
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A MEMORY-EFFICIENT HIERARCHICAL ALGORITHM
FOR LARGE-SCALE OPTIMAL TRANSPORT PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper we propose a memory-efficient hierarchical algorithm for solving
large-scale optimal transport (OT) problems with squared Euclidean cost. The
core of our proposed approach is the combination of multiscale hierarchical rep-
resentation of the OT problem and a GPU-implemented Primal-Dual Hybrid Gra-
dient (PDHG) method. Moreover, an active pruning technique is applied to further
reduce computational complexity. Theoretically, we establish a scale-independent
iteration-complexity upper bound for the refinement phase, which is consistent
with our numerical observations. Numerically, experiments on image dataset
DOTmark and point cloud dataset ModelNet10 demonstrate that the proposed al-
gorithm effectively addresses the memory and scalability bottlenecks. Compared
to state-of-the-art baselines, our method demonstrates significant advantages: for
images with n = 10242 pixels, it achieves an 8.9× speedup and 70.5% reduc-
tion in memory usage under comparable accuracy; for 3D point clouds at scale
n = 218, it achieves a 1.84× speedup and an 83.2% reduction in memory usage
with 24.9% lower transport cost.

1 INTRODUCTION

The Wasserstein distance, defined via the Kantorovich formulation of Optimal Transport (OT) prob-
lems, is a powerful metric to measure the similarity between two probability distributions. It has
been widely adopted in various fields such as generative modeling Arjovsky et al. (2017); Kornilov
et al. (2024); Tong et al. (2023); Hui et al. (2025), color transfer Solomon et al. (2015); Pitié &
Kokaram (2007), texture synthesis and mixing Dominitz & Tannenbaum (2009); Rabin et al. (2011),
registration and deformation Haker et al. (2004); Rehman et al. (2007), image restoration He et al.
(2021), domain adaptation Montesuma & Mboula (2021); He et al. (2024), transportation-based
morphology metrics Basu et al. (2014), and hypothesis testing Del Barrio et al. (1999).

Given probability measures µ, ν on domains S and D with ground cost c : S × D → R, the Kan-
torovich problem is defined by

inf
π∈Π(µ,ν)

∫
S×D

c(s, d) dπ(s, d), (1)

where Π(µ, ν) denotes the set of couplings on S×D with marginals µ and ν on S and D, respectively.

In the discrete case, the supports are S = {s1, . . . , sm} and D = {d1, . . . , dn}, with corresponding
probability vectors u ∈ Rm and v ∈ Rn defined by ui = µ(si) and vj = ν(dj). A coupling is
represented by a nonnegative matrix X ∈ Rm×n

+ whose row and column sums equal u and v. The
ground cost is encoded in the cost matrix C = (c(si, dj)) ∈ Rm×n. Consequently, this setup leads
to the following discrete OT problem in standard Linear Programming (LP) form:

min
x≥0

c⊤x, s.t. Ax = q, (2)

where x = vec(X), c = vec(C), q⊤ = (u⊤,v⊤), and A =

[
1⊤
n ⊗ Im

In ⊗ 1⊤
m

]
∈ R(m+n)×mn.

This LP problem has mn variables and m + n constraints. Considering OT problems between
two images of size n = r × r, the variable count in X scales as n2, reaching approximately 1012

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

when r = 1024. Such an enormous scale results in prohibitive computational cost and memory
consumption. Moreover, traditional solvers such as the network simplex Gabow & Tarjan (1991)
and interior-point Pele & Werman (2009) methods further fail to exploit the modern GPU architec-
tures, leading to a growing gap between classical OT algorithms and the scalability demanded in
contemporary applications.

Related work Existing algorithms for large-scale OT fall into three broad categories: The first
category consists of approximation methods, which trade accuracy for efficiency. Representative
examples include entropy-regularized algorithms such as Sinkhorn Cuturi (2013); Dvurechensky
et al. (2018); Schmitzer (2019); Lin et al. (2019), low-rank algorithms Scetbon et al. (2021); Halmos
et al. (2025) as well as approaches based on approximate metrics such as the approximated earth
mover’s distance Shirdhonkar & Jacobs (2008), the sliced Wasserstein distance Kolouri et al. (2019);
Nadjahi et al. (2021), and the linear OT framework Wang et al. (2013). These methods achieve good
scalability but at the cost of reduced accuracy.

The second category comprises LP-based algorithms, which aim to accelerate OT by improving LP
solvers tailored to this structured problem. Representative methods include randomized block co-
ordinate descent methods Xie et al. (2024), semi-smooth Newton-type approaches Li et al. (2020),
as well as first-order algorithms such as Douglas–Rachford splitting Mai et al. (2021), dual extrap-
olation Jambulapati et al. (2019), Halpern–Peaceman–Rachford methods Zhang et al. (2022); Chen
et al. (2024), Halpern iteration Zhang et al. (2025), and in particular the primal–dual hybrid gradi-
ent (PDHG) method Esser et al. (2010); Chambolle & Pock (2011). Specifically, PDHG solves the
min-max OT problem with dual potentials f and g formulated as:

min
x∈Rmn

+

max
f∈Rm,g∈Rn

u⊤f + v⊤g − c⊤x. (3)

The PDHG iteration primarily consists of matrix-vector multiplications:
xk+1 ← projx≥0

(
xk − τ

(
c−A⊤

[
fk

gk

]))
,[

fk+1

gk+1

]
←

[
fk

gk

]
+ σ

(
q −A(2xk+1 − xk)

)
,

(4)

where step-sizes τ and σ satisfy the condition τσ∥A∥2 < 1. PDHG has been especially influential
due to its factorization-free and parallel-friendly nature, and its large-scale applicability has been
demonstrated in recent solvers Applegate et al. (2021); Lu et al. (2023; 2025). Nevertheless, despite
these advances, LP-based solvers continue to suffer from severe memory bottlenecks in ultra-large-
scale settings Lu & Yang (2024).

The third category consists of multiscale algorithms that exploit the pyramid structure of OT Mérigot
(2011); Gerber & Maggioni (2017); Leclaire & Rabin (2019); Schmitzer (2019); Chen et al. (2022).
Representative multiscale-based exact solvers include ShortCut Schmitzer (2016) and multiscale
semi-smooth Newton (MSSN) method Liu et al. (2022). Although these methods effectively re-
duce computational cost in practice, the lack of iteration-complexity bounds leaves their worst-case
efficiency unresolved.

Main contributions We propose a memory-efficient and parallel-friendly Hierarchical Algorithm
for Large-scale Optimal Transport (HALO) problems with squared Euclidean cost, improving both
scalability and efficiency upon existing methods. Leveraging the multiscale structure of OT, we build
a hierarchy of problems across resolutions: the solution of coarser level warm-starts finer levels, and
at each level we alternate between updating the active support and solving the restricted OT on that
support with a PDHG-based LP solver, thereby progressively refining the coupling. Our numerical
results on problems with hierarchical structure, e.g. 2D images and 3D point clouds, demonstrate
that our framework is efficient for computational acceleration and memory reduction. Furthermore,
we provide a highly efficient GPU implementation to facilitate reproduction and future extensions.

The significance of HALO lies in the following aspects: i). HALO requires only O(n) memory,
which, to the best of our knowledge, matches the lowest space complexity among existing GPU-
based solvers; ii). HALO employs a factorization-free, PDHG-based LP solver whose computation is
dominated by matrix-vector products, making it highly parallel-friendly on GPUs; iii). HALO enjoys
a scale-independent iteration-complexity bound per level, which is further validated empirically in
our experiments; iv). HALO delivers strong empirical performance compared to state-of-the-art

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

baselines: on 2D images dataset DOTmark with scale n = 10242, it achieves an 8.9× speedup and
a 70.5% reduction in GPU memory usage; on 3D point clouds dataset ModelNet10 with n = 218, it
demonstrates superior optimality with a 24.9% lower transport cost, alongside a 1.84× speedup and
83.2% memory reduction.

Organization The rest of the paper is organized as follows: In Section 2, we introduce the pro-
posed algorithm, where Section 2.3 provides the scale-independent iteration-complexity bound. In
Section 3 we present the experimental results, and Section 4 concludes the paper.

