4002

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

Any-Horizon Uniform Random Sampling and
Enumeration of Constrained Scenarios for
Simulation-Based Formal Verification

Toni Mancini

, lgor Melatti

, and Enrico Tronci

Abstract—Model-based approaches to the verification of non-terminating Cyber-Physical Systems (CPSs) usually rely on numerical
simulation of the System Under Verification (SUV) model under input scenarios of possibly varying duration, chosen among those
satisfying given constraints. Such constraints typically stem from requirements (or assumptions) on the SUV inputs and its operational
environment as well as from the enforcement of additional conditions aiming at, e.g., prioritising the (often extremely long) verification
activity, by, e.g., focusing on scenarios explicitly exercising selected requirements, or avoiding vacuity in their satisfaction. In this setting,
the possibility to efficiently sample at random (with a known distribution, e.g., uniformly) within, or to efficiently enumerate (possibly in a
uniformly random order) scenarios among those satisfying all the given constraints is a key enabler for the practical viability of the
verification process, e.g., via simulation-based statistical model checking. Unfortunately, in case of non-trivial combinations of
constraints, iterative approaches like Markovian random walks in the space of sequences of inputs in general failin extracting scenarios
according to a given distribution (e.g., uniformly), and can be very inefficient to produce at all scenarios that are both legal (with respect
to SUV assumptions) and of interest (with respect to the additional constraints). For example, in our case studies, up to 91% of the
scenarios generated using such iterative approaches would need to be neglected. In this article, we show how, given a set of
constraints on the input scenarios succinctly defined by multiple finite memory monitors, a data structure (scenario generator) can be
synthesised, from which any-horizon scenarios satisfying the input constraints can be efficiently extracted by (possibly uniform) random
sampling or (randomised) enumeration. Our approach enables seamless support to virtually all simulation-based approaches to CPS
verification, ranging from simple random testing to statistical model checking and formal (i.e., exhaustive) verification, when a suitable
bound on the horizon or an iterative horizon enlargement strategy is defined, as in the spirit of bounded model checking.

Index Terms—Simulation-based verification, cyber-physical systems, scenario generation

1 INTRODUCTION

YBER-PHYSICAL Systems (CPSs) are typically non-termi-
Cnating systems encompassing software which senses and
controls (in an endless loop) one or more physical plants
(e.g., motors, electrical circuits, etc.) Such systems are ubiq-
uitous in a wide spectrum of application domains, e.g.,
automotive, space, avionics, smart grids, systems biology,
healthcare, just to mention a few.

The intrinsic complexity of industry-relevant CPSs
makes their verification and certification very challenging.
To this end, model-based approaches are widely exploited to
enable system wverification starting from the early design
phases, well before an actual implementation is built (see,

o The authors are with the Computer Science Department, Sapienza Univer-
sity of Rome, 00185 Roma, Italy. E-mail: {tmancini, melatti, tronci)@di.
uniromal.it.

Manuscript received 12 February 2021; revised 14 July 2021; accepted 30
August 2021. Date of publication 2 September 2021; date of current version
17 October 2022.

This work was partially supported by the Italian Ministry of University &
Research under Grant Dipartimenti di eccellenza 2018-2022 of the Department
of Computer Science, Sapienza University of Rome; INAAM GNCS Project
2020; Sapienza U. Projects RG11816436BD4F21, RG11916B892E54DB,
RP11916B8665242F; Lazio POR FESR Projects E84G20000150006,
F83G17000830007.

(Corresponding author: Toni Mancini.)

Recommended for acceptance by C. Wang.

Digital Object Identifier no. 10.1109/TSE.2021.3109842

e.g., [8]). Indeed, model-based approaches work on a model
describing the CPS behaviour, rather than on an actual
implementation.

While for, e.g., digital circuits, model-based verification
is usually carried out using model-checking techniques (see,
e.g., [19]), the case of CPSs is peculiar: In fact, although,
from a formal point of view, they can be modelled as hybrid
systems, model checkers for hybrid systems can only handle
verification of moderately sized CPSs. Thus, numerical simu-
lation is currently the main workhorse for the model-based
verification of large CPSs, and is widely supported by avail-
able design tools (see, e.g., Simulink, VisSim, Dymola, ESA
Satellite Simulation Infrastructure SIMULUS). Such tools
take as input a model of the behaviour of the CPS (for exam-
ple, via systems of algebraic-differential equations plus
algorithmic snippets for, e.g., handling of events) along
with an operational scenario (defining the actual system
inputs and the conditions on the environment in which the
CPS is operating), and provide as output the associated
time course of the quantities of interest (system trajectory) up
to a user-requested time-horizon (possibly dynamically
revised during the verification process).

