

A MEMORY-EFFICIENT HIERARCHICAL ALGORITHM FOR LARGE-SCALE OPTIMAL TRANSPORT PROBLEMS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 In this paper we propose a memory-efficient hierarchical algorithm for solving
 012 large-scale optimal transport (OT) problems with squared Euclidean cost. The
 013 core of our proposed approach is the combination of multiscale hierarchical rep-
 014 resentation of the OT problem and a GPU-implemented Primal-Dual Hybrid Gra-
 015 dient (PDHG) method. Moreover, an active pruning technique is applied to further
 016 reduce computational complexity. Theoretically, we establish a scale-independent
 017 iteration-complexity upper bound for the refinement phase, which is consistent
 018 with our numerical observations. Numerically, experiments on image dataset
 019 DOTmark and point cloud dataset ModelNet10 demonstrate that the proposed al-
 020 gorithm effectively addresses the memory and scalability bottlenecks. Compared
 021 to state-of-the-art baselines, our method demonstrates significant advantages: for
 022 images with $n = 1024^2$ pixels, it achieves an $8.9\times$ speedup and 70.5% reduc-
 023 tion in memory usage under comparable accuracy; for 3D point clouds at scale
 024 $n = 2^{18}$, it achieves a $1.84\times$ speedup and an 83.2% reduction in memory usage
 025 with 24.9% lower transport cost.

1 INTRODUCTION

028 The Wasserstein distance, defined via the Kantorovich formulation of Optimal Transport (OT) prob-
 029 lems, is a powerful metric to measure the similarity between two probability distributions. It has
 030 been widely adopted in various fields such as generative modeling Arjovsky et al. (2017); Kornilov
 031 et al. (2024); Tong et al. (2023); Hui et al. (2025), color transfer Solomon et al. (2015); Pitié &
 032 Kokaram (2007), texture synthesis and mixing Dominitz & Tannenbaum (2009); Rabin et al. (2011),
 033 registration and deformation Haker et al. (2004); Rehman et al. (2007), image restoration He et al.
 034 (2021), domain adaptation Montesuma & Mboula (2021); He et al. (2024), transportation-based
 035 morphology metrics Basu et al. (2014), and hypothesis testing Del Barrio et al. (1999).

036 Given probability measures μ, ν on domains \mathbb{S} and \mathbb{D} with ground cost $c : \mathbb{S} \times \mathbb{D} \rightarrow \mathbb{R}$, the Kan-
 037 torovich problem is defined by

$$039 \inf_{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{S} \times \mathbb{D}} c(s, d) d\pi(s, d), \quad (1)$$

041 where $\Pi(\mu, \nu)$ denotes the set of couplings on $\mathbb{S} \times \mathbb{D}$ with marginals μ and ν on \mathbb{S} and \mathbb{D} , respectively.

042 In the discrete case, the supports are $\mathbb{S} = \{s_1, \dots, s_m\}$ and $\mathbb{D} = \{d_1, \dots, d_n\}$, with corresponding
 043 probability vectors $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$ defined by $u_i = \mu(s_i)$ and $v_j = \nu(d_j)$. A coupling is
 044 represented by a nonnegative matrix $\mathbf{X} \in \mathbb{R}_{+}^{m \times n}$ whose row and column sums equal \mathbf{u} and \mathbf{v} . The
 045 ground cost is encoded in the cost matrix $\mathbf{C} = (c(s_i, d_j)) \in \mathbb{R}^{m \times n}$. Consequently, this setup leads
 046 to the following discrete OT problem in standard Linear Programming (LP) form:
 047

$$048 \min_{\mathbf{x} \geq 0} \mathbf{c}^\top \mathbf{x}, \quad \text{s.t.} \quad \mathbf{A}\mathbf{x} = \mathbf{q}, \quad (2)$$

050 where $\mathbf{x} = \text{vec}(\mathbf{X})$, $\mathbf{c} = \text{vec}(\mathbf{C})$, $\mathbf{q}^\top = (\mathbf{u}^\top, \mathbf{v}^\top)$, and $\mathbf{A} = \begin{bmatrix} \mathbf{1}_n^\top \otimes \mathbf{I}_m \\ \mathbf{I}_n \otimes \mathbf{1}_m^\top \end{bmatrix} \in \mathbb{R}^{(m+n) \times mn}$.

053 This LP problem has mn variables and $m + n$ constraints. Considering OT problems between
 two images of size $n = r \times r$, the variable count in \mathbf{X} scales as n^2 , reaching approximately 10^{12}

when $r = 1024$. Such an enormous scale results in prohibitive computational cost and memory consumption. Moreover, traditional solvers such as the network simplex Gabow & Tarjan (1991) and interior-point Pele & Werman (2009) methods further fail to exploit the modern GPU architectures, leading to a growing gap between classical OT algorithms and the scalability demanded in contemporary applications.

Related work Existing algorithms for large-scale OT fall into three broad categories: The first category consists of approximation methods, which trade accuracy for efficiency. Representative examples include entropy-regularized algorithms such as Sinkhorn Cuturi (2013); Dvurechensky et al. (2018); Schmitzer (2019); Lin et al. (2019), low-rank algorithms Scetbon et al. (2021); Halmos et al. (2025) as well as approaches based on approximate metrics such as the approximated earth mover’s distance Shirdhonkar & Jacobs (2008), the sliced Wasserstein distance Kolouri et al. (2019); Nadjahi et al. (2021), and the linear OT framework Wang et al. (2013). These methods achieve good scalability but at the cost of reduced accuracy.

The second category comprises LP-based algorithms, which aim to accelerate OT by improving LP solvers tailored to this structured problem. Representative methods include **randomized block coordinate descent methods** Xie et al. (2024), semi-smooth Newton-type approaches Li et al. (2020), as well as first-order algorithms such as Douglas–Rachford splitting Mai et al. (2021), dual extrapolation Jambulapati et al. (2019), Halpern–Peaceman–Rachford methods Zhang et al. (2022); Chen et al. (2024), Halpern iteration Zhang et al. (2025), and in particular the primal–dual hybrid gradient (PDHG) method Esser et al. (2010); Chambolle & Pock (2011). Specifically, PDHG solves the min–max OT problem with dual potentials f and g formulated as:

$$\min_{\mathbf{x} \in \mathbb{R}_+^{mn}} \max_{\mathbf{f} \in \mathbb{R}^m, \mathbf{g} \in \mathbb{R}^n} \mathbf{u}^\top \mathbf{f} + \mathbf{v}^\top \mathbf{g} - \mathbf{c}^\top \mathbf{x}. \quad (3)$$

The PDHG iteration primarily consists of matrix–vector multiplications:

$$\begin{cases} \mathbf{x}^{k+1} \leftarrow \text{proj}_{\mathbf{x} \geq 0} \left(\mathbf{x}^k - \tau \left(\mathbf{c} - \mathbf{A}^\top \begin{bmatrix} \mathbf{f}^k \\ \mathbf{g}^k \end{bmatrix} \right) \right), \\ \begin{bmatrix} \mathbf{f}^{k+1} \\ \mathbf{g}^{k+1} \end{bmatrix} \leftarrow \begin{bmatrix} \mathbf{f}^k \\ \mathbf{g}^k \end{bmatrix} + \sigma (\mathbf{q} - \mathbf{A}(2\mathbf{x}^{k+1} - \mathbf{x}^k)), \end{cases} \quad (4)$$

where step-sizes τ and σ satisfy the condition $\tau\sigma\|\mathbf{A}\|^2 < 1$. PDHG has been especially influential due to its factorization-free and parallel-friendly nature, and its large-scale applicability has been demonstrated in recent solvers Applegate et al. (2021); Lu et al. (2023; 2025). Nevertheless, despite these advances, LP-based solvers continue to suffer from severe memory bottlenecks in ultra-large-scale settings Lu & Yang (2024).

The third category consists of multiscale algorithms that exploit the pyramid structure of OT Mérigot (2011); Gerber & Maggioni (2017); Leclaire & Rabin (2019); Schmitzer (2019); Chen et al. (2022). Representative multiscale-based exact solvers include **ShortCut** Schmitzer (2016) and multiscale semi-smooth Newton (MSSN) method Liu et al. (2022). Although these methods effectively reduce computational cost in practice, the lack of iteration-complexity bounds leaves their worst-case efficiency unresolved.

Main contributions We propose a memory-efficient and parallel-friendly **Hierarchical Algorithm for Large-scale Optimal Transport (HALO)** problems with squared Euclidean cost, improving both scalability and efficiency upon existing methods. Leveraging the multiscale structure of OT, we build a hierarchy of problems across resolutions: the solution of coarser level warm-starts finer levels, and at each level we alternate between updating the active support and solving the restricted OT on that support with a PDHG-based LP solver, thereby progressively refining the coupling. **Our numerical results on problems with hierarchical structure, e.g. 2D images and 3D point clouds, demonstrate that our framework is efficient for computational acceleration and memory reduction.** Furthermore, **we provide a highly efficient GPU implementation to facilitate reproduction and future extensions.**

The significance of HALO lies in the following aspects: i). HALO requires only $\mathcal{O}(n)$ memory, which, to the best of our knowledge, matches the lowest space complexity among existing GPU-based solvers; ii). HALO employs a factorization-free, PDHG-based LP solver whose computation is dominated by matrix–vector products, making it highly parallel-friendly on GPUs; iii). HALO enjoys a scale-independent iteration-complexity bound per level, which is further validated empirically in our experiments; iv). HALO delivers strong empirical performance compared to state-of-the-art

108 baselines: on 2D images dataset DOTmark with scale $n = 1024^2$, it achieves an $8.9 \times$ speedup and
 109 a 70.5% reduction in GPU memory usage; on 3D point clouds dataset ModelNet10 with $n = 2^{18}$, it
 110 demonstrates superior optimality with a 24.9% lower transport cost, alongside a $1.84 \times$ speedup and
 111 83.2% memory reduction.

