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Abstract
During the acquisition of satellite images, there
is generally a trade-off between spatial resolution
and temporal resolution (acquisition frequency)
due to the onboard sensors of satellite imaging sys-
tems. With the advent of diffusion models, we can
now learn strong generative priors to generate real-
istic satellite images with high resolution, which
can be utilized to promote the super-resolution
task as well. In this work, we propose a novel
diffusion-based fusion algorithm called SatDiff-
MoE that can take an arbitrary number of sequen-
tial low-resolution satellite images at the same
location as inputs, and fuse them into one high-
resolution reconstructed image with more fine de-
tails, by leveraging and fusing the complementary
information from different time points. Our algo-
rithm is highly flexible and allows training and
inference on arbitrary number of low-resolution
images. Experimental results show that our pro-
posed SatDiffMoE method not only achieves su-
perior performance for the satellite image super-
resolution tasks on a variety of datasets, but also
gets an improved computational efficiency with
reduced model parameters, compared with previ-
ous methods.

1. Introduction
Satellite imaging is a very useful technique for monitoring
the natural phenomena and human activities on the surfaces
of the Earth. Lots of applications rely on satellite images
such as crop monitoring, weather forecasting, urban plan-
ning, wildfire management and so on (Khanna et al., 2024;
Burke et al., 2021; Ayush et al., 2020; 2021; Beck et al.,
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2007; Wang et al., 2018a; M Rustowicz et al., 2019; Li et al.,
2019). However, the acquisition of satellite images can be
very expensive and the spatial and temporal resolution (the
frequency that a satellite image is captured) may be limited
due to the physical constraints of sensors (Khanna et al.,
2024). In addition, the high temporal resolution may come
with trade-off in spatial resolution. Recent advance in satel-
lite imaging technology enables us to capture the same area
with a high-revisit frequency, but the spatial resolution is
often limited. For instance, two Sentinel-2 satellites with
resolutions from 10m to 60m can capture all land surfaces
every five days (Cornebise et al., 2022; Cong et al., 2022;
Tarasiewicz et al., 2023; Van Etten et al., 2018), but to per-
form land crop monitoring or wildfire management, this
resolution is not sufficient. On the other hand, some very
high-resolution satellite images such as SPOT6 or World-
View can have resolution better than 1.5m (Christie et al.,
2018), but it is extremely difficult to collect those images
for a large area, and these images cannot be captured as
frequently as the Sentinel images. The limited temporal
resolution severely limits downstream applications in urban
planning, object detection, or continuous monitoring of crop
or vegetation covers.

To solve the aforementioned challenges, super-resolution al-
gorithms have been introduced to predict the high-resolution
(HR) satellite images from a bunch of corresponding low-
resolution (LR) satellite images (Luo et al., 2018; 2023),
so that to obtain more fine details. For example, given the
low-resolution satellite images (10m) from Sentinel-2 of a
specific location, the super-resolution algorithms are devel-
oped to predict the high-resolution (1.5m) SPOT6 satellite
image of the same location at a specific time. Nevertheless,
solving remote sensing super-resolution problems is still
an open problem. One challenge in remote sensing is that
low-resolution and high-resolution images often come from
different sensors, and may maintain very different image
features due to the large imaging modality gap resulted from
different sensors (Luo et al., 2018). Moreover, since the low-
resolution and high-resolution images are usually acquired
at different time points as demonstrated in Fig. 1, a lot of
atmospheric disturbance may pose additional challenges for
modeling the sensor imaging process. Therefore, unlike the
natural images, in the satellite images, the down-sampling

1



SatDiffMoE: A Mixture of Estimation Method for Satellite Image Super-resolution with Latent Diffusion Models

process can be extremely difficult to model.

In order to tackle this challenging task of remote sensing
super-resolution, considering that the acquisition of satel-
lite images often comes with multiple revisits (a collec-
tion of satellite images at the same location but at different
time stamps) or with multiple spectral bands, we hypoth-
esize that fusing multiple low-resolution images with dif-
ferent spectrums or at different time stamps may provide
complementary information to the model so as to benefit
the super-resolution task. With such motivation, existing
works (Cornebise et al., 2022) have introduced a recursive
fusion module that takes the concatenated LR images as
inputs and applies a residual attention model for outputting
the HR image. DiffusionSat (Khanna et al., 2024) intro-
duces a 3D ControlNet architecture that fuses LR images
of different spectral bands to reconstruct the corresponding
HR image. However, these works require a fixed number of
LR images or require an absolute timestamp for each LR
and HR, which is often not feasible and flexible at inference
time in real practice because it is challenging to find a fixed
amount of paired LR images for each HR image.