1.1 Motivation

The case of CPS models only available as black boxes (e.g.,
simulators, our focus here) is typical for many industry-rele-
vant systems and has far-reaching implications. In

0098-5589 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3355-2170
https://orcid.org/0000-0003-3355-2170
https://orcid.org/0000-0003-3355-2170
https://orcid.org/0000-0003-3355-2170
https://orcid.org/0000-0003-3355-2170
https://orcid.org/0000-0002-6273-6190
https://orcid.org/0000-0002-6273-6190
https://orcid.org/0000-0002-6273-6190
https://orcid.org/0000-0002-6273-6190
https://orcid.org/0000-0002-6273-6190
https://orcid.org/0000-0002-0377-3119
https://orcid.org/0000-0002-0377-3119
https://orcid.org/0000-0002-0377-3119
https://orcid.org/0000-0002-0377-3119
https://orcid.org/0000-0002-0377-3119
mailto:tmancini@di.uniroma1.it
mailto:melatti@di.uniroma1.it
mailto:tronci@di.uniroma1.it

MANCINI ET AL.: ANY-HORIZON UNIFORM RANDOM SAMPLING AND ENUMERATION OF CONSTRAINED SCENARIOS FOR SIMULATION-BASED...

constrained Si : e .
imulation-based verification Q
Rando,m scenarios Pass
extraction >
SUV input horizon e ;
assumptions t Statistical model Exhaustive Fail
N — checking verification
horizon »

Additional

SG computation

constrained

A

A 4

constraints scenarios ;
) 4 Simulator
.. Any-horizon .
= . Randomised
DD rr_\emory scenario ti SUV model
monitors generators enumeration

Preprocessing

Fig. 1. High-level overview of our approach.

particular, (bounded-horizon) numerical simulation of the
System Under Verification (SUV) model becomes the only
viable means to obtain the system trajectory under any given
input scenario.

In this setting, carrying out a verification process of the
SUV upon an explicit, precise, and implementation-independent
definition of the set of its (non-terminating) legal input scenar-
ios (which stem from requirements deriving from the SUV
assumptions and constraints about its operational environ-
ment) is crucial for the system certification (for, e.g., regulatory
purposes). Also, the possibility to effectively sample (possi-
bly uniformly at random) from this set or (randomly) enumerate
it (when finite [43], [47]), is important to derive statistical
guarantees about its correctness (e.g., via Statistical Model
Checking, SMC), and to spot hard-to-find errors (i.e., errors
in the system attained only under a small number of input
scenarios).

Furthermore, effective means to dynamically focus, among
such legal scenarios, on those that satisfy certain additional
constraints, and to efficiently enumerate or sample at ran-
dom within these subsets, enables prioritisation of the (often
prohibitively long) verification activity, and allows one to
focus on scenarios that drive the system towards specific
portions of the space of behaviours, e.g., to explicitly exercise
selected requirements or to avoid vacuity in their satisfaction
(see, e.g., [12], [39], [69]).

Unfortunately, it is well known (see, e.g., [17] and cita-
tions thereof) that, in case of non-trivial combinations of
constraints, iterative approaches like Markovian random
walks in the space of sequences of inputs in general fail in
extracting scenarios according to a given distribution (e.g.,
uniformly). Also, such approaches can be very inefficient to
produce at all scenarios that are both legal (with respect to
SUV assumptions and requirements on its environment)
and of interest (with respect to the additional constraints).
This is because the intricacies of and the inter-dependen-
cies among requirements and additional constraints easily
make such iterative approaches reach deadlocks. As an
example, in our case studies up to 91% of random walks in
the space of sequences of legal inputs would fail to produce
scenarios satisfying all the provided constraints. This
would translate into a major source of inefficiency for the ver-
ification (e.g., SMC) algorithm, which would be forced to

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Down

Verification

trash out such (possibly huge) ratio of generated random
walks.

1.2 Contributions

In this article we rely on Finite State Machines (FSMs) as a
succinct, flexible, and practical means to compositionally
define (as monitors) requirements about legal scenarios on
which the SUV shall be exercised, as well as additional con-
straints aiming at restricting the focus of the verification
process (e.g., for prioritisation needs, or to exercise some
requirements avoiding vacuity in their satisfaction). Fur-
thermore, we show how, by exploiting and combining
together results from supervisory control theory and combi-
natorics, we can synthesise a data structure (Scenario Gen-
erator) from which any-horizon scenarios entailed by a
monitor, or a combination thereof, can be efficiently
extracted by (possibly uniform) random sampling or (rand-
omised) enumeration.

Our approach enables seamless support to virtually all sim-
ulation-based approaches to CPS verification, ranging from sim-
ple random testing to SMC and formal (i.e., exhaustive)
verification, when a suitable bound on the horizon or an
iterative/dynamic horizon enlargement strategy is defined,
as in the spirit of bounded model checking (see, e.g., [47]).
Fig. 1 gives a high-level overview of our approach.

1.3 Paper Outline

This article is organised as follows. Section 2 introduces rel-
evant background and states our formal setting. Section 3
presents our approach to the (possibly uniform) random
sampling and (possibly randomised) enumeration of any-
horizon constrained scenarios. Section 4 describes our three
case studies and our experimental results. Section 5 is
devoted to related work and Section 6 draws conclusions.

2 BACKGROUND AND FORMAL SETTING

In this section we introduce the relevant background
notions and give the formal setting on which we build our
approach.

Throughout the paper, we denote with R, Ry} and R
the sets of, respectively, all real, non-negative real, strictly

Positive real numbers, and with N, and N the sets of,
oaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

4004

respectively, strictly positive and non-negative integer num-
bers. We also denote with Bool = {false, true} the set of
Boolean values. Furthermore, given set A, we denote with
A* the set of infinite sequences of elements of A.

2.1 Systems and System Requirements

In this article, we focus on verifying non-terminating sys-
tems, such as CPSs, available as black boxes via simulators.
These systems are typically defined as dynamical
systems [63].

Contracts have been widely advocated to formalise the
requirements of a system in an implementation-independent
way, in terms of assumptions of the inputs and guarantees on
the outputs (see, e.g., [13]). Verifying whether SUV H is cor-
rect with respect to its contract means to check that, when-
ever H is fed with inputs satisfying the constraints dictated
by the contract assumptions, then it produces outputs com-
pliant to the contract guarantees.