112 **Organization** The rest of the paper is organized as follows: In Section 2, we introduce the pro-
 113 posed algorithm, where Section 2.3 provides the scale-independent iteration-complexity bound. In
 114 Section 3 we present the experimental results, and Section 4 concludes the paper.
 115

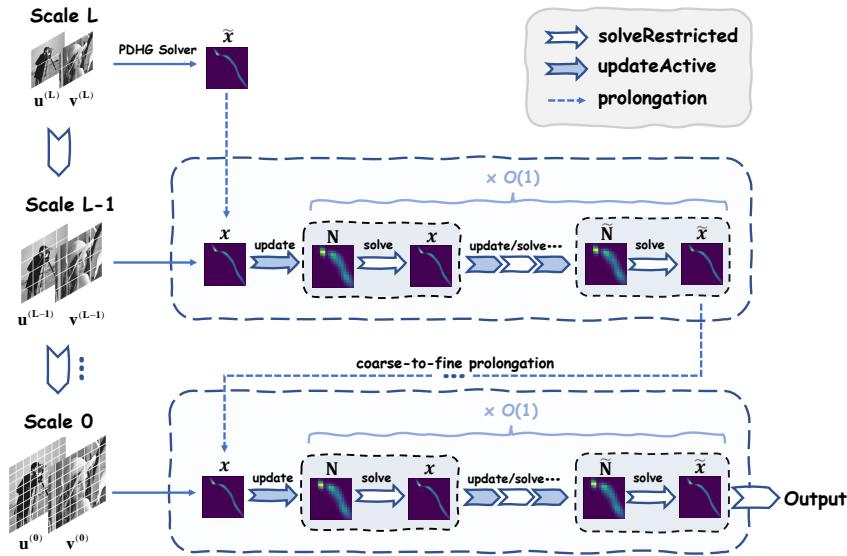
116 **Notation** \mathbb{S}, \mathbb{D} denote the source and target spaces in OT problem. In discrete setting, given $\mathbb{N} =$
 117 $\{(s_{i_k}, d_{j_k}) \mid 1 \leq k \leq K\} \subset \mathbb{S} \times \mathbb{D}$, $A_{\mathbb{N}}$ denotes the sub-matrix of the constraint matrix A restricted
 118 to the columns indexed by \mathbb{N} , i.e., the columns corresponding to $(j_k - 1) \cdot m + i_k$ for $1 \leq k \leq K$,
 119 and $x_{\mathbb{N}}$ as the corresponding sub-vector of the vector $x \in \mathbb{R}^{nm}$. Let $\text{Top}_K(\mathbb{C})$ denote the operator
 120 that selects K pairs from the set $\mathbb{C} \subset \mathbb{S} \times \mathbb{D}$, where these pairs have the top K associated values.
 121

2 HALO: A HIERARCHICAL ALGORITHM FOR LARGE-SCALE OT

123 Optimal transport (OT) problems, especially at large scale, pose significant challenges in both com-
 124 putation and memory. Traditional solvers such as network simplex Gabow & Tarjan (1991) and
 125 interior-point methods Pele & Werman (2009) struggle to scale efficiently due to their inability to
 126 leverage modern GPU architectures.
 127

2.1 OUTLINE OF THE PROPOSED FRAMEWORK

128 Motivated by the limitation of the existing work, for large-scale OT problems with squared Euclidean
 129 cost, we develop a memory-efficient and parallel-friendly hierarchical algorithm which is named as
 130 HALO. The key of our method lies in two aspects: i) an inherent multiscale structure that allows to
 131 construct a coarse-to-fine hierarchical representation; ii) sparsity of the transport plan which allows
 132 to incorporate active-support detection technique to the solver. These two aspects jointly contribute
 133 to the significant reduction of the computational complexity and memory demand.
 134



155 Figure 1: Architecture of HALO.
 156

157 Figure 1 provides a high-level overview of our HALO method:
 158

159

- 160 • **Vertically (Hierarchical Structure):** We construct an $(L + 1)$ -level hierarchy of OT prob-
 161 lems, ranging from the coarsest L -th level to the finest 0-th level. For each level $\ell \in$
 $\{0, 1, \dots, L\}$, let $(\mathbf{u}^{(\ell)}, \mathbf{v}^{(\ell)}, \mathbf{c}^{(\ell)})$ denote the marginals and costs, and $(\mathbf{f}^{(\ell)}, \mathbf{g}^{(\ell)})$ denote

162
163the dual potentials. Consequently, the OT problem at the ℓ -th level reads:164
165

$$\min_{\mathbf{x}^{(\ell)} \in \mathbb{R}_+^{m_\ell n_\ell}} \max_{\mathbf{f}^{(\ell)} \in \mathbb{R}^{m_\ell}, \mathbf{g}^{(\ell)} \in \mathbb{R}^{n_\ell}} \langle \mathbf{u}^{(\ell)}, \mathbf{f}^{(\ell)} \rangle + \langle \mathbf{v}^{(\ell)}, \mathbf{g}^{(\ell)} \rangle - \langle \mathbf{c}^{(\ell)}, \mathbf{x}^{(\ell)} \rangle, \quad (5)$$

166
167
168
169
170where m_ℓ, n_ℓ denote the marginal scales. We employ a coarse-to-fine strategy: For $\ell = L$, solve problem (5) and denote the solution as $(\mathbf{x}^{(L)}, \mathbf{f}^{(L)}, \mathbf{g}^{(L)})$; for $\ell \in \{0, \dots, L-1\}$, the solution $(\mathbf{x}^{(\ell+1)}, \mathbf{f}^{(\ell+1)}, \mathbf{g}^{(\ell+1)})$ from the coarser $(\ell+1)$ -th level is prolongated to initialize $(\mathbf{x}^{(\ell)}, \mathbf{f}^{(\ell)}, \mathbf{g}^{(\ell)})$ for the finer ℓ -th level; see Section 2.2 for details.171
172
173
174
175

- Horizontally (Refinement Loop): At each specific level $\ell \in \{0, \dots, L-1\}$, we refine the initialized solution to solve the OT problem (5). To fully exploit the sparsity of the transport plan, we alternate between updating the active support and solving the corresponding LP problem using GPU-based solvers (instantiated by PDHG-based algorithm Lu et al. (2025)); see Section 2.3 and Algorithm 2 for details.

176
177

Summarizing the above discussions leads to the proposed HALO method.

178

Algorithm 1 HALO: Hierarchical Algorithm for Large-scale Optimal Transport179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

```

1: Input: marginal distributions  $\mathbf{u}$  and  $\mathbf{v}$ , ground cost  $\mathbf{c}$ , number of levels  $L$ .
2: Output: optimal coupling  $\mathbf{x}^{(0)}$ .
3: Build hierarchical OT problems  $\{(\mathbf{u}^{(\ell)}, \mathbf{v}^{(\ell)}, \mathbf{c}^{(\ell)})\}_{\ell=0}^L$ .
4: Solve OT with  $(\mathbf{u}^{(L)}, \mathbf{v}^{(L)}, \mathbf{c}^{(L)})$  on the coarsest level  $L$  to obtain  $(\mathbf{x}^{(L)}, \mathbf{f}^{(L)}, \mathbf{g}^{(L)})$ .
5: for  $\ell = L-1, \dots, 0$  do
6:   Initialize  $(\mathbf{x}^{(\ell)}, \mathbf{f}^{(\ell)}, \mathbf{g}^{(\ell)})$  by prolongating  $(\mathbf{x}^{(\ell+1)}, \mathbf{f}^{(\ell+1)}, \mathbf{g}^{(\ell+1)})$ .
7:   repeat
8:     1). Updating active support, detailed in Algorithm 3
9:        $\mathbb{N}^{(\ell)} \leftarrow \text{updateActive}(\mathbf{x}^{(\ell)}, \mathbf{f}^{(\ell)}, \mathbf{g}^{(\ell)}, \mathbb{N}^{(\ell)})$ 
10:    2). Solving restricted OT, detailed in Section 2.3
11:       $(\mathbf{x}^{(\ell)}, \mathbf{f}^{(\ell)}, \mathbf{g}^{(\ell)}) \leftarrow \text{solveRestricted}(\mathbf{x}^{(\ell)}, \mathbf{f}^{(\ell)}, \mathbf{g}^{(\ell)}; \mathbb{N}^{(\ell)}, \mathbf{u}^{(\ell)}, \mathbf{v}^{(\ell)}, \mathbf{c}^{(\ell)})$ 
12:    until  $\mathbf{x}^{(\ell)}$  meets the termination criteria.
13: end for
14: return  $\mathbf{x}^{(0)}$ .

```

194
195
196

For the rest of this section, we discuss the details of the key steps in Algorithm 1, including the construction of the hierarchy, the active-support updating strategy and its convergence property.

197
198**2.2 HIERARCHY: COARSE-TO-FINE MULTISCALE STRUCTURE**199
200

A high-quality initialization greatly accelerates the inner loop in Algorithm 1. To leverage the geometric structure of OT, we adopt a coarse-to-fine multiscale scheme.

201
202
203
204
205
206Consider a discrete OT problem with supports $\mathbb{S} = \{s_1, \dots, s_m\}$, $\mathbb{D} = \{d_1, \dots, d_n\}$ and marginals $\mu = \sum_{i=1}^m u_i \delta_{s_i}$, $\nu = \sum_{j=1}^n v_j \delta_{d_j}$. In our hierarchy, the supports at the ℓ -th level are formed by representative points of corresponding neighbor groups from the $(\ell-1)$ -th level. Accordingly, the marginals $\mathbf{u}^{(\ell)}$ and $\mathbf{v}^{(\ell)}$ are obtained by aggregating the masses of these constituent groups, and the cost $\mathbf{c}^{(\ell)}$ is defined by the distance between representative points.207
208
209
210
211As illustrated in Figure 2, in the image setting where \mathbb{S} and \mathbb{D} correspond to pixels on a regular grid, the hierarchy is built by recursively merging 2×2 pixels, using the barycenter of each block as its representative. In non-grid settings (e.g., point clouds), we instead employ spatial partitioning structures, such as 2^d -trees or kd-trees Finkel & Bentley (1974); Bentley (1975), to construct the hierarchy, as detailed in Appendix C.1.212
213**2.3 SPARSITY: SOLVE RESTRICTED OT ON ACTIVE SUPPORT**214
215Classical LP theory Bertsimas & Tsitsiklis (1997) states that the optimal solution $\mathbf{x}^* \in \mathbb{R}^{mn}$ of problem (2) has at most $m+n$ nonzero entries, which is sparse when m, n are large. If the support $\text{supp}(\mathbf{x}^*)$ were known a priori, we could simply solve the problem restricted to this set. Therefore,

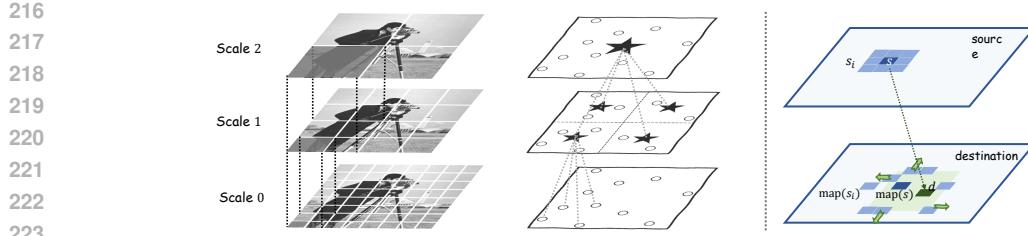


Figure 2: Left & Middle: Hierarchy construction of images and point clouds. Right: Shielding in `updateActive`; green region indicates possible unshielded d , and arrows denote pairs (s, d) added by the shielding-based component.

letting active support $\mathbb{N} \subset \mathbb{S} \times \mathbb{D}$ be an estimation of $\text{supp}(\mathbf{x}^*)$, we define the restricted OT problem over \mathbb{N} as follows:

Definition 1 (Restricted OT on active support \mathbb{N})

$$\min_{\mathbf{x}} \mathbf{c}_{\mathbb{N}}^T \mathbf{x}_{\mathbb{N}} \quad \text{s.t.} \quad \mathbf{A}_{\mathbb{N}} \mathbf{x}_{\mathbb{N}} = \mathbf{q}, \quad \mathbf{x}_{\mathbb{N}} \geq \mathbf{0}, \quad \mathbf{x}_{\mathbb{N}^C} = \mathbf{0}, \quad (6)$$

where $\mathbf{A}_{\mathbb{N}}$ is the sub-matrix of \mathbf{A} restricted to columns indexed by \mathbb{N} , $\mathbf{c}_{\mathbb{N}}$ is the corresponding sub-vectors of \mathbf{c} , $\mathbf{x}_{\mathbb{N}}$ and $\mathbf{x}_{\mathbb{N}^C}$ are the corresponding sub-vector on \mathbb{N} and \mathbb{N}^C .