In this paper, we propose a novel diffusion-based method
for solving the satellite image super-resolution problem as
demonstrated in Fig. 1. Our contribution can be summarized
as below:

• We propose a novel diffusion-based fusion algorithm
for satellite image super-resolution that can take an
arbitrary number of time series low-resolution (LR)
satellite images as input, and fuse their complemen-
tary information to reconstruct high-resolution (HR)
satellite images with more fine details.

• Specifically, we introduce a new mechanism to train
a latent diffusion model using the paired LR and HR
images (from the same location but with different time
stamps), particularly being aware of the relative time
difference between corresponding LR and HR images,
to capture the time-aware mapping distribution of LR
to HR images

• At inference time, by leveraging the trained time-aware
diffusion model, we propose a novel approach to fuse
the information from time series LR images, by esti-
mating the center of reverse sampling trajectories of
different LR images using a perceptual distance metric,
so as to align the semantics from various LR images
for super-resolution task.

• We achieve the state-of-the-art performance on a va-
riety of datasets for satellite image super-resolution.
Moreover, our method demonstrates an improved com-
putational efficiency with reduced model parameters
compared with previous methods

2. Background
Latent diffusion models Diffusion models consists of
a forward process that gradually add noise to a clean im-
age, and a reverse process that denoises the noisy images.
The forward model is given by xt = xt−1 − βt∆t

2 xt−1 +√
βt∆tω where ω ∈ N(0, 1). When we set ∆t → 0, the for-

ward model becomes dxt = − 1
2βtxtdt+

√
βtdωt, which is

a stochastic differential equation. The solution of this SDE
is given by

dxt =

(
−β(t)

2
− β(t)∇xt

log pt(xt)

)
dt+

√
β(t)d. (1)

Thus, by training a neural network to learn the score function
∇xt log pt(xt), one can start with noise and run the reverse
SDE to obtain samples from the data distribution.

Latent diffusion models (LDM) (Rombach et al., 2022)
have been proposed for faster inference and training with a
reduced computational burden. By applying an autoencoder
to reduce data dimension, LDMs train the diffusion model
in a compressed latent space, and then decode the latent
code into signals. This method enables high-quality high-
resolution image synthesis benefited from its compressed
latent space, which is an ideal fit for satellite images due
to the large image size. Nevertheless, it is still challenging
to perform image restoration accurately with LDMs (Song
et al., 2024; Rombach et al., 2022). Various works have tried
to extend LDMs for high-dimensional or high-resolution
signal synthesis, such as video generation (Blattmann et al.,
2023; Yu et al., 2023; Ni et al., 2023; Ho et al., 2022; Ceylan
et al., 2023; Martinez et al., 2021; Ruiz et al., 2023; Saharia
et al., 2022; Voleti et al., 2022). However, few works apply
LDMs for image fusion yet. It is an open problem to sample
high-resolution images conditioning on multiple similar
low-resolution images with LDMs.

Single-image super-resolution Single-image super-
resolution (SISR) focuses on reconstructing the high-
resolution image from one corresponding low-resolution
image. In the era of deep learning, super-resolution
problem has become a popular research question and
many data-driven methods have been proposed. In past
few years, state-of-the-art methods apply techniques such
as Convolutional neural network (CNN), Generative Ad-
versarial Network (GAN), and Transformers for restoring
the high-resolution images (Kingma and Welling, 2013;
Creswell et al., 2018; Haris et al., 2018; Wang et al., 2018b;
Isola et al., 2017; Vaswani et al., 2017). These methods
usually learn the mapping from low-resolution image to
high-resolution image through a data-driven way using the
pair data to train the neural network.

However, many of these methods output blurry or inaccurate
reconstructions since they are learning a direct mapping
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Figure 1. An overview of our proposed method SatDiffMoE.

between LR images and HR images without considering the
distribution of possible HR images (Song et al., 2024; 2023).
Due to the ill-posedness of the super-resolution problem,
there may exist multiple HR images corresponding to one
single LR image. A direct regression-based approach may
let the network learn an average of all possible HR images,
which leads to blurry output. Diffusion models address
this issue by learning a strong generative prior that can
perform posterior sampling (Chung et al., 2023) instead of
direct regression. This sampling method outputs realistic
images, and leads to better image perceptual quality. One
line of work assumes the degradation operator is known,
and focuses on inference-time posterior sampling with the
diffusion prior without retraining (Chung et al., 2023; Kawar
et al., 2022; Wang et al., 2022; Song et al., 2024; 2021).
The other line of work assume the degradation operator is
unknown. They concat the LR image into the noise vector
or conditional networks and then retrain or fine-tune the
diffusion model (Zhang et al., 2023; Khanna et al., 2024).
Both lines of work show good ability to model complex
high-resolution image distributions and outperform CNN
approaches in image perceptual quality. However, all these
works focus on obtaining HR images from a single LR
image.