We assume that inputs to our SUV 'H will be given as
unbounded input time functions in the form of time courses
of assignments to n variables V = {vy,vs,...,v,} (the input
variables of H), where each v; takes values within domain
U,,. Thus, each constraint defining the set of input scenarios
to consider (e.g., as dictated by the contract assumptions or
by any additional constraint we might want to enforce) will
be defined over (a subset of) these variables. Given any V' =
{vj,,vj,,...,vj,} €V, we denote by Uy = Uy, X x Uy
the space of assignments of variables in V' to values of their
respective domains, and given an assignment v € Uy (on
some set of variables V' C V) and a subset V' of V, we
denote by wuy» € Uy the projection of u onto V7, ie., the
assignment which coincides with w for all variables in V'
and is undefined elsewhere.

2.2 Monitors

Since our SUVs of interest are non-terminating, both
assumptions and guarantees of their contracts are time
unbounded. Hence, we need practical means to finitely and
conveniently define them. A general and flexible means to
define sets of unbounded time functions is via the use of
monitors, i.e., (possibly black-box) systems that scan an input
time function and reject it as soon as they conclude it viola-
tes some requirement.

Given our focus on verification tasks where numerical
simulation is the only means to get the trajectory of the SUV
when fed with an input scenario, we assume that the SUV
input space Uy is finite (and, without loss of generality,
ordered) and contract assumptions can be defined by a moni-
tor which uses only finite memory.

Our assumption is in line with an engineering (rather
than purely mathematical) point of view, where man-made
CPSs need to satisfy the properties under verification
with some degree of robustness with respect to the actual
input time functions (see, e.g., [1], [23] and references
thereof).

A direct consequence of our setting is that it allows us to
seamlessly support (see Section 3) the full continuum from
contract random testing to statistical model checking up to
formal (i.e., exhaustive) simulation-based (robust) verifica-
tion of black-box systems.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

Our approach naturally applies to systems whose input
values denote events such as faults (which can typically be
finitely enumerated under a given order). However, thanks
to the SUV robustness hypothesis, inputs assuming continu-
ous values can be tackled by means of a suitable discretisation
of their (ordered) domains, whilst truly continuous-time
inputs (e.g., additive noise signals) can be managed as long
as they can be cast into (or suitably approximated by) finitely
parametrisable functions, in which case the input space actu-
ally defines such a (discrete or discretised) parameter space.
Practical examples of such finite parameterisations of the
SUV input space (or projections thereof) are those defining
limited, quantised Taylor expansions of continuous-time
finite inputs, or those defining quantised values for the first
coefficients (those carrying out the most information) of the
Fourier series of a finite-bandwidth noise, see, e.g., [1], [49].
Clearly, the most suitable approach to finitely define the
SUV input space (perhaps a safe approximation thereof,
consistent with the verification needs) depends on the case
at hand, and should be carefully designed by the verifica-
tion engineer. Our case studies in Section 4 contain uses of
several of such features, and show that our setting can be
easily met in practice.

Definition 1 introduces the notion of (finite-memory)
monitor on top of the standard notion of FSM.

Definition 1 (Monitor). A monitor M is defined in terms of a
FSM, namely a tuple (V, X, zo, f) where:

o V CV is the finite set of input variables, which
defines the monitor input space Uy;
X is the finite set of the monitor states;
xo € X is the monitor initial state;
f: X x Uy — X, the monitor transition function, is
a (possibly partial) function defining the legal transi-
tions of M.

We denote by Traces(M) C Uy, the set of traces of M,
that is the set of infinite sequences (ug,u1,us,...) of inputs
(assignments to the input variables) associated to the infinite
computation paths of M that start from x.

Given h € N, we denote by Traces(M)y, the set of pre-
fixes of length h of the traces of M.

Note that a monitor transition function f can (and usu-
ally will) be partial. This allows us to easily encode within f
constraints on the infinite sequences of inputs entailed by
the monitor (i.e., the set of monitor traces).

Monitor traces can be easily interpreted as piecewise-
constant discrete- or continuous-time functions. Indeed,
given a time unit r € T — {0} (with T, the time-set, being N
or Ry for discrete- and continuous-time contracts and sys-
tems, respectively), a trace (uo, uy,u2, . ..) of a monitor M is
interpreted as time function u defined as u(t) = u;| for all
t € T. This allows us, in particular, to regard traces of a
monitor defining the assumptions of a contract for a system
model H as (suitable approximations of) actual input time
functions with which to feed H during simulation-based
verification.

Monitors can be conveniently defined using a wide vari-
ety of specification languages, e.g., temporal logics (see, e.g.,
[31]), data-flow languages (see, e.g., [30]), but also conven-
tional programming and simulation languages (e.g., the

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

MANCINI ET AL.: ANY-HORIZON UNIFORM RANDOM SAMPLING AND ENUMERATION OF CONSTRAINED SCENARIOS FOR SIMULATION-BASED...

Fig. 2. An explicit view of the FSM for monitor A; in Example 1
(i € [1, q]). Edge labels represent assignments to the single input vari-

able v;, (*~: no-op, ‘f: fault, ‘r: repair).

same language of the SUV simulator itself). Indeed, it will
be enough, for our approach to work, that monitors are
given as black boxes, in that we only need to repeatedly
invoke their transition function.

