86.00

Table 5: Domain-level results under the benchmark we generated. The abbreviations of tasks refer to the evaluation
of seven domains used for training in RedPajama.

Base Model Prune PT Method EN RU ZH JA AR TR KO TH Average

XGLM-1.7B X X - 55.06 52.97 51.02 51.00 42.89 37.99 49.00 38.63 47.32
Qwen1.5-1.8B X X - 60.89 52.30 56.13 53.30 42.17 34.98 48.25 36.75 48.10
Qwen2-1.5B X X - 61.58 57.83 55.72 55.30 43.31 35.98 49.25 36.02 49.37

Qwen2-1.5B X ✓ ReSheared 62.16 58.95 54.93 55.60 43.91 37.27 54.05 39.96 50.85
Qwen2-1.5B X ✓ DRPruning 61.67 59.09 54.01 54.95 45.14 46.91 52.65 44.42 52.35
Qwen2-7B ✓ ✓ DRPruning 60.43 56.80 55.72 55.05 45.69 43.82 53.95 43.53 51.87

Table 6: The average performance on downstream tasks across multiple languages. “Prune” refers to the pruning
procedure applied to the base model, while “PT” indicates continued pretraining on the provided dataset.

EN RU ZH JA AR TR KO TH

D
at

a
R

at
io Default Reference Ratio 27.7% 18.5% 13.0% 10.4% 9.1% 8.9% 6.7% 5.8%

ReSheared 82.8% 5.9% 5.5% 2.2% 1.0% 0.8% 1.2% 0.6%
DRPruning 19.0% 7.8% 12.9% 19.1% 9.2% 19.9% 6.7% 5.4%

Reference Ratio vs. ReSheared 23.1% 9.2% 8.5% 20.3% 8.6% 17.8% 6.7% 5.8%

L
os

s Evaluation Loss vs. ReSheared +0.143 -0.067 -0.123 -0.330 -0.465 -0.841 -0.282 -0.304
Reference Loss vs. ReSheared +0.211 +0.008 -0.060 -0.267 -0.412 -0.804 -0.219 -0.229

Table 7: Data usage ratios, hyperparameter adjustments, and domain-specific loss for reproduction of Sheared
Llama (ReSheared) and our approach (DRPruning) during continued pretraining from Qwen2 1.5B.

DRPruning outperforms the baselines consis-431

tently across the domains. As shown in Table 5,432

our method consistently outperforms the Constant433

and Sheared Llama scheduling strategies, achieving434

better downstream performance in most domains.435

This demonstrates that our approach not only im-436

proves learning in hard domains but also preserves437

or enhances performance in others. Additionally,438

our benchmark results align well with the average439

performance across 15 tasks, performing slightly440

below the open-source Sheared Llama 2.7B model.441

This consistency confirms the quality and reliability442

of our benchmark and results.443

5.3 Robustness under Distribution Shifts444

To verify our method under larger distribution445

shifts, we conduct experiments under the multi-446

lingual setting. To ensure a fair comparison, we re-447

produce DRPruning and ReSheared methods under448

the same experimental setup, detailed as follows:449

Experimental setups. We use Qwen2 series mod-450

els (Yang et al., 2024), which demonstrate superior451

multilingual performance, as the base models and452

explore two approaches: (1) continued pretraining 453

from Qwen2-1.5B, and (2) pruning Qwen2-7B and 454

then continued pretraining. Due to grouped query 455

attention differences, we keep the head dimension 456

unchanged, resulting in a 1.8B target architecture. 457

We use the CulturaX dataset (Nguyen et al., 2024) 458

and select eight languages covered by Qwen2. The 459

reference loss is initialized with Qwen2-7B on the 460

validation set. For the reference ratio, we follow 461

Conneau et al. (2020), upsampling low-resource 462

languages with a smoothing rate of 0.3. We se- 463

lect various downstream tasks and report average 464

performance. Detailed model configurations and 465

metrics are provided in Appendix A.2. 466

Our method demonstrates superior distribu- 467

tion robustness compared to ReSheared. As 468

shown in Table 6, our method outperforms ReS- 469

heared with an average gain of +1.50, and Qwen2- 470

1.5B with +2.98. To analyze the source of these 471

gains, as shown in Table 7, Sheared Llama fo- 472

cuses on hard-to-improve areas like English, where 473

its loss remains above the reference loss, lead- 474

ing to a highly imbalanced data distribution. In 475
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contrast, our method dynamically identifies under-476