Notation S,D denote the source and target spaces in OT problem. In discrete setting, given N =
{(sik , djk) | 1 ≤ k ≤ K} ⊂ S×D, AN denotes the sub-matrix of the constraint matrix A restricted
to the columns indexed by N, i.e., the columns corresponding to (jk − 1) ·m+ ik for 1 ≤ k ≤ K,
and xN as the corresponding sub-vector of the vector x ∈ Rnm. Let TopK(C) denote the operator
that selects K pairs from the set C ⊂ S× D, where these pairs have the top K associated values.

2 HALO: A HIERARCHICAL ALGORITHM FOR LARGE-SCALE OT

Optimal transport (OT) problems, especially at large scale, pose significant challenges in both com-
putation and memory. Traditional solvers such as network simplex Gabow & Tarjan (1991) and
interior-point methods Pele & Werman (2009) struggle to scale efficiently due to their inability to
leverage modern GPU architectures.

2.1 OUTLINE OF THE PROPOSED FRAMEWORK

Motivated by the limitation of the existing work, for large-scale OT problems with squared Euclidean
cost, we develop a memory-efficient and parallel-friendly hierarchical algorithm which is named as
HALO. The key of our method lies in two aspects: i) an inherent multiscale structure that allows to
construct a coarse-to-fine hierarchical representation; ii) sparsity of the transport plan which allows
to incorporate active-support detection technique to the solver. These two aspects jointly contribute
to the significant reduction of the computational complexity and memory demand.

Output

Scale 0

Scale L-1

Scale L

PDHG Solver

x O(1)

solveRestricted

updateActive

prolongation

()0
u

()0
v

()−L 1
v

()−L 1
u

()L
v()L

u

…

update solve solveupdate/solve…

x O(1)

෥𝒙

update solve solveupdate/solve…

coarse-to-fine prolongation…

𝒙

𝒙 𝒙 ෩𝐍

෩𝐍 ෥𝒙

෥𝒙

𝐍

𝐍 𝒙

Figure 1: Architecture of HALO.

Figure 1 provides a high-level overview of our HALO method:

• Vertically (Hierarchical Structure): We construct an (L + 1)-level hierarchy of OT prob-
lems, ranging from the coarsest L-th level to the finest 0-th level. For each level ℓ ∈
{0, 1, ..., L}, let (u(ℓ),v(ℓ), c(ℓ)) denote the marginals and costs, and (f (ℓ), g(ℓ)) denote

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the dual potentials. Consequently, the OT problem at the ℓ-th level reads:

min
x(ℓ)∈Rmℓnℓ

+

max
f(ℓ)∈Rmℓ ,g(ℓ)∈Rnℓ

⟨u(ℓ), f (ℓ)⟩+ ⟨v(ℓ), g(ℓ)⟩ − ⟨c(ℓ), x(ℓ)⟩, (5)

where mℓ, nℓ denote the marginal scales. We employ a coarse-to-fine strategy: For ℓ = L,
solve problem (5) and denote the solution as (x(L),f (L), g(L)); for ℓ ∈ {0, · · · , L − 1},
the solution (x(ℓ+1),f (ℓ+1), g(ℓ+1)) from the coarser (ℓ + 1)-th level is prolongated to
initialize (x(ℓ),f (ℓ), g(ℓ)) for the finer ℓ-th level; see Section 2.2 for details.

• Horizontally (Refinement Loop): At each specific level ℓ ∈ {0, · · · , L− 1}, we refine the
initialized solution to solve the OT problem (5). To fully exploit the sparsity of the trans-
port plan, we alternate between updating the active support and solving the corresponding
LP problem using GPU-based solvers (instantiated by PDHG-based algorithm Lu et al.
(2025)); see Section 2.3 and Algorithm 2 for details.

Summarizing the above discussions leads to the proposed HALO method.

Algorithm 1 HALO: Hierarchical Algorithm for Large-scale Optimal Transport

1: Input: marginal distributions u and v, ground cost c, number of levels L.
2: Output: optimal coupling x(0).
3: Build hierarchical OT problems {(u(ℓ),v(ℓ), c(ℓ))}Lℓ=0.
4: Solve OT with (u(L), v(L), c(L)) on the coarsest level L to obtain (x(L),f (L), g(L)).
5: for ℓ = L− 1, . . . , 0 do
6: Initialize (x(ℓ),f (ℓ), g(ℓ)) by prolongating (x(ℓ+1),f (ℓ+1), g(ℓ+1)).
7: repeat
8: 1). Updating active support, detailed in Algorithm 3
9: N(ℓ) ← updateActive(x(ℓ),f (ℓ), g(ℓ),N(ℓ))

10: 2). Solving restricted OT, detailed in Section 2.3
11: (x(ℓ),f (ℓ), g(ℓ))← solveRestricted(x(ℓ),f (ℓ), g(ℓ);N(ℓ),u(ℓ),v(ℓ), c(ℓ))

12: until x(ℓ) meets the termination criteria.
13: end for
14: return x(0).

For the rest of this section, we discuss the details of the key steps in Algorithm 1, including the
construction of the hierarchy, the active-support updating strategy and its convergence property.

2.2 HIERARCHY: COARSE-TO-FINE MULTISCALE STRUCTURE

A high-quality initialization greatly accelerates the inner loop in Algorithm 1. To leverage the geo-
metric structure of OT, we adopt a coarse-to-fine multiscale scheme.

Consider a discrete OT problem with supports S = {s1, · · · , sm},D = {d1, · · · , dn} and marginals
µ =

∑m
i=1 uiδsi , ν =

∑n
j=1 vjδdj

. In our hierarchy, the supports at the ℓ-th level are formed by
representative points of corresponding neighbor groups from the (ℓ − 1)-th level. Accordingly, the
marginals u(ℓ) and v(ℓ) are obtained by aggregating the masses of these constituent groups, and the
cost c(ℓ) is defined by the distance between representative points.

As illustrated in Figure 2, in the image setting where S and D correspond to pixels on a regular
grid, the hierarchy is built by recursively merging 2 × 2 pixels, using the barycenter of each block
as its representative. In non-grid settings (e.g., point clouds), we instead employ spatial partitioning
structures, such as 2d-trees or kd-trees Finkel & Bentley (1974); Bentley (1975), to construct the
hierarchy, as detailed in Appendix C.1.

2.3 SPARSITY: SOLVE RESTRICTED OT ON ACTIVE SUPPORT

Classical LP theory Bertsimas & Tsitsiklis (1997) states that the optimal solution x∗ ∈ Rmn of
problem (2) has at most m+ n nonzero entries, which is sparse when m,n are large. If the support
supp(x∗) were known a priori, we could simply solve the problem restricted to this set. Therefore,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝑠𝑠𝑖

map(𝑠𝑖) map(𝑠)
𝑑

sourc
e

destination

Scale 2

Scale 1

Scale 0

Figure 2: Left & Middle: Hierarchy construction of images and point clouds. Right: Shielding
in updateActive; green region indicates possible unshielded d, and arrows denote pairs (s, d)
added by the shielding-based component.

letting active support N ⊂ S×D be an estimation of supp(x∗), we define the restricted OT problem
over N as follows:

Definition 1 (Restricted OT on active support N)

min
x

c⊤NxN s.t. ANxN = q, xN ≥ 0 xN∁ = 0, (6)

where AN is the sub-matrix of A restricted to columns indexed by N, cN is the corresponding sub-
vectors of c, xN and xN∁ are the corresponding sub-vector on N and N∁.

Remark 1 Since the OT problems at each level share the same formulation and differ only in scale,
we simply use the form (2) for illustration.

If the active support N exactly corresponds to the support supp(x∗), solving the restricted prob-
lem provides the global optimizer of the original OT problem. However, finding supp(x∗) is as
challenging as solving the problem. To address this difficulty, we consider Algorithm 2, a refine-
ment procedure that alternates between updating the active support based on the current solution and
solving the restricted OT on the newly updated set.

Algorithm 2 A refinement at each level

INPUT: initial coupling x0 and dual potentials (f0, g0); u, v and c.
OUTPUT: global optimizer x

k ← 0, N0 ← ∅
repeat
Nk+1 ← updateActive(xk,fk, gk,Nk)
(xk+1,fk+1, gk+1)← solveRestricted(xk,fk, gk,Nk+1;u,v, c)
k ← k + 1

until xk meets the termination criteria
return (xk,Nk)

The efficiency of Algorithm 2 hinges on the design of updateActive. In previous work,
ShortCut Schmitzer (2016) constructs a new active support by augmenting the support of the
previous coupling with a shielding-based component. This component relies on the shielding con-
dition, defined as follows:

Definition 2 (Shielding condition) Given S, D and cost c : S×D→ R. Let s, s′ ∈ S, d, d′ ∈ D. We
say (s′, d′) shields s from d if

c(s, d) + c(s′, d′) > c(s, d′) + c(s′, d).