Definition 2 shows that monitors can be conjoined by sim-
ply combining their (possibly black-box) transition func-
tions. This will allow us to define systems of constraints for,
e.g., the whole set of assumptions of a contract starting from
monitors for subspaces thereof, e.g., for subsets of the
requirements, plus monitors enforcing additional con-
straints for the scenarios of interest.

Definition 2 (Conjoint monitor). Let M, = (V,, X4, Za0, fa)
and My, = (W, Xy, 20, f3) be two monitors over (possibly over-
lapping) sets of variables.

The conjoint monitor M = M, 1 My, between M, and
My is (Vo U Vi, Xy X Xy, (Ta0, Tho), fo < fy), where for all
Ty € Xo,mp € Xy, u € Uy,

(fa > fb)((xmxb)vu) = (fd(xavu\‘/u,)vfb(xbvU\Vb))v

if both fu(xa,upy,) and fy(xy, upy,) are defined and is undefined
otherwise.

The set of traces of M, Traces(M), is the set of sequences
(up, ur,ug,...) € Uy, such that (ug)y,,uy,, gy, --) €
Traces(M,) and (uopy,, uy,, Ugpyy, - - -) € Traces(My).

Example 1 shows a contract whose assumptions are
defined via a finite-memory monitor, obtained by compos-
ing monitors defining the assumptions from single sub-sys-
tems (assumption subspaces).

Example 1. Consider the following contract to be imple-
mented by the digital control system of an autopilot for a
space vehicle (this is inspired from our Apollo Lunar
Module Digital Autopilot, ALMA, case study in Section
4.1.3). The system receives, as an input stream from the
mission-control system, requests to change the attitude of
(i.e., to rotate, along one or more axes) the vehicle. Such
requests are defined as assignments over input variables
Vy. At each input, the new attitude is computed by the
system itself on the basis of the current attitude and the
new request. Such a stream of inputs is guaranteed to sat-
isfy some additional constraints (such that, e.g., the
requests can be actually obeyed by the vehicle, given its
technical capabilities). All this yields monitor .4y defining
legal input functions over input variables Vj. When all
rotation commands and attitude values are multiple of a
minimum angle and occur at time points multiple of a
given time unit, monitor A4j is finite-memory.

The autopilot control system receives feedback about
the current attitude of the vehicle from a given set of sen-
sors, and commands a set of ¢ on-board actuators (direc-
tional jets). Jets may be subject to temporary

4005

unavailabilities (aka faults) which are always recovered
within a given number w of time units (t.u.) By denoting
with v, the (single) input variable devoted at represent-
ing fault and repair events on the i-th jet (i € [1,¢]), the
above yields finite-memory monitor A; over the input
variable v, (see Fig. 2).

The additional requirement that the control system
must be resilient to the concurrent unavailability of at
most k < ¢ actuators yields finite-memory monitor A<,

over input variables {”jp C g,

The overall set of input variables of the contract that
thus V=V,U

Vjys---,j, (, and the overall monitor A for the contract
assumptions is obtained by conjoining the above sub-
monitors as shown in Definition 2. Additional constraints
(defined via additional monitors) on the set of scenarios
of interest can be enforced similarly.

the autopilot must implement is

3 ANY-HORIZON UNIFORM RANDOM SAMPLING
AND ENUMERATION OF CONSTRAINED
SCENARIOS FROM MONITORS

When performing simulation-based verification of a SUV
model H, we need to simulate H under input scenarios
satisfying all the considered requirements, e.g., assump-
tions on the SUV inputs and any additional constraints
we chose to enforce, in order to focus or prioritise the
verification activity. In practice, as such scenarios are
time unbounded, we need to consider suitable finite pre-
fixes of them.

In this section we show how, given a monitor M over
input variables V, for example obtained by conjoining the
monitor defining contract assumptions and monitors defin-
ing additional constraints, we can use a combination of tech-
niques inspired from supervisory control theory and
combinatorics, in order to define two functions:

(1) nbtraces:N — N
(2) trace : N x N — Uy,

Given a horizon h € N, nb_traces(h) evaluates to the
number of distinct prefixes of length h of traces in
Traces(M); whilst, given h € N and ¢ € [0, nb_traces(h) — 1],
trace(i, h) evaluates to the i-th (in lexicographic order) such
prefix. Building on these two functions, it will be straight-
forward to implement any trace random sampling policy (pos-
sibly wuniform), just by choosing an horizon or a range
thereof (possibly dynamically during the verification activ-
ity) and then sampling over the range of indices of traces of
the chosen horizon(s). Random enumeration of traces of a
given horizon can similarly be achieved by randomly sam-
pling a permutation of the range of indices (see, e.g., [47]),
and any horizon-enlargement verification policies (as in the
spirit of bounded model checking [20]) can be seamlessly
applied.

Functions nb_traces and trace can be implemented as to
be very efficient, as it will be shown in Section 3.2. Namely,
after a preliminary O(|Uy||X ") step, functions nb_traces
and trace can be implemented to run in (amortised) time
O(1) and O(hlog |Uy|), respectively.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

4006

3.1 From Monitors to Scenario Generators

When monitor M is obtained by conjoining multiple sub-
monitors, inter-dependency constraints may arise on the legal
sequences of input values/events that make some finite
computation paths of M not extensible to the infinity, and
thus not defining legal prefixes of Traces(M). Technically,
we say that M might be blocking and, hence, may lead to
deadlocks.