performing domains, increasing the reference loss477

for high-resource languages and lowering it for478

low-resource ones. This leads to more balanced479

data scheduling and better evaluation loss, further480

demonstrating the robustness of our approach in481

handling distribution shifts.482

Continued pretraining from the pruned model483

underperforms from the pretrained ones. Con-484

tinued pretraining from the pruned model result485

in a slight performance drop (average -0.48), de-486

spite the increased parameters (1.8B vs. 1.5B).487

This contrasts with Sheared Llama, where contin-488

ued pretraining on a smaller model shows mini-489

mal gains. In our case, using different data and a490

stronger small model improves performance during491

continued pretraining, leading to different results.492

6 Related Work493

LLM Pruning. Unstructured pruning (Frankle and494

Carbin, 2019; Frantar and Alistarh, 2023; Sun et al.,495

2024) removes individual weights but offers limited496

speedup. This study focuses on structured pruning497

(Han et al., 2015; Wen et al., 2016), which removes498

entire structural components, making it more ef-499

fective for improving efficiency. In task-specific500

models, extensive pruning can retain performance501

(Liu et al., 2017; Wang et al., 2020a; Lagunas et al.,502

2021; Xia et al., 2022; Kurtic et al., 2023). How-503

ever, for LLMs, as training data increases (Hoff-504

mann et al., 2022b), fewer redundant parameters505

remain, leading to significant performance degra-506

dation after pruning.507

To counter this, performance recovery tech-508

niques like continued pretraining are essential (Ma509

et al., 2023; Zhang et al., 2024b). However, con-510

tinued pretraining of pruned models reduces loss511

at different rates across domains, resulting in less512

efficient data utilization (Xia et al., 2024). To ad-513

dress this, DRPruning dynamically adjusts the data514

distribution during training, ensuring balanced per-515

formance across domains.516

Distributionally robust optimization (DRO).517

Overparameterized neural networks excel on i.i.d.518

test sets but struggle with underrepresented data519

groups (Hovy and Søgaard, 2015; Blodgett et al.,520

2016; Tatman, 2017). Unlike empirical risk min-521

imization, which minimizes expected loss for a522

fixed distribution, MultiDDS (Wang et al., 2020b)523

optimizes the sampling distribution via gradient-524

based meta-learning but incurs higher computa-525

tional and memory costs. In contrast, DRO (Delage 526

and Ye, 2010; Ben-Tal et al., 2012; Bertsimas et al., 527

2014) improves performance without additional 528

complexity (Hashimoto et al., 2018). 529

DRO finds a model that performs well across 530

multiple possible test distributions. Group DRO 531

(Sagawa et al., 2019) minimizes the worst-case loss 532

over all domains without constraining potential dis- 533

tribution, while CVaR-Group DRO (Oren et al., 534

2019) averages the largest N group losses. These 535

methods can be overly conservative, as they ac- 536

count for robustness to arbitrary subpopulations. 537

Zhou et al. (2021) address this by constraining 538

potential distribution within an f -divergence ball 539

(Csiszár, 1967) around a reference data ratio, yield- 540

ing promising results (Jiao et al., 2022). 541

DRO enhancement. DRO shows strong perfor- 542

mance but relies on two main hyperparameters. 543

The first is the reference loss, usually set by train- 544

ing an additional baseline model (Zhou et al., 2021; 545

Jiao et al., 2022), though this is expensive for 546

LLMs. Sheared Llama uses scaling laws of model 547

size to predict the pruned model’s performance. 548

The second hyperparameter is the reference data 549

ratio, often determined through temperature-based 550

sampling (Arivazhagan et al., 2019; Conneau et al., 551

2020) or manually (Touvron et al., 2023a; Parmar 552

et al., 2024). However, fixed ratios can hinder 553

model convergence in challenging distributions. 554

DRPruning shifts weight toward higher-loss do- 555

mains, enhancing distribution robustness and im- 556

proving downstream performance. 557

7 Conclusion 558

This paper presents DRPruning, a distributionally 559

robust pruning method that addresses uneven per- 560

formance degradation across domains during struc- 561

tured pruning. By utilizing and further improv- 562

ing distributionally robust optimization (DRO), our 563

pruning method focuses more on domains with 564

poorer performance, significantly accelerating per- 565

formance recovery. It outperforms existing models 566

and data scheduling methods in both monolingual 567

and multilingual settings, achieving lower perplex- 568

ity, higher task accuracy, and better instruction tun- 569

ing outcomes. Further analysis demonstrates the 570

robustness of our method against various domains 571

and distribution shifts. Additionally, the dynamic 572

adjustment of reference loss and data ratios exhibits 573

broad applicability, with strong potential to support 574

balanced training across diverse tasks. 575
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Limitations576