Multi-image super-resolution The goal of multi-image
super-resolution is to combine the information from mul-
tiple LR images to reconstruct one HR image. In satel-
lite imagery, different sensors have different resolutions.

For instance, Sentinel-2 SITS has a resolution of 10-60m,
but SPOT-6 or fMoW can have a resolution of less than
1.5m (Khanna et al., 2024). Given sequential low-resolution
images collected at the same location but different times, the
hypothesis is that performing multi-image super-resolution
is able to combine the information of LR images at multiple
times to obtain a more accurate and higher-quality HR im-
age. There are a couple of recent works in this venue (Luo
et al., 2018; Cornebise et al., 2022; Khanna et al., 2024).
For example, Cornebise et al. trained a network with a tra-
ditional autoencoder architecture, but modify the encoder
to incorporate multiple images as input (Cornebise et al.,
2022). HighRes-net (Cornebise et al., 2022) adopted this
idea to solve satellite image fusion problem with a network
composed of an encoder, a recursive fusion network, and
a decoder. However this approach does not include the
temporal information of LR images DiffusionSat (Khanna
et al., 2024) proposed to train a 3D ControlNet on top of a
fine-tuned latent diffusion model that leverages multispec-
tral bands for reconstruction. However, at training, the
3D ControlNet requires the same number of low-resolution
images for each paired high-resolution images. In addi-
tion, at inference-time, the number of low-resolution images
used for reconstruction must be the same as the training
set. Motivated by this, essentially different from all these
previous works, we aim to propose a more flexible and ro-
bust fusion algorithm that can take an arbitrary number of
low-resolution inputs with corresponding time information
to generate the high-resolution satellite image.
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3. Methods
Instead of conditioning on multiple low-resolution images
as a concatenated input (Khanna et al., 2024), we propose
a novel fusion algorithm: condition on each image and
then fuse each score (the output of the conditional diffu-
sion model) into a high-resolution image reconstruction.
First, in order to embed the temporal information, we in-
troduce a new method that trains a conditional diffusion
model using one LR image and the relative time difference
(between the input LR image and the target HR image) as
inputs to reconstruct the HR image. Then we propose a
novel inference-time algorithm that modifies the interme-
diate outputs in the reverse sampling procedure based on
the assumption that HR reconstruction of LR images at the
same location should look similar. Our method is illustrated
in Fig. 2.

Training We propose a novel conditioning mechanism
for reconstructing HR image from one LR image and its
corresponding time difference with the target HR image.
Firstly, we utilize Stable Diffusion (Rombach et al., 2022),
a pre-trained latent diffusion model for natural image gen-
eration, as the backbone model and fine tune the model on
satellite images. We also propose a novel method to add
additional control to the generating process.

Let HR be the target high-resolution image we want to
reconstruct, LRi denote the ith low-resolution image col-
lected at the same location as the HR image, and dti denotes
the ith relative time difference between LRi and HR. We
observe that it is possible to train the model on the joint
distribution of p(LRi,HR) However, during inference, the
HR image is not available and we can only access the LR
images. As a result, let F be the operator that masks out
the HR component from the score sθ(LRi,HR)), and we
propose a training objective:

argmin
θ

ELRi,HR,t,ϵ∈N(0,1)||F (sθ

((concat(E(LRi), E(HR))t, t)− ϵ)||22 (2)

where E is the pretrained image encoder of the LDM,
concat(E(LRi), E(HR))t is the output of applying the for-
ward process of LDM on the concatenation of LRi and HR.
Through this designed training objective, we do not need
to add any additional parameter to the pretrained stable
diffusion model, since the stable diffusion model can take
arbitrary image resolution as input and output.

Then we propose a novel method that takes the relative
time difference dti between the LRi and HR as another
conditional input to the LDM. We make a clone of the time
embedding network for the original Stable diffusion model,
feed dti into the cloned embedding network, and then we
add the output from the time embedding and the output

from the dti embedding together as an overall embedding
with positional encoding to the diffusion model. We aim
to reconstruct the same HR image regardless of what time
LRi is taken at, so we add this relative time difference
embedding dti to offset the time difference of LRi and HR.
Then the final training objective becomes:

argmin
θ

ELRi,HR,t,ϵ∈N(0,1)||F (sθ

((concat(E(LRi), E(HR))t, dti, t)− ϵ)||22 (3)

Compared to ControlNet, our proposed model is more com-
putationally efficient with much fewer training parameters.
We observe our method also converges much faster than
ControlNet and achieves better reconstruction results, which
is demonstrated in the experiments section below.