To obtain a provable O(1) per-level iteration bound and improve robustness in practice, we intro-
duce two modifications: i). expanding the active support to include the entire previous ones, rather
than only the previous coupling’s support; ii). performing dual-violation correction, adding pairs
suggested by significant violations in the dual potentials. The complete update procedure is summa-
rized in Algorithm. 3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Although the first improvement makes the estimated active support larger, it provides a scale-
independent iteration-complexity bound, as detailed in Theorem 1, ensuring that the growth of the
active support does not affect its sparsity. Additionally, in the implementation, we use the PDHG-
based solver, which is less sensitive to the problem scale compared to traditional LP solvers. As
a result, our algorithm achieves excellent practical performance while benefiting from a theoretical
iteration-complexity guarantee.

The second improvement involves a dual-violation correction mechanism that accelerates conver-
gence by adding pairs suggested by significant violations in the dual potentials. This approach
ensures that the active support includes supp(x∗) as much as possible, while maintaining sparsity.
As a result, the algorithm refines the solution more efficiently, particularly in some challenging in-
stances. Unlike MSSN Liu et al. (2022) which relies on a threshold parameter, we employ a TopK
operator to select pairs with the largest dual violations, ensuring the active support remains sparse
throughout.

Algorithm 3 updateActive
INPUT: current coupling x = vec(X), dual potentials (f , g), cost c ∈ Rnm with c : S×D→ R,
active support N, dual-violation hyperparameter β
OUTPUT: updated active support N′

1). start from current active support
N′ ← N
2). shielding-based
construct map : S→ D, map(si) = argmaxdj∈D Xij for all si ∈ S
Define R(s) ⊂ S as the local neighborhood of s (8-neighbors for images and KNN for point
clouds, see Appendix C.2).
for s ∈ S do
D(s)← {map(s′) : s′ ∈ R(s) }
D̂(s)← { d ∈ D : d is not shielded from s by (s′,map(s′)), ∀s′ ∈ R(s) }
if D̂(s) = ∅ then

D̂(s)← argmind∈D\D(s) c(map(s), d)
end if
D(s)← D(s) ∪ D̂(s)
N′ ← N′ ∪ {(s, d) : d ∈ D(s)}

end for
3). dual–violation correction
Pricing problem, C← {(si, dj) ∈ S× D : fi + gj > cij}
K ← β |S|, CK ← TopK(C)
N′ ← N′ ∪ CK

return N′

Theorem 1 (Scale-independent iteration-complexity bound) Let (S,D, µ, ν) be a discrete OT in-
stance with squared Euclidean ground cost. Consider Algorithm 2 with the update rule from Algo-
rithm 3, which produces solutions {(xk,fk, gk)}k≥0 and active supports {Nk}k≥0 via the mono-
tone update

Nk+1 ← updateActive(xk,Nk).

Assume there exist constants q ∈ (0, 1], D <∞, ρ <∞, L <∞, R0 <∞ such that:

1. (Directional coverage) For ∀s ∈ S and ∀v ∈ Rn, ∃s′ ∈ S(s) ⊂ S with ⟨v, s′ − s⟩ ≥
∥v∥ ∥s′ − s∥ q.

2. (Bounded radius of S(s)) ∥s′ − s∥ < D for all s and all s′ ∈ S(s).

3. (Bounded density of D) |D ∩BR(z)| ≤ ρ voln(BR) for all z ∈ Rn and R > 0.

4. (Uniform Lipschitz regularity) ∥mapk(s)−mapk(s
′)∥ ≤ L∥s− s′∥, ∀s, s′ ∈ S, k ≥ 0.

5. (Coupling stability) ∥mapk(s)−map0(s)∥ ≤ R0 for all k and all s ∈ S.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Then there exists a constant C > 0 such that xk is a global optimizer for all k ≥ C, and |Nk| ≤
C |S| for all k ≥ 0.

Remark 2 Assumptions 1–3 hold in our setting; by contrast, Assumptions 4–5 are stronger yet
natural under the multiscale warm-start. Since each level refines a warm start prolongation from
the previous coarser level, the per-level updates are mild, making a uniform Lipschitz condition
and a bounded-drift stability assumption intuitively justified. The proof of Theorem 1 is deferred to
Appendix B.1.

At the end of this subsection, we note that in Algorithm 2 the restricted OT on the active support
N is solved by solveRestricted, which dominates computational cost and memory usage,
making the LP solver choice critical. To achieve both memory efficiency and parallelism, we adopt
a factorization-free PDHG solver, and we highlight the following property of the restricted OT under
Pock–Chambolle rescaling Pock & Chambolle (2011):

Proposition 1 Let B be the constraint matrix of restricted OT problem, and define the rescaled
matrix B̃ by the Pock–Chambolle rescaling:

Dr = diag
(√

r1, . . . ,
√
rm,
√
c1, . . . ,

√
cn
)
, Dc =

√
2 I, B̃ = D−1

r BD−1
c ,

with ri, cj the row/column degrees of B. Then ∥B̃∥2 = 1.

This result justifies the use of a constant stepsize in PDHG-based algorithm, eliminating the need
for norm estimation and reducing overhead in HALO. The proof is provided in Appendix B.2.

3 EXPERIMENTS

To evaluate the scalability and efficiency of HALO1, we conduct experiments on two representative
datasets: the image dataset DOTmark Schrieber et al. (2016) and the point cloud dataset Model-
Net10 Wu et al. (2015). For image experiments, we compare HALO against three state-of-the-art
solvers: HOT Zhang et al. (2025), ShortCut Schmitzer (2016), and M3S Chen et al. (2022). For
non-grid experiments, we compare against the state-of-the-art solver HiRef Halmos et al. (2025)
and the standard Sinkhorn Cuturi (2013); Flamary et al. (2021). Detailed dataset settings are
provided in the Appendix E.

All experiments run on dual Intel Xeon Gold 6330 CPUs (2.0GHz), 503GB RAM, and an NVIDIA
RTX 4090D (24GB). Host memory is limited to 100GB and GPU memory to 24GB (violations
reported as OOM). Each instance has a 3600s wall-clock limit (violations reported as TO).

For HALO, we use cuPDLPx Lu et al. (2025), while additional results demonstrating the flexibility
of the LP solver choices are provided in Appendix H. For the other baselines, we use their open-
source implementations with default parameter settings, with more details provided in Appendix D.

Since different methods may use different internal stopping rules, we report solution quality using
unified metrics:

gap =
|⟨c,x⟩ − ⟨c,xb⟩|
|⟨c,xb⟩|+ 1

and feas = max

{
∥min(x, 0)∥
1 + ∥x∥

,
∥Ax− q∥
1 + ∥q∥

}
,

where xb is a high-accuracy reference obtained by solving the reduced OT model with Gurobi
(Barrier with crossover) at a tolerance of 10−8, following Zhang et al. (2025).

3.1 THE IMAGE DATASET DOTMARK

Table 1 summarizes four metrics: runtime (s), peak memory (GB), relative objective gap, and fea-
sibility error. While providing comparable solutions in terms of gap and feas, HALO is memory-
efficient and delivers short wall-clock time, clearly outperforming strong baselines, especially at
large scales. Against HOT, HALO leads on runtime, memory, and gap. Specifically, at r = 512 it is
7.02× faster with 89.2% less memory, achieving 2–3 orders of magnitude tighter gaps across scales.
Despite ShortCut’s CPU memory efficiency, HALO is much faster at a comparable gap, yielding

1The source codes of the proposed method will be released upon acceptance of the paper.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

a 37.36× speedup at r = 512. Finally, while the entropy-regularized M3S also solves the r = 1024
instances, HALO shows simultaneous advantages in runtime, memory, and accuracy. At r = 1024 it
is 8.92× faster, uses 70.5% less memory, and attains 1–2 orders tighter gaps.