Example 2. Consider again Example 1. From knowledge
stemming from the root causes of the temporary unavail-
ability of each actuator (e.g., the need to charge internal
capacitors or batteries after intensive use), we know that,
if the attitude change requests follow certain patterns,
then certain actuators (those intensively used to obey
those requests) are more likely to become temporarily
unavailable in the near future.

We might then decide to focus the verification of the
autopilot system by prioritising those legal scenarios that
actually show such actuator unavailabilities. This yields
monitor F.

Thus, our verification activity will first focus on input
functions belonging to the monitor M = A > F. Monitor
M resulting from such combination of requirements
would be blocking. This is a consequence of the fact that
infinite computation paths of M need to satisfy conflict-
ing requirements: ‘no more than k actuators are simulta-
neously unavailable’ (from A) and ‘whenever attitude
change requests follow certain patterns, some given
actuators will become unavailable within a certain time’.
Paths not extensible to the infinity (e.g., those envisioning
attitude change request patterns yielding, at some point
in time, unavailabilities of more than k actuators) repre-
sent scenarios that should not be considered in the current
verification stage.

Thus, our first (and one-time preliminary) step is to mini-
mally restrict monitor M into a new monitor Gen(M) (Sce-
nario Generator, SG) such that: (i) all finite paths of Gen(M)
can be extended to the infinity (Gen(M) is non-blocking),
and (ii) all the infinite paths of M are retained (Gen(M) is
complete).

The key concept we need for this purpose (and borrowed
from supervisory control theory) is the set of safe states of
M (Definition 3), i.e., those states that are actually traversed
by infinite paths of M.

Definition 3 (Safe states of a monitor). Let M =
(V, X, o, f) be a finite-state monitor. State x € X is safe for
M if @y (z) is true, where Py : X — Bool is the greatest fixed-
point of the following equation:

Ve e X ®p(z)=Tu,2’ o' = f(z,u) ANDp(2). (1)

The Scenario Generator (SG) stemming from monitor M
(Definition 4) is obtained by restricting the transition func-
tion of M as to reach only safe states.

Definition 4 (Scenario Generator). Let M = (V, X, o, f)
be a monitor and ®; be the function defined in Definition 3 for
M, with ®¢(xg) = true.

The Scenario Generator (SG) for M is monitor Gen(M) =
(V. X, o, fgen), where, for any state = and input wu,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

foen(m,u) = f(z,u) if f(z,u) is defined and O¢(f(x,u)) =
true, and is undefined otherwise.

Note that Definition 4 requires that the initial state x of
Gen(M) is a safe state for M. Indeed, if not, then M entails
no trace, and no SG for it exists.

A few observations are in order. The definition of @ in
Definition 3 is well-posed, since formula (1) is formally posi-
tive, hence, by the Knaster-Tarski Theorem [27], its greatest
fixed-point exists. This implies that the SG of a monitor is
unique, when it exists.

Function ®; for monitor M = (V, X, z, f) can be com-
puted in time O(|Uy||X|*), by starting with ®; = true and
by iteratively setting ®(x) to false for those states « violat-
ing (1), until the fixed-point is reached. Note that, to per-
form such a computation, it is enough to have M available
as a black box, as we only need to repeatedly invoke its tran-
sition function f.

Finally, we point out that function ®; implicitly defines
the (unique) most liberal supervisory controller for M, i.e.,
function K : X x Uy — Bool, such that K(z,u) = (32’ 2/ =
flz,u) NDy(z")) [71]. (Note that what are called uncontrolla-
ble inputs in [71] can be modelled in the starting monitor
with intermediate states having only one outgoing
transition.)

Proposition 1 shows that SGs satisfy our requirements
(proofs of all results are available in the supplementary
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TSE.2021.3109842).

Proposition 1. Let M = (V,X,x, f) be a monitor and
Gen(M) = (V, X, xo, fyen) be its associated SG. Then:

(1) Each finite path of Gen(M) is extensible to an infinite
path (non-blocking);

(2) Gen(M) and M have the same set of traces:
Traces(Gen(M)) = Traces(M) (completeness).

Being based on FSMs, SGs have several desirable proper-
ties. Remark 1 states some of them.

Remark 1. For every pair of monitors M, and Mj;:

(1) Gen(Gen(M,)) = Gen(M,);

(2) Gen(M, < M) = Gen(Gen(M,) < Gen(My));

3) If M, and M, share no input variables (i.e., they
are independent monitors), then Gen(M, <1 M) =
Gen(M,) < Gen(My).

Although straightforward, properties listed in Remark
1 are very useful in practice. Namely, 2) enables the
incremental computation of an SG defined by further con-
straining (e.g., by imposing additional requirements on)
an already computed SG (e.g., an assumptions monitor).
Property 3) holds when conjoining independent sub-moni-
tors. This is a frequent situation occurring when defining
the assumptions of a contract for a system obtained by
composing monitors (on assumptions subspaces) on its
components, as in Example 1. We will see in Remark 3
that in such cases, it is enough to compute the SGs of
the different (typically much smaller) sub-monitors in
order to extract traces of the (never computed) conjoint
monitor.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TSE.2021.3109842
http://doi.ieeecomputersociety.org/10.1109/TSE.2021.3109842

MANCINI ET AL.: ANY-HORIZON UNIFORM RANDOM SAMPLING AND ENUMERATION OF CONSTRAINED SCENARIOS FOR SIMULATION-BASED...