Inference As discussed in the previous subsection, we
want to estimate a single HR reconstruction based on LRi

taken at different times. Hence we can assume that the
outputs conditioning on different LRi should be aligned se-
mantically since they are reconstructing the same HR image.
Let zt(LRi, dti) be a noisy sample at time t during diffu-
sion reverse sampling conditioning on LRi and dti. Based
on the assumption above, we expect E[z0|zt(LRi, dti)] to
be similar for each ith LR. To achieve this, we propose
a novel method that firstly finds the center z̄0 of the vec-
tors of E[z0|zt(LRi, dti)] for all i, and then updates each
zt(LRi, dti), so that E[z0|zt(LRi, dti)] to be closer to the
center than without updating.

We can find the desired center via optimization, where d can
be a specified distance function, and N is the total number
of low-resolution images. Note that N can be different for
different HR, which further demonstrates the flexibility of
our method. For the distance function, we propose a novel
approach that uses a convex combination of l2 loss and
LPIPS loss in order to prevent blurry outputs but still keep
images close to each other.

z̄0 = argmin
x

N∑
i=1

d(x,E[z0|zt(LRi, dti)]) (4)

d(x, xi) = (1− α)ℓ2(x, xi) + αLPIPS(x, xi) (5)

where α is the weight for LPIPS loss. Note that for com-
putational efficiency, when computing z̄0, we by design
choose not to sum up every LRi, but randomly sample a
batch from the set of LRi to compute the summation. We
observe in experiments this random batch selection strat-
egy improves computational efficiency while not sacrificing
performance,which may because of the redundancy infor-
mation among LR images. Similarly for the computational
efficiency, such optimization update is not performed on ev-
ery time step, but on every k steps. In all of our experiments,
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Algorithm 1 SatDiffMoE: Satellite Image Fusion with Latent Diffusion Models
Require: i-th low-resolution images LRi, relative time difference dti, i = 1, . . ., N, Encoder E(·), Decoder D(·), Score

function sθ(·, t), Pretrained LDM parameters βt, ᾱt, η, δ, Hyperparameter λ to control the fusion strength, d(·) the
distance function.
zT ∼ N (0, I) ▷ Initial noise vector
for t = T − 1, . . . , 0 do

ϵϵϵ1 ∼ N (0, I)
ϵ̂it+1 = sθ(z

i
t+1, t+ 1,LRi, dti) ▷ Compute the score

ẑi0(z
i
t+1) =

1√
ᾱt+1

(zit+1 −
√
1− ᾱi

t+1ϵ̂
i
t+1) ▷ Predict ẑ0 using Tweedie’s formula

z̄0 ∈
z

∑N
i=0 d(z, ẑ

i
0(z

i
t+1)) ▷ Find the center of multiple ẑ0 by optimization

ẑi0(LRi) = (1− λ)ẑi0(z
i
t+1)) + λz̄0

zit =
√
ᾱt−1ẑ

i
0(LRi) +

√
1− ᾱt−1 − ηδ2ϵ̂it+1 + ηδϵϵϵ1 ▷ Update intermediate noisy samples

end for
xi
0 = D(zi0) ▷ Output reconstructed image

we set k = 5, which we find from empirical study would
suffice the fusion strength while reducing the computational
cost.

After obtaining z̄0, we propose to update all intermediate
samples from the LRi to be closer to z̄0. Recall that in
DDIM reverse sampling (Song et al., 2022), the reverse
sampling can be decomposed by a clean image component
and a noise component. We follow (Chung et al., 2024)’s
approach that only updates the clean image component,
and leaves the noise component intact. Specifically, let λ
be a hyperparameter balancing the original clean image
component and z̄0, we can update the new clean component
as:

ẑ0(LRi, dti) = (1− λ)E[z0|zt(LRi, dti)] + λz̄0 (6)

Therefore, the overall reverse sampling step can be written
as

zt−1 =
√
ᾱt−1ẑ0(LRi, dti) +

√
1− ᾱt−1−

ηδ2t sθ(zt,LRi, dti, t) + ηδtϵ, t = T, . . . , 0, (7)

The pseudo-code of our proposed algorithm is demonstrated
in Alg. 1.

4. Experiments
We try to answer the following questions in this section:
(1) Can our proposed method achieve high-quality satellite
image super-resolution results by fusing multiple time series
low-resolution images? (2) Is our proposed fusion module
effective? (3) Can our proposed method be more compu-
tationally efficient compared with previous methods? To
study these questions, we benchmark the super-resolution
performance on two widely used satellite image datasets:
the fMoW dataset and the WorldStrat dataset.

