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ABSTRACT

In this paper we propose a memory-efficient hierarchical algorithm for solving
large-scale optimal transport (OT) problems with squared Euclidean cost. The
core of our proposed approach is the combination of multiscale hierarchical rep-
resentation of the OT problem and a GPU-implemented Primal-Dual Hybrid Gra-
dient (PDHG) method. Moreover, an active pruning technique is applied to further
reduce computational complexity. Theoretically, we establish a scale-independent
iteration-complexity upper bound for the refinement phase, which is consistent
with our numerical observations. Numerically, experiments on image dataset
DOTmark and point cloud dataset ModelNet10 demonstrate that the proposed al-
gorithm effectively addresses the memory and scalability bottlenecks. Compared
to state-of-the-art baselines, our method demonstrates significant advantages: for
images with n = 10242 pixels, it achieves an 8.9× speedup and 70.5% reduc-
tion in memory usage under comparable accuracy; for 3D point clouds at scale
n = 218, it achieves a 1.84× speedup and an 83.2% reduction in memory usage
with 24.9% lower transport cost.

1 INTRODUCTION

The Wasserstein distance, defined via the Kantorovich formulation of Optimal Transport (OT) prob-
lems, is a powerful metric to measure the similarity between two probability distributions. It has
been widely adopted in various fields such as generative modeling Arjovsky et al. (2017); Kornilov
et al. (2024); Tong et al. (2023); Hui et al. (2025), color transfer Solomon et al. (2015); Pitié &
Kokaram (2007), texture synthesis and mixing Dominitz & Tannenbaum (2009); Rabin et al. (2011),
registration and deformation Haker et al. (2004); Rehman et al. (2007), image restoration He et al.
(2021), domain adaptation Montesuma & Mboula (2021); He et al. (2024), transportation-based
morphology metrics Basu et al. (2014), and hypothesis testing Del Barrio et al. (1999).

Given probability measures µ, ν on domains S and D with ground cost c : S × D → R, the Kan-
torovich problem is defined by

inf
π∈Π(µ,ν)

∫
S×D

c(s, d) dπ(s, d), (1)

where Π(µ, ν) denotes the set of couplings on S×D with marginals µ and ν on S and D, respectively.

In the discrete case, the supports are S = {s1, . . . , sm} and D = {d1, . . . , dn}, with corresponding
probability vectors u ∈ Rm and v ∈ Rn defined by ui = µ(si) and vj = ν(dj). A coupling is
represented by a nonnegative matrix X ∈ Rm×n

+ whose row and column sums equal u and v. The
ground cost is encoded in the cost matrix C = (c(si, dj)) ∈ Rm×n. Consequently, this setup leads
to the following discrete OT problem in standard Linear Programming (LP) form:

min
x≥0

c⊤x, s.t. Ax = q, (2)

where x = vec(X), c = vec(C), q⊤ = (u⊤,v⊤), and A =

[
1⊤
n ⊗ Im

In ⊗ 1⊤
m

]
∈ R(m+n)×mn.

This LP problem has mn variables and m + n constraints. Considering OT problems between
two images of size n = r × r, the variable count in X scales as n2, reaching approximately 1012
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when r = 1024. Such an enormous scale results in prohibitive computational cost and memory
consumption. Moreover, traditional solvers such as the network simplex Gabow & Tarjan (1991)
and interior-point Pele & Werman (2009) methods further fail to exploit the modern GPU architec-
tures, leading to a growing gap between classical OT algorithms and the scalability demanded in
contemporary applications.

Related work Existing algorithms for large-scale OT fall into three broad categories: The first
category consists of approximation methods, which trade accuracy for efficiency. Representative
examples include entropy-regularized algorithms such as Sinkhorn Cuturi (2013); Dvurechensky
et al. (2018); Schmitzer (2019); Lin et al. (2019), low-rank algorithms Scetbon et al. (2021); Halmos
et al. (2025) as well as approaches based on approximate metrics such as the approximated earth
mover’s distance Shirdhonkar & Jacobs (2008), the sliced Wasserstein distance Kolouri et al. (2019);
Nadjahi et al. (2021), and the linear OT framework Wang et al. (2013). These methods achieve good
scalability but at the cost of reduced accuracy.

The second category comprises LP-based algorithms, which aim to accelerate OT by improving LP
solvers tailored to this structured problem. Representative methods include randomized block co-
ordinate descent methods Xie et al. (2024), semi-smooth Newton-type approaches Li et al. (2020),
as well as first-order algorithms such as Douglas–Rachford splitting Mai et al. (2021), dual extrap-
olation Jambulapati et al. (2019), Halpern–Peaceman–Rachford methods Zhang et al. (2022); Chen
et al. (2024), Halpern iteration Zhang et al. (2025), and in particular the primal–dual hybrid gradi-
ent (PDHG) method Esser et al. (2010); Chambolle & Pock (2011). Specifically, PDHG solves the
min-max OT problem with dual potentials f and g formulated as:

min
x∈Rmn

+

max
f∈Rm,g∈Rn

u⊤f + v⊤g − c⊤x. (3)

The PDHG iteration primarily consists of matrix-vector multiplications:
xk+1 ← projx≥0

(
xk − τ

(
c−A⊤

[
fk

gk

]))
,[

fk+1

gk+1

]
←

[
fk

gk

]
+ σ

(
q −A(2xk+1 − xk)

)
,

(4)

where step-sizes τ and σ satisfy the condition τσ∥A∥2 < 1. PDHG has been especially influential
due to its factorization-free and parallel-friendly nature, and its large-scale applicability has been
demonstrated in recent solvers Applegate et al. (2021); Lu et al. (2023; 2025). Nevertheless, despite
these advances, LP-based solvers continue to suffer from severe memory bottlenecks in ultra-large-
scale settings Lu & Yang (2024).

The third category consists of multiscale algorithms that exploit the pyramid structure of OT Mérigot
(2011); Gerber & Maggioni (2017); Leclaire & Rabin (2019); Schmitzer (2019); Chen et al. (2022).
Representative multiscale-based exact solvers include ShortCut Schmitzer (2016) and multiscale
semi-smooth Newton (MSSN) method Liu et al. (2022). Although these methods effectively re-
duce computational cost in practice, the lack of iteration-complexity bounds leaves their worst-case
efficiency unresolved.

Main contributions We propose a memory-efficient and parallel-friendly Hierarchical Algorithm
for Large-scale Optimal Transport (HALO) problems with squared Euclidean cost, improving both
scalability and efficiency upon existing methods. Leveraging the multiscale structure of OT, we build
a hierarchy of problems across resolutions: the solution of coarser level warm-starts finer levels, and
at each level we alternate between updating the active support and solving the restricted OT on that
support with a PDHG-based LP solver, thereby progressively refining the coupling. Our numerical
results on problems with hierarchical structure, e.g. 2D images and 3D point clouds, demonstrate
that our framework is efficient for computational acceleration and memory reduction. Furthermore,
we provide a highly efficient GPU implementation to facilitate reproduction and future extensions.