Exploration of smaller pruning ratios. Due to577

computational constraints, we are unable to explore578

pruning to larger models, i.e., employing smaller579

pruning ratios. Retaining a larger proportion of the580

model’s parameters may lead to different outcomes581

in some experiments. For example, it remains to582

be investigated whether pruning larger models pro-583

vides benefits, and whether it is better to continue584

pretraining from a pruned model or from a smaller,585

fully pretrained model.586

More extensive continued pretraining. Xia et al.587

(2024) point out that pruned models exhibit higher588

training ceilings. Although good performance can589

be achieved with tens of billions of training sam-590

ples, this study does not investigate whether train-591

ing the models to full convergence using hundreds592

or thousands of billions of samples would yield593

better results than continuing pretraining from ex-594

isting pretrained models under similar settings.595

Validation in other scenarios. We have validated596

our method’s effectiveness in the pruning phase, the597

pruning recovery phase, and the continued pretrain-598

ing phase. However, our method is expected to be599

applicable in broader contexts, such as pretraining600

from scratch and cross-domain instruction tuning.601

Broader validation would further demonstrate the602

superiority of our approach.603

Ethics Statement604

Our work adheres to the ACL Ethics Policy and605

uses publicly available datasets for reproducibility.606

LLMs may exhibit racial and gender biases, so we607

strongly recommend users assess potential biases608

before applying the models in specific contexts.609

Additionally, due to the difficulty of controlling610

LLM outputs, users should be cautious of issues611

arising from hallucinations.612
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A Detailed Experimental Setup1118