Remark 1 Since the OT problems at each level share the same formulation and differ only in scale, we simply use the form (2) for illustration.

If the active support \mathbb{N} exactly corresponds to the support $\text{supp}(\mathbf{x}^*)$, solving the restricted problem provides the global optimizer of the original OT problem. However, finding $\text{supp}(\mathbf{x}^*)$ is as challenging as solving the problem. To address this difficulty, we consider Algorithm 2, a refinement procedure that alternates between updating the active support based on the current solution and solving the restricted OT on the newly updated set.

Algorithm 2 A refinement at each level

```

INPUT: initial coupling  $\mathbf{x}^0$  and dual potentials  $(\mathbf{f}^0, \mathbf{g}^0)$ ;  $\mathbf{u}, \mathbf{v}$  and  $\mathbf{c}$ .
OUTPUT: global optimizer  $\mathbf{x}$ 
 $k \leftarrow 0, \mathbb{N}^0 \leftarrow \emptyset$ 
repeat
   $\mathbb{N}^{k+1} \leftarrow \text{updateActive}(\mathbf{x}^k, \mathbf{f}^k, \mathbf{g}^k, \mathbb{N}^k)$ 
   $(\mathbf{x}^{k+1}, \mathbf{f}^{k+1}, \mathbf{g}^{k+1}) \leftarrow \text{solveRestricted}(\mathbf{x}^k, \mathbf{f}^k, \mathbf{g}^k, \mathbb{N}^{k+1}; \mathbf{u}, \mathbf{v}, \mathbf{c})$ 
   $k \leftarrow k + 1$ 
until  $\mathbf{x}^k$  meets the termination criteria
return  $(\mathbf{x}^k, \mathbb{N}^k)$ 

```

The efficiency of Algorithm 2 hinges on the design of `updateActive`. In previous work, ShortCut Schmitzer (2016) constructs a new active support by augmenting the support of the previous coupling with a **shielding-based component**. This component relies on the shielding condition, defined as follows:

Definition 2 (Shielding condition) Given \mathbb{S}, \mathbb{D} and cost $c : \mathbb{S} \times \mathbb{D} \rightarrow \mathbb{R}$. Let $s, s' \in \mathbb{S}, d, d' \in \mathbb{D}$. We say (s', d') shields s from d if

$$c(s, d) + c(s', d') > c(s, d') + c(s', d).$$

To obtain a provable $\mathcal{O}(1)$ per-level iteration bound and improve robustness in practice, we introduce two modifications: i). expanding the active support to include the entire previous ones, rather than only the previous coupling's support; ii). performing dual-violation correction, adding pairs suggested by significant violations in the dual potentials. The complete update procedure is summarized in Algorithm. 3.

270 Although the first improvement makes the estimated active support larger, it provides a scale-
 271 independent iteration-complexity bound, as detailed in Theorem 1, ensuring that the growth of the
 272 active support does not affect its sparsity. Additionally, in the implementation, we use the PDHG-
 273 based solver, which is less sensitive to the problem scale compared to traditional LP solvers. As
 274 a result, our algorithm achieves excellent practical performance while benefiting from a theoretical
 275 iteration-complexity guarantee.

276 The second improvement involves a dual-violation correction mechanism that accelerates conver-
 277 gence by adding pairs suggested by significant violations in the dual potentials. This approach
 278 ensures that the active support includes $\text{supp}(\mathbf{x}^*)$ as much as possible, while maintaining sparsity.
 279 As a result, the algorithm refines the solution more efficiently, particularly in some challenging in-
 280 stances. Unlike MSSN Liu et al. (2022) which relies on a threshold parameter, we employ a Top_K
 281 operator to select pairs with the largest dual violations, ensuring the active support remains sparse
 282 throughout.

283

Algorithm 3 `updateActive`

285 INPUT: current coupling $\mathbf{x} = \text{vec}(\mathbf{X})$, dual potentials (\mathbf{f}, \mathbf{g}) , cost $\mathbf{c} \in \mathbb{R}^{nm}$ with $c : \mathbb{S} \times \mathbb{D} \rightarrow \mathbb{R}$,
 286 active support \mathbb{N} , dual-violation hyperparameter β
 287 OUTPUT: updated active support \mathbb{N}'

288 **1). start from current active support**
 289 $\mathbb{N}' \leftarrow \mathbb{N}$

290 **2). shielding-based**
 291 construct map : $\mathbb{S} \rightarrow \mathbb{D}$, $\text{map}(s_i) = \arg \max_{d_j \in \mathbb{D}} \mathbf{X}_{ij}$ for all $s_i \in \mathbb{S}$
 292 Define $\mathcal{R}(s) \subset \mathbb{S}$ as the local neighborhood of s (8-neighbors for images and KNN for point
 293 clouds, see Appendix C.2).
 294 **for** $s \in \mathbb{S}$ **do**
 295 $D(s) \leftarrow \{ \text{map}(s') : s' \in \mathcal{R}(s) \}$
 296 $\widehat{D}(s) \leftarrow \{ d \in \mathbb{D} : d \text{ is not shielded from } s \text{ by } (s', \text{map}(s')), \forall s' \in \mathcal{R}(s) \}$
 297 **if** $\widehat{D}(s) = \emptyset$ **then**
 298 $\widehat{D}(s) \leftarrow \arg \min_{d \in \mathbb{D} \setminus D(s)} c(\text{map}(s), d)$
 299 **end if**
 300 $D(s) \leftarrow D(s) \cup \widehat{D}(s)$
 301 $\mathbb{N}' \leftarrow \mathbb{N}' \cup \{(s, d) : d \in D(s)\}$
 302 **end for**

303 **3). dual-violation correction**
 304 Pricing problem, $\mathbb{C} \leftarrow \{(s_i, d_j) \in \mathbb{S} \times \mathbb{D} : f_i + g_j > c_{ij}\}$
 305 $K \leftarrow \beta |\mathbb{S}|$, $\mathbb{C}^K \leftarrow \text{Top}_K(\mathbb{C})$
 306 $\mathbb{N}' \leftarrow \mathbb{N}' \cup \mathbb{C}^K$
 307 **return** \mathbb{N}'

308

309 **Theorem 1 (Scale-independent iteration-complexity bound)** *Let $(\mathbb{S}, \mathbb{D}, \mu, \nu)$ be a discrete OT in-
 310 stance with squared Euclidean ground cost. Consider Algorithm 2 with the update rule from Algo-
 311 rithm 3, which produces solutions $\{(\mathbf{x}^k, \mathbf{f}^k, \mathbf{g}^k)\}_{k \geq 0}$ and active supports $\{\mathbb{N}^k\}_{k \geq 0}$ via the mono-
 312 tone update*

$$\mathbb{N}^{k+1} \leftarrow \text{updateActive}(\mathbf{x}^k, \mathbb{N}^k).$$

313

314 Assume there exist constants $q \in (0, 1]$, $D < \infty$, $\rho < \infty$, $L < \infty$, $R_0 < \infty$ such that:

315

- 316 1. (Directional coverage) For $\forall s \in \mathbb{S}$ and $\forall v \in \mathbb{R}^n$, $\exists s' \in S(s) \subset \mathbb{S}$ with $\langle v, s' - s \rangle \geq$
 317 $\|v\| \|s' - s\| q$.
- 318 2. (Bounded radius of $S(s)$) $\|s' - s\| < D$ for all s and all $s' \in S(s)$.
- 319 3. (Bounded density of \mathbb{D}) $|\mathbb{D} \cap B_R(z)| \leq \rho \text{vol}_n(B_R)$ for all $z \in \mathbb{R}^n$ and $R > 0$.
- 320 4. (Uniform Lipschitz regularity) $\|\text{map}_k(s) - \text{map}_k(s')\| \leq L \|s - s'\|, \forall s, s' \in \mathbb{S}, k \geq 0$.
- 321 5. (Coupling stability) $\|\text{map}_k(s) - \text{map}_0(s)\| \leq R_0$ for all k and all $s \in \mathbb{S}$.

324 Then there exists a constant $C > 0$ such that \mathbf{x}_k is a global optimizer for all $k \geq C$, and $|\mathbb{N}_k| \leq$
 325 $C|\mathbb{S}|$ for all $k \geq 0$.
 326

327 **Remark 2** Assumptions 1–3 hold in our setting; by contrast, Assumptions 4–5 are stronger yet
 328 natural under the multiscale warm-start. Since each level refines a warm start prolongation from
 329 the previous coarser level, the per-level updates are mild, making a uniform Lipschitz condition
 330 and a bounded-drift stability assumption intuitively justified. The proof of Theorem 1 is deferred to
 331 Appendix B.1.

332 At the end of this subsection, we note that in Algorithm 2 the restricted OT on the active support
 333 \mathbb{N} is solved by `solveRestricted`, which dominates computational cost and memory usage,
 334 making the LP solver choice critical. To achieve both memory efficiency and parallelism, we adopt
 335 a factorization-free PDHG solver, and we highlight the following property of the restricted OT under
 336 Pock–Chambolle rescaling Pock & Chambolle (2011):
 337

338 **Proposition 1** Let \mathbf{B} be the constraint matrix of restricted OT problem, and define the rescaled
 339 matrix $\tilde{\mathbf{B}}$ by the Pock–Chambolle rescaling:

$$340 \quad D_r = \text{diag}(\sqrt{r_1}, \dots, \sqrt{r_m}, \sqrt{c_1}, \dots, \sqrt{c_n}), \quad D_c = \sqrt{2} \mathbf{I}, \quad \tilde{\mathbf{B}} = D_r^{-1} \mathbf{B} D_c^{-1},$$

342 with r_i, c_j the row/column degrees of \mathbf{B} . Then $\|\tilde{\mathbf{B}}\|_2 = 1$.
 343

344 This result justifies the use of a constant stepsize in PDHG-based algorithm, eliminating the need
 345 for norm estimation and reducing overhead in `HALO`. The proof is provided in Appendix B.2.
 346

347 3 EXPERIMENTS

349 To evaluate the scalability and efficiency of `HALO`¹, we conduct experiments on two representative
 350 datasets: the image dataset DOTmark Schrieber et al. (2016) and the point cloud dataset Model-
 351 Net10 Wu et al. (2015). For image experiments, we compare `HALO` against three state-of-the-art
 352 solvers: `HOT` Zhang et al. (2025), `ShortCut` Schmitzer (2016), and `M3S` Chen et al. (2022). For
 353 non-grid experiments, we compare against the state-of-the-art solver `HiRef` Halmos et al. (2025)
 354 and the standard `Sinkhorn` Cuturi (2013); Flamary et al. (2021). Detailed dataset settings are
 355 provided in the Appendix E.