The significance of HALO lies in the following aspects: i). HALO requires only O(n) memory,
which, to the best of our knowledge, matches the lowest space complexity among existing GPU-
based solvers; ii). HALO employs a factorization-free, PDHG-based LP solver whose computation is
dominated by matrix-vector products, making it highly parallel-friendly on GPUs; iii). HALO enjoys
a scale-independent iteration-complexity bound per level, which is further validated empirically in
our experiments; iv). HALO delivers strong empirical performance compared to state-of-the-art
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baselines: on 2D images dataset DOTmark with scale n = 10242, it achieves an 8.9× speedup and
a 70.5% reduction in GPU memory usage; on 3D point clouds dataset ModelNet10 with n = 218, it
demonstrates superior optimality with a 24.9% lower transport cost, alongside a 1.84× speedup and
83.2% memory reduction.

Organization The rest of the paper is organized as follows: In Section 2, we introduce the pro-
posed algorithm, where Section 2.3 provides the scale-independent iteration-complexity bound. In
Section 3 we present the experimental results, and Section 4 concludes the paper.

Notation S,D denote the source and target spaces in OT problem. In discrete setting, given N =
{(sik , djk) | 1 ≤ k ≤ K} ⊂ S×D, AN denotes the sub-matrix of the constraint matrix A restricted
to the columns indexed by N, i.e., the columns corresponding to (jk − 1) ·m+ ik for 1 ≤ k ≤ K,
and xN as the corresponding sub-vector of the vector x ∈ Rnm. Let TopK(C) denote the operator
that selects K pairs from the set C ⊂ S× D, where these pairs have the top K associated values.

2 HALO: A HIERARCHICAL ALGORITHM FOR LARGE-SCALE OT

Optimal transport (OT) problems, especially at large scale, pose significant challenges in both com-
putation and memory. Traditional solvers such as network simplex Gabow & Tarjan (1991) and
interior-point methods Pele & Werman (2009) struggle to scale efficiently due to their inability to
leverage modern GPU architectures.

2.1 OUTLINE OF THE PROPOSED FRAMEWORK

Motivated by the limitation of the existing work, for large-scale OT problems with squared Euclidean
cost, we develop a memory-efficient and parallel-friendly hierarchical algorithm which is named as
HALO. The key of our method lies in two aspects: i) an inherent multiscale structure that allows to
construct a coarse-to-fine hierarchical representation; ii) sparsity of the transport plan which allows
to incorporate active-support detection technique to the solver. These two aspects jointly contribute
to the significant reduction of the computational complexity and memory demand.

Output
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Figure 1: Architecture of HALO.

Figure 1 provides a high-level overview of our HALO method:

• Vertically (Hierarchical Structure): We construct an (L + 1)-level hierarchy of OT prob-
lems, ranging from the coarsest L-th level to the finest 0-th level. For each level ℓ ∈
{0, 1, ..., L}, let (u(ℓ),v(ℓ), c(ℓ)) denote the marginals and costs, and (f (ℓ), g(ℓ)) denote
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the dual potentials. Consequently, the OT problem at the ℓ-th level reads:

min
x(ℓ)∈Rmℓnℓ

+

max
f(ℓ)∈Rmℓ ,g(ℓ)∈Rnℓ

⟨u(ℓ), f (ℓ)⟩+ ⟨v(ℓ), g(ℓ)⟩ − ⟨c(ℓ), x(ℓ)⟩, (5)

where mℓ, nℓ denote the marginal scales. We employ a coarse-to-fine strategy: For ℓ = L,
solve problem (5) and denote the solution as (x(L),f (L), g(L)); for ℓ ∈ {0, · · · , L − 1},
the solution (x(ℓ+1),f (ℓ+1), g(ℓ+1)) from the coarser (ℓ + 1)-th level is prolongated to
initialize (x(ℓ),f (ℓ), g(ℓ)) for the finer ℓ-th level; see Section 2.2 for details.

• Horizontally (Refinement Loop): At each specific level ℓ ∈ {0, · · · , L− 1}, we refine the
initialized solution to solve the OT problem (5). To fully exploit the sparsity of the trans-
port plan, we alternate between updating the active support and solving the corresponding
LP problem using GPU-based solvers (instantiated by PDHG-based algorithm Lu et al.
(2025)); see Section 2.3 and Algorithm 2 for details.

Summarizing the above discussions leads to the proposed HALO method.

Algorithm 1 HALO: Hierarchical Algorithm for Large-scale Optimal Transport

1: Input: marginal distributions u and v, ground cost c, number of levels L.
2: Output: optimal coupling x(0).
3: Build hierarchical OT problems {(u(ℓ),v(ℓ), c(ℓ))}Lℓ=0.
4: Solve OT with (u(L), v(L), c(L)) on the coarsest level L to obtain (x(L),f (L), g(L)).
5: for ℓ = L− 1, . . . , 0 do
6: Initialize (x(ℓ),f (ℓ), g(ℓ)) by prolongating (x(ℓ+1),f (ℓ+1), g(ℓ+1)).
7: repeat
8: 1). Updating active support, detailed in Algorithm 3
9: N(ℓ) ← updateActive(x(ℓ),f (ℓ), g(ℓ),N(ℓ))

10: 2). Solving restricted OT, detailed in Section 2.3
11: (x(ℓ),f (ℓ), g(ℓ))← solveRestricted(x(ℓ),f (ℓ), g(ℓ);N(ℓ),u(ℓ),v(ℓ), c(ℓ))

12: until x(ℓ) meets the termination criteria.
13: end for
14: return x(0).

For the rest of this section, we discuss the details of the key steps in Algorithm 1, including the
construction of the hierarchy, the active-support updating strategy and its convergence property.

2.2 HIERARCHY: COARSE-TO-FINE MULTISCALE STRUCTURE

A high-quality initialization greatly accelerates the inner loop in Algorithm 1. To leverage the geo-
metric structure of OT, we adopt a coarse-to-fine multiscale scheme.

Consider a discrete OT problem with supports S = {s1, · · · , sm},D = {d1, · · · , dn} and marginals
µ =

∑m
i=1 uiδsi , ν =

∑n
j=1 vjδdj

. In our hierarchy, the supports at the ℓ-th level are formed by
representative points of corresponding neighbor groups from the (ℓ − 1)-th level. Accordingly, the
marginals u(ℓ) and v(ℓ) are obtained by aggregating the masses of these constituent groups, and the
cost c(ℓ) is defined by the distance between representative points.

As illustrated in Figure 2, in the image setting where S and D correspond to pixels on a regular
grid, the hierarchy is built by recursively merging 2 × 2 pixels, using the barycenter of each block
as its representative. In non-grid settings (e.g., point clouds), we instead employ spatial partitioning
structures, such as 2d-trees or kd-trees Finkel & Bentley (1974); Bentley (1975), to construct the
hierarchy, as detailed in Appendix C.1.