A.1 Main Experiment1119

Model training. All experiments are conducted1120

on 8 NVIDIA A100 40GB GPUs. The training1121

hyperparameters for the main experiment are listed1122

in Table 8, and the target model configuration for1123

pruning is detailed in Table 9. Pruning takes ap-1124

proximately 12 hours for both the 1.3B and 2.7B1125

models. Continued pretraining requires around 91126

days for the 1.3B model and 18 days for the 2.7B1127

model.1128

For both pruning and continued pretraining, we1129

follow the configurations of Sheared Llama as1130

closely as possible. We use fully sharded data par-1131

allel (Zhao et al., 2023) for parallel training and1132

FlashAttention V1 (Dao et al., 2022) to speed up1133

the training process. A cosine learning rate sched-1134

uler is employed, reducing the learning rate to 10%1135

of its peak value.1136

DRO. We follow Sheared Llama to update the1137

data ratio every 50 steps during pruning and every1138

400 steps during continued pretraining. For the1139

DRO setup, we follow Zhou et al. (2021) closely.1140

The constraint size ρ for the chi-square ball is set1141

to {0.05, 0.1, 0.2}. Preliminary experiments show1142

that ρ = 0.1 yields the best results, so we use this1143

value in all experiments. Following their setup, we1144

truncate the dynamic data ratio to prevent it from1145

dropping below the minimum reference data ratio,1146

which further ensures balanced domain training.1147

We compute historical loss values using an expo-1148

nential moving average, with the hyperparameter1149

λ set to 0.1, which is also used for updating the1150

reference data ratio. Besides, for the prediction1151

of the reference loss, we maintain an average loss1152

below 3 × 10−5, demonstrating the effectiveness1153

of our method.1154

Instruction tuning. For instruction tuning, the1155

instruction begins with "You are a helpful assistant.1156

Write a response that appropriately completes the1157

request." We perform full-parameter fine-tuning for1158

5 epochs, with a learning rate of 5e−5, a warmup1159

ratio of 3%, and a batch size of 128.1160

To evaluate instruction tuning, we follow the1161

methodology of Sheared Llama, using LLMs to1162

assess model performance. Given outputs from1163

two models, we ask the LLM to determine which is1164

better using the prompt: “Here is the user request:1165

.... Here are the two outputs for this request: Output1166

A: .... Output B: .... Which output is better, A or1167

B?”. Since Wang et al. (2024) note that using GPT 1168

models as evaluators can lead to preference shifts 1169

when output order is reversed, we randomly switch 1170

the positions of the outputs to ensure each result 1171

appears as Output A or Output B equally. We report 1172

the average win rate to mitigate position bias. The 1173

model gpt-4o-2024-08-06 is used for evaluation. 1174

A.2 Multilingual Experiment 1175

Model training. The experimental setup is 1176

largely consistent with Appendix A.1. Given the 1177

extended training duration, we standardize the train- 1178

ing to 40,000 steps. The configuration of the target 1179

model for pruning is detailed in Table 10. To main- 1180

tain a consistent ratio between the number of heads 1181

and KV heads required by the structured pruning 1182

method, we keep the head dimension unchanged 1183

and add two extra heads, increasing the number 1184

of parameters to 1.8B. Continued pretraining takes 1185

around 8 days for the 1.5B model and 12 days for 1186

the 1.8B model. 1187

Data. We use the CulturaX dataset (Nguyen et al., 1188

2024), a large multilingual resource with 6.3 tril- 1189

lion tokens across 167 languages, integrating mC4 1190

and OSCAR, and meticulously cleaned and dedu- 1191

plicated. We select eight languages covered by 1192

Qwen2: English (EN), Russian (RU), Chinese 1193

(ZH), Japanese (JA), Arabic (AR), Turkish (TR), 1194

Korean (KO), and Thai (TH), representing diverse 1195

language families. 1196

Metrics. We adopt the experimental setups from 1197

previous studies and evaluate performance on 1198

downstream tasks in a zero-shot setting. Specif- 1199

ically, we follow XGLM (Lin et al., 2021) and 1200

mGPT (Shliazhko et al., 2024), covering tasks 1201

such as natural language inference (XNLI; Con- 1202

neau et al., 2018), Winograd schema challenge 1203

(XWINO; Tikhonov and Ryabinin, 2021), com- 1204

monsense reasoning (XStoryCloze; Lin et al., 1205

2021), and paraphrase detection (PAWSX; Yang 1206

et al., 2019). Task coverage varies across languages, 1207

and not all tasks include all languages in our train- 1208

ing set. We report results for languages overlapping 1209

between tasks and our training set, providing aver- 1210

age performance if a language appears in multiple 1211

tasks. The lm-evaluation-harness package (Gao 1212

et al., 2024) is used for the comprehensive evalua- 1213

tion of downstream tasks. 1214
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Pruning Contined Pretraining

Training Steps 3,200 48,000
Learning rate of z, ϕ, λ 1.0 -
Learning Rate of θ 0.0001 0.0001
LR warmup ratio 10% 3%
Batch size (tokens) 131K 1M
Ratio update interval m (steps) 50 400

Table 8: Training hyperparameters for the main experiment.

Model #Param #Layers Hidden Intermediate #Heads Head Dim

Pruned-0.5B 0.5B 24 1024 2816 8 128
Pruned-1.3B 1.3B 24 2048 5504 16 128
Pruned-2.7B 2.7B 32 2560 6912 20 128

Llama2-7B 6.7B 32 4096 11008 32 128

Table 9: The model configurations for the target model of pruning and the base models for the main experiment.

Model #Param #Layers Hidden Intermediate #Heads #KV Heads Head Dim

Pruned-1.8B 1.8B 28 1536 8960 14 2 128

Qwen2-1.5B 1.5B 28 1536 8960 12 2 128
Qwen2-7B 7.6B 28 3584 18944 28 4 128

Table 10: The model configurations for the target model of pruning and the base models for the multilingual
experiment.

B Supplement Experimental Results1215

B.1 Analysis of Mask Similarity1216
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Figure 6: Convergence of masks over 3200 pruning
steps. Similarity indicates the similarity between prun-
ing decisions at a certain step and the final decisions at
step 3200. “Layer”, “Hidden”, “Head”, and “Intermedi-
ate” correspond to the four pruning dimensions.

To perform a detailed analysis of the masks, we1217

extract the masks generated during training and1218

prune the model by removing components with1219

the lowest scores, shaping the model according1220

to the target specifications. We then calculate the1221

probability of the model making consistent prun-1222

ing decisions for each substructure and examine1223

how different training steps or strategies influence1224

the masks. Specifically, we apply Sheared Llama,1225

Structure Same Different

Layer 81.25±3.61 78.65±2.24
Hidden 60.33±0.78 65.02±1.47
Head 68.88±0.47 70.53±0.65
Intermediate 56.37±0.15 56.40±0.14

Table 11: Mask similarity mean values and the stan-
dard error of the mean under different data scheduling
strategies and random seeds. “Same” indicates using
identical data scheduling but different random seeds,
while “Different” indicates using different data schedul-
ing strategies.

constant, and our proposed strategies, using two 1226

distinct random seeds for pruning, which yields six 1227

unique 1.3B models. We then analyze the similari- 1228

ties across these models. 1229

The masks converge quickly during training. 1230

The convergence speed of the masks during train- 1231

ing is illustrated in Figure 6. Pruning achieves 1232

over 75% similarity within 400 steps and over 95% 1233

within 800 steps, indicating that effective results 1234

can be obtained with relatively few pruning steps. 1235

While layer pruning converges rapidly, pruning 1236

intermediates of fully connected layers is slower, 1237

suggesting that coarser-grained decisions converge 1238

more quickly than finer-grained decisions. 1239
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Tasks
Pruning Continued Pretraining