3.2 Index-Based Trace Extraction
Definition 5 defines two helper functions that are at the
basis of the definition of functions nb_traces and trace.

Definition 5 (Functions ext and ¢&). Let Gen (M) =
(V. X, 20, fyen) be the SG of M. We define the following two
functions:

o ext: X xN — N, where, forany x € X and k € N:
- ext(z,k)=1ifk=0;
- ea:t(x, k) = Zﬁ,eUV Gl’t(fggn(.l‘, ﬁ)v k— 1)
otherwise.
o ¢:XxUyxN—N,where, for any x € X and k €
N: f(x, u, k) = Zﬁ<u Gl’t(fggn(.ili, ﬁ)7 k)

Remark 2 (Adapted from [70]). Let Gen(M)=
(V, X, 20, fgen) be a SG. For every x € X and k € N, function
ext(z, k) (Definition 5) evaluates to the number of all-distinct
computation paths of length & of Gen (M) starting from .

Since Gen(M) is a deterministic automaton, each compu-
tation path is uniquely associated to a distinct sequence of
inputs. This yields our definition of function nb_traces :
N — N which, given a horizon h returns the number
ext(xg, h) of distinct prefixes of length h of the traces of
Gen(M), ie., the cardinality of Traces(Gen(M)),,. Con-
versely, function &, by offering a way to efficiently compute
any trace prefix of length h from its unique index, is at the
basis of the definition of function trace : N x N — U7,.

Algorithm 1. Index-Based Trace Extraction From a SG

1 global
2 Gen(M) = (V. X, T, fgen);
3 hmax € N U {undef}, initially undef;
4 ext, a map of the form X x N — N, initially empty;
5 & amap of the form X x Uy x N — N, init. empty;
/ /Invariant: ext(z, h) & &(x, u, h) defined iff h < hyax
6 function nb_traces(h)
Input: h € N
7 if Ay = undef or h > hy,, then
8 incrementally compute ext and & up to h;
9 Pmax < h;
10 return ext(zo, h);
11 function trace(i, h)
Input:i € N,h €N
Ouput: (ug, u1,ug, . . ., up—1), i-th trace of len. h
12 if i > nb_traces(h) then error index out of bounds;
13 T — xo; k— h;m «— i
14 for j from 0 to h — 1 do
15 uj — maz{u|&(z, u, k—1) <m};
16 m—m —&x,uj, k—1);
17 €T fgen(xyuj)/
18 k—k—-1,;
19 return (u(), UL, U2y v v vy uh,l);

Algorithm 1 shows an implementation of functions
nb_traces and trace which relies on an incremental compu-
tation of maps implementing functions ext and &. Provided
that constant-time lookup tables (i.e., maps) for functions ext
and ¢ are already available for all inputs up to horizon h,
the time complexity of functions nb_traces and trace is,
respectively, O(1) and O(hlog |Uy|). Note that, in the typical
case where the verification activity asks trace prefixes of the

4007

same length h, computation of maps ext and § is a one-time
task, and its cost (although in practice negligible with
respect to simulation time, see Section 4) is amortised by the
multiple (efficient) executions of function trace.

Proposition 2 (Correctness of Algorithm 1, adapted
from [70]). Functions in Algorithm 1 are such that:

(1) For any given h € N, nb_traces(h) returns the cardi-
nality of Traces(Gen(M)),,, i.e., the number of all-
distinct prefixes of length h of the traces of Gen(M).

(2) For any given h € N and i € [0, nb_traces(h) — 1],
trace(i, h) returns the i-th (in lexicographic order) ele-
ment of Traces(Gen(M)),,.

Remark 3 clarifies that when a monitor M is defined as
the conjoining of two sub-monitors whose input spaces
share no input variables (independent sub-monitors), then
functions nb_traces and trace for Gen(M) can be equiva-
lently stated in terms of the respective functions for
Gen(M,) and Gen(M,). This allows one to avoid the com-
putation of M and of Gen(M) altogether, and to perform
the index-based extraction of traces of M by pairing
together traces extracted from (the typically much smaller)
M, and M, (by computing only Gen(M,) and Gen(M,),
thanks to property (3) of Remark 1).

Remark 3. Let M, be a monitor defined as M, < M,, with
M, and M, sharing no input variables.
Let nb_traces, and trace, be the functions of Algo-
rithm 1 for SG Gen(M,), with y € {a, b, ab}.
The following holds for all A € N:

(1) mb_tracesq(h) = nb_traces,(h) x nb_traces,(h)
(where ‘+’ is integer multiplication);

(2) For all i€ [0,nbtracesq(h) —1], traceqy(i,h) =
trace,(sel(i,a), h) - traceb sel(i,b), h), where:
® sel(z (l) nb_ tra(cs (hj
e sel(i,b) =i mod ng tracesy(h),
with mod being the modulo operator, and ‘-’
the pairing of two traces: (a0, Us1,Ua2,---)"
(ub,Ovub,hubﬁQ, .-) = ((ua“o,ub‘,o), (ua,laub,1)7 (Ua,2>
Ubﬁg), ..)

4 EXPERIMENTAL RESULTS

In this section we define our case studies (Section 4.1) and
present experimental results assessing the practical viability
and scalability of our approach, focusing first on SG compu-
tation (Section 4.2) and then on index-based trace extraction
from SGs (Section 4.3).

4.1 Case Studies
We experiment with 3 case studies consisting of contracts
for the following 3 system models: Fuel Control System
(FCS), Buck DC/DC Converter (BDC), Apollo Lunar Mod-
ule Digital Autopilot (ALMA).