2.3 SPARSITY: SOLVE RESTRICTED OT ON ACTIVE SUPPORT

Classical LP theory Bertsimas & Tsitsiklis (1997) states that the optimal solution x∗ ∈ Rmn of
problem (2) has at most m+ n nonzero entries, which is sparse when m,n are large. If the support
supp(x∗) were known a priori, we could simply solve the problem restricted to this set. Therefore,

4
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Figure 2: Left & Middle: Hierarchy construction of images and point clouds. Right: Shielding
in updateActive; green region indicates possible unshielded d, and arrows denote pairs (s, d)
added by the shielding-based component.

letting active support N ⊂ S×D be an estimation of supp(x∗), we define the restricted OT problem
over N as follows:

Definition 1 (Restricted OT on active support N)

min
x

c⊤NxN s.t. ANxN = q, xN ≥ 0 xN∁ = 0, (6)

where AN is the sub-matrix of A restricted to columns indexed by N, cN is the corresponding sub-
vectors of c, xN and xN∁ are the corresponding sub-vector on N and N∁.

Remark 1 Since the OT problems at each level share the same formulation and differ only in scale,
we simply use the form (2) for illustration.

If the active support N exactly corresponds to the support supp(x∗), solving the restricted prob-
lem provides the global optimizer of the original OT problem. However, finding supp(x∗) is as
challenging as solving the problem. To address this difficulty, we consider Algorithm 2, a refine-
ment procedure that alternates between updating the active support based on the current solution and
solving the restricted OT on the newly updated set.

Algorithm 2 A refinement at each level

INPUT: initial coupling x0 and dual potentials (f0, g0); u, v and c.
OUTPUT: global optimizer x

k ← 0, N0 ← ∅
repeat
Nk+1 ← updateActive(xk,fk, gk,Nk)
(xk+1,fk+1, gk+1)← solveRestricted(xk,fk, gk,Nk+1;u,v, c)
k ← k + 1

until xk meets the termination criteria
return (xk,Nk)

The efficiency of Algorithm 2 hinges on the design of updateActive. In previous work,
ShortCut Schmitzer (2016) constructs a new active support by augmenting the support of the
previous coupling with a shielding-based component. This component relies on the shielding con-
dition, defined as follows:

Definition 2 (Shielding condition) Given S, D and cost c : S×D→ R. Let s, s′ ∈ S, d, d′ ∈ D. We
say (s′, d′) shields s from d if

c(s, d) + c(s′, d′) > c(s, d′) + c(s′, d).

To obtain a provable O(1) per-level iteration bound and improve robustness in practice, we intro-
duce two modifications: i). expanding the active support to include the entire previous ones, rather
than only the previous coupling’s support; ii). performing dual-violation correction, adding pairs
suggested by significant violations in the dual potentials. The complete update procedure is summa-
rized in Algorithm. 3.

5
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Although the first improvement makes the estimated active support larger, it provides a scale-
independent iteration-complexity bound, as detailed in Theorem 1, ensuring that the growth of the
active support does not affect its sparsity. Additionally, in the implementation, we use the PDHG-
based solver, which is less sensitive to the problem scale compared to traditional LP solvers. As
a result, our algorithm achieves excellent practical performance while benefiting from a theoretical
iteration-complexity guarantee.

The second improvement involves a dual-violation correction mechanism that accelerates conver-
gence by adding pairs suggested by significant violations in the dual potentials. This approach
ensures that the active support includes supp(x∗) as much as possible, while maintaining sparsity.
As a result, the algorithm refines the solution more efficiently, particularly in some challenging in-
stances. Unlike MSSN Liu et al. (2022) which relies on a threshold parameter, we employ a TopK
operator to select pairs with the largest dual violations, ensuring the active support remains sparse
throughout.

Algorithm 3 updateActive
INPUT: current coupling x = vec(X), dual potentials (f , g), cost c ∈ Rnm with c : S×D→ R,
active support N, dual-violation hyperparameter β
OUTPUT: updated active support N′

1). start from current active support
N′ ← N
2). shielding-based
construct map : S→ D, map(si) = argmaxdj∈D Xij for all si ∈ S
Define R(s) ⊂ S as the local neighborhood of s (8-neighbors for images and KNN for point
clouds, see Appendix C.2).
for s ∈ S do
D(s)← {map(s′) : s′ ∈ R(s) }
D̂(s)← { d ∈ D : d is not shielded from s by (s′,map(s′)), ∀s′ ∈ R(s) }
if D̂(s) = ∅ then

D̂(s)← argmind∈D\D(s) c(map(s), d)
end if
D(s)← D(s) ∪ D̂(s)
N′ ← N′ ∪ {(s, d) : d ∈ D(s)}

end for
3). dual–violation correction
Pricing problem, C← {(si, dj) ∈ S× D : fi + gj > cij}
K ← β |S|, CK ← TopK(C)
N′ ← N′ ∪ CK

return N′

Theorem 1 (Scale-independent iteration-complexity bound) Let (S,D, µ, ν) be a discrete OT in-
stance with squared Euclidean ground cost. Consider Algorithm 2 with the update rule from Algo-
rithm 3, which produces solutions {(xk,fk, gk)}k≥0 and active supports {Nk}k≥0 via the mono-
tone update

Nk+1 ← updateActive(xk,Nk).

Assume there exist constants q ∈ (0, 1], D <∞, ρ <∞, L <∞, R0 <∞ such that:

1. (Directional coverage) For ∀s ∈ S and ∀v ∈ Rn, ∃s′ ∈ S(s) ⊂ S with ⟨v, s′ − s⟩ ≥
∥v∥ ∥s′ − s∥ q.

2. (Bounded radius of S(s)) ∥s′ − s∥ < D for all s and all s′ ∈ S(s).

3. (Bounded density of D) |D ∩BR(z)| ≤ ρ voln(BR) for all z ∈ Rn and R > 0.

4. (Uniform Lipschitz regularity) ∥mapk(s)−mapk(s
′)∥ ≤ L∥s− s′∥, ∀s, s′ ∈ S, k ≥ 0.

5. (Coupling stability) ∥mapk(s)−map0(s)∥ ≤ R0 for all k and all s ∈ S.

6
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Then there exists a constant C > 0 such that xk is a global optimizer for all k ≥ C, and |Nk| ≤
C |S| for all k ≥ 0.

Remark 2 Assumptions 1–3 hold in our setting; by contrast, Assumptions 4–5 are stronger yet
natural under the multiscale warm-start. Since each level refines a warm start prolongation from
the previous coarser level, the per-level updates are mild, making a uniform Lipschitz condition
and a bounded-drift stability assumption intuitively justified. The proof of Theorem 1 is deferred to
Appendix B.1.