356 All experiments run on dual Intel Xeon Gold 6330 CPUs (2.0GHz), 503GB RAM, and an NVIDIA
 357 RTX 4090D (24GB). Host memory is limited to 100GB and GPU memory to 24GB (violations
 358 reported as OOM). Each instance has a 3600s wall-clock limit (violations reported as TO).

359 For `HALO`, we use `cuPDLpx` Lu et al. (2025), while additional results demonstrating the flexibility
 360 of the LP solver choices are provided in Appendix H. For the other baselines, we use their open-
 361 source implementations with default parameter settings, with more details provided in Appendix D.

362 Since different methods may use different internal stopping rules, we report solution quality using
 363 unified metrics:

$$365 \quad \text{gap} = \frac{|\langle \mathbf{c}, \mathbf{x} \rangle - \langle \mathbf{c}, \mathbf{x}_b \rangle|}{|\langle \mathbf{c}, \mathbf{x}_b \rangle| + 1} \quad \text{and} \quad \text{feas} = \max \left\{ \frac{\|\min(\mathbf{x}, 0)\|}{1 + \|\mathbf{x}\|}, \frac{\|\mathbf{A}\mathbf{x} - \mathbf{q}\|}{1 + \|\mathbf{q}\|} \right\},$$

367 where \mathbf{x}_b is a high-accuracy reference obtained by solving the reduced OT model with `Gurobi`
 368 (Barrier with crossover) at a tolerance of 10^{-8} , following Zhang et al. (2025).
 369

370 3.1 THE IMAGE DATASET DOTMARK

371 Table 1 summarizes four metrics: runtime (s), peak memory (GB), relative objective gap, and fea-
 372 sibility error. While providing comparable solutions in terms of gap and feas, `HALO` is memory-
 373 efficient and delivers short wall-clock time, clearly outperforming strong baselines, especially at
 374 large scales. Against `HOT`, `HALO` leads on runtime, memory, and gap. Specifically, at $r = 512$ it is
 375 $7.02 \times$ faster with 89.2% less memory, achieving 2–3 orders of magnitude tighter gaps across scales.
 376 Despite `ShortCut`’s CPU memory efficiency, `HALO` is much faster at a comparable gap, yielding
 377

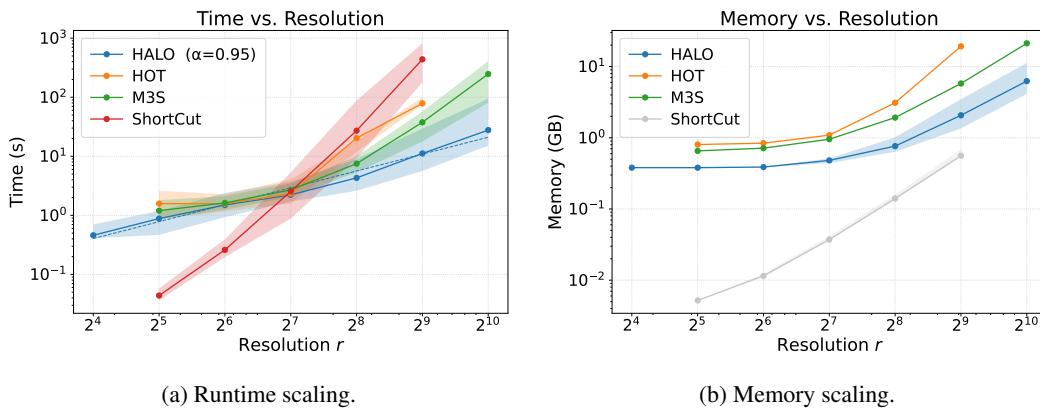
¹The source codes of the proposed method will be released upon acceptance of the paper.

378 a $37.36\times$ speedup at $r = 512$. Finally, while the entropy-regularized M3S also solves the $r = 1024$
 379 instances, HALO shows simultaneous advantages in runtime, memory, and accuracy. At $r = 1024$ it
 380 is $8.92\times$ faster, uses 70.5% less memory, and attains 1–2 orders tighter gaps.
 381

382 Table 1: The numerical results on DOTmark. “GPU/CPU memory” denotes GPU VRAM for GPU-
 383 based methods and CPU RAM for CPU methods (shown in gray). Time is reported in seconds (s)
 384 and memory is in gigabytes (GB). gap at $r = 512, 1024$ are unavailable because solving the reduced
 385 model with Gurobi runs out of memory.

Metric	Resolution	64	128	256	512	1024
time	HALO	1.50	2.20	4.31	11.17	27.73
	HOT	1.56	2.12	14.32	78.43	OOM
	ShortCut	0.25	2.41	25.74	438.14	TO
	M3S	1.95	3.44	8.51	39.32	247.22
GPU/CPU memory	HALO	0.38	0.48	0.76	2.07	6.25
	HOT	0.84	1.09	3.10	19.25	OOM
	ShortCut	0.01	0.04	0.14	0.56	TO
	M3S	0.71	0.95	1.92	5.78	21.21
gap	HALO	1.23E–6	1.51E–5	1.41E–5	–	–
	HOT	6.77E–4	6.03E–3	3.32E–2	–	–
	ShortCut	1.56E–6	4.04E–6	2.27E–5	–	–
	M3S	1.89E–4	1.90E–4	3.31E–4	–	–
feas	HALO	3.66E–8	2.45E–7	1.28E–7	1.06E–7	6.98E–8
	HOT	5.51E–7	7.91E–7	7.61E–7	3.42E–7	OOM
	ShortCut	1.65E–18	1.65E–18	9.55E–19	3.67E–19	TO
	M3S	2.40E–6	1.20E–6	6.13E–7	3.03E–7	1.44E–7

403 Figure 3 reports runtime and memory scalability on log-log axes. HALO shows an approximately
 404 straight runtime curve with slope ≈ 1 , indicating near-linear growth and outperforming other base-
 405 lines. Its memory curve has a terminal slope ≈ 2 , matching M3S, yet HALO maintains the lowest
 406 memory usage among GPU-based methods across resolutions.
 407



422 Figure 3: Scalability on DOTmark across all evaluated methods. Left: Runtime scaling; Right:
 423 Memory scaling. In the left legend, α is the fitted slope for HALO. ShortCut uses CPU memory,
 424 shown in gray in the right panel.

425 To validate Theorem 1, Table 2 lists the average per-scale iterations of Algorithm 2 across resolutions
 426 on DOTmark. The averages never exceed 2 and even tend to decrease at finer scales, corroborating
 427 the $\mathcal{O}(1)$ bound and illustrating the practical efficiency of updateActive.
 428

429 To understand the impact of data geometry on solver efficiency, we analyzed the runtime of HALO
 430 across different image classes in DOTmark (see Figure 4 for examples). As shown in Table 3, the
 431 runtime is highly correlated with *pixel intensity sparsity*, defined as the percentage of pixels with
 strictly zero mass. Classes with low pixel intensity sparsity, such as ClassicImages, converge fast,

432
433
434 Table 2: Number of inner iterations per scale.
435
436
437
438
439
440
441

Scale	16	32	64	128	256	512	1024
scale0	1.00	1.91	1.82	1.22	1.12	1.05	1.00
scale1		1.00	1.80	1.65	1.15	1.09	1.05
scale2			1.00	1.75	1.63	1.17	1.09
scale3				1.00	1.78	1.66	1.17
scale4					1.00	1.77	1.66
scale5						1.00	1.78
scale6							1.00

442
443
444 while those with high pixel intensity sparsity, such as *Shapes* and *Microscopy*, require significantly
445 more time. This phenomenon can be theoretically explained by Theorem 1: high pixel intensity
446 sparsity often corresponds to non-convex supports with singularities Luo et al. (2022), which implies
447 a relatively larger Lipschitz constant L in Assumption 4, resulting in a larger constant in the iteration
448 bound and thus longer runtime.

449 Table 3: Performance breakdown by image class in DOTmark at resolution 1024×1024 . Metric
450 sparsity denotes the *pixel intensity sparsity*, defined as the percentage of pixels with strictly zero
451 mass. Time is reported in seconds (s)

Metric	WhiteNoise	GRF / Log (Avg)	ClassicImages	Cauchy	Shapes	Micro.
sparsity	0.00%	0.00%	0.01%	0.00%	45.3%	42.0%
time	18.29	21.76	23.78	25.82	44.39	56.22

452
453 Table 4 presents an ablation that isolates the effects of the multiscale framework and `cuPDLpx`.
454 When `cuPDLpx` is disabled, we use `Gurobi`’s barrier with crossover, as `updateActive` relies
455 on the sparsity of solutions. Disabling `cuPDLpx` in `HALO` results in a $36.9 \times$ increase in runtime
456 at $r = 256$. Removing the multiscale framework from `HALO` also causes an $85.6 \times$ slowdown at
457 $r = 64$ and leads to OOM at higher resolutions. Taken together, the multiscale framework and
458 `cuPDLpx` are both indispensable, yielding short wall-clock time and low memory across all tested
459 resolutions.

460 Table 4: Ablation on `HALO`. An ‘ \times ’ in the PDHG-based column indicates that `cuPDLpx` is replaced
461 by `Gurobi`’s barrier method with crossover.

Multiscale	PDHG-based	Resolution	32	64	128	256
✓	✓	time	0.88	1.50	2.19	4.31
		GPU memory	0.38	0.39	0.48	0.76
✓	✗	time	0.91	2.56	27.68	159.06
		CPU memory	0.07	0.07	0.29	1.18
✗	✓	time	2.87	128.4	OOM	OOM
		GPU memory	0.54	3.00	OOM	OOM
✗	✗	time	6.88	126.94	OOM	OOM
		CPU memory	0.78	12.69	OOM	OOM

477
478 Table 5 further presents an ablation of the dual-violation augmentation in `updateActive`. We
479 report the maximum and mean runtime over all DOTmark instances. The augmentation markedly
480 improves robustness on difficult cases; at $r = 1024$, for instance, the maximum runtime falls to
481 24.3% of that without this component.