To: 1.3B To: 2.7B To: 1.3B To: 2.7B

From: 7B From: 13B From: 7B From: 13B From: 7B From: 13B From: 7B From: 13B

ARCC (25) 23.21 22.10 30.29 27.30 33.62 32.17 40.53 40.36
ARCE 42.26 40.07 53.11 47.31 60.90 58.92 67.13 66.58
BoolQ 59.69 59.88 59.36 60.12 63.36 56.88 65.08 67.13
HelS (10) 35.27 32.38 48.07 41.62 58.88 58.70 69.22 67.67
LAMB 38.27 34.08 51.80 46.56 60.28 59.87 66.91 66.23
LogiQA 26.73 25.50 27.19 24.42 28.88 25.65 28.73 29.80
MMLU (5) 24.82 25.78 24.86 25.56 27.28 26.76 26.99 27.60
NQ (5) 1.91 1.52 4.02 2.35 10.44 8.86 15.82 13.24
PIQA 61.81 61.32 67.08 64.15 72.69 72.31 75.19 74.27
SciQ 79.80 79.60 86.30 83.30 87.70 87.30 89.80 91.00
SQuAD 13.80 6.87 17.05 18.61 35.06 28.52 44.69 46.55
TriQA (5) 5.26 3.33 11.75 6.77 28.10 24.40 43.33 38.17
TruthQA 32.99 34.15 31.12 31.50 29.68 29.66 30.13 30.75
WinoG 51.62 49.09 54.14 53.83 58.01 56.83 64.72 62.04
WSC 36.54 36.54 36.54 36.54 50.00 60.58 46.15 36.54

Average 35.60 34.15 40.18 38.00 46.99 45.83 51.63 50.53

Table 12: The performance of pruning Llama2-7B and 13B models down to 1.3B and 2.7B parameters. “Pruning”
refers to using the pruned model without continued pretraining, while “Continue Pretraining” means using the
model after continued pretraining. “From” and “To” indicate the size of the source and target model, respectively.
Bold indicates superior performance when pruning from 7B or 13B.

The randomness of pruning decisions is signifi-1240

cant. We analyze mask similarity across training1241

sessions with different random seeds under iden-1242

tical and distinct data scheduling strategies. The1243

results, shown in Table 11, present mean values and1244

standard error of the mean. The trend across prun-1245

ing dimensions aligns with the previous findings:1246

similarity is higher at the coarse-grained layer level1247

and lower at the finer-grained intermediate level.1248

Besides, comparisons across three pairs under iden-1249

tical settings and twelve pairs under different set-1250

tings show consistently low similarity. However,1251

no significant difference in perplexity is observed,1252

suggesting that the model’s interchangeable param-1253

eters allow similar outcomes despite different prun-1254

ing decisions. This randomness obscures variations1255

caused by differing data distributions.1256

B.2 Pruning from Larger LLMs1257

We investigate whether pruning from LLMs with1258

a higher pruning ratio provides additional benefits.1259

Experiments are conducted in the monolingual set-1260

ting, consistent with the main text, to compare the1261

effects of pruning from Llama2-7B and Llama2-1262

13B.1263

The results, presented in Table 12, indicate that1264

pruning from the 13B model consistently yields1265

worse outcomes, regardless of whether continued1266

pretraining is applied. On average, this approach1267

results in a downstream performance decrease of1268

1.47. These findings suggest that pruning from1269

a larger model leads to a more significant perfor- 1270

mance decline, often producing inferior results un- 1271

der a fixed training budget, especially under a high 1272

pruning ratio. 1273

B.3 Robustness Verification 1274

First, all comparisons in our experiments are 1275

mainly based on DRPruning and ReSheared, 1276

rather than the official open-source version of 1277

Sheared LLaMA. This is because, under the 2.7B 1278

configuration, we were unable to reproduce the re- 1279

sults using RedPajama or the filtered SlimPajama 1280

dataset as the continued pretrained dataset. How- 1281

ever, for the 1.3B model, our reproduced version 1282

achieved performance surpassing Sheared LLaMA. 1283

Therefore, to ensure a fair comparison, we con- 1284

ducted most comparisons against ReSheared. 1285

As shown in Table 2, our method demonstrates 1286

relatively small improvements over ReSheared in 1287

downstream evaluations. To address this issue, we 1288

provide the following analysis. First, our results 1289

consistently outperform ReSheared across various 1290

metrics, including PPL, downstream task perfor- 1291

mance for both pruned and continued pretrained 1292

models, domain-specific evaluation, and win rate 1293

after instruction tuning. These consistent and stable 1294

improvements across multiple dimensions provide 1295

solid evidence of the effectiveness of our approach. 1296

To further demonstrate the robustness of our 1297

method, we conduct significance testing. Specif- 1298

ically, we design five distinct prompts for each 1299
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Tasks
ReSheared 1.3B DRPruning 1.3B

P1 P2 P3 P4 P5 Avg. P1 P2 P3 P4 P5 Avg.