At the end of this subsection, we note that in Algorithm 2 the restricted OT on the active support
N is solved by solveRestricted, which dominates computational cost and memory usage,
making the LP solver choice critical. To achieve both memory efficiency and parallelism, we adopt
a factorization-free PDHG solver, and we highlight the following property of the restricted OT under
Pock–Chambolle rescaling Pock & Chambolle (2011):

Proposition 1 Let B be the constraint matrix of restricted OT problem, and define the rescaled
matrix B̃ by the Pock–Chambolle rescaling:

Dr = diag
(√

r1, . . . ,
√
rm,
√
c1, . . . ,

√
cn
)
, Dc =

√
2 I, B̃ = D−1

r BD−1
c ,

with ri, cj the row/column degrees of B. Then ∥B̃∥2 = 1.

This result justifies the use of a constant stepsize in PDHG-based algorithm, eliminating the need
for norm estimation and reducing overhead in HALO. The proof is provided in Appendix B.2.

3 EXPERIMENTS

To evaluate the scalability and efficiency of HALO1, we conduct experiments on two representative
datasets: the image dataset DOTmark Schrieber et al. (2016) and the point cloud dataset Model-
Net10 Wu et al. (2015). For image experiments, we compare HALO against three state-of-the-art
solvers: HOT Zhang et al. (2025), ShortCut Schmitzer (2016), and M3S Chen et al. (2022). For
non-grid experiments, we compare against the state-of-the-art solver HiRef Halmos et al. (2025)
and the standard Sinkhorn Cuturi (2013); Flamary et al. (2021). Detailed dataset settings are
provided in the Appendix E.

All experiments run on dual Intel Xeon Gold 6330 CPUs (2.0GHz), 503GB RAM, and an NVIDIA
RTX 4090D (24GB). Host memory is limited to 100GB and GPU memory to 24GB (violations
reported as OOM). Each instance has a 3600s wall-clock limit (violations reported as TO).

For HALO, we use cuPDLPx Lu et al. (2025), while additional results demonstrating the flexibility
of the LP solver choices are provided in Appendix H. For the other baselines, we use their open-
source implementations with default parameter settings, with more details provided in Appendix D.

Since different methods may use different internal stopping rules, we report solution quality using
unified metrics:

gap =
|⟨c,x⟩ − ⟨c,xb⟩|
|⟨c,xb⟩|+ 1

and feas = max

{
∥min(x, 0)∥
1 + ∥x∥

,
∥Ax− q∥
1 + ∥q∥

}
,

where xb is a high-accuracy reference obtained by solving the reduced OT model with Gurobi
(Barrier with crossover) at a tolerance of 10−8, following Zhang et al. (2025).

3.1 THE IMAGE DATASET DOTMARK

Table 1 summarizes four metrics: runtime (s), peak memory (GB), relative objective gap, and fea-
sibility error. While providing comparable solutions in terms of gap and feas, HALO is memory-
efficient and delivers short wall-clock time, clearly outperforming strong baselines, especially at
large scales. Against HOT, HALO leads on runtime, memory, and gap. Specifically, at r = 512 it is
7.02× faster with 89.2% less memory, achieving 2–3 orders of magnitude tighter gaps across scales.
Despite ShortCut’s CPU memory efficiency, HALO is much faster at a comparable gap, yielding

1The source codes of the proposed method will be released upon acceptance of the paper.
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a 37.36× speedup at r = 512. Finally, while the entropy-regularized M3S also solves the r = 1024
instances, HALO shows simultaneous advantages in runtime, memory, and accuracy. At r = 1024 it
is 8.92× faster, uses 70.5% less memory, and attains 1–2 orders tighter gaps.

Table 1: The numerical results on DOTmark. “GPU/CPU memory” denotes GPU VRAM for GPU-
based methods and CPU RAM for CPU methods (shown in gray). Time is reported in seconds (s)
and memory is in gigabytes (GB). gap at r = 512, 1024 are unavailable because solving the reduced
model with Gurobi runs out of memory.

Metric Resolution 64 128 256 512 1024

time

HALO 1.50 2.20 4.31 11.17 27.73
HOT 1.56 2.12 14.32 78.43 OOM
ShortCut 0.25 2.41 25.74 438.14 TO
M3S 1.95 3.44 8.51 39.32 247.22

GPU/CPU
memory

HALO 0.38 0.48 0.76 2.07 6.25
HOT 0.84 1.09 3.10 19.25 OOM
ShortCut 0.01 0.04 0.14 0.56 TO
M3S 0.71 0.95 1.92 5.78 21.21

gap

HALO 1.23E−6 1.51E−5 1.41E−5 – –
HOT 6.77E−4 6.03E−3 3.32E−2 – –
ShortCut 1.56E−6 4.04E−6 2.27E−5 – –
M3S 1.89E−4 1.90E−4 3.31E−4 – –

feas

HALO 3.66E−8 2.45E−7 1.28E−7 1.06E−7 6.98E−8
HOT 5.51E−7 7.91E−7 7.61E−7 3.42E−7 OOM
ShortCut 1.65E−18 1.65E−18 9.55E−19 3.67E−19 TO
M3S 2.40E−6 1.20E−6 6.13E−7 3.03E−7 1.44E−7

Figure 3 reports runtime and memory scalability on log–log axes. HALO shows an approximately
straight runtime curve with slope ≈ 1, indicating near-linear growth and outperforming other base-
lines. Its memory curve has a terminal slope ≈ 2, matching M3S, yet HALO maintains the lowest
memory usage among GPU-based methods across resolutions.

24 25 26 27 28 29 210

Resolution r

10 1

100

101

102

103

Ti
m

e 
(s

)

Time vs. Resolution
HALO  ( =0.95)
HOT
M3S
ShortCut

(a) Runtime scaling.
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(b) Memory scaling.

Figure 3: Scalability on DOTmark across all evaluated methods. Left: Runtime scaling; Right:
Memory scaling. In the left legend, α is the fitted slope for HALO. ShortCut uses CPU memory,
shown in gray in the right panel.

To validate Theorem 1, Table 2 lists the average per-scale iterations of Algorithm 2 across resolutions
on DOTmark. The averages never exceed 2 and even tend to decrease at finer scales, corroborating
the O(1) bound and illustrating the practical efficiency of updateActive.

To understand the impact of data geometry on solver efficiency, we analyzed the runtime of HALO
across different image classes in DOTmark (see Figure 4 for examples). As shown in Table 3, the
runtime is highly correlated with pixel intensity sparsity, defined as the percentage of pixels with
strictly zero mass. Classes with low pixel intensity sparsity, such as ClassicImages, converge fast,
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Table 2: Number of inner iterations per scale.

Scale 16 32 64 128 256 512 1024

scale0 1.00 1.91 1.82 1.22 1.12 1.05 1.00
scale1 1.00 1.80 1.65 1.15 1.09 1.05
scale2 1.00 1.75 1.63 1.17 1.09
scale3 1.00 1.78 1.66 1.17
scale4 1.00 1.77 1.66
scale5 1.00 1.78
scale6 1.00

while those with high pixel intensity sparsity, such as Shapes and Microscopy, require significantly
more time. This phenomenon can be theoretically explained by Theorem 1: high pixel intensity
sparsity often corresponds to non-convex supports with singularities Luo et al. (2022), which implies
a relatively larger Lipschitz constant L in Assumption 4, resulting in a larger constant in the iteration
bound and thus longer runtime.