482 Table 6 reports the speedup of `HALO` with a constant stepsize over the power-iteration choice in
483 `cuPDLpx`. We show results for resolutions from 256 to 1024; at $r = 1024$, the constant step-
484 size yields a $1.97 \times$ speedup, indicating that eliminating per-iteration norm estimation substantially
485 reduces computational cost.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 5: Ablation on updateActive: dual-violation augmentation (✓) improves robustness

dual-violation	Resolution	256	512	1024
✓	Max time	11.99	54.36	154.20
	Avg time	4.31	11.17	27.73
✗	Max time	29.07	151.98	633.34
	Avg time	5.47	15.23	52.85

3.2 THE POINT CLOUDS DATASET MODELNET10

To validate the generalization, we evaluate HALO on the 3D point cloud dataset ModelNet10 (see App. C.3 for 2D results). As shown in Table 7, HALO demonstrates superior scalability and efficiency on non-grid domains. While Sinkhorn runs out of memory at $n = 2^{16}$ and HiRef fails at $n = 2^{19}$, HALO successfully scales to $n = 2^{19}$ consuming only 2.99 GB memory. Specifically at $n = 2^{18}$, HALO achieves a $1.84 \times$ speedup and an 83.2% reduction in memory usage compared to HiRef. Crucially, HALO attains a significantly lower transport cost, improving upon HiRef by approximately 24.9%, demonstrating the superior precision of HALO.

Table 7: Performance on Non-Grid 3D Data (ModelNet10). gap denotes the relative objective difference: for $n = 2^{14}$, the reference is the exact solution computed by the standard EMD solver Flamary et al. (2021); for $n \geq 2^{15}$ where EMD solver is intractable, the reference is the solution of HALO.

Metric	Method	2^{14}	2^{15}	2^{16}	2^{17}	2^{18}	2^{19}
time	HALO	15.54	26.25	47.42	88.51	229.7	444.3
	HiRef	23.60	46.40	94.40	189.9	422.7	OOM
	Sinkhorn	29.50	OOM	OOM	OOM	OOM	OOM
memory	HALO	0.54	0.64	0.77	1.12	1.83	2.99
	HiRef	0.91	1.03	1.67	3.60	10.92	OOM
	Sinkhorn	10.60	OOM	OOM	OOM	OOM	OOM
gap	HALO	+5.33E-5	—	—	—	—	—
	HiRef	+4.19E-1	+3.51E-1	+3.13E-1	+2.77E-1	+2.49E-1	OOM
	Sinkhorn	+3.20E-2	OOM	OOM	OOM	OOM	OOM

4 DISCUSSION

In this paper, we presented HALO, a scalable and memory-efficient solver for optimal transport problems with squared Euclidean cost. Our work offers a key insight into large-scale OT: **by synergizing a hierarchy framework with GPU-based LP solvers, it is feasible to simultaneously achieve memory efficiency, computational speed, and high precision, without resorting to regularization or approximation methods.** Specifically, HALO integrates a hierarchical framework with a rigorous active-support update rule and a PDHG-based LP solver. Furthermore, the dual-violation correction enhances robustness, a proven scale-independent iteration bound explains the fast convergence, and the Pock–Chambolle rescaling justifies the rationality of constant stepsize.

Regarding the extension to high dimensions, although HALO faces challenges scaling to high-dimensions due to the growing shielding-based component, a feasible direction is to prioritize and further optimize the dimension-independent dual-violation correction. Our preliminary results suggest that the algorithm holds great potential for scaling to high dimensions in the order of thousands.

Finally, for general transport costs (e.g., L_1 or Wasserstein- p), a current limitation is the reduced sparsity of solutions returned by first-order solvers compared to the squared Euclidean case, which diminishes the efficiency of the refinement phase. To address this, potential solutions include integrating future GPU-based crossover algorithms to recover sparsity or designing more flexible active-support strategies.

Table 6: Speedup of constant step-size over power iteration.

Resolution	256	512	1024
Speedup	1.80 \times	1.65 \times	1.97 \times

540
541
ETHICS STATEMENT

542 We confirm adherence to the ICLR Code of Ethics. This paper develops a hierarchical algorithm
 543 for large-scale optimal transport and does not involve human subjects, clinical data, or personally
 544 identifiable information. All datasets used are publicly available under their respective licenses; we
 545 applied only standard preprocessing and did not attempt re-identification or attribute inference. The
 546 method is general-purpose, so any fairness concerns stem from downstream data and deployment
 547 contexts; practitioners should audit subgroup performance in their applications. To reduce misuse
 548 risks, we restrict experiments to benign public datasets and will document intended use and limita-
 549 tions. Experiments were run on local institutional hardware without external data services; compute
 550 configuration and runtimes are reported in the appendix to encourage reuse and minimize redundant
 551 computation. To the best of our knowledge, this work complies with applicable laws and institu-
 552 tional policies; no IRB approval was required. The authors declare no conflicts of interest and no
 553 third-party sponsorship that could unduly influence the results.

554
555
REPRODUCIBILITY STATEMENT

556 Complete proofs are provided in the appendix: Theorem 1 is proved in Appendix B.1, and Proposi-
 557 tion 1 is proved in Appendix B.2. Implementation details for all baselines are given in Appendix D.
 558 Dataset-related details are provided in Appendix E.

559
560
REFERENCES

561 David Applegate, Mateo Díaz, Oliver Hinder, Haihao Lu, Miles Lubin, Brendan O’Donoghue, and
 562 Warren Schudy. Practical large-scale linear programming using primal-dual hybrid gradient.
 563 *Advances in Neural Information Processing Systems*, 34:20243–20257, 2021.

564 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
 565 In *International conference on machine learning*, pp. 214–223. PMLR, 2017.

566 Saurav Basu, Soheil Kolouri, and Gustavo K Rohde. Detecting and visualizing cell phenotype
 567 differences from microscopy images using transport-based morphometry. *Proceedings of the*
 568 *National Academy of Sciences*, 111(9):3448–3453, 2014.

569 Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
 570 *Communications of the ACM*, 18(9):509–517, 1975.

571 Dimitris Bertsimas and John N Tsitsiklis. *Introduction to linear optimization*, volume 6. Athena
 572 scientific Belmont, MA, 1997.

573 Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
 574 with applications to imaging. *Journal of mathematical imaging and vision*, 40(1):120–145, 2011.

575 Kaihuang Chen, Defeng Sun, Yancheng Yuan, Guojun Zhang, and Xinyuan Zhao. Hpr-lp: An im-
 576 plementation of an hpr method for solving linear programming. *arXiv preprint arXiv:2408.12179*,
 577 2024.

578 Yidong Chen, Chen Li, and Zhonghua Lu. Computing wasserstein-p distance between images
 579 with linear cost. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 580 *Recognition*, pp. 519–528, 2022.

581 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural*
 582 *information processing systems*, 26, 2013.

583 Eustasio Del Barrio, Juan A Cuesta-Albertos, Carlos Matrán, and Jesús M Rodríguez-Rodríguez.
 584 Tests of goodness of fit based on the l_2 -wasserstein distance. *Annals of Statistics*, pp. 1230–
 585 1239, 1999.

586 Ayelet Dominitz and Allen Tannenbaum. Texture mapping via optimal mass transport. *IEEE*
 587 *transactions on visualization and computer graphics*, 16(3):419–433, 2009.

594 Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
 595 Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In *International*
 596 *conference on machine learning*, pp. 1367–1376. PMLR, 2018.

597

598 Ernie Esser, Xiaoqun Zhang, and Tony F Chan. A general framework for a class of first order primal-
 599 dual algorithms for convex optimization in imaging science. *SIAM Journal on Imaging Sciences*,
 600 3(4):1015–1046, 2010.

601 Raphael A Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval on composite keys.
 602 *Acta informatica*, 4(1):1–9, 1974.

603

604 Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanis-
 605 las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python
 606 optimal transport. *Journal of Machine Learning Research*, 22(78):1–8, 2021.

607 Harold N Gabow and Robert E Tarjan. Faster scaling algorithms for general graph matching prob-
 608 lems. *Journal of the ACM (JACM)*, 38(4):815–853, 1991.

609

610 Samuel Gerber and Mauro Maggioni. Multiscale strategies for computing optimal transport. *Journal*
 611 *of Machine Learning Research*, 18(72):1–32, 2017.

612 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL <https://www.gurobi.com>.

613

614 Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent. Optimal mass transport for reg-
 615 istration and warping. *International Journal of computer vision*, 60(3):225–240, 2004.

616

617 Peter Halmos, Julian Gold, Xinhao Liu, and Benjamin J Raphael. Hierarchical refinement: Optimal
 618 transport to infinity and beyond. In *International conference on machine learning*, 2025.

619

620 Bishi He, Yuanjiao Chen, Darong Zhu, and Zhe Xu. Domain adaptation via wasserstein distance
 621 and discrepancy metric for chest x-ray image classification. *Scientific Reports*, 14(1):2690, 2024.

622

623 Ruiqiang He, Xiangchu Feng, Xiaolong Zhu, Hua Huang, and Bingzhe Wei. Rwrn: Residual
 624 wasserstein regularization model for image restoration. *Inverse Problems & Imaging*, 15(6), 2021.

625

626 Ka-Hei Hui, Chao Liu, Xiaohui Zeng, Chi-Wing Fu, and Arash Vahdat. Not-so-optimal transport
 627 flows for 3d point cloud generation. *arXiv preprint arXiv:2502.12456*, 2025.

628

629 Arun Jambulapati, Aaron Sidford, and Kevin Tian. A direct tilde $\{\mathcal{O}\}(1/\epsilon)$ iteration parallel
 630 algorithm for optimal transport. *Advances in Neural Information Processing Systems*, 32, 2019.

631

632 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 633 adversarial networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 634 *Pattern Recognition (CVPR)*, pp. 4401–4410, 2019.

635

636 Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized
 637 sliced wasserstein distances. *Advances in neural information processing systems*, 32, 2019.

638

639 Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, and Aleksandr Korotin. Optimal flow match-
 640 ing: Learning straight trajectories in just one step. *Advances in Neural Information Processing*
 641 *Systems*, 37:104180–104204, 2024.

642

643 Arthur Leclaire and Julien Rabin. A fast multi-layer approximation to semi-discrete optimal trans-
 644 port. In *International Conference on Scale Space and Variational Methods in Computer Vision*,
 645 pp. 341–353. Springer, 2019.

646

647 Xudong Li, Defeng Sun, and Kim-Chuan Toh. An asymptotically superlinearly convergent
 648 semismooth newton augmented lagrangian method for linear programming. *SIAM Journal on*
 649 *Optimization*, 30(3):2410–2440, 2020.

650

651 Tianyi Lin, Nhat Ho, and Michael Jordan. On efficient optimal transport: An analysis of greedy
 652 and accelerated mirror descent algorithms. In *International conference on machine learning*, pp.
 653 3982–3991. PMLR, 2019.