ARCC (25) 34.30 33.62 34.04 33.53 35.15 34.13 33.62 33.36 33.45 33.28 34.13 33.57
ARCE 60.35 59.76 61.03 59.05 60.98 60.23 60.90 58.00 61.53 59.81 61.28 60.30
BoolQ 61.01 58.90 62.32 62.26 62.48 61.38 63.36 63.12 61.50 59.11 62.48 61.93
HelS (10) 63.06 63.05 63.12 62.99 63.10 63.06 58.88 58.77 58.66 58.66 58.82 58.76
LAMB 58.84 59.83 59.65 60.02 60.02 59.67 60.28 60.90 61.09 61.28 61.23 60.96
LogiQA 28.11 28.11 31.03 28.42 29.34 29.00 28.88 29.49 29.65 29.19 27.80 29.03
MMLU (5) 26.60 25.92 25.69 25.56 25.61 25.87 27.28 26.79 26.86 26.54 26.33 26.76
NQ (5) 8.39 7.73 8.31 7.98 8.34 8.14 10.44 9.58 9.75 9.11 10.08 9.79
PIQA 74.59 74.43 74.92 73.88 74.65 74.49 72.69 71.98 72.09 72.20 72.47 72.27
SciQ 86.40 85.70 88.20 85.90 87.50 86.76 87.70 88.30 89.40 88.20 89.50 88.64
SQuAD 37.59 34.25 40.39 44.09 35.76 38.43 35.06 33.44 39.59 41.53 32.31 36.38
TriQA (5) 24.98 25.06 25.10 23.61 25.00 24.75 28.10 27.62 28.45 26.47 28.01 27.72
TruthQA 28.09 29.84 30.33 29.20 29.16 29.31 29.68 32.07 31.69 30.44 30.87 30.95
WinoG 60.06 59.59 59.12 61.01 59.04 59.68 58.01 59.27 60.62 59.35 58.64 59.21
WSC 40.38 36.54 36.54 36.54 41.35 38.27 50.00 50.00 49.04 55.77 48.08 50.58

Average 46.18 45.49 46.65 46.27 46.50 46.21 46.99 46.85 47.56 47.40 46.80 47.12

Table 13: Performance comparison between ReSheared 1.3B and DRPruning 1.3B across five different prompts.
“P1” to “P5” represent five distinct prompts. Other abbreviations follow the definitions in Table 2. Bold indicates
superior performance when comparing ReSheared and DRPruning.

Tasks
ReSheared 2.7B DRPruning 2.7B

P1 P2 P3 P4 P5 Avg. P1 P2 P3 P4 P5 Avg.

ARCC (25) 40.10 39.85 40.44 40.36 40.10 40.17 40.53 39.08 40.44 40.96 40.96 40.39
ARCE 67.72 67.30 67.42 63.55 67.38 66.67 67.13 64.52 67.26 64.39 67.55 66.14
BoolQ 64.92 66.48 64.43 62.97 63.12 64.37 65.08 67.71 66.64 66.33 66.36 66.43
HelS (10) 72.03 72.05 72.06 72.00 72.12 72.05 69.22 69.24 69.02 69.04 69.17 69.14
LAMB 66.18 66.31 66.19 66.43 67.01 66.41 66.91 67.13 68.08 67.18 67.77 67.41
LogiQA 26.27 26.27 27.65 29.95 27.50 27.50 28.73 27.96 27.19 30.11 28.57 28.51
MMLU (5) 25.70 24.81 25.21 25.22 25.65 25.32 26.99 26.75 27.00 26.81 27.01 26.91
NQ (5) 13.49 13.60 13.71 13.19 13.46 13.50 15.82 16.23 15.96 15.84 16.09 15.99
PIQA 76.71 76.88 76.17 75.52 75.95 76.27 75.19 74.21 75.19 74.86 74.70 74.83
SciQ 90.10 90.30 91.70 88.10 91.50 90.34 89.80 89.40 92.70 89.10 91.80 90.56
SQuAD 49.17 44.33 50.18 51.86 37.49 46.60 44.69 37.94 47.94 44.93 30.81 41.25
TriQA 40.14 40.11 40.06 39.72 40.43 40.09 43.33 41.84 43.70 43.02 43.44 43.07
TruthQA 28.41 30.40 29.74 29.87 30.05 29.71 30.13 31.03 30.06 29.80 29.61 30.10
WinoG 63.38 64.17 63.77 65.04 64.64 64.20 64.72 64.64 65.59 66.54 65.04 65.29
WSC 36.54 37.50 37.50 37.50 36.54 37.12 46.15 57.69 43.27 63.46 51.92 52.31