Table 3: Performance breakdown by image class in DOTmark at resolution 1024 × 1024. Metric
sparsity denotes the pixel intensity sparsity, defined as the percentage of pixels with strictly zero
mass. Time is reported in seconds (s)

Metric WhiteNoise GRF / Log (Avg) ClassicImages Cauchy Shapes Micro.

sparsity 0.00% 0.00% 0.01% 0.00% 45.3% 42.0%
time 18.29 21.76 23.78 25.82 44.39 56.22

Table 4 presents an ablation that isolates the effects of the multiscale framework and cuPDLPx.
When cuPDLPx is disabled, we use Gurobi’s barrier with crossover, as updateActive relies
on the sparsity of solutions. Disabling cuPDLPx in HALO results in a 36.9× increase in runtime
at r = 256. Removing the multiscale framework from HALO also causes an 85.6× slowdown at
r = 64 and leads to OOM at higher resolutions. Taken together, the multiscale framework and
cuPDLPx are both indispensable, yielding short wall-clock time and low memory across all tested
resolutions.

Table 4: Ablation on HALO. An ‘✗’ in the PDHG-based column indicates that cuPDLPx is replaced
by Gurobi’s barrier method with crossover.

Multiscale PDHG-based Resolution 32 64 128 256

✓ ✓
time 0.88 1.50 2.19 4.31
GPU memory 0.38 0.39 0.48 0.76

✓ ✗
time 0.91 2.56 27.68 159.06
CPU memory 0.07 0.07 0.29 1.18

✗ ✓
time 2.87 128.4 OOM OOM
GPU memory 0.54 3.00 OOM OOM

✗ ✗
time 6.88 126.94 OOM OOM
CPU memory 0.78 12.69 OOM OOM

Table 5 further presents an ablation of the dual-violation augmentation in updateActive. We
report the maximum and mean runtime over all DOTmark instances. The augmentation markedly
improves robustness on difficult cases; at r = 1024, for instance, the maximum runtime falls to
24.3% of that without this component.

Table 6 reports the speedup of HALO with a constant stepsize over the power-iteration choice in
cuPDLPx. We show results for resolutions from 256 to 1024; at r = 1024, the constant step-
size yields a 1.97× speedup, indicating that eliminating per-iteration norm estimation substantially
reduces computational cost.
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Table 5: Ablation on updateActive: dual-violation
augmentation (✓) improves robustness

dual-violation Resolution 256 512 1024

✓
Max time 11.99 54.36 154.20
Avg time 4.31 11.17 27.73

✗
Max time 29.07 151.98 633.34
Avg time 5.47 15.23 52.85

Table 6: Speedup of constant step-size
over power iteration.

Resolution 256 512 1024

Speedup 1.80× 1.65× 1.97×

3.2 THE POINT CLOUDS DATASET MODELNET10

To validate the generalization, we evaluate HALO on the 3D point cloud dataset ModelNet10 (see
App. C.3 for 2D results). As shown in Table 7, HALO demonstrates superior scalability and effi-
ciency on non-grid domains. While Sinkhorn runs out of memory at n = 216 and HiRef fails
at n = 219, HALO successfully scales to n = 219 consuming only 2.99 GB memory. Specifically
at n = 218, HALO achieves a 1.84× speedup and an 83.2% reduction in memory usage compared
to HiRef. Crucially, HALO attains a significantly lower transport cost, improving upon HiRef by
approximately 24.9%, demonstrating the superior precision of HALO.

Table 7: Performance on Non-Grid 3D Data (ModelNet10). gap denotes the relative objective differ-
ence: for n = 214, the reference is the exact solution computed by the standard EMD solver Flamary
et al. (2021); for n ≥ 215 where EMD solver is intractable, the reference is the solution of HALO.

Metric Method 214 215 216 217 218 219

time
HALO 15.54 26.25 47.42 88.51 229.7 444.3
HiRef 23.60 46.40 94.40 189.9 422.7 OOM
Sinkhorn 29.50 OOM OOM OOM OOM OOM

memory
HALO 0.54 0.64 0.77 1.12 1.83 2.99
HiRef 0.91 1.03 1.67 3.60 10.92 OOM
Sinkhorn 10.60 OOM OOM OOM OOM OOM

gap
HALO +5.33E−5 – – – – –
HiRef +4.19E−1 +3.51E−1 +3.13E−1 +2.77E−1 +2.49E−1 OOM
Sinkhorn +3.20E−2 OOM OOM OOM OOM OOM

4 DISCUSSION

In this paper, we presented HALO, a scalable and memory-efficient solver for optimal transport
problems with squared Euclidean cost. Our work offers a key insight into large-scale OT: by syn-
ergizing a hierarchy framework with GPU-based LP solvers, it is feasible to simultaneously
achieve memory efficiency, computational speed, and high precision, without resorting to reg-
ularization or approximation methods. Specifically, HALO integrates a hierarchical framework
with a rigorous active-support update rule and a PDHG-based LP solver. Furthermore, the dual-
violation correction enhances robustness, a proven scale-independent iteration bound explains the
fast convergence, and the Pock–Chambolle rescaling justifies the rationality of constant stepsize.

Regarding the extension to high dimensions, although HALO faces challenges scaling to high-
dimensions due to the growing shielding-based component, a feasible direction is to prioritize and
further optimize the dimension-independent dual-violation correction. Our preliminary results sug-
gest that the algorithm holds great potential for scaling to high dimensions in the order of thousands.

Finally, for general transport costs (e.g., L1 or Wasserstein-p), a current limitation is the reduced
sparsity of solutions returned by first-order solvers compared to the squared Euclidean case, which
diminishes the efficiency of the refinement phase. To address this, potential solutions include inte-
grating future GPU-based crossover algorithms to recover sparsity or designing more flexible active-
support strategies.
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ETHICS STATEMENT

We confirm adherence to the ICLR Code of Ethics. This paper develops a hierarchical algorithm
for large-scale optimal transport and does not involve human subjects, clinical data, or personally
identifiable information. All datasets used are publicly available under their respective licenses; we
applied only standard preprocessing and did not attempt re-identification or attribute inference. The
method is general-purpose, so any fairness concerns stem from downstream data and deployment
contexts; practitioners should audit subgroup performance in their applications. To reduce misuse
risks, we restrict experiments to benign public datasets and will document intended use and limita-
tions. Experiments were run on local institutional hardware without external data services; compute
configuration and runtimes are reported in the appendix to encourage reuse and minimize redundant
computation. To the best of our knowledge, this work complies with applicable laws and institu-
tional policies; no IRB approval was required. The authors declare no conflicts of interest and no
third-party sponsorship that could unduly influence the results.