Sections 4.1.1, 4.1.2, and 4.1.3 give more details on these
systems and their associated contracts.

4.1.1 Fuel Control System

The Fuel Control System (FCS) is a Simulink/Stateflow
model (distributed with MathWorks Simulink) of a

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

4008 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022
TABLE 1 TABLE 2
Fuel Control System: Filtering Criteria Buck DC/DC Converter: Filtering Criteria
constraint description constraint description
monitor monitor
1 Each sensor will fail every 15-20 t.u. 1 Vi changes at least every 6 t.u.
2 Whenever a fault on the throttle sensor occurs, a 2 Vi changes at least every 7 t.u.
fault on the speed sensor will occur within 9-11 t.u. 3 R changes at least every 5 t.u.
3 Whenever a fault on the throttle sensor occurs, a 4 R changes at least every 6 t.u.
fault on the speed sensor will occur within 13-15 t.u. 5 Vi and R do not change simultaneously
4 Whenever a fault on the throttle sensor occurs, a fault 6 Whenever V; changes, R will change after 8 or 9 t.u.
on the speed sensor will occur within 18 or 19 t.u. 7 Whenever V; changes, R will change after 2 t.u.
5 Whenever a fault on the EGO sensor occurs, a fault
on the MAP sensor will occur within 16 or 17 t.u.
6 Whenever a fault on the EGO sensor occurs, a fault

on the MAP sensor will occur within 20 or 21 t.u.

controller for a fault tolerant gasoline engine, which has also
been used as a case study in [18], [37], [38], [42], [47], [48],
[74].

The FCS has four sensors: Throttle angle, speed, EGO
(measuring the residual oxygen present in the exhaust gas)
and MAP (manifold absolute pressure). The goal of the con-
trol system is to maintain the air-fuel ratio (the ratio
between the air mass flow rate pumped from the intake
manifold and the fuel mass flow rate injected at the valves)
close to the stoichiometric ratio of 14.6, which represents a
good compromise between power, fuel economy, and emis-
sions. From the measurements coming from its 4 sensors,
the FCS estimates the mixture ratio and provides feedback
to the closed-loop control, yielding an increase or a decrease
of the fuel rate.

The FCS sensors are subject to temporary faults, and the
whole control system is expected to tolerate single sensor
faults. In particular, if a sensor fault is detected, the FCS
changes its control law and operates the engine with a
higher fuel rate to compensate. In case two or more sensors
fail, the FCS shuts down the engine, as the air-fuel ratio can-
not be controlled.

The assumptions monitor Apcg for the FCS we define for
our experiments specifies that only one sensor can be faulty
at any given time, and that each faulty sensor recovers
within the following time bounds (in t.u.): 3-5 (throttle), 5-7
(speed), 10-15 (EGO), 13-17 (MAP). Accordingly, the input
space of the SUV and its contract comprises 6 values: ‘~ (no-
op), ‘fault on s” (one value for each of the four sensors s)
and ‘repair’ (which triggers repair of the single faulty
sensor).

We define the additional monitors listed in Table 1 to fur-
ther constrain the scenarios to focus on in various ways. In
our experiments we will combine such constraints together.

4.1.2 Buck DC/DC Converter

The Buck DC/DC Converter (BDC) is a mixed-mode analog
circuit converting the DC input voltage (denoted as V;) to a
desired DC output voltage (V;). Buck converters are often
used off-chip to scale down the typical laptop battery volt-
age (12-24 V) to the just few volts needed by, e.g., a laptop
processor (the load) as well as on-chip to support dynamic
voltage and frequency scaling in multicore processors (see,

e.g., [54]). A BDC converter is self-regulating, i.e., it is able to
maintain the desired output voltage V, notwithstanding
variations in the input voltage V; or in the load R.

A typical control system for the converter is based on
software (implemented with a micro-controller) controlling
a switch u, implemented with a MOSFET. Our case study
involves the BDC software controller based on fuzzy logic
originally introduced in [62].

The assumptions monitor Agpc for the BDC we define
for our experiments specifies that the input voltage V;
and the load R may vary during time up to at most
+30% of their nominal values, in steps of +5% and
+£10% of their initial values. Also, the assumptions moni-
tor specifies that values for V; and R are stable for at
least 6 and 5 t.u., respectively. Finally, to have a proper
set-up, V; and R are assumed stable to their nominal val-
ues for the first 2 t.u. The above assumptions monitor is
easily definable as A; > A, where sub-monitors A; and
Apr focus on the input voltage and the load separately.

We define the additional monitors listed in Table 2 to
further constrain the scenarios to focus on in various ways.
In our experiments we will combine such constraints
together.

4.1.3 Apollo Lunar Module Digital Autopilot

The Apollo Lunar Module Digital Autopilot (ALMA) is a
Simulink/Stateflow model (distributed with MathWorks
Simulink) defining the logic that implements the phase-
plane control algorithm of the autopilot of the lunar module
used in the Apollo 11 mission.

The Module is equipped with sensors (for yaw, roll and
pitch) and actuators (16 reaction jets to rotate the Module
along the three axes). The controller takes as input a request
to change the Module attitude (i.e., to perform a rotation
along the three axes) as well as its current orientation as
read from the sensors, and computes which reaction jets to
fire to obey the request.