Table 1: The numerical results on DOTmark. “GPU/CPU memory” denotes GPU VRAM for GPU-
based methods and CPU RAM for CPU methods (shown in gray). Time is reported in seconds (s)
and memory is in gigabytes (GB). gap at r = 512, 1024 are unavailable because solving the reduced
model with Gurobi runs out of memory.

Metric Resolution 64 128 256 512 1024

time

HALO 1.50 2.20 4.31 11.17 27.73
HOT 1.56 2.12 14.32 78.43 OOM
ShortCut 0.25 2.41 25.74 438.14 TO
M3S 1.95 3.44 8.51 39.32 247.22

GPU/CPU
memory

HALO 0.38 0.48 0.76 2.07 6.25
HOT 0.84 1.09 3.10 19.25 OOM
ShortCut 0.01 0.04 0.14 0.56 TO
M3S 0.71 0.95 1.92 5.78 21.21

gap

HALO 1.23E−6 1.51E−5 1.41E−5 – –
HOT 6.77E−4 6.03E−3 3.32E−2 – –
ShortCut 1.56E−6 4.04E−6 2.27E−5 – –
M3S 1.89E−4 1.90E−4 3.31E−4 – –

feas

HALO 3.66E−8 2.45E−7 1.28E−7 1.06E−7 6.98E−8
HOT 5.51E−7 7.91E−7 7.61E−7 3.42E−7 OOM
ShortCut 1.65E−18 1.65E−18 9.55E−19 3.67E−19 TO
M3S 2.40E−6 1.20E−6 6.13E−7 3.03E−7 1.44E−7

Figure 3 reports runtime and memory scalability on log–log axes. HALO shows an approximately
straight runtime curve with slope ≈ 1, indicating near-linear growth and outperforming other base-
lines. Its memory curve has a terminal slope ≈ 2, matching M3S, yet HALO maintains the lowest
memory usage among GPU-based methods across resolutions.

24 25 26 27 28 29 210

Resolution r

10 1

100

101

102

103

Ti
m

e
(s

)

Time vs. Resolution
HALO (=0.95)
HOT
M3S
ShortCut

(a) Runtime scaling.

24 25 26 27 28 29 210

Resolution r

10 2

10 1

100

101

M
em

or
y

(G
B)

Memory vs. Resolution
HALO
HOT
M3S
ShortCut

(b) Memory scaling.

Figure 3: Scalability on DOTmark across all evaluated methods. Left: Runtime scaling; Right:
Memory scaling. In the left legend, α is the fitted slope for HALO. ShortCut uses CPU memory,
shown in gray in the right panel.

To validate Theorem 1, Table 2 lists the average per-scale iterations of Algorithm 2 across resolutions
on DOTmark. The averages never exceed 2 and even tend to decrease at finer scales, corroborating
the O(1) bound and illustrating the practical efficiency of updateActive.

To understand the impact of data geometry on solver efficiency, we analyzed the runtime of HALO
across different image classes in DOTmark (see Figure 4 for examples). As shown in Table 3, the
runtime is highly correlated with pixel intensity sparsity, defined as the percentage of pixels with
strictly zero mass. Classes with low pixel intensity sparsity, such as ClassicImages, converge fast,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Number of inner iterations per scale.

Scale 16 32 64 128 256 512 1024

scale0 1.00 1.91 1.82 1.22 1.12 1.05 1.00
scale1 1.00 1.80 1.65 1.15 1.09 1.05
scale2 1.00 1.75 1.63 1.17 1.09
scale3 1.00 1.78 1.66 1.17
scale4 1.00 1.77 1.66
scale5 1.00 1.78
scale6 1.00

while those with high pixel intensity sparsity, such as Shapes and Microscopy, require significantly
more time. This phenomenon can be theoretically explained by Theorem 1: high pixel intensity
sparsity often corresponds to non-convex supports with singularities Luo et al. (2022), which implies
a relatively larger Lipschitz constant L in Assumption 4, resulting in a larger constant in the iteration
bound and thus longer runtime.

Table 3: Performance breakdown by image class in DOTmark at resolution 1024 × 1024. Metric
sparsity denotes the pixel intensity sparsity, defined as the percentage of pixels with strictly zero
mass. Time is reported in seconds (s)

Metric WhiteNoise GRF / Log (Avg) ClassicImages Cauchy Shapes Micro.

sparsity 0.00% 0.00% 0.01% 0.00% 45.3% 42.0%
time 18.29 21.76 23.78 25.82 44.39 56.22

Table 4 presents an ablation that isolates the effects of the multiscale framework and cuPDLPx.
When cuPDLPx is disabled, we use Gurobi’s barrier with crossover, as updateActive relies
on the sparsity of solutions. Disabling cuPDLPx in HALO results in a 36.9× increase in runtime
at r = 256. Removing the multiscale framework from HALO also causes an 85.6× slowdown at
r = 64 and leads to OOM at higher resolutions. Taken together, the multiscale framework and
cuPDLPx are both indispensable, yielding short wall-clock time and low memory across all tested
resolutions.

Table 4: Ablation on HALO. An ‘✗’ in the PDHG-based column indicates that cuPDLPx is replaced
by Gurobi’s barrier method with crossover.

Multiscale PDHG-based Resolution 32 64 128 256

✓ ✓
time 0.88 1.50 2.19 4.31
GPU memory 0.38 0.39 0.48 0.76

✓ ✗
time 0.91 2.56 27.68 159.06
CPU memory 0.07 0.07 0.29 1.18

✗ ✓
time 2.87 128.4 OOM OOM
GPU memory 0.54 3.00 OOM OOM

✗ ✗
time 6.88 126.94 OOM OOM
CPU memory 0.78 12.69 OOM OOM

Table 5 further presents an ablation of the dual-violation augmentation in updateActive. We
report the maximum and mean runtime over all DOTmark instances. The augmentation markedly
improves robustness on difficult cases; at r = 1024, for instance, the maximum runtime falls to
24.3% of that without this component.

Table 6 reports the speedup of HALO with a constant stepsize over the power-iteration choice in
cuPDLPx. We show results for resolutions from 256 to 1024; at r = 1024, the constant step-
size yields a 1.97× speedup, indicating that eliminating per-iteration norm estimation substantially
reduces computational cost.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Ablation on updateActive: dual-violation
augmentation (✓) improves robustness

dual-violation Resolution 256 512 1024

✓
Max time 11.99 54.36 154.20
Avg time 4.31 11.17 27.73

✗
Max time 29.07 151.98 633.34
Avg time 5.47 15.23 52.85

Table 6: Speedup of constant step-size
over power iteration.

Resolution 256 512 1024

Speedup 1.80× 1.65× 1.97×

3.2 THE POINT CLOUDS DATASET MODELNET10

To validate the generalization, we evaluate HALO on the 3D point cloud dataset ModelNet10 (see
App. C.3 for 2D results). As shown in Table 7, HALO demonstrates superior scalability and effi-
ciency on non-grid domains. While Sinkhorn runs out of memory at n = 216 and HiRef fails
at n = 219, HALO successfully scales to n = 219 consuming only 2.99 GB memory. Specifically
at n = 218, HALO achieves a 1.84× speedup and an 83.2% reduction in memory usage compared
to HiRef. Crucially, HALO attains a significantly lower transport cost, improving upon HiRef by
approximately 24.9%, demonstrating the superior precision of HALO.

Table 7: Performance on Non-Grid 3D Data (ModelNet10). gap denotes the relative objective differ-
ence: for n = 214, the reference is the exact solution computed by the standard EMD solver Flamary
et al. (2021); for n ≥ 215 where EMD solver is intractable, the reference is the solution of HALO.

Metric Method 214 215 216 217 218 219

time
HALO 15.54 26.25 47.42 88.51 229.7 444.3
HiRef 23.60 46.40 94.40 189.9 422.7 OOM
Sinkhorn 29.50 OOM OOM OOM OOM OOM

memory
HALO 0.54 0.64 0.77 1.12 1.83 2.99
HiRef 0.91 1.03 1.67 3.60 10.92 OOM
Sinkhorn 10.60 OOM OOM OOM OOM OOM

gap
HALO +5.33E−5 – – – – –
HiRef +4.19E−1 +3.51E−1 +3.13E−1 +2.77E−1 +2.49E−1 OOM
Sinkhorn +3.20E−2 OOM OOM OOM OOM OOM

4 DISCUSSION

In this paper, we presented HALO, a scalable and memory-efficient solver for optimal transport
problems with squared Euclidean cost. Our work offers a key insight into large-scale OT: by syn-
ergizing a hierarchy framework with GPU-based LP solvers, it is feasible to simultaneously
achieve memory efficiency, computational speed, and high precision, without resorting to reg-
ularization or approximation methods. Specifically, HALO integrates a hierarchical framework
with a rigorous active-support update rule and a PDHG-based LP solver. Furthermore, the dual-
violation correction enhances robustness, a proven scale-independent iteration bound explains the
fast convergence, and the Pock–Chambolle rescaling justifies the rationality of constant stepsize.