REPRODUCIBILITY STATEMENT

Complete proofs are provided in the appendix: Theorem 1 is proved in Appendix B.1, and Proposi-
tion 1 is proved in Appendix B.2. Implementation details for all baselines are given in Appendix D.
Dataset-related details are provided in Appendix E.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model solely to polish writing and to assist with small code snippets. It did
not generate ideas, proofs, experimental designs, or results. All LLM-assisted content was authored,
reviewed, and validated by the authors.

B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF THEOREM 1

Proof 1 (Proof of Theorem 1) Fix s ∈ S and let D̂k+1(s) ⊂ D denote the set of targets d that are
not shielded from s by the pairs {(s′,mapk(s

′)) : s′ ∈ S(s)}. Hence every (s, d) with d ∈ D̂k+1(s)
must be explicitly added to Nk+1.

We first establish a geometric localization bound. Take d ∈ D̂k+1(s) and set v = d−mapk(s). By
assumption 1 there exists s′ ∈ S(s) such that

⟨v, s′ − s⟩ ≥ ∥v∥ ∥s′ − s∥ q.

Insert and subtract mapk(s
′) and apply assumption 4 together with Cauchy–Schwarz to obtain

⟨v, s′ − s⟩ = ⟨d−mapk(s) + mapk(s)−mapk(s
′), s′ − s⟩

≥ ∥d−mapk(s)∥ ∥s′ − s∥ q − ∥mapk(s)−mapk(s
′)∥ ∥s′ − s∥

≥
(
q ∥d−mapk(s)∥ − L∥s′ − s∥

)
∥s′ − s∥.

By assumption 2 we have ∥s′ − s∥ < D, hence

⟨d−mapk(s), s
′ − s⟩ ≥

(
q ∥d−mapk(s)∥ − LD

)
∥s′ − s∥.
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If ∥d − mapk(s)∥ > LD/q, then ⟨d − mapk(s), s
′ − s⟩ > 0 for some s′ ∈ S(s). For the

squared Euclidean ground cost this is exactly the sufficient shielding condition stated in Section 5.2
of Schmitzer (2016). Therefore each unshielded d must satisfy

∥d−mapk(s)∥ ≤ R := LD
q , that is, D̂k+1(s) ⊂ BR(mapk(s)).

Assumption 5 gives ∥mapk(s)−map0(s)∥ ≤ R0 for all k, which implies

D̂k+1(s) ⊂ BR0+R(map0(s)) for all k ≥ 0.

Taking the union over all iterations,⋃
k≥0

D̂k+1(s) ⊂ D ∩BR0+R(map0(s)).

By assumption 3 the cardinality is uniformly bounded as∣∣∣⋃
k≥0

D̂k+1(s)
∣∣∣ ≤ ∣∣D ∩BR0+R(map0(s))

∣∣ ≤ ρ voln
(
BR0+R

)
:= C0,

which depends only on the constants in assumptions 1–5, on the dimension of the space, and is
independent of the sizes of S and D.

We now conclude the proof. Since each s has at most C0 unshielded targets, if at iteration k there
is still some d ∈ D̂k+1(s), then at least one new pair (s, d) must be added. As the total number
of such unshielded pairs is bounded by C0, the process of adding new shielding edges can occur
at most C0 times. Thus the sequence (Nk) converges after at most C0 iterations, which proves
scale-independent convergence.

Regarding sparsity, the shielding part contributes at most C0|S| pairs. Step 3 of Algorithm 3 can
add at most K pairs per iteration, and since there are at most C0 iterations, its total contribution is
bounded by KC0. Therefore the final support satisfies

|Nk| ≤ C0|S|+ βC0|S| = (1 + β)C0|S|.

Thus we can take C := (1 + β)C0, which depends only on the constants in assumptions 1–5,
on the space dimension, and on the chosen parameter β. At the fixed point xk is locally optimal
with respect to Nk, and by construction Nk is a shielding neighbourhood. By the local-to-global
certification (Corollary 3.10 of Schmitzer (2016)), xk is globally optimal once the process stabilizes.
This completes the proof.

B.2 PROOF OF PROPOSITION 1

Proof 2 We first compute BB⊤:

BB⊤ =

[
diag(r) P
P⊤ diag(c)

]
,

where P ∈ {0, 1}m×n is the adjacency matrix of a bipartite graph representing the non-zero entries
in B. Next, we compute the rescaled matrix B̃B̃⊤:

B̃B̃⊤ =
1

2
D−1

r (BB⊤)D−1
r =

1

2

[
Im Q
Q⊤ In

]
, Q := D−1/2

r PD−1/2
c ,

where Dr = diag(r) and Dc = diag(c).

For the matrix Q, it is known that the eigenvalues of the block matrix
[

I Q
Q⊤ I

]
are 1 ± σi(Q),

thus:

λmax(B̃B̃⊤) =
1

2
(1 + σmax(Q)), ∥B̃∥2 =

√
1 + σmax(Q)

2
.

We now prove that σmax(Q) = 1.
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Lower bound: Let u = (
√
r1, . . . ,

√
rm)⊤ and v = (

√
c1, . . . ,

√
cn)

⊤. We have:

(Qv)i =
∑

j∈N(i)

√
cj

√
ricj

=
ri√
ri

=
√
ri = ui.

Similarly, Q⊤u = v, so u and v are singular vectors, and the singular value is exactly 1. Thus,
σmax(Q) ≥ 1.

Upper bound: For any x ∈ Rn, by the Cauchy-Schwarz inequality:

∥Qx∥22 =
∑
i

1

ri

 ∑
j∈N(i)

xj√
cj

2

≤
∑
i

1

ri

 ∑
j∈N(i)

1

 ∑
j∈N(i)

x2
j

cj

 =
∑
i

∑
j∈N(i)

x2
j

cj
=

∑
j

x2
j .

Here, N(i) denotes the indices of the non-zero elements in the adjacency matrix P . Thus, ∥Q∥2 ≤ 1.

Therefore, σmax(Q) = 1, and we conclude:

∥B̃∥2 =

√
1 + 1

2
= 1.

C EXTENSION TO NON-GRID DATA

C.1 CONSTRUCTION OF HIERARCHICAL STRUCTURE

For non-grid data (e.g., point clouds), we primarily employ a 2d-tree structure (e.g., Quadtrees in 2D,
Octrees in 3D) to construct the hierarchy via spatial partitioning. The procedure starts by defining
an axis-aligned bounding hypercube containing all data points, which serves as the coarsest level.
Finer levels are generated by subdividing each hypercube into 2d equal-sized sub-cubes, discarding
any sub-cubes that contain no data. This subdivision continues recursively until a pre-determined
depth is reached or the finest level (containing individual points) is achieved. At each level, the
active nodes correspond to these non-empty sub-cubes, and the representative point is defined as the
geometric center of the spatial region.

In higher dimensions, standard 2d-trees become intractable due to the 2d branching factor. To ad-
dress this, sequential axis partitioning (similar to k-d trees) can be adopted to control the inter-level
reduction ratio, ensuring hierarchy construction does not become a computational bottleneck.