4.1. Datasets

WorldStrat We take the paired LR-HR satellite image
dataset from (Cornebise et al., 2022). Each area of interest
contains a single SPOT 6/7 high-resolution image with five
bands. We take the RGB band of the SPOT6/7 satellite
images, which has a GSD of 1.5 m/pixel. The low-resolution
images are taken from the Sentinel-2 satellites consisting of
13 bands. We only pick the RGB band from them. For
each area of interest, we have 16 paired low-resolution
images taken at different time. The resolution ranges from
10 m/pixel to 60m per pixel. We crop the high-resolution
image into 192x192 patches, and the low-resolution image
into 63x63 patches.

fMoW Function Map of the World (fMoW) (Christie et al.,
2018) consists of high-resolution (GSD 0.3m-1.5m) satellite
images of a variety of categories such as airports, amuse-
ment parks, crop fields and so on. However, its temporal
resolution is limited due to its high resolution. We use the
metadata of timestamp for pairing low-resolution Sentinel-2
images. Using the dataset provided in Cong et al. (2022),
we create a fMoWSentinel-fMoW-RGB dataset with paired
Sentinel-2 (10m-60m GSD) and fMoW (0.3-1.5m GSD)
images at each of the original fMoW-RGB locations. Then,
we use the bounding box provided by the metadata to extract
relevant areas, and then crop the high-resolution images to
patches of 512x512. For each high-resolution fMoW im-
age, we find the corresponding Sentinel-2 images of the
same location. We only take the RGB band of Sentinel-2
images and then apply the same cropping method as that for
fMoW-RGB images.

4.2. Performance Benchmark

For super-resolution tasks on fMoW and WorldStrat
datasets, we report perceptual quality metrics LPIPS to mea-
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Figure 2. The framework of our proposed SatDiffMoE. In the training phase, we train a latent diffusion model for HR (high-resolution)
image conditioning on a single LR (low-resolution) image and its relative time difference with the HR image. Then in the inference
phase, we fuse the reverse sampling trajectories conditioning on each LR image of the same location. We can randomly select different
trajectories for fusion, but output to a single image at the end.

Airport Amusement Park Car Dealership Crop Field Educational Institution Electric Substation
WorldStrat (Cornebise et al., 2022) 0.723 0.732 0.747 0.738 0.733 0.736
MSRResNet (Wang et al., 2018b) 0.743 0.739 0.733 0.794 0.725 0.783

DBPN (Haris et al., 2018) 0.763 0.740 0.728 0.783 0.726 0.750
Pix2Pix (Isola et al., 2017) 0.621 0.652 0.652 0.645 0.647 0.643

ControlNet (Zhang et al., 2023) 0.625 0.653 0.648 0.650 0.658 0.644
DiffusionSat (Khanna et al., 2024) 0.623 0.647 0.637 0.649 0.652 0.639

SatDiffMoE (Ours) 0.579 0.626 0.600 0.608 0.612 0.606

Table 1. Comparison of the LPIPS metrics for super-resolution on the fMoW dataset for different categories. Best results are in bold.

sure the perceptual similarity of the reconstructed image and
the ground truth image, and FID to measure how realistic
the reconstruction looks. We also report distortion metrics
such as PSNR and SSIM for pixel-level similarity. Note
that in satellite images, LPIPS is a more relevant metrics
here as it measures the perceptual similarity, as mentioned
in (Khanna et al., 2024).

Implementation Details We evaluate our algorithms on
WorldStrat and fMoW LR-HR datasets. For each AOI (Area
of Interest) of the WorldStrat dataset, we resize each LR im-
age to 192×192. We fix the prompt to be "Satellite Images"
and compute the time difference between the low-resolution
image and high-resolution image. Then, we add the time dif-
ference embedding network to the stable diffusion 1.2 and
then fine-tune the stable diffusion 1.2 on the low-resolution
and high-resolution pair of the WorldStrat dataset condition-
ing on the time difference. For each high-resolution image,
we randomly select a low-resolution image from its 16 corre-
sponding low-resolution images for training. After that, we
get a latent diffusion model that takes a low-resolution im-
age and the relative time difference as input and output the

predicted high-resolution image. For each AOI of the fMoW
dataset, we resize each LR image to 512× 512 to align with
the size of high-resolution image. We let the prompt to be
"Satellite image of selected class from a direct overhead
view", where selected class is the category name. We also
use the same time difference embedding network and then
fine tune the stable diffusion 1.2. During inference, for both
datsets we use 50 NFEs, and then perform optimization
every 5 steps. More implementation details can be found in
the supplementary materials. For WorldStrat, we evaluate
our algorithm on first 1000 images in the validation set. For
fMoW, we select the first 100 images in the validation set
from 6 classes: Airport, Amusement Park, Car Dealership,
Crop Field, Educational Institution, Electric Substation for
evaluation.