648 Yiyang Liu, Zaiwen Wen, and Wotao Yin. A multiscale semi-smooth newton method for optimal
 649 transport. *Journal of Scientific Computing*, 91(2):39, 2022.
 650

651 Haihao Lu and Jinwen Yang. Pdot: A practical primal-dual algorithm and a gpu-based solver for
 652 optimal transport. *arXiv preprint arXiv:2407.19689*, 2024.
 653

654 Haihao Lu, Jinwen Yang, Haodong Hu, Qi Huangfu, Jinsong Liu, Tianhao Liu, Yinyu Ye, Chuwen
 655 Zhang, and Dongdong Ge. cupdlp-c: A strengthened implementation of cupdlp for linear pro-
 656 gramming by c language. *arXiv preprint arXiv:2312.14832*, 2023.
 657

658 Haihao Lu, Zedong Peng, and Jinwen Yang. cupdlpx: A further enhanced gpu-based first-order
 659 solver for linear programming. *arXiv preprint arXiv:2507.14051*, 2025.
 660

661 Zhongxuan Luo, Wei Chen, Na Lei, Yang Guo, Tong Zhao, Jiakun Liu, and Xianfeng Gu. The
 662 singularity set of optimal transportation maps. *Computational Mathematics and Mathematical
 663 Physics*, 62(8):1313–1330, 2022.
 664

665 Vien V Mai, Jacob Lindbäck, and Mikael Johansson. A fast and accurate splitting method for
 666 optimal transport: Analysis and implementation. *arXiv preprint arXiv:2110.11738*, 2021.
 667

668 Quentin Mérigot. A multiscale approach to optimal transport. In *Computer graphics forum*, vol-
 669 ume 30, pp. 1583–1592. Wiley Online Library, 2011.
 670

671 Eduardo Fernandes Montesuma and Fred Maurice Ngole Mboula. Wasserstein barycenter for multi-
 672 source domain adaptation. In *Proceedings of the IEEE/CVF conference on computer vision and
 673 pattern recognition*, pp. 16785–16793, 2021.
 674

675 Kimia Nadjahi, Alain Durmus, Pierre E Jacob, Roland Badeau, and Umut Simsekli. Fast approxi-
 676 mation of the sliced-wasserstein distance using concentration of random projections. *Advances
 677 in Neural Information Processing Systems*, 34:12411–12424, 2021.
 678

679 Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In *2009 IEEE 12th
 680 international conference on computer vision*, pp. 460–467. IEEE, 2009.
 681

682 François Pitié and Anil Kokaram. The linear monge-kantorovitch linear colour mapping for
 683 example-based colour transfer. In *4th European conference on visual media production*, pp. 1–9.
 684 IET, 2007.
 685

686 Thomas Pock and Antonin Chambolle. Diagonal preconditioning for first order primal-dual al-
 687 gorithms in convex optimization. In *2011 International Conference on Computer Vision*, pp.
 688 1762–1769. IEEE, 2011.
 689

690 Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its appli-
 691 cation to texture mixing. In *International conference on scale space and variational methods in
 692 computer vision*, pp. 435–446. Springer, 2011.
 693

694 Tauseef Rehman, G Pryor, and A Tannenbaum. Fast multigrid optimal mass transport for image
 695 registration and morphing. In *British Machine Vision Conference*, 2007.
 696

697 Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-rank sinkhorn factorization. In *International
 698 Conference on Machine Learning*, pp. 9344–9354. PMLR, 2021.
 699

700 Bernhard Schmitzer. A sparse multiscale algorithm for dense optimal transport. *Journal of
 701 Mathematical Imaging and Vision*, 56(2):238–259, 2016.
 702

703 Bernhard Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport problems.
 704 *SIAM Journal on Scientific Computing*, 41(3):A1443–A1481, 2019.
 705

706 Jörn Schrieber, Dominic Schuhmacher, and Carsten Gottschlich. Dotmark—a benchmark for discrete
 707 optimal transport. *IEEE Access*, 5:271–282, 2016.
 708

709 Sameer Shirdhonkar and David W Jacobs. Approximate earth mover’s distance in linear time. In
 710 *2008 IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1–8. IEEE, 2008.
 711

702 Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen,
 703 Tao Du, and Leonidas Guibas. Convolutional wasserstein distances: Efficient optimal transporta-
 704 tion on geometric domains. *ACM Transactions on Graphics (ToG)*, 34(4):1–11, 2015.

705
 706 Wei Ren Tan, Chee Seng Chan, Hernan Aguirre, and Kiyoshi Tanaka. Improved artgan for condi-
 707 tional synthesis of natural image and artwork. *IEEE Transactions on Image Processing*, 28(1):
 708 394–409, 2019. doi: 10.1109/TIP.2018.2866698. URL <https://doi.org/10.1109/TIP.2018.2866698>.

710 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 711 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 712 with minibatch optimal transport. *arXiv preprint arXiv:2302.00482*, 2023.

713 Wei Wang, Dejan Slepčev, Saurav Basu, John A Ozolek, and Gustavo K Rohde. A linear op-
 714 timal transportation framework for quantifying and visualizing variations in sets of images.
 715 *International journal of computer vision*, 101(2):254–269, 2013.

716 Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaou Tang, and Jianxiong
 717 Xiao. 3d shapenets: A deep representation for volumetric shapes. In *Proceedings of the IEEE*
 718 conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

719
 720 Yue Xie, Zhongjian Wang, and Zhiwen Zhang. Randomized methods for computing optimal trans-
 721 port without regularization and their convergence analysis. *Journal of Scientific Computing*, 100
 722 (2):37, 2024.

723
 724 Guojun Zhang, Yancheng Yuan, and Defeng Sun. An efficient hpr algorithm for the
 725 wasserstein barycenter problem with $o(\dim(p)/\varepsilon)$ computational complexity. *arXiv preprint*
 726 *arXiv:2211.14881*, 2022.

727
 728 Guojun Zhang, Zhexuan Gu, Yancheng Yuan, and Defeng Sun. Hot: An efficient halpern ac-
 729 celerating algorithm for optimal transport problems. *IEEE Transactions on Pattern Analysis and*
 730 *Machine Intelligence*, 2025.

731 A THE USE OF LARGE LANGUAGE MODELS (LLMs)

732 We used a large language model solely to polish writing and to assist with small code snippets. It did
 733 not generate ideas, proofs, experimental designs, or results. All LLM-assisted content was authored,
 734 reviewed, and validated by the authors.

735 B PROOFS OF THEORETICAL RESULTS

736 B.1 PROOF OF THEOREM 1

737 **Proof 1 (Proof of Theorem 1)** Fix $s \in \mathbb{S}$ and let $\widehat{D}_{k+1}(s) \subset \mathbb{D}$ denote the set of targets d that are
 738 not shielded from s by the pairs $\{(s', \text{map}_k(s')) : s' \in S(s)\}$. Hence every (s, d) with $d \in \widehat{D}_{k+1}(s)$
 739 must be explicitly added to \mathbb{N}_{k+1} .

740 We first establish a geometric localization bound. Take $d \in \widehat{D}_{k+1}(s)$ and set $v = d - \text{map}_k(s)$. By
 741 assumption 1 there exists $s' \in S(s)$ such that

$$742 \langle v, s' - s \rangle \geq \|v\| \|s' - s\| q.$$

743 Insert and subtract $\text{map}_k(s')$ and apply assumption 4 together with Cauchy–Schwarz to obtain

$$744 \begin{aligned} \langle v, s' - s \rangle &= \langle d - \text{map}_k(s) + \text{map}_k(s) - \text{map}_k(s'), s' - s \rangle \\ 745 &\geq \|d - \text{map}_k(s)\| \|s' - s\| q - \|\text{map}_k(s) - \text{map}_k(s')\| \|s' - s\| \\ 746 &\geq (q \|d - \text{map}_k(s)\| - L \|s' - s\|) \|s' - s\|. \end{aligned}$$

747 By assumption 2 we have $\|s' - s\| < D$, hence

$$748 \langle d - \text{map}_k(s), s' - s \rangle \geq (q \|d - \text{map}_k(s)\| - LD) \|s' - s\|.$$

756 If $\|d - \text{map}_k(s)\| > LD/q$, then $\langle d - \text{map}_k(s), s' - s \rangle > 0$ for some $s' \in S(s)$. For the
 757 squared Euclidean ground cost this is exactly the sufficient shielding condition stated in Section 5.2
 758 of Schmitzer (2016). Therefore each unshielded d must satisfy

759
$$\|d - \text{map}_k(s)\| \leq R := \frac{LD}{q}, \quad \text{that is,} \quad \widehat{D}_{k+1}(s) \subset B_R(\text{map}_k(s)).$$

760 Assumption 5 gives $\|\text{map}_k(s) - \text{map}_0(s)\| \leq R_0$ for all k , which implies

761
$$\widehat{D}_{k+1}(s) \subset B_{R_0+R}(\text{map}_0(s)) \quad \text{for all } k \geq 0.$$

762 Taking the union over all iterations,

763
$$\bigcup_{k \geq 0} \widehat{D}_{k+1}(s) \subset \mathbb{D} \cap B_{R_0+R}(\text{map}_0(s)).$$

764 By assumption 3 the cardinality is uniformly bounded as

765
$$\left| \bigcup_{k \geq 0} \widehat{D}_{k+1}(s) \right| \leq |\mathbb{D} \cap B_{R_0+R}(\text{map}_0(s))| \leq \rho \text{vol}_n(B_{R_0+R}) := C_0,$$

766 which depends only on the constants in assumptions 1–5, on the dimension of the space, and is
 767 independent of the sizes of \mathbb{S} and \mathbb{D} .

768 We now conclude the proof. Since each s has at most C_0 unshielded targets, if at iteration k there
 769 is still some $d \in \widehat{D}_{k+1}(s)$, then at least one new pair (s, d) must be added. As the total number
 770 of such unshielded pairs is bounded by C_0 , the process of adding new shielding edges can occur
 771 at most C_0 times. Thus the sequence (\mathbb{N}_k) converges after at most C_0 iterations, which proves
 772 scale-independent convergence.

773 Regarding sparsity, the shielding part contributes at most $C_0|\mathbb{S}|$ pairs. Step 3 of Algorithm 3 can
 774 add at most K pairs per iteration, and since there are at most C_0 iterations, its total contribution is
 775 bounded by KC_0 . Therefore the final support satisfies

776
$$|\mathbb{N}_k| \leq C_0|\mathbb{S}| + \beta C_0|\mathbb{S}| = (1 + \beta)C_0|\mathbb{S}|.$$

777 Thus we can take $C := (1 + \beta)C_0$, which depends only on the constants in assumptions 1–5,
 778 on the space dimension, and on the chosen parameter β . At the fixed point \mathbf{x}_k is locally optimal
 779 with respect to \mathbb{N}_k , and by construction \mathbb{N}_k is a shielding neighbourhood. By the local-to-global
 780 certification (Corollary 3.10 of Schmitzer (2016)), \mathbf{x}_k is globally optimal once the process stabilizes.
 781 This completes the proof.