C.2 SHIELDING STRATEGY ON NON-GRID DATA

In the shielding-based active support update (Algorithm 3), the definitions of the local neighborhood
R(s) and the unshielded set D̂(s) require adaptation for non-grid domains. In the image setting (2D
grids), R(s) consists of the 8 surrounding pixels. To maintain consistency and ensure extensibility
to high dimensions, we replace this with K-Nearest Neighbors (KNN), setting knn = 4 × d (e.g.,
knn = 12 for 3D point clouds). This choice aligns with the image setting (where 8 = 4 × 2) and
keeps the neighborhood sparse.

Unlike grids where the spatial distribution is uniform, non-grid data exhibit irregular distributions.
Consequently, a single source point may correspond to a large number of unshielded candidates.
For computational and memory efficiency, we enforce an upper bound on the number of candidates
added per iteration, denoted as Umax.

Crucially, this budgeted strategy affects neither the convergence of HALO nor the theoretical result
of Theorem 1. Regarding convergence, hierarchical algorithms rely on the monotonic decrease
of the objective function, which is guaranteed as long as Nk+1 ⊃ supp(xk). Regarding scale-
independence, the complexity bound in Theorem 1 is derived from the total volume of potential
unshielded targets (bounded by the constant C0 in the proof B.1). While the theorem assumes all
unshielded targets are identified, limiting the update size to Umax merely implies that these necessary
neighbors are added over slightly more iterations, preserving the scale-independent complexity.

Finally, we provide a sensitivity analysis in Table 8 and Table 9 to demonstrate the stability of our al-
gorithm with respect to this hyperparameter. We tested Umax ∈ {10, 15, 20, 30, 40} on ModelNet10
(see Appendix E). The results indicate that the performance remains stable across varying scales,
and we use Umax = 20 as a safe default setting, which is used throughout non-grid experiments.
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Table 8: Time (s) ablation on the budget size
Umax for shielding on 3D point clouds.

Umax 214 215 216 217 218

10 16.18 28.32 50.62 92.82 265.8
15 15.70 26.83 48.92 88.15 236.6
20 15.54 26.25 47.42 88.51 229.7
30 15.85 27.58 50.18 91.30 224.7
40 16.04 26.09 51.81 103.7 244.2

Table 9: Memory (GB) ablation on the budget
size Umax for shielding on 3D point clouds.

Umax 214 215 216 217 218

10 0.54 0.62 0.74 1.06 1.72
15 0.54 0.63 0.76 1.10 1.76
20 0.54 0.64 0.77 1.12 1.83
30 0.55 0.65 0.79 1.17 1.92
40 0.56 0.61 0.83 1.21 1.95

C.3 NUMERICAL RESULTS ON 2D NON-GRID DATA

In addition to the 3D experiments presented in Table 7, we provide results on 2D non-grid data
constructed from ModelNet10 (see Appendix E for details). The results are summarized in Table 10.
Similar to the 3D setting, HALO demonstrates consistent superior performance. At n = 218, it
achieves a 3.47× speedup, an 82.4% reduction in memory usage compared to HiRef, and a 32.5%
lower transport cost.

Table 10: Performance on 2D Non-Grid Data (ModelNet10-PCA). gap denotes the relative objec-
tive difference: for n = 214, the reference is the exact solution computed by the standard EMD
solver Flamary et al. (2021); for n ≥ 215 where EMD solver is intractable, the reference is the
solution of HALO.

Metric Method 214 215 216 217 218 219

time
HALO 7.82 12.50 23.44 53.25 121.6 247.0
HiRef 23.40 46.40 94.10 190.4 422.0 OOM
Sinkhorn 28.50 OOM OOM OOM OOM OOM

memory
HALO 0.55 0.62 0.74 1.08 1.92 3.97
HiRef 0.90 1.02 1.65 3.60 10.89 OOM
Sinkhorn 10.60 OOM OOM OOM OOM OOM

gap
HALO +5.68E−5 – – – – –
HiRef +4.37E−1 +3.82E−1 +4.04E−1 +3.00E−1 +3.25E−1 OOM
Sinkhorn +4.02E−2 OOM OOM OOM OOM OOM

D ALGORITHM SETTINGS

For HALO, we employ the cuPDLPx Lu et al. (2025) solver with constant step-sizes 1 unless oth-
erwise specified. All experiments use the Pock–Chambolle rescaling scheme, and the stopping cri-
terion is set uniformly with primal feasibility, dual feasibility, and objective gap thresholds of 10−6.
In updateActive, we choose K = 0.25|S| for the operator TopK
For HOT Zhang et al. (2025), we adopt the open-source implementation with its default parameter
choices. The stopping criterion is fixed to 10−6 to ensure comparability with other baselines.

For ShortCut Schmitzer (2016), we use the variant based on the LEMON solver provided in the
released code, with all default parameters left unchanged.

For M3S Chen et al. (2022), which is an entropic regularization method, we use the official im-
plementation with its predefined entropy-regularization coefficient and all other default parameter
settings.

For Gurobi Gurobi Optimization, LLC (2024), we rely on the Barrier algorithm. Unless otherwise
specified in the main text, the crossover procedure is disabled.

For HiRef Halmos et al. (2025), we adopt the official open-source implementation and strictly
adhere to the default parameter settings provided by the authors.
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For Sinkhorn, we employ the standard implementation provided by the POT library Flamary
et al. (2021). We set the regularization parameter to ε = 10−3 to obtain an approximate solution
with reasonable accuracy.

E DATASET

To comprehensively evaluate the scalability and generalization of HALO, we employed two distinct
datasets covering both grid-based images and unstructured point clouds.

DOTmark (Image Data). To evaluate scalability across different problem sizes on grid data, we
utilized the DOTmark Schrieber et al. (2016) benchmark. In addition to the native resolutions (32 to
512), we constructed additional variants by both downsampling and upsampling. For downsampling,
each native-resolution image was resized to 16 × 16 using bilinear interpolation. The interpolated
values were rescaled linearly to match the original intensity range, rounded to integers, and clipped
to avoid numerical overflow. For upsampling, we generated 1024×1024 images by bilinear interpo-
lation, followed by rounding to integers. To guarantee exact consistency with the original data, each
pixel at the original grid was enforced to coincide with its corresponding position in the enlarged
image, and the resulting values were clipped to the original intensity range before being stored. In
this way, the 16× 16 images provide small-scale test cases, while the 1024× 1024 images serve as
challenging large-scale benchmarks.

ModelNet10 (Non-Grid Data). To validate the performance of HALO on non-grid data, we con-
structed a benchmark using ModelNet10 Wu et al. (2015), a widely used dataset for 3D point cloud
analysis. We selected the top-3 samples from each of the 10 classes, generating a total of 30 pairs
of point clouds for evaluation. The raw point clouds were normalized to the unit hypercube, and we
varied the number of points n from 211 to 219 via random sampling to test scalability. To further
evaluate the algorithm on non-grid 2D data, we generated 2D counterparts of these 3D shapes using
Principal Component Analysis (PCA), creating a non-grid 2D point cloud benchmark distinct from
the regular grids in DOTmark.