Baselines We consider six state-of-the-art baselines,
WorldStrat (Cornebise et al., 2022), MSRResNet (Wang
et al., 2018b), DBPN (Haris et al., 2018), Pix2Pix (Isola
et al., 2017), ControlNet (Zhang et al., 2023), and Diffusion-
Sat (Khanna et al., 2024). Both ControlNet and Diffusion-
Sat are diffusion-based methods that takes LR as an addi-
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RelativeTimeDiff Fusion PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
12.52 0.122 0.565 102.3

✓ 15.28 0.272 0.496 105.1
✓ ✓ 17.40 0.396 0.418 88.12

Table 2. Evaluating the Effectiveness of Relative Rime Difference and Fusion.

Number of images for fusion 2 4 6 8 10 12 14 16
LPIPS 0.41124 0.3967 0.3920 0.3891 0.3877 0.3874 0.3867 0.3866

Inference Time (s) 16.00 17.11 18.82 20.64 22.45 24.25 25.99 27.81

Table 3. Ablation study: number of images for fusion

Method WorldStrat fMoW
—- LPIPS↓ FID↓ LPIPS↓ FID↓

WorldStrat 0.481 139.3 0.736 426.7
MSRResNet 0.472 159.7 0.783 286.5

DBPN 0.475 122.6 0.750 278.2
Pix2Pix 0.427 93.90 0.643 196.3

ControlNet 0.580 108.0 0.644 102.3
DiffusionSat 0.561 92.97 0.638 102.9

SatDiffMoE (Ours) 0.418 88.12 0.606 115.6

Table 4. Comparison of LPIPS and FID metrics for super-
resolution on WorldStrat dataset and fMoW. Best results are in
bold. Second best results are underlined.

tional condition for fine-tuned stable diffusion to predict the
HR image. Both MSRResNet and DBPN are CNN-based
methods that directly map the low-resolution image to the
high-resolution image, and Pix2Pix is a GAN-based method.
Both WorldStrat and DiffusionSat are fusion-based methods
that fuse multiple low-resolution input to predict the HR
image, while others take single low-resolution input and
predict the HR image.

Results and Discussions The LPIPS scores on six se-
lected class in fMoW dataset are reported in Table. 1.
We also report LPIPS and FID scores in Table 4 on both
fMoW and WorldStrat datasets compared to the six baselines
mentioned before. We observe that our algorithm largely
achieves better or comparable performance in perceptual
quality. Our method achieves state-of-the-art LPIPs score
compared to all baselines and comparable FID scores. CNN-
based baselines tend to perform poorly in perceptual quality,
resulting in sub-par FID scores compared to diffusion-based
methods. While ControlNet may show slightly better FID
scores, but the LPIPs score is significantly worse than ours.
We also show reasonable PSNR and SSIM scores, as demon-
strated in the Appendix. Qualitatively, as demonstrated in
Fig. 3, we also demonstrate that our method is able to cap-
ture fine-grained details. Compared to baselines, we are able
to reconstruct both realistic images and accurate details.

Computational Efficiency We observe that the training
phase of our proposed method requires much fewer pa-

rameters and iterations to converge than ControlNet and
DiffusionSat, while achieving comparable or better recon-
struction performance. We report the number of parameters
and number of iterations of training in Table. 5. We train
each model until the FID stops improving. Our method con-
verges significantly (5-15 times) faster than ControlNet and
DiffusionSat on both datasets. We also do not observe the
"sudden convergence phenomena" in our training which is
reported in ControlNet, which implies that our training may
be more stable. Our method also exhibits better computa-
tional efficiency compared to ControlNet. As demonstrated
in Table. 5, our algorithm requires significantly less training
time than ControlNet.

4.3. Ablation Studies

We want to study the impact of the fusion module and the
relative time difference embedding on the reconstruction
quality. We are also interested in the number of images for
fusion. Intuitively, with more LR images provided for fu-
sion, we have more complementary details and can achieve
better perceptual quality.

Effectiveness of relative time embedding and fusion We
demonstrate the performance of our method without Rela-
tiveTimeDiff and Fusion, our method with RelativeTimeD-
iff, and our full method on the WorldStrat validation dataset
in Table. 2. We found that both modules have significant pos-
itive impact to the perceptual quality (LPIPS score), while
the fusion module improves both the LPIPS score and the
FID score. On the other hand, we also find improvement in
the distortion metrics when adding both modules. Qualita-
tively, as shown in Fig. 5, with our fusion algorithm, we can
reconstruct super-resolved images with better quality.

Impact of number of images on fusion We present the
effect of increasing number of image for fusion on the re-
construction quality on the first 100 images in the validation
set of WorldStrat dataset in Table. 3. We observe that the
reconstruction quality improves significantly when adding
more images for fusion when there are few images for fusion
(i.e. fewer than 4), but the performance almost saturates
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Figure 3. (Left) Super-resolution on fMoW dataset. (Right) Super-resolution on WorldStrat dataset.