Regarding the extension to high dimensions, although HALO faces challenges scaling to high-
dimensions due to the growing shielding-based component, a feasible direction is to prioritize and
further optimize the dimension-independent dual-violation correction. Our preliminary results sug-
gest that the algorithm holds great potential for scaling to high dimensions in the order of thousands.

Finally, for general transport costs (e.g., L1 or Wasserstein-p), a current limitation is the reduced
sparsity of solutions returned by first-order solvers compared to the squared Euclidean case, which
diminishes the efficiency of the refinement phase. To address this, potential solutions include inte-
grating future GPU-based crossover algorithms to recover sparsity or designing more flexible active-
support strategies.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We confirm adherence to the ICLR Code of Ethics. This paper develops a hierarchical algorithm
for large-scale optimal transport and does not involve human subjects, clinical data, or personally
identifiable information. All datasets used are publicly available under their respective licenses; we
applied only standard preprocessing and did not attempt re-identification or attribute inference. The
method is general-purpose, so any fairness concerns stem from downstream data and deployment
contexts; practitioners should audit subgroup performance in their applications. To reduce misuse
risks, we restrict experiments to benign public datasets and will document intended use and limita-
tions. Experiments were run on local institutional hardware without external data services; compute
configuration and runtimes are reported in the appendix to encourage reuse and minimize redundant
computation. To the best of our knowledge, this work complies with applicable laws and institu-
tional policies; no IRB approval was required. The authors declare no conflicts of interest and no
third-party sponsorship that could unduly influence the results.

REPRODUCIBILITY STATEMENT

Complete proofs are provided in the appendix: Theorem 1 is proved in Appendix B.1, and Proposi-
tion 1 is proved in Appendix B.2. Implementation details for all baselines are given in Appendix D.
Dataset-related details are provided in Appendix E.

REFERENCES

David Applegate, Mateo Dı́az, Oliver Hinder, Haihao Lu, Miles Lubin, Brendan O’Donoghue, and
Warren Schudy. Practical large-scale linear programming using primal-dual hybrid gradient.
Advances in Neural Information Processing Systems, 34:20243–20257, 2021.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Saurav Basu, Soheil Kolouri, and Gustavo K Rohde. Detecting and visualizing cell phenotype
differences from microscopy images using transport-based morphometry. Proceedings of the
National Academy of Sciences, 111(9):3448–3453, 2014.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena
scientific Belmont, MA, 1997.

Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.

Kaihuang Chen, Defeng Sun, Yancheng Yuan, Guojun Zhang, and Xinyuan Zhao. Hpr-lp: An im-
plementation of an hpr method for solving linear programming. arXiv preprint arXiv:2408.12179,
2024.

Yidong Chen, Chen Li, and Zhonghua Lu. Computing wasserstein-p distance between images
with linear cost. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 519–528, 2022.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Eustasio Del Barrio, Juan A Cuesta-Albertos, Carlos Matrán, and Jesús M Rodrı́guez-Rodrı́guez.
Tests of goodness of fit based on the l 2-wasserstein distance. Annals of Statistics, pp. 1230–
1239, 1999.

Ayelet Dominitz and Allen Tannenbaum. Texture mapping via optimal mass transport. IEEE
transactions on visualization and computer graphics, 16(3):419–433, 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In International
conference on machine learning, pp. 1367–1376. PMLR, 2018.

Ernie Esser, Xiaoqun Zhang, and Tony F Chan. A general framework for a class of first order primal-
dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences,
3(4):1015–1046, 2010.

Raphael A Finkel and Jon Louis Bentley. Quad trees a data structure for retrieval on composite keys.
Acta informatica, 4(1):1–9, 1974.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanis-
las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python
optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

Harold N Gabow and Robert E Tarjan. Faster scaling algorithms for general graph matching prob-
lems. Journal of the ACM (JACM), 38(4):815–853, 1991.

Samuel Gerber and Mauro Maggioni. Multiscale strategies for computing optimal transport. Journal
of Machine Learning Research, 18(72):1–32, 2017.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent. Optimal mass transport for reg-
istration and warping. International Journal of computer vision, 60(3):225–240, 2004.

Peter Halmos, Julian Gold, Xinhao Liu, and Benjamin J Raphael. Hierarchical refinement: Optimal
transport to infinity and beyond. In International conference on machine learning, 2025.

Bishi He, Yuanjiao Chen, Darong Zhu, and Zhe Xu. Domain adaptation via wasserstein distance
and discrepancy metric for chest x-ray image classification. Scientific Reports, 14(1):2690, 2024.

Ruiqiang He, Xiangchu Feng, Xiaolong Zhu, Hua Huang, and Bingzhe Wei. Rwrm: Residual
wasserstein regularization model for image restoration. Inverse Problems & Imaging, 15(6), 2021.

Ka-Hei Hui, Chao Liu, Xiaohui Zeng, Chi-Wing Fu, and Arash Vahdat. Not-so-optimal transport
flows for 3d point cloud generation. arXiv preprint arXiv:2502.12456, 2025.

Arun Jambulapati, Aaron Sidford, and Kevin Tian. A direct tilde {O}(1/epsilon) iteration parallel
algorithm for optimal transport. Advances in Neural Information Processing Systems, 32, 2019.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4401–4410, 2019.

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized
sliced wasserstein distances. Advances in neural information processing systems, 32, 2019.

Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, and Aleksandr Korotin. Optimal flow match-
ing: Learning straight trajectories in just one step. Advances in Neural Information Processing
Systems, 37:104180–104204, 2024.

Arthur Leclaire and Julien Rabin. A fast multi-layer approximation to semi-discrete optimal trans-
port. In International Conference on Scale Space and Variational Methods in Computer Vision,
pp. 341–353. Springer, 2019.

Xudong Li, Defeng Sun, and Kim-Chuan Toh. An asymptotically superlinearly convergent
semismooth newton augmented lagrangian method for linear programming. SIAM Journal on
Optimization, 30(3):2410–2440, 2020.

Tianyi Lin, Nhat Ho, and Michael Jordan. On efficient optimal transport: An analysis of greedy
and accelerated mirror descent algorithms. In International conference on machine learning, pp.
3982–3991. PMLR, 2019.

12

https://www.gurobi.com
https://www.gurobi.com

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yiyang Liu, Zaiwen Wen, and Wotao Yin. A multiscale semi-smooth newton method for optimal
transport. Journal of Scientific Computing, 91(2):39, 2022.

Haihao Lu and Jinwen Yang. Pdot: A practical primal-dual algorithm and a gpu-based solver for
optimal transport. arXiv preprint arXiv:2407.19689, 2024.

Haihao Lu, Jinwen Yang, Haodong Hu, Qi Huangfu, Jinsong Liu, Tianhao Liu, Yinyu Ye, Chuwen
Zhang, and Dongdong Ge. cupdlp-c: A strengthened implementation of cupdlp for linear pro-
gramming by c language. arXiv preprint arXiv:2312.14832, 2023.

Haihao Lu, Zedong Peng, and Jinwen Yang. cupdlpx: A further enhanced gpu-based first-order
solver for linear programming. arXiv preprint arXiv:2507.14051, 2025.

Zhongxuan Luo, Wei Chen, Na Lei, Yang Guo, Tong Zhao, Jiakun Liu, and Xianfeng Gu. The
singularity set of optimal transportation maps. Computational Mathematics and Mathematical
Physics, 62(8):1313–1330, 2022.

Vien V Mai, Jacob Lindbäck, and Mikael Johansson. A fast and accurate splitting method for
optimal transport: Analysis and implementation. arXiv preprint arXiv:2110.11738, 2021.

Quentin Mérigot. A multiscale approach to optimal transport. In Computer graphics forum, vol-
ume 30, pp. 1583–1592. Wiley Online Library, 2011.