CauchyDensity ClassicImages GRFmoderate GRFrough GRFsmooth

LogGRF LogitGRF Microscopy Shapes Whitenoise

Figure 4: Example images from the DOTmark benchmark.

F SENSITIVITY ANALYSIS OF HYPERPARAMETER IN DUAL-VIOLATION
CORRECTION

A key hyperparameter in HALO is β, associated with the dual-violation correction step in Algo-
rithm 3. It controls the size of the candidate set added during the update by selecting the top
K = β|S| pairs with the largest dual violations. To assess the sensitivity of HALO to this pa-
rameter, we evaluated the algorithm on the DOTmark benchmark across a wide range of values:
β ∈ {2−4, 2−3, 2−2, 2−1, 20}. We also included the baseline case β = 0, which actually disables
the dual-violation correction module.

The numerical results are detailed in Table 11. The algorithm exhibits high stability regarding both
memory and runtime: GPU memory usage remains virtually unaffected by the choice of β; runtime
also shows minimal fluctuation, with a maximum variation of approximately 17% at resolution
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Bathtub Bed Chair Desk Dresser

Monitor Night Stand Sofa Table Toilet

Figure 5: Example 3D point clouds from the ModelNet10 benchmark. Each object is sampled with
n = 8192 points.

1024 × 1024. However, setting β = 0 leads to a sharp performance drop, which confirms that the
dual-violation correction is crucial for the efficiency of the solver.

Based on these findings, we recommend β = 2−2 as a safe default setting, which is used throughout
our main experiments.

Table 11: Sensitivity analysis of β on DOTmark. Performance remains stable for β ∈ [2−3, 20].
Setting β = 0 leads to significant slowdowns. Memory usage is consistent across all non-zero β
values.

β r = 64 r = 128 r = 256 r = 512 r = 1024

time

20 0.77 1.18 2.79 9.24 28.86
2−1 0.78 1.12 2.70 8.76 25.19
2−2 0.78 1.11 2.62 8.84 25.42
2−3 0.72 1.11 2.71 8.72 24.67
2−4 1.73 2.42 4.44 11.90 29.64
0 (No dual) 1.90 2.99 5.47 15.23 52.85

memory All ∼ 0.39 ∼ 0.48 ∼ 0.76 ∼ 2.10 ∼ 6.30

G COMPARISON WITH A GPU-BASED SHORTCUT IMPLEMENTATION

A natural question arises regarding whether the ShortCut method could yield even better results
than HALO if implemented on GPUs. To clarify this, we implemented a ShortCut-GPU variant
within the same framework as HALO, utilizing cuPDLPx as the underlying solver. The primary
difference lies in the active-support update strategy: ShortCut employs an aggressive pruning
strategy that retains only the support of the current coupling, whereas HALO uses a conservative
update (Nk+1 ⊃ Nk) augmented with dual-violation correction.

The comparison results on DOTmark are presented in Table 12. While the GPU implementation
brings efficiency gains to ShortCut-GPU compared to CPU baselines, HALO still outperforms
ShortCut-GPU significantly, achieving a 2.5× speedup at resolution 1024× 1024.

This performance gap highlights a critical algorithmic contribution of HALO. GPU-based first-order
solvers typically yield solutions with lower precision compared to CPU-based classical methods.
ShortCut’s aggressive active-support update is highly sensitive to this numerical noise, which
leads to stagnation during the refinement process. In contrast, HALO’s conservative update rule and
the dual-violation correction provide the necessary stability. These designs make the hierarchical
framework robust to the lower precision of GPU solvers, thereby unlocking the full potential of
GPU acceleration.
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Table 12: Runtime comparison between ShortCut-GPU and HALO on DOTmark. Time is in
seconds (s).

Resolution 512 1024

ShortCut-GPU 21.40 68.33
HALO 11.17 27.73

H FLEXIBILITY WITH ALTERNATIVE SOLVERS

While HALO utilizes cuPDLPx Lu et al. (2025) as the default LP solver due to its state-of-the-
art performance, the proposed hierarchical framework is designed to be flexible and compatible
with various first-order GPU solvers. To validate this flexibility, we integrated an alternative solver,
HPR-LP Chen et al. (2024), into HALO by replacing the backend of the solveRestricted
component. The numerical results on DOTmark are reported in Table 13.

Although HPR-LP is generally slower than cuPDLPx in this context, the HALO framework still
effectively leverages it to solve large-scale instances efficiently. Specifically, at resolution 1024 ×
1024, HALO integrated with HPR-LP achieves a 6.1× speedup and a 68.8% reduction in memory
usage compared to the state-of-the-art solver M3S (see Table 1).

This experiment confirms that the efficiency of HALO is not solely dependent on a specific un-
derlying LP solver; rather, the hierarchical active-support framework is a critical component that
significantly contributes to the overall performance. It is worth noting that GPU-based LP solvers
are a burgeoning field compared to mature CPU solvers. We believe that the continuous evolution
of faster GPU-based solvers will further boost HALO’s performance, solidifying our framework as a
highly promising direction for solving large-scale OT.

Table 13: Performance of HALO integrated with the alternative HPR-LP solver Chen et al. (2024)
on DOTmark. Time is in seconds (s) and Memory is in gigabytes (GB).

Resolution 64 128 256 512 1024

time 1.06 1.70 3.31 9.68 40.76
memory 0.72 0.78 1.00 1.90 6.61
gap 6.39E−6 2.36E−5 1.76E−5 – –
infeas 4.09E−7 2.53E−7 1.33E−7 1.03E−7 6.08E−8

I ROBUSTNESS AND GENERALIZATION ACROSS DIVERSE DATASETS

Table 14: Generalization performance of HALO on real-world datasets (FFHQ and WikiArt) com-
pared to the standard DOTmark. Results are averaged over instances. Time is in seconds (s) and
Memory is in gigabytes (GB).

Resolution 256 512 1024

time
FFHQ 3.24 10.79 23.68
WikiArt 2.74 9.13 22.14
DOTmark 4.31 11.17 27.73

memory
FFHQ 0.77 2.19 6.52
WikiArt 0.74 1.97 6.10
DOTmark 0.76 2.07 6.25

To demonstrate generalization beyond DOTmark, we conducted additional evaluations on two high-
resolution datasets: Flickr-Faces-HQ (FFHQ) Karras et al. (2019) and WikiArt Tan et al. (2019).
Specifically, we selected the first 10 images from FFHQ and the first image from each of the top-10
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classes in WikiArt. For each dataset, we generated 45 instances by pairing these images, strictly
following the DOTmark preprocessing pipeline.

The numerical results are summarized in Table 14. HALO consistently achieves low memory usage
and fast solving speeds on these diverse tasks, exhibiting performance metrics highly consistent with
those on DOTmark. This confirms the broad applicability and robustness of HALO across diverse
real-world datasets.
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