Average 50.72 50.69 51.08 50.75 50.20 50.69 51.63 51.69 52.00 52.82 51.39 51.89

Table 14: Performance comparison between ReSheared 2.7B and DRPruning 2.7B across five different prompts.
Abbreviations follow the definitions in Table 13.

task to test its resilience to input perturbations,1300

and conduct paired t-tests between ReSheared and1301

DRPruning. The results under the 1.3B and 2.7B1302

configurations are presented in Table 13 and 14,1303

respectively. For the 1.3B model, the t-statistic1304

is 2.0318 with a p-value of 0.0458, while for the1305

2.7B model, the t-statistic is 2.1962 with a p-value1306

of 0.0312. When combined, the overall t-statistic1307

reaches 2.9922 with a p-value of 0.0032. These1308

results provide strong evidence of the statistical1309

significance of our method, with a p-value below1310

0.05. The prompts used are given in Table 15.1311

B.4 Efficiency Discussion 1312

DRPruning focuses solely on data distribution with- 1313

out introducing additional GPU computations. The 1314

only extra cost stems from data ratio calculation, 1315

which is entirely handled on CPU. During contin- 1316

ued pretraining, each update takes 39.02s, while 1317

pruning with an additional parameter increases it to 1318

99.52s. Over the full training process, pruning adds 1319

1.8 hours, and continued pretraining adds 1.3 hours. 1320

This accounts for a 1.3% increase in training time 1321

for the 1.3B model and 0.7% for the 2.7B model. 1322

To eliminate extra computation overhead, we 1323

implemented parallel data ratio calculation, ensur- 1324
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ARCC,
ARCE,
BoolQ, NQ,
PIQA, SciQ,
TriQA

[Passage]. Question: [Question]. Answer:
[Passage]. Q: [Question]. A:
[Passage]. Answer the question [Question]. Answer:
[Passage]. Please respond to the following question: [Question]. Response:
[Passage]. Please answer the following: [Question]. Answer:

HelS,
LAMB,
WinoG

[Sentence].
Continue the narrative below: [Sentence].
Provide a logical continuation for the text below: [Sentence].
Extend the following scenario: [Sentence].
Please carry on with the next part of the story: [Sentence].

LogiQA

Passage: [Passage]. Question: [Question]. Choices: A. [Choice1]. B. [Choice2]. C. [Choice3]. D.
[Choice4]. Answer:
Here is a passage: [Passage]. Based on the above, answer the following question: [Question]. Select the
correct option: A. [Choice1]. B. [Choice2]. C. [Choice3]. D. [Choice4]. Your answer:
**Passage:** [Passage]. **Question:** [Question]. **Choices:** - A. [Choice1]. - B. [Choice2]. - C.
[Choice3]. - D. [Choice4]. **Answer:**
Passage: [Passage]. ### Question: [Question]. #### Options: A) [Choice1]. B) [Choice2]. C) [Choice3].
D) [Choice4]. ### Answer:
You are given the following passage: [Passage]. Answer the question based on the passage: [Question].
Select one of the following options: A) [Choice1]. B) [Choice2]. C) [Choice3]. D) [Choice4]. Your Answer:

MMLU

Q: [Question]. (A) [Choice1] (B) [Choice2] (C) [Choice3] (D) [Choice4] A:
Please provide the correct answer to the math problem below: [Question]. A. [Choice1]. B. [Choice2]. C.
[Choice3]. D. [Choice4]. Answer:
Determine the solution to the following: [Question]. A. [Choice1]. B. [Choice2]. C. [Choice3]. D.
[Choice4]. Answer:
What is the correct answer to the following question? [Question]. A. [Choice1]. B. [Choice2]. C. [Choice3].
D. [Choice4]. Answer:
What is the solution to this math problem? [Question]. Options: A) [Choice1]. B) [Choice2]. C) [Choice3].
D) [Choice4]. Answer:

SQuAD

Title: [Title]. Background: [Context]. Question: [Question]. Answer:
Context: [Context]. Question: [Question]. Answer:
Given the following text: [Context]. Answer the question below: [Question]. Answer:
Information: [Title]. [Context]. Please answer the following: [Question]. Answer:
Background Information: [Context]. Please address the following question: [Question]. Answer:

TruthQA

[TruthQA Few Shot]. Q: [Question]. A:
[TruthQA Few Shot]. What is the answer to this question? [Question]. A:
[TruthQA Few Shot]. Question: [Question]. Provide your answer:
[TruthQA Few Shot]. Q: [Question]. Please provide the answer (A):
[TruthQA Few Shot]. Provide an answer to the following question: [Question]. Answer:

WSC

Passage: [Passage]. Question: In the passage above, does the pronoun "*[Pronoun]*" refer to "*[Noun]*"?
Answer:
Analyze the following text: [Passage]. Question: Is the pronoun "*[Pronoun]*" referring to "*[Noun]*"?
Answer:
Examine the following passage: [Passage]. Question: In this passage, does the pronoun "*[Pronoun]*" refer
to "*[Noun]*"? Answer:
Passage Analysis: [Passage]. Question: Does the pronoun "*[Pronoun]*" in the passage refer to "*[Noun]*"?
Answer:
Analyze the text below: [Passage]. Question: Is the pronoun "*[Pronoun]*" referring to "*[Noun]*"? Answer:

Table 15: Prompts used for significance testing. For each task, we designed five prompts.

ing training remains uninterrupted. This introduces1325

a one- to two-step update delay, which does not1326

affect performance. To prove this, a small-scale1327

experiment, following the main setup, is conducted1328

with a 0.5B target model for 24k steps in continued1329

pretraining.1330

Results are in Table 16. On four NVIDIA A8001331

80GB GPUs, our method requires less training time 1332

after parallelization. However, before paralleliza- 1333

tion, pruning takes 44.15 hours, which is longer 1334

than ReSheared. PPL is 17.01 and 16.88 before 1335

and after parallelization, respectively, demonstrat- 1336

ing that parallelization improves efficiency without 1337

compromising performance. 1338
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Figure 7: Variation of data ratio, reference data ratio, and reference loss during continued pretraining in the main
experiment. The top three plots show results for pruning to 1.3B parameters, while the bottom three are for pruning
to 2.7B parameters. Dashed lines in the data ratio plots represent the initial reference data ratio for each domain.
Reference loss plots display the difference from the initial value, with the dashed line at y = 0 indicating no change
from the initial reference loss.

Method
Pruning Cont. PT

PPL ↓ Time ↓ PPL ↓ Task ↑ Time ↓

ReSheared 20.07 43.96 8.37 36.33 225.42
DRPruning 16.88 43.74 7.68 36.49 221.85

Table 16: PPL, training time (in hours), and down-
stream task performance (Task) of 0.5B pruned models.

Additionally, our method maintains a lower PPL,1339

outperforming ReSheared. However, improve-1340

ments in downstream tasks are marginal, with1341

performance on many tasks approaching or even1342

falling below random guessing. Given the ex-1343

tremely high PPL after pruning (16.88 for 0.5B,1344

9.83 for 1.3B, 7.40 for 2.7B), we conclude that1345

pruning from 7B to 0.5B leads to a performance1346

collapse, making effective recovery challenging.1347

B.5 Analysis of Hyperparameter Adjustment1348

We analyze how our strategy adjusts training pa-1349

rameters, including the data ratio, reference data1350

ratio, and dynamic adjustments, during training.1351

The results are shown in Figure 7.1352

High reliability of our approach. The trends1353

for the 1.3B and 2.7B targets are similar, with in-1354

creased allocation to C4 and Wiki and reduced1355

allocation to CC. This highlights limitations in the 1356

current hyperparameter settings while confirming 1357

the reliability of our dynamic scheduling. In the 1358

later training stages, the CC domain exhibits lower 1359

potential with slower loss convergence, prompting 1360

our strategy to reduce its weight and increase the 1361

weight for C4. Wiki data consistently shows higher 1362

potential, leading to a significantly higher reference 1363

data ratio and the largest reference loss reduction. 1364

Effective real-time evaluation of reference loss. 1365

To accelerate convergence, we select the minimum 1366

predicted value, which raises concerns about the in- 1367

ability to increase the reference loss when domain 1368

potential decreases. However, the two rightmost 1369

figures show that our predictions are conservative 1370

and decrease gradually during training. When po- 1371

tential declines, the rate of decrease slows, resulting 1372

in a relatively higher reference loss. This favorable 1373

outcome arises because we use loss from a limited 1374

training duration instead of the fully trained loss 1375

used in scaling laws, leading to more cautious es- 1376

timates. Further, the similar trends between the 1377

1.3B and 2.7B models indicate that our method pro- 1378

vides reasonable training expectations, potentially 1379

supporting model training across broader ranges. 1380
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