782 **B.2 PROOF OF PROPOSITION 1**

783 **Proof 2** We first compute $\mathbf{B}\mathbf{B}^\top$:

784
$$\mathbf{B}\mathbf{B}^\top = \begin{bmatrix} \text{diag}(r) & \mathbf{P} \\ \mathbf{P}^\top & \text{diag}(c) \end{bmatrix},$$

785 where $\mathbf{P} \in \{0, 1\}^{m \times n}$ is the adjacency matrix of a bipartite graph representing the non-zero entries
 786 in \mathbf{B} . Next, we compute the rescaled matrix $\tilde{\mathbf{B}}\tilde{\mathbf{B}}^\top$:

787
$$\tilde{\mathbf{B}}\tilde{\mathbf{B}}^\top = \frac{1}{2}D_r^{-1}(\mathbf{B}\mathbf{B}^\top)D_r^{-1} = \frac{1}{2} \begin{bmatrix} \mathbf{I}_m & \mathbf{Q} \\ \mathbf{Q}^\top & \mathbf{I}_n \end{bmatrix}, \quad \mathbf{Q} := D_r^{-1/2}\mathbf{P}D_c^{-1/2},$$

788 where $D_r = \text{diag}(r)$ and $D_c = \text{diag}(c)$.

789 For the matrix \mathbf{Q} , it is known that the eigenvalues of the block matrix $\begin{bmatrix} \mathbf{I} & \mathbf{Q} \\ \mathbf{Q}^\top & \mathbf{I} \end{bmatrix}$ are $1 \pm \sigma_i(\mathbf{Q})$,
 790 thus:

791
$$\lambda_{\max}(\tilde{\mathbf{B}}\tilde{\mathbf{B}}^\top) = \frac{1}{2}(1 + \sigma_{\max}(\mathbf{Q})), \quad \|\tilde{\mathbf{B}}\|_2 = \sqrt{\frac{1 + \sigma_{\max}(\mathbf{Q})}{2}}.$$

792 We now prove that $\sigma_{\max}(\mathbf{Q}) = 1$.

810 **Lower bound:** Let $\mathbf{u} = (\sqrt{r_1}, \dots, \sqrt{r_m})^\top$ and $\mathbf{v} = (\sqrt{c_1}, \dots, \sqrt{c_n})^\top$. We have:

$$811 \quad (Q\mathbf{v})_i = \sum_{j \in N(i)} \frac{\sqrt{c_j}}{\sqrt{r_i c_j}} = \frac{r_i}{\sqrt{r_i}} = \sqrt{r_i} = u_i.$$

812 *Similarly, $Q^\top \mathbf{u} = \mathbf{v}$, so \mathbf{u} and \mathbf{v} are singular vectors, and the singular value is exactly 1. Thus,*
 813 $\sigma_{\max}(Q) \geq 1$.

814 **Upper bound:** For any $\mathbf{x} \in \mathbb{R}^n$, by the Cauchy-Schwarz inequality:

$$815 \quad \|Q\mathbf{x}\|_2^2 = \sum_i \frac{1}{r_i} \left(\sum_{j \in N(i)} \frac{x_j}{\sqrt{c_j}} \right)^2 \leq \sum_i \frac{1}{r_i} \left(\sum_{j \in N(i)} 1 \right) \left(\sum_{j \in N(i)} \frac{x_j^2}{c_j} \right) = \sum_i \sum_{j \in N(i)} \frac{x_j^2}{c_j} = \sum_j x_j^2.$$

816 *Here, $N(i)$ denotes the indices of the non-zero elements in the adjacency matrix P . Thus, $\|Q\|_2 \leq 1$.*

817 *Therefore, $\sigma_{\max}(Q) = 1$, and we conclude:*

$$818 \quad \|\tilde{B}\|_2 = \sqrt{\frac{1+1}{2}} = 1.$$

819 C EXTENSION TO NON-GRID DATA

820 C.1 CONSTRUCTION OF HIERARCHICAL STRUCTURE

821 For non-grid data (e.g., point clouds), we primarily employ a 2^d -tree structure (e.g., Quadtrees in 2D,
 822 Octrees in 3D) to construct the hierarchy via spatial partitioning. The procedure starts by defining
 823 an axis-aligned bounding hypercube containing all data points, which serves as the coarsest level.
 824 Finer levels are generated by subdividing each hypercube into 2^d equal-sized sub-cubes, discarding
 825 any sub-cubes that contain no data. This subdivision continues recursively until a pre-determined
 826 depth is reached or the finest level (containing individual points) is achieved. At each level, the
 827 active nodes correspond to these non-empty sub-cubes, and the representative point is defined as the
 828 geometric center of the spatial region.

829 In higher dimensions, standard 2^d -trees become intractable due to the 2^d branching factor. To ad-
 830 dress this, sequential axis partitioning (similar to **k-d trees**) can be adopted to control the inter-level
 831 reduction ratio, ensuring hierarchy construction does not become a computational bottleneck.

832 C.2 SHIELDING STRATEGY ON NON-GRID DATA

833 In the shielding-based active support update (Algorithm 3), the definitions of the local neighborhood
 834 $\mathcal{R}(s)$ and the unshielded set $\hat{D}(s)$ require adaptation for non-grid domains. In the image setting (2D
 835 grids), $\mathcal{R}(s)$ consists of the 8 surrounding pixels. To maintain consistency and ensure extensibility
 836 to high dimensions, we replace this with K-Nearest Neighbors (KNN), setting $k_{\text{nn}} = 4 \times d$ (e.g.,
 837 $k_{\text{nn}} = 12$ for 3D point clouds). This choice aligns with the image setting (where $8 = 4 \times 2$) and
 838 keeps the neighborhood sparse.

839 Unlike grids where the spatial distribution is uniform, non-grid data exhibit irregular distributions.
 840 Consequently, a single source point may correspond to a large number of unshielded candidates.
 841 For computational and memory efficiency, we enforce an upper bound on the number of candidates
 842 added per iteration, denoted as U_{\max} .

843 Crucially, this budgeted strategy affects neither the convergence of HALO nor the theoretical result
 844 of Theorem 1. Regarding convergence, hierarchical algorithms rely on the monotonic decrease
 845 of the objective function, which is guaranteed as long as $\mathbb{N}_{k+1} \supset \text{supp}(x_k)$. Regarding scale-
 846 independence, the complexity bound in Theorem 1 is derived from the total volume of potential
 847 unshielded targets (bounded by the constant C_0 in the proof B.1). While the theorem assumes all
 848 unshielded targets are identified, limiting the update size to U_{\max} merely implies that these necessary
 849 neighbors are added over slightly more iterations, preserving the scale-independent complexity.

850 Finally, we provide a sensitivity analysis in Table 8 and Table 9 to demonstrate the stability of our al-
 851 gorithm with respect to this hyperparameter. We tested $U_{\max} \in \{10, 15, 20, 30, 40\}$ on ModelNet10
 852 (see Appendix E). The results indicate that the performance remains stable across varying scales,
 853 and we use $U_{\max} = 20$ as a safe default setting, which is used throughout non-grid experiments.

864
865
866
Table 8: Time (s) ablation on the budget size
 U_{\max} for shielding on 3D point clouds.

U_{\max}	2^{14}	2^{15}	2^{16}	2^{17}	2^{18}
10	16.18	28.32	50.62	92.82	265.8
15	15.70	26.83	48.92	88.15	236.6
20	15.54	26.25	47.42	88.51	229.7
30	15.85	27.58	50.18	91.30	224.7
40	16.04	26.09	51.81	103.7	244.2

867
868
869
870
871
872
873
Table 9: Memory (GB) ablation on the budget
size U_{\max} for shielding on 3D point clouds.

U_{\max}	2^{14}	2^{15}	2^{16}	2^{17}	2^{18}
10	0.54	0.62	0.74	1.06	1.72
15	0.54	0.63	0.76	1.10	1.76
20	0.54	0.64	0.77	1.12	1.83
30	0.55	0.65	0.79	1.17	1.92
40	0.56	0.61	0.83	1.21	1.95

874
875
876
C.3 NUMERICAL RESULTS ON 2D NON-GRID DATA877
878
879
880
881
In addition to the 3D experiments presented in Table 7, we provide results on 2D non-grid data
constructed from ModelNet10 (see Appendix E for details). The results are summarized in Table 10.
Similar to the 3D setting, HALO demonstrates consistent superior performance. At $n = 2^{18}$, it
achieves a $3.47 \times$ speedup, an 82.4% reduction in memory usage compared to HiRef, and a 32.5%
lower transport cost.882
883
884
885
886
Table 10: Performance on 2D Non-Grid Data (ModelNet10-PCA). gap denotes the relative objec-
tive difference: for $n = 2^{14}$, the reference is the exact solution computed by the standard EMD
solver Flamary et al. (2021); for $n \geq 2^{15}$ where EMD solver is intractable, the reference is the
solution of HALO.

Metric	Method	2^{14}	2^{15}	2^{16}	2^{17}	2^{18}	2^{19}
time	HALO	7.82	12.50	23.44	53.25	121.6	247.0
	HiRef	23.40	46.40	94.10	190.4	422.0	OOM
	Sinkhorn	28.50	OOM	OOM	OOM	OOM	OOM
memory	HALO	0.55	0.62	0.74	1.08	1.92	3.97
	HiRef	0.90	1.02	1.65	3.60	10.89	OOM
	Sinkhorn	10.60	OOM	OOM	OOM	OOM	OOM
gap	HALO	+5.68E-5	—	—	—	—	—
	HiRef	+4.37E-1	+3.82E-1	+4.04E-1	+3.00E-1	+3.25E-1	OOM
	Sinkhorn	+4.02E-2	OOM	OOM	OOM	OOM	OOM

890
900
D ALGORITHM SETTINGS902
903
904
905
906
For HALO, we employ the cuPDLPx Lu et al. (2025) solver with constant step-sizes 1 unless oth-
erwise specified. All experiments use the Pock–Chambolle rescaling scheme, and the stopping cri-
terion is set uniformly with primal feasibility, dual feasibility, and objective gap thresholds of 10^{-6} .
In updateActive, we choose $K = 0.25|\mathcal{S}|$ for the operator Top_K 907
908
909
910
For HOT Zhang et al. (2025), we adopt the open-source implementation with its default parameter
choices. The stopping criterion is fixed to 10^{-6} to ensure comparability with other baselines.911
912
913
For ShortCut Schmitzer (2016), we use the variant based on the LEMON solver provided in the
released code, with all default parameters left unchanged.914
915
916
For M3S Chen et al. (2022), which is an entropic regularization method, we use the official im-
plementation with its predefined entropy-regularization coefficient and all other default parameter
settings.917
918
For Gurobi Gurobi Optimization, LLC (2024), we rely on the Barrier algorithm. Unless otherwise
specified in the main text, the crossover procedure is disabled.919
920
For HiRef Halmos et al. (2025), we adopt the official open-source implementation and strictly
adhere to the default parameter settings provided by the authors.