Method WorldStrat fMoW
—- Parameters (M) Iterations for Training Parameters (M) Iterations for Training

ControlNet (Zhang et al., 2023) 1427 12500 1427 21400
DiffusionSat (Khanna et al., 2024) 1428 12500 1428 20000

Ours 1068 800 1068 4400

Table 5. Number of parameters and memory required.

when the number of images exceeds 10, and will trade-off
between image quality and inference time. This observa-
tion validates our hypothesis that fusing information from
multiple LR images improves the reconstruction quality and
there exists a diminishing return on the number of LRs.

5. Conclusion
In this work, we present "SatDiffMoE", a novel framework
for satellite image super-resolution with latent diffusion
models. We first present a novel training mechanism that
conditions on relative time difference of LR images and HR
images. Then, we propose a novel inference-time algorithm
that fuses the reverse sampling trajectory from inputs of
different LRs at the same location but different times. Our
method is highly flexible that can adapt to an arbitrary num-
ber of low-resolution inputs at test-time and requires fewer
parameters than diffusion-based counterparts. One of our
limitation is we do not impose physical measurement con-
straint in our reconstruction process, which we will leave as
future work.
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A. Appendix
A.1. Implementation Details

Data Preprocessing WorldStrat We obtain the RGB satellite images provided by (Cornebise et al., 2022). We follow the
preprocessing steps given by (Cornebise et al., 2022), that crop the HR images into patches of 192× 192 and LR images
into corresponding pathes of the HR images of size 63× 63. For each HR image, there are 16 corresponding LR images
of different time. We extract the RGB band of the HR images and the RGB band of every LR images. We then resize LR
image into the size of 192× 192. We use the same training and validation split provided by (Cornebise et al., 2022) and
then form a training and validation set. We then extract the timestamp from the metadata and compute the dti for each LRi.

fMoW We obtain the high-resolution images from (Christie et al., 2018), and the paired Sentinel-2 images from (Cong et al.,
2022). We first identify the area of interest on the HR images as given by (Christie et al., 2018), and then crop out other
areas. Then we crop the corresponding LR images following the pre-processing steps given by (Cong et al., 2022). We crop
the HR images into patches of 512× 512, and align LR images into patches based on each HR image patch. Then we resize
each LR image into the size of 512× 512 in accordance with the HR image. We consider 6 categories: airport, amusement
parks, car dealership, crop field, educational institution, electric substation for training and testing. For training, we filter
out HR images that do not have a corresponding LR, and those do not have three channels. We take the same training and
validation split from (Christie et al., 2018). When training, we consider all images from (Christie et al., 2018), and when
testing, we pick the first 100 images from each selected category of the validation set of (Christie et al., 2018). We also
extract dti from the metadata of fmow provided by (Christie et al., 2018), and the metadata of Sentinel-2 data provided by
(Cong et al., 2022).

Model Training We take the pretrained checkpoint (SD1.2) provided by (Rombach et al., 2022), and then fine tune on the
processed (Christie et al., 2018) and (Cornebise et al., 2022) datasets. We rescale every LR image and HR image to the
scale of [0,1]. Then, we use a learning rate 1e−5, and a batch size of 4 for both datasets. We stop training when the FID of
sampled images stops improving. For (Cornebise et al., 2022) dataset, we only train 800 iterations (partly due to the small
dataset size). For (Christie et al., 2018) dataset, we train 4400 iterations. We then take the model for downstream inference
tasks. For WorldStrat dataset, we use the prompt "Satellite images" for training. For fMoW dataset, we use the prompt
"Satellite image of selected class from a direct overhead view", where selected class is the category name.

Model Inferencing We use 50 DDIM steps with η = 0 for inferencing. We perform optimization every 5 steps for
computational efficiency, otherwise, we just perform conditional sampling. We set λ = 0.1 and α = 0.2 for both datasets.

A.2. More Ablation Studies

Effect of LPIPS weight α and optimization weight λ There are two hyper-parameters in our inference-time algorithm,
and that is the weight for LPIPS distance α v.s. L2 distance, and the weight λ for balancing the original predicted clean
image component and the one after optimization. We expect the perceptual quality of reconstructed images to improve when
we increase α from 0. We also expect the reconstruction quality to improve when λ increases from 0 since the weight of
fusion increases. In Fig.4, we present the LPIPS score on 100 samples on the WorldStrat dataset with varying α and λ. We
find that LPIPS score improves when both α and λ increase from 0. Then, performance converges as α keeps increasing, and
marginally degrades as λ continues to increase. We observe that generally, the performance of our algorithm is insensitive to
hyperparameter change.