Eduardo Fernandes Montesuma and Fred Maurice Ngole Mboula. Wasserstein barycenter for multi-
source domain adaptation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 16785–16793, 2021.

Kimia Nadjahi, Alain Durmus, Pierre E Jacob, Roland Badeau, and Umut Simsekli. Fast approxi-
mation of the sliced-wasserstein distance using concentration of random projections. Advances
in Neural Information Processing Systems, 34:12411–12424, 2021.

Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th
international conference on computer vision, pp. 460–467. IEEE, 2009.

François Pitié and Anil Kokaram. The linear monge-kantorovitch linear colour mapping for
example-based colour transfer. In 4th European conference on visual media production, pp. 1–9.
IET, 2007.

Thomas Pock and Antonin Chambolle. Diagonal preconditioning for first order primal-dual al-
gorithms in convex optimization. In 2011 International Conference on Computer Vision, pp.
1762–1769. IEEE, 2011.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its appli-
cation to texture mixing. In International conference on scale space and variational methods in
computer vision, pp. 435–446. Springer, 2011.

Tauseef Rehman, G Pryor, and A Tannenbaum. Fast multigrid optimal mass transport for image
registration and morphing. In British Machine Vision Conference, 2007.

Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-rank sinkhorn factorization. In International
Conference on Machine Learning, pp. 9344–9354. PMLR, 2021.

Bernhard Schmitzer. A sparse multiscale algorithm for dense optimal transport. Journal of
Mathematical Imaging and Vision, 56(2):238–259, 2016.

Bernhard Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport problems.
SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019.

Jörn Schrieber, Dominic Schuhmacher, and Carsten Gottschlich. Dotmark–a benchmark for discrete
optimal transport. IEEE Access, 5:271–282, 2016.

Sameer Shirdhonkar and David W Jacobs. Approximate earth mover’s distance in linear time. In
2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, 2008.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen,
Tao Du, and Leonidas Guibas. Convolutional wasserstein distances: Efficient optimal transporta-
tion on geometric domains. ACM Transactions on Graphics (ToG), 34(4):1–11, 2015.

Wei Ren Tan, Chee Seng Chan, Hernan Aguirre, and Kiyoshi Tanaka. Improved artgan for condi-
tional synthesis of natural image and artwork. IEEE Transactions on Image Processing, 28(1):
394–409, 2019. doi: 10.1109/TIP.2018.2866698. URL https://doi.org/10.1109/TIP.
2018.2866698.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Wei Wang, Dejan Slepčev, Saurav Basu, John A Ozolek, and Gustavo K Rohde. A linear op-
timal transportation framework for quantifying and visualizing variations in sets of images.
International journal of computer vision, 101(2):254–269, 2013.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Yue Xie, Zhongjian Wang, and Zhiwen Zhang. Randomized methods for computing optimal trans-
port without regularization and their convergence analysis. Journal of Scientific Computing, 100
(2):37, 2024.

Guojun Zhang, Yancheng Yuan, and Defeng Sun. An efficient hpr algorithm for the
wasserstein barycenter problem with o(dim(p)/ε) computational complexity. arXiv preprint
arXiv:2211.14881, 2022.

Guojun Zhang, Zhexuan Gu, Yancheng Yuan, and Defeng Sun. Hot: An efficient halpern accel-
erating algorithm for optimal transport problems. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2025.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model solely to polish writing and to assist with small code snippets. It did
not generate ideas, proofs, experimental designs, or results. All LLM-assisted content was authored,
reviewed, and validated by the authors.

B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF THEOREM 1

Proof 1 (Proof of Theorem 1) Fix s ∈ S and let D̂k+1(s) ⊂ D denote the set of targets d that are
not shielded from s by the pairs {(s′,mapk(s

′)) : s′ ∈ S(s)}. Hence every (s, d) with d ∈ D̂k+1(s)
must be explicitly added to Nk+1.

We first establish a geometric localization bound. Take d ∈ D̂k+1(s) and set v = d−mapk(s). By
assumption 1 there exists s′ ∈ S(s) such that

⟨v, s′ − s⟩ ≥ ∥v∥ ∥s′ − s∥ q.

Insert and subtract mapk(s
′) and apply assumption 4 together with Cauchy–Schwarz to obtain

⟨v, s′ − s⟩ = ⟨d−mapk(s) + mapk(s)−mapk(s
′), s′ − s⟩

≥ ∥d−mapk(s)∥ ∥s′ − s∥ q − ∥mapk(s)−mapk(s
′)∥ ∥s′ − s∥

≥
(
q ∥d−mapk(s)∥ − L∥s′ − s∥

)
∥s′ − s∥.

By assumption 2 we have ∥s′ − s∥ < D, hence

⟨d−mapk(s), s
′ − s⟩ ≥

(
q ∥d−mapk(s)∥ − LD

)
∥s′ − s∥.

14

https://doi.org/10.1109/TIP.2018.2866698
https://doi.org/10.1109/TIP.2018.2866698

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

If ∥d − mapk(s)∥ > LD/q, then ⟨d − mapk(s), s
′ − s⟩ > 0 for some s′ ∈ S(s). For the

squared Euclidean ground cost this is exactly the sufficient shielding condition stated in Section 5.2
of Schmitzer (2016). Therefore each unshielded d must satisfy

∥d−mapk(s)∥ ≤ R := LD
q , that is, D̂k+1(s) ⊂ BR(mapk(s)).

Assumption 5 gives ∥mapk(s)−map0(s)∥ ≤ R0 for all k, which implies

D̂k+1(s) ⊂ BR0+R(map0(s)) for all k ≥ 0.

Taking the union over all iterations,⋃
k≥0

D̂k+1(s) ⊂ D ∩BR0+R(map0(s)).

By assumption 3 the cardinality is uniformly bounded as∣∣∣⋃
k≥0

D̂k+1(s)
∣∣∣ ≤ ∣∣D ∩BR0+R(map0(s))

∣∣ ≤ ρ voln
(
BR0+R

)
:= C0,

which depends only on the constants in assumptions 1–5, on the dimension of the space, and is
independent of the sizes of S and D.

We now conclude the proof. Since each s has at most C0 unshielded targets, if at iteration k there
is still some d ∈ D̂k+1(s), then at least one new pair (s, d) must be added. As the total number
of such unshielded pairs is bounded by C0, the process of adding new shielding edges can occur
at most C0 times. Thus the sequence (Nk) converges after at most C0 iterations, which proves
scale-independent convergence.

Regarding sparsity, the shielding part contributes at most C0|S| pairs. Step 3 of Algorithm 3 can
add at most K pairs per iteration, and since there are at most C0 iterations, its total contribution is
bounded by KC0. Therefore the final support satisfies

|Nk| ≤ C0|S|+ βC0|S| = (1 + β)C0|S|.

Thus we can take C := (1 + β)C0, which depends only on the constants in assumptions 1–5,
on the space dimension, and on the chosen parameter β. At the fixed point xk is locally optimal
with respect to Nk, and by construction Nk is a shielding neighbourhood. By the local-to-global
certification (Corollary 3.10 of Schmitzer (2016)), xk is globally optimal once the process stabilizes.
This completes the proof.

B.2 PROOF OF PROPOSITION 1

Proof 2 We first compute BB⊤:

BB⊤ =

[
diag(r) P
P⊤ diag(c)

]
,

where P ∈ {0, 1}m×n is the adjacency matrix of a bipartite graph representing the non-zero entries
in B. Next, we compute the rescaled matrix B̃B̃⊤:

B̃B̃⊤ =
1

2
D−1

r (BB⊤)D−1
r =

1

2

[
Im Q
Q⊤ In

]
, Q := D−1/2

r PD−1/2
c ,

where Dr = diag(r) and Dc = diag(c).

For the matrix Q, it is known that the eigenvalues of the block matrix
[

I Q
Q⊤ I

]
are 1 ± σi(Q),

thus:

λmax(B̃B̃⊤) =
1

2
(1 + σmax(Q)), ∥B̃∥2 =

√
1 + σmax(Q)

2
.

We now prove that σmax(Q) = 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lower bound: Let u = (
√
r1, . . . ,

√
rm)⊤ and v = (

√
c1, . . . ,

√
cn)

⊤. We have:

(Qv)i =
∑

j∈N(i)

√
cj

√
ricj

=
ri√
ri

=
√
ri = ui.