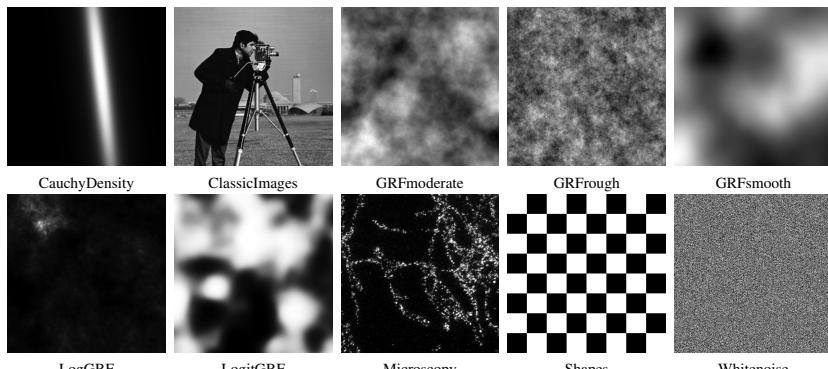
918 For Sinkhorn, we employ the standard implementation provided by the POT library Flamary
 919 et al. (2021). We set the regularization parameter to $\varepsilon = 10^{-3}$ to obtain an approximate solution
 920 with reasonable accuracy.
 921

922 E DATASET 923

924 To comprehensively evaluate the scalability and generalization of HALO, we employed two distinct
 925 datasets covering both grid-based images and unstructured point clouds.
 926

927 **DOTmark (Image Data).** To evaluate scalability across different problem sizes on grid data, we
 928 utilized the DOTmark Schrieber et al. (2016) benchmark. In addition to the native resolutions (32 to
 929 512), we constructed additional variants by both downsampling and upsampling. For downsampling,
 930 each native-resolution image was resized to 16×16 using bilinear interpolation. The interpolated
 931 values were rescaled linearly to match the original intensity range, rounded to integers, and clipped
 932 to avoid numerical overflow. For upsampling, we generated 1024×1024 images by bilinear interpolation,
 933 followed by rounding to integers. To guarantee exact consistency with the original data, each
 934 pixel at the original grid was enforced to coincide with its corresponding position in the enlarged
 935 image, and the resulting values were clipped to the original intensity range before being stored. In
 936 this way, the 16×16 images provide small-scale test cases, while the 1024×1024 images serve as
 937 challenging large-scale benchmarks.
 938

939 **ModelNet10 (Non-Grid Data).** To validate the performance of HALO on non-grid data, we con-
 940 structed a benchmark using ModelNet10 Wu et al. (2015), a widely used dataset for 3D point cloud
 941 analysis. We selected the top-3 samples from each of the 10 classes, generating a total of 30 pairs
 942 of point clouds for evaluation. The raw point clouds were normalized to the unit hypercube, and we
 943 varied the number of points n from 2^{11} to 2^{19} via random sampling to test scalability. To further
 944 evaluate the algorithm on non-grid 2D data, we generated 2D counterparts of these 3D shapes using
 945 Principal Component Analysis (PCA), creating a non-grid 2D point cloud benchmark distinct from
 946 the regular grids in DOTmark.
 947



950
 951
 952
 953
 954
 955
 956
 957
 958 Figure 4: Example images from the DOTmark benchmark.
 959
 960

961 F SENSITIVITY ANALYSIS OF HYPERPARAMETER IN DUAL-VIOLATION 962 CORRECTION 963

964 A key hyperparameter in HALO is β , associated with the dual-violation correction step in Algo-
 965 rithm 3. It controls the size of the candidate set added during the update by selecting the top
 966 $K = \beta |\mathcal{S}|$ pairs with the largest dual violations. To assess the sensitivity of HALO to this pa-
 967 rameter, we evaluated the algorithm on the DOTmark benchmark across a wide range of values:
 968 $\beta \in \{2^{-4}, 2^{-3}, 2^{-2}, 2^{-1}, 2^0\}$. We also included the baseline case $\beta = 0$, which actually disables
 969 the dual-violation correction module.
 970

971 The numerical results are detailed in Table 11. The algorithm exhibits high stability regarding both
 972 memory and runtime: GPU memory usage remains virtually unaffected by the choice of β ; runtime
 973 also shows minimal fluctuation, with a maximum variation of approximately 17% at resolution
 974

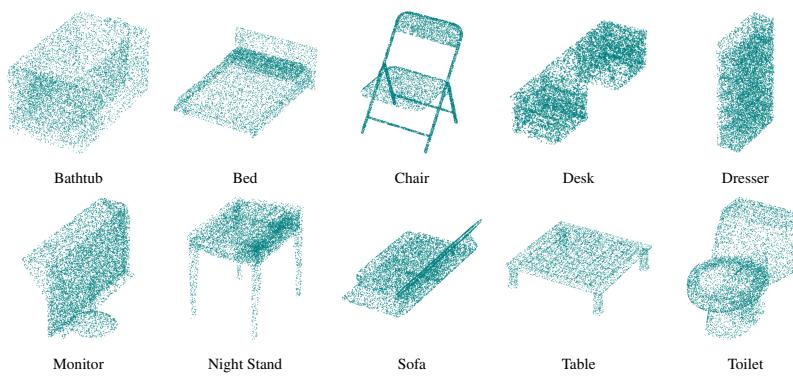


Figure 5: Example 3D point clouds from the ModelNet10 benchmark. Each object is sampled with $n = 8192$ points.

1024 \times 1024. However, setting $\beta = 0$ leads to a sharp performance drop, which confirms that the dual-violation correction is crucial for the efficiency of the solver.

Based on these findings, we recommend $\beta = 2^{-2}$ as a safe default setting, which is used throughout our main experiments.

Table 11: Sensitivity analysis of β on DOTmark. Performance remains stable for $\beta \in [2^{-3}, 2^0]$. Setting $\beta = 0$ leads to significant slowdowns. Memory usage is consistent across all non-zero β values.

	β	$r = 64$	$r = 128$	$r = 256$	$r = 512$	$r = 1024$
time	2^0	0.77	1.18	2.79	9.24	28.86
	2^{-1}	0.78	1.12	2.70	8.76	25.19
	2^{-2}	0.78	1.11	2.62	8.84	25.42
	2^{-3}	0.72	1.11	2.71	8.72	24.67
	2^{-4}	1.73	2.42	4.44	11.90	29.64
	0 (No dual)	1.90	2.99	5.47	15.23	52.85
memory	All	~ 0.39	~ 0.48	~ 0.76	~ 2.10	~ 6.30

G COMPARISON WITH A GPU-BASED SHORTCUT IMPLEMENTATION

A natural question arises regarding whether the `ShortCut` method could yield even better results than `HALO` if implemented on GPUs. To clarify this, we implemented a `ShortCut-GPU` variant within the same framework as `HALO`, utilizing `cuPDLpx` as the underlying solver. The primary difference lies in the active-support update strategy: `ShortCut` employs an aggressive pruning strategy that retains only the support of the current coupling, whereas `HALO` uses a conservative update ($\mathbb{N}_{k+1} \supset \mathbb{N}_k$) augmented with dual-violation correction.

The comparison results on DOTmark are presented in Table 12. While the GPU implementation brings efficiency gains to `ShortCut-GPU` compared to CPU baselines, `HALO` still outperforms `ShortCut-GPU` significantly, achieving a $2.5 \times$ speedup at resolution 1024 \times 1024.

This performance gap highlights a critical algorithmic contribution of `HALO`. GPU-based first-order solvers typically yield solutions with lower precision compared to CPU-based classical methods. `ShortCut`'s aggressive active-support update is highly sensitive to this numerical noise, which leads to stagnation during the refinement process. In contrast, `HALO`'s conservative update rule and the dual-violation correction provide the necessary stability. These designs make the hierarchical framework robust to the lower precision of GPU solvers, thereby unlocking the full potential of GPU acceleration.

1026 Table 12: Runtime comparison between ShortCut-GPU and HALO on DOTmark. Time is in
 1027 seconds (s).

Resolution	512	1024
ShortCut-GPU	21.40	68.33
HALO	11.17	27.73

H FLEXIBILITY WITH ALTERNATIVE SOLVERS

1036 While HALO utilizes cuPDLpx Lu et al. (2025) as the default LP solver due to its state-of-the-
 1037 art performance, the proposed hierarchical framework is designed to be flexible and compatible
 1038 with various first-order GPU solvers. To validate this flexibility, we integrated an alternative solver,
 1039 HPR-LP Chen et al. (2024), into HALO by replacing the backend of the `solveRestricted`
 1040 component. The numerical results on DOTmark are reported in Table 13.

1041 Although HPR-LP is generally slower than cuPDLpx in this context, the HALO framework still
 1042 effectively leverages it to solve large-scale instances efficiently. Specifically, at resolution $1024 \times$
 1043 1024 , HALO integrated with HPR-LP achieves a $6.1 \times$ speedup and a 68.8% reduction in memory
 1044 usage compared to the state-of-the-art solver M3S (see Table 1).

1045 This experiment confirms that the efficiency of HALO is not solely dependent on a specific under-
 1046 lying LP solver; rather, the hierarchical active-support framework is a critical component that
 1047 significantly contributes to the overall performance. It is worth noting that GPU-based LP solvers
 1048 are a burgeoning field compared to mature CPU solvers. We believe that the continuous evolution
 1049 of faster GPU-based solvers will further boost HALO’s performance, solidifying our framework as a
 1050 highly promising direction for solving large-scale OT.

1051 Table 13: Performance of HALO integrated with the alternative HPR-LP solver Chen et al. (2024)
 1052 on DOTmark. Time is in seconds (s) and Memory is in gigabytes (GB).

Resolution	64	128	256	512	1024
time	1.06	1.70	3.31	9.68	40.76
memory	0.72	0.78	1.00	1.90	6.61
gap	6.39E-6	2.36E-5	1.76E-5	–	–
infeas	4.09E-7	2.53E-7	1.33E-7	1.03E-7	6.08E-8

I ROBUSTNESS AND GENERALIZATION ACROSS DIVERSE DATASETS

1065 Table 14: Generalization performance of HALO on real-world datasets (FFHQ and WikiArt) com-
 1066 pared to the standard DOTmark. Results are averaged over instances. Time is in seconds (s) and
 1067 Memory is in gigabytes (GB).

	Resolution	256	512	1024
time	FFHQ	3.24	10.79	23.68
	WikiArt	2.74	9.13	22.14
	DOTmark	4.31	11.17	27.73
memory	FFHQ	0.77	2.19	6.52
	WikiArt	0.74	1.97	6.10
	DOTmark	0.76	2.07	6.25

1077 To demonstrate generalization beyond DOTmark, we conducted additional evaluations on two high-
 1078 resolution datasets: Flickr-Faces-HQ (FFHQ) Karras et al. (2019) and WikiArt Tan et al. (2019).
 1079 Specifically, we selected the first 10 images from FFHQ and the first image from each of the top-10

1080 classes in WikiArt. For each dataset, we generated 45 instances by pairing these images, strictly
1081 following the DOTmark preprocessing pipeline.
1082

1083 The numerical results are summarized in Table 14. HALO consistently achieves low memory usage
1084 and fast solving speeds on these diverse tasks, exhibiting performance metrics highly consistent with
1085 those on DOTmark. This confirms the broad applicability and robustness of HALO across diverse
1086 real-world datasets.
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133