A.3. Implementation Details of Baselines

WorldStrat We follow the original codebase of (Cornebise et al., 2022), where we train the HighResNet model on both
(Christie et al., 2018) and (Cornebise et al., 2022) datasets. We tune the hyperparameters of the loss function based on our
validation set. We stop training when the validation performance converges. On (Cornebise et al., 2022) we train 125000
iterations with a batch size of 32, and on (Christie et al., 2018) we take 100000 iterations with a batch size of 32.

MSRResNet We follow the original codebase of (Wang et al., 2018b), where we train the MSRResNet model on both
(Christie et al., 2018) and (Cornebise et al., 2022) datasets. During training, we randomly pick a LR image and its paired
HR image. We tune the hyperparameters of the loss function based on validation set performance. We train for 160000
iterations for both (Cornebise et al., 2022) and (Christie et al., 2018) datasets with a batch size of 16.
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Figure 4. (Left) Ablation study on LPIPS weight α. (Right) Ablation study on optimization weight λ.

DBPN We follow the original codebase of (Haris et al., 2018), where we train the MSRResNet model on both (Christie
et al., 2018) and (Cornebise et al., 2022) datasets. During training, we randomly pick a LR image and its paired HR image.
We tune the hyperparameters of the loss function based on validation set performance. We train for 100 epochs for both
(Cornebise et al., 2022) and (Christie et al., 2018) datasets with a batch size of 16.

Pix2Pix We follow the original codebase of (Isola et al., 2017), where we train the MSRResNet model on both (Christie
et al., 2018) and (Cornebise et al., 2022) datasets. During training, we randomly pick a LR image and its paired HR image.
We tune the hyperparameters of the loss function based on validation set performance. We train for 30 epochs for (Christie
et al., 2018) and 100 epochs for (Cornebise et al., 2022) with a batch size of 16.

ControlNet We follow the original codebase of (Zhang et al., 2023). During training, we randomly pick a LR image and
its paired HR image. We tune the hyperparameters of the loss function based on validation set performance. We train for
12500 iterations with a batch size of 16 for (Cornebise et al., 2022), and 21500 iterations with a batch size of 16 for (Christie
et al., 2018).

DiffusionSat We implemented the 3D ControlNet architecture as mentioned in (?). Then, we take the RGB band and the
SWIR, NIR band from LR image for training 3D ControlNet. We tune the hyperparameters of the loss function based on
validation set performance. We train for 12500 iterations with a batch size of 16 for (Cornebise et al., 2022), and 20000
iterations with a batch size of 16 for (Christie et al., 2018). We observe that further training worsened FID scores on both
datasets.

A.4. More Results

We report additional results on unconditional generation and conditioning on dti as demonstrated in Fig.6, and Fig.7. We
observe that we can generate realistic satellite images. Conditioning on dti makes semantic changes in the image and can be
applied to tasks such as cloud removal. We also report the PSNR and SSIM metrics in Table 6. The error bars are presented
in Table 7.
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Figure 5. Super-resolution results on fMoW dataset by SatDiffMoE with and without fusion. We show SatDiffMoE without fusion by
conditioning on the first LR image and SatDiffMoE with fusion by fusing the four LR images.
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Method WorldStrat fMoW
—- PSNR↑ SSIM↑ PSNR↑ SSIM↑

WorldStrat (Cornebise et al., 2022) 17.98 0.396 13.42 0.443
MSRResNet (Wang et al., 2018b) 19.81 0.512 13.01 0.290

DBPN (Haris et al., 2018) 19.17 0.471 11.90 0.268
Pix2Pix (Isola et al., 2017) 19.76 0.448 12.21 0.180

ControlNet (Zhang et al., 2023) 11.89 0.113 10.82 0.117
DiffusionSat (Khanna et al., 2024) 12.34 0.133 10.63 0.109

SatDiffMoE (Ours) 17.40 0.396 11.96 0.172

Table 6. Comparison of PSNR and SSIM metrics for super-resolution on WorldStrat dataset and fMoW. Best results are in bold. Second
best results are underlined.

Figure 6. Generated high resolution samples from our unconditional model.

Method WorldStrat MSRResNet DBPN Pix2Pix ControlNet DiffusionSat SatDiffMoE(Ours)
WorldStrat 0.081 0.077 0.079 0.069 0.079 0.091 0.076

fMoW 0.092 0.081 0.052 0.045 0.034 0.034 0.044

Table 7. Standard deviation of the quantitative metric LPIPS presented in Table 4 for super-resolution on fMoW and WorldStrat dataset.
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Figure 7. Here we consider the same LR image, and vary the relative time difference to generate different conditional samples.
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