Similarly, Q⊤u = v, so u and v are singular vectors, and the singular value is exactly 1. Thus,
σmax(Q) ≥ 1.

Upper bound: For any x ∈ Rn, by the Cauchy-Schwarz inequality:

∥Qx∥22 =
∑
i

1

ri

 ∑
j∈N(i)

xj√
cj

2

≤
∑
i

1

ri

 ∑
j∈N(i)

1

 ∑
j∈N(i)

x2
j

cj

 =
∑
i

∑
j∈N(i)

x2
j

cj
=

∑
j

x2
j .

Here, N(i) denotes the indices of the non-zero elements in the adjacency matrix P . Thus, ∥Q∥2 ≤ 1.

Therefore, σmax(Q) = 1, and we conclude:

∥B̃∥2 =

√
1 + 1

2
= 1.

C EXTENSION TO NON-GRID DATA

C.1 CONSTRUCTION OF HIERARCHICAL STRUCTURE

For non-grid data (e.g., point clouds), we primarily employ a 2d-tree structure (e.g., Quadtrees in 2D,
Octrees in 3D) to construct the hierarchy via spatial partitioning. The procedure starts by defining
an axis-aligned bounding hypercube containing all data points, which serves as the coarsest level.
Finer levels are generated by subdividing each hypercube into 2d equal-sized sub-cubes, discarding
any sub-cubes that contain no data. This subdivision continues recursively until a pre-determined
depth is reached or the finest level (containing individual points) is achieved. At each level, the
active nodes correspond to these non-empty sub-cubes, and the representative point is defined as the
geometric center of the spatial region.

In higher dimensions, standard 2d-trees become intractable due to the 2d branching factor. To ad-
dress this, sequential axis partitioning (similar to k-d trees) can be adopted to control the inter-level
reduction ratio, ensuring hierarchy construction does not become a computational bottleneck.

C.2 SHIELDING STRATEGY ON NON-GRID DATA

In the shielding-based active support update (Algorithm 3), the definitions of the local neighborhood
R(s) and the unshielded set D̂(s) require adaptation for non-grid domains. In the image setting (2D
grids), R(s) consists of the 8 surrounding pixels. To maintain consistency and ensure extensibility
to high dimensions, we replace this with K-Nearest Neighbors (KNN), setting knn = 4 × d (e.g.,
knn = 12 for 3D point clouds). This choice aligns with the image setting (where 8 = 4 × 2) and
keeps the neighborhood sparse.

Unlike grids where the spatial distribution is uniform, non-grid data exhibit irregular distributions.
Consequently, a single source point may correspond to a large number of unshielded candidates.
For computational and memory efficiency, we enforce an upper bound on the number of candidates
added per iteration, denoted as Umax.

Crucially, this budgeted strategy affects neither the convergence of HALO nor the theoretical result
of Theorem 1. Regarding convergence, hierarchical algorithms rely on the monotonic decrease
of the objective function, which is guaranteed as long as Nk+1 ⊃ supp(xk). Regarding scale-
independence, the complexity bound in Theorem 1 is derived from the total volume of potential
unshielded targets (bounded by the constant C0 in the proof B.1). While the theorem assumes all
unshielded targets are identified, limiting the update size to Umax merely implies that these necessary
neighbors are added over slightly more iterations, preserving the scale-independent complexity.

Finally, we provide a sensitivity analysis in Table 8 and Table 9 to demonstrate the stability of our al-
gorithm with respect to this hyperparameter. We tested Umax ∈ {10, 15, 20, 30, 40} on ModelNet10
(see Appendix E). The results indicate that the performance remains stable across varying scales,
and we use Umax = 20 as a safe default setting, which is used throughout non-grid experiments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Time (s) ablation on the budget size
Umax for shielding on 3D point clouds.

Umax 214 215 216 217 218

10 16.18 28.32 50.62 92.82 265.8
15 15.70 26.83 48.92 88.15 236.6
20 15.54 26.25 47.42 88.51 229.7
30 15.85 27.58 50.18 91.30 224.7
40 16.04 26.09 51.81 103.7 244.2

Table 9: Memory (GB) ablation on the budget
size Umax for shielding on 3D point clouds.

Umax 214 215 216 217 218

10 0.54 0.62 0.74 1.06 1.72
15 0.54 0.63 0.76 1.10 1.76
20 0.54 0.64 0.77 1.12 1.83
30 0.55 0.65 0.79 1.17 1.92
40 0.56 0.61 0.83 1.21 1.95

C.3 NUMERICAL RESULTS ON 2D NON-GRID DATA

In addition to the 3D experiments presented in Table 7, we provide results on 2D non-grid data
constructed from ModelNet10 (see Appendix E for details). The results are summarized in Table 10.
Similar to the 3D setting, HALO demonstrates consistent superior performance. At n = 218, it
achieves a 3.47× speedup, an 82.4% reduction in memory usage compared to HiRef, and a 32.5%
lower transport cost.

Table 10: Performance on 2D Non-Grid Data (ModelNet10-PCA). gap denotes the relative objec-
tive difference: for n = 214, the reference is the exact solution computed by the standard EMD
solver Flamary et al. (2021); for n ≥ 215 where EMD solver is intractable, the reference is the
solution of HALO.

Metric Method 214 215 216 217 218 219

time
HALO 7.82 12.50 23.44 53.25 121.6 247.0
HiRef 23.40 46.40 94.10 190.4 422.0 OOM
Sinkhorn 28.50 OOM OOM OOM OOM OOM

memory
HALO 0.55 0.62 0.74 1.08 1.92 3.97
HiRef 0.90 1.02 1.65 3.60 10.89 OOM
Sinkhorn 10.60 OOM OOM OOM OOM OOM

gap
HALO +5.68E−5 – – – – –
HiRef +4.37E−1 +3.82E−1 +4.04E−1 +3.00E−1 +3.25E−1 OOM
Sinkhorn +4.02E−2 OOM OOM OOM OOM OOM

D ALGORITHM SETTINGS

For HALO, we employ the cuPDLPx Lu et al. (2025) solver with constant step-sizes 1 unless oth-
erwise specified. All experiments use the Pock–Chambolle rescaling scheme, and the stopping cri-
terion is set uniformly with primal feasibility, dual feasibility, and objective gap thresholds of 10−6.
In updateActive, we choose K = 0.25|S| for the operator TopK
For HOT Zhang et al. (2025), we adopt the open-source implementation with its default parameter
choices. The stopping criterion is fixed to 10−6 to ensure comparability with other baselines.

For ShortCut Schmitzer (2016), we use the variant based on the LEMON solver provided in the
released code, with all default parameters left unchanged.

For M3S Chen et al. (2022), which is an entropic regularization method, we use the official im-
plementation with its predefined entropy-regularization coefficient and all other default parameter
settings.

For Gurobi Gurobi Optimization, LLC (2024), we rely on the Barrier algorithm. Unless otherwise
specified in the main text, the crossover procedure is disabled.

For HiRef Halmos et al. (2025), we adopt the official open-source implementation and strictly
adhere to the default parameter settings provided by the authors.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For Sinkhorn, we employ the standard implementation provided by the POT library Flamary
et al. (2021). We set the regularization parameter to ε = 10−3 to obtain an approximate solution
with reasonable accuracy.

E DATASET

To comprehensively evaluate the scalability and generalization of HALO, we employed two distinct
datasets covering both grid-based images and unstructured point clouds.

DOTmark (Image Data). To evaluate scalability across different problem sizes on grid data, we
utilized the DOTmark Schrieber et al. (2016) benchmark. In addition to the native resolutions (32 to
512), we constructed additional variants by both downsampling and upsampling. For downsampling,
each native-resolution image was resized to 16 × 16 using bilinear interpolation. The interpolated
values were rescaled linearly to match the original intensity range, rounded to integers, and clipped
to avoid numerical overflow. For upsampling, we generated 1024×1024 images by bilinear interpo-
lation, followed by rounding to integers. To guarantee exact consistency with the original data, each
pixel at the original grid was enforced to coincide with its corresponding position in the enlarged
image, and the resulting values were clipped to the original intensity range before being stored. In
this way, the 16× 16 images provide small-scale test cases, while the 1024× 1024 images serve as
challenging large-scale benchmarks.

ModelNet10 (Non-Grid Data). To validate the performance of HALO on non-grid data, we con-
structed a benchmark using ModelNet10 Wu et al. (2015), a widely used dataset for 3D point cloud
analysis. We selected the top-3 samples from each of the 10 classes, generating a total of 30 pairs
of point clouds for evaluation. The raw point clouds were normalized to the unit hypercube, and we
varied the number of points n from 211 to 219 via random sampling to test scalability. To further
evaluate the algorithm on non-grid 2D data, we generated 2D counterparts of these 3D shapes using
Principal Component Analysis (PCA), creating a non-grid 2D point cloud benchmark distinct from
the regular grids in DOTmark.

CauchyDensity ClassicImages GRFmoderate GRFrough GRFsmooth

LogGRF LogitGRF Microscopy Shapes Whitenoise

Figure 4: Example images from the DOTmark benchmark.

F SENSITIVITY ANALYSIS OF HYPERPARAMETER IN DUAL-VIOLATION
CORRECTION

A key hyperparameter in HALO is β, associated with the dual-violation correction step in Algo-
rithm 3. It controls the size of the candidate set added during the update by selecting the top
K = β|S| pairs with the largest dual violations. To assess the sensitivity of HALO to this pa-
rameter, we evaluated the algorithm on the DOTmark benchmark across a wide range of values:
β ∈ {2−4, 2−3, 2−2, 2−1, 20}. We also included the baseline case β = 0, which actually disables
the dual-violation correction module.

The numerical results are detailed in Table 11. The algorithm exhibits high stability regarding both
memory and runtime: GPU memory usage remains virtually unaffected by the choice of β; runtime
also shows minimal fluctuation, with a maximum variation of approximately 17% at resolution

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Bathtub Bed Chair Desk Dresser

Monitor Night Stand Sofa Table Toilet

Figure 5: Example 3D point clouds from the ModelNet10 benchmark. Each object is sampled with
n = 8192 points.

1024 × 1024. However, setting β = 0 leads to a sharp performance drop, which confirms that the
dual-violation correction is crucial for the efficiency of the solver.

Based on these findings, we recommend β = 2−2 as a safe default setting, which is used throughout
our main experiments.

Table 11: Sensitivity analysis of β on DOTmark. Performance remains stable for β ∈ [2−3, 20].
Setting β = 0 leads to significant slowdowns. Memory usage is consistent across all non-zero β
values.

β r = 64 r = 128 r = 256 r = 512 r = 1024

time

20 0.77 1.18 2.79 9.24 28.86
2−1 0.78 1.12 2.70 8.76 25.19
2−2 0.78 1.11 2.62 8.84 25.42
2−3 0.72 1.11 2.71 8.72 24.67
2−4 1.73 2.42 4.44 11.90 29.64
0 (No dual) 1.90 2.99 5.47 15.23 52.85

memory All ∼ 0.39 ∼ 0.48 ∼ 0.76 ∼ 2.10 ∼ 6.30

G COMPARISON WITH A GPU-BASED SHORTCUT IMPLEMENTATION

A natural question arises regarding whether the ShortCut method could yield even better results
than HALO if implemented on GPUs. To clarify this, we implemented a ShortCut-GPU variant
within the same framework as HALO, utilizing cuPDLPx as the underlying solver. The primary
difference lies in the active-support update strategy: ShortCut employs an aggressive pruning
strategy that retains only the support of the current coupling, whereas HALO uses a conservative
update (Nk+1 ⊃ Nk) augmented with dual-violation correction.

The comparison results on DOTmark are presented in Table 12. While the GPU implementation
brings efficiency gains to ShortCut-GPU compared to CPU baselines, HALO still outperforms
ShortCut-GPU significantly, achieving a 2.5× speedup at resolution 1024× 1024.

This performance gap highlights a critical algorithmic contribution of HALO. GPU-based first-order
solvers typically yield solutions with lower precision compared to CPU-based classical methods.
ShortCut’s aggressive active-support update is highly sensitive to this numerical noise, which
leads to stagnation during the refinement process. In contrast, HALO’s conservative update rule and
the dual-violation correction provide the necessary stability. These designs make the hierarchical
framework robust to the lower precision of GPU solvers, thereby unlocking the full potential of
GPU acceleration.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 12: Runtime comparison between ShortCut-GPU and HALO on DOTmark. Time is in
seconds (s).

Resolution 512 1024

ShortCut-GPU 21.40 68.33
HALO 11.17 27.73

H FLEXIBILITY WITH ALTERNATIVE SOLVERS

While HALO utilizes cuPDLPx Lu et al. (2025) as the default LP solver due to its state-of-the-
art performance, the proposed hierarchical framework is designed to be flexible and compatible
with various first-order GPU solvers. To validate this flexibility, we integrated an alternative solver,
HPR-LP Chen et al. (2024), into HALO by replacing the backend of the solveRestricted
component. The numerical results on DOTmark are reported in Table 13.

Although HPR-LP is generally slower than cuPDLPx in this context, the HALO framework still
effectively leverages it to solve large-scale instances efficiently. Specifically, at resolution 1024 ×
1024, HALO integrated with HPR-LP achieves a 6.1× speedup and a 68.8% reduction in memory
usage compared to the state-of-the-art solver M3S (see Table 1).

This experiment confirms that the efficiency of HALO is not solely dependent on a specific un-
derlying LP solver; rather, the hierarchical active-support framework is a critical component that
significantly contributes to the overall performance. It is worth noting that GPU-based LP solvers
are a burgeoning field compared to mature CPU solvers. We believe that the continuous evolution
of faster GPU-based solvers will further boost HALO’s performance, solidifying our framework as a
highly promising direction for solving large-scale OT.

Table 13: Performance of HALO integrated with the alternative HPR-LP solver Chen et al. (2024)
on DOTmark. Time is in seconds (s) and Memory is in gigabytes (GB).

Resolution 64 128 256 512 1024

time 1.06 1.70 3.31 9.68 40.76
memory 0.72 0.78 1.00 1.90 6.61
gap 6.39E−6 2.36E−5 1.76E−5 – –
infeas 4.09E−7 2.53E−7 1.33E−7 1.03E−7 6.08E−8

I ROBUSTNESS AND GENERALIZATION ACROSS DIVERSE DATASETS

Table 14: Generalization performance of HALO on real-world datasets (FFHQ and WikiArt) com-
pared to the standard DOTmark. Results are averaged over instances. Time is in seconds (s) and
Memory is in gigabytes (GB).

Resolution 256 512 1024

time
FFHQ 3.24 10.79 23.68
WikiArt 2.74 9.13 22.14
DOTmark 4.31 11.17 27.73

memory
FFHQ 0.77 2.19 6.52
WikiArt 0.74 1.97 6.10
DOTmark 0.76 2.07 6.25

To demonstrate generalization beyond DOTmark, we conducted additional evaluations on two high-
resolution datasets: Flickr-Faces-HQ (FFHQ) Karras et al. (2019) and WikiArt Tan et al. (2019).
Specifically, we selected the first 10 images from FFHQ and the first image from each of the top-10

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

classes in WikiArt. For each dataset, we generated 45 instances by pairing these images, strictly
following the DOTmark preprocessing pipeline.

The numerical results are summarized in Table 14. HALO consistently achieves low memory usage
and fast solving speeds on these diverse tasks, exhibiting performance metrics highly consistent with
those on DOTmark. This confirms the broad applicability and robustness of HALO across diverse
real-world datasets.

21

	Introduction
	HALO: a Hierarchical Algorithm for Large-scale OT
	Outline of the Proposed Framework
	Hierarchy: Coarse-to-Fine Multiscale Structure
	Sparsity: Solve Restricted OT on Active Support

	Experiments
	The Image Dataset DOTmark
	The Point Clouds Dataset ModelNet10

	Discussion
	The Use of Large Language Models (LLMs)
	Proofs of Theoretical Results
	Proof of Theorem 1
	Proof of Proposition 1

	Extension to Non-Grid Data
	Construction of Hierarchical Structure
	Shielding Strategy on Non-Grid Data
	Numerical Results on 2D Non-Grid Data

	Algorithm settings
	Dataset
	Sensitivity Analysis of Hyperparameter in Dual-Violation Correction
	Comparison with a GPU-based ShortCut Implementation
	Flexibility with Alternative Solvers
	Robustness and Generalization across Diverse Datasets