The assumptions monitor Aarnma for the ALMA we
define for our experiments can be defined as A < A,
where sub-monitor A, deals with sensors noise signals, and
A,; with rotation commands and consequent actuation of
reaction jets. Namely:

e A, (assumptions monitor on sensors) specifies that
sensors can be subject to additive noise in the form
of one out of 6 predefined continuous-time signals

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

MANCINI ET AL.: ANY-HORIZON UNIFORM RANDOM SAMPLING AND ENUMERATION OF CONSTRAINED SCENARIOS FOR SIMULATION-BASED... 4009
TABLE 3 TABLE 4
Apollo Lunar Module Digital Autopilot: Filtering Criteria Computation Times of Scenario Generators (SGs)
constraint description SUV SG M Gen(M)
monitor nb. assumptions constraint size of input time [s]
1 Only jets number 15 and 16 may be temporarily monitor monitors space
unavailable _ , FCS 1 Arcs - 6 0.100
2 Whenever a jet is actuated for 2 consecutive t.u., it 2 Arcs 1 6 7.990
will certainly become unavailable within 3 or 4 t.u. 3 Arcs 1,3 6 4.920
3 At most 1 jet is unavailable at any time 4 Arcs 1,2 6 4.610
4 Rotation requests regard at most 1 axis each 5 Ap (;s 1,4 6 6.340
5 Rotation requests regard at most 2 axes each 6 Arcs 1,4,5 6 5.920
6 Noise signal changes for at most 1 sensor at any 7 Arcs 1,4,6 6 6.550
time
7 Noise signal for each sensor remains stable for BDC 1 A 5 0.190
atleast 5 and at most 10 t.u. and changes by +1 2 Ar - 5 0.170
position in the given order 3 A > Ag - 25 0.360
4 A; 1 5 0.120
5 A; 2 5 0.170
6 Ar 3 5 0.110
(which, to ease application of forthcoming additional 7 Ar 4 5 0.160
contraints, are assumed to be sorted by amplitude). 8 AiaAg 5 25 37.340
e A, (assumptions monitor on rotation commands 9 Ai b Ap 2,4,5 25 29.680
. 10 A; <t Ag 2,4,5,6 25 1.940
and reaction jet actuations) specifies that attitude 11 AsaA 1357 25 2160
. . . i R 7979y .
change requests do not ask the autopilot to immedi-
ately undo the rotation requested along any axis in ALMA 1 Ay - 1769472 0.440
the preceding t.u., and that the reaction jets may be 2 As 1 108 0.440
Y N 3 A 1,2 108 448.880
temporary unavailable (unavailabilities are always 4 Ay 1,2,3 108 247.270
recovered within 2-3 t.u.) Although A,; can be fur- 5 Ar; 1,2,3,4 108 55.190
ther decomposed, for simplicity we consider it as a 6 Ay 1,2,3,5 108 188.300
whole. 7 Ay - 27 2.940
We define the additional monitors listed in Table 3 to fur- g js 667 5; 73323380
ther constrain the scenarios to focus on in various ways. In 10 Axiaia 1,2,3,4.6,7 2916 837390

our experiments we will combine such constraints together.

4.2 Computation of Scenario Generators

In this section we show experimental results about genera-
tion of SGs associated to our case studies. Our Python/C
hybrid implementation allows users to define monitors in
different convenient ways: Either using concise object-ori-
ented Python code (one of the best known and simplest to
use general-purpose programming languages), or via stan-
dard Functional Mock-up Unit (FMU) objects. The latter are
opaque binary objects defining dynamical systems accord-
ing to the Functional Mock-up Interface (FMI) open stan-
dard for model exchange. As such, FMUs can be
automatically generated from 100+ different simulation plat-
forms, including Modelica simulators (also open source
implementations via, e.g., [60]), Mathworks Stateflow/
Simulink, and SBML (via, e.g., the tool in [41]).

Indeed, Our SG computing software expects a monitor
object (either a Python object or an FMU, with other lan-
guages/formats that could be similarly supported)
implementing a few API functions (mainly, a function
returning the input values admissible in the current
monitor state and one performing a transition from the
current state given an admissible input value). Such
functions can also be easily provided by the user as to
define a conjoined monitor of other monitors. Our imple-
mentation computes SGs by performing a Depth-First
Search (DFS) on the input monitor treated as a black
box. This means it needs to access only the monitor ini-
tial state and input space, and to repeatedly invoke the

monitor transition function (and get the resulting states,
even if as opaque objects). Saving and restoring monitor
states during search is implemented either within our
software (for Python-defined monitors) or by exploiting
the FMI API (for FMU-defined monitors, for which we
used the implementation in [60]).

In the following experiments, we defined our monitors in
Python. All computations were run on single cores of Intel
(R) i7-4930K computers @ 3.40 GHz with 64 GB RAM.

Table 4 shows, for each SUV and each monitor M (defin-
ing contract assumptions satisfying the given filter condi-
tions), the number of inputs of M (column “size of input
space”) as well as the time (in seconds) needed to compute
Gen(M) (column “time”).

The table shows that computation of the SGs is very effi-
cient. This is also because the decomposition properties of
monitors can be often exploited (see Remarks 1 and 3). For
example, the ALMA SG number 1 has been computed as a
tuple of 19 sub-SGs, (Gen,,,...,Gen,,,Gen; ,...,Gen;):
Gen,,,...,Gen,, are three identical SGs associated to the
assumption subspace of the rotation commands along each
axis, and Gen;,,...,Gen; are 16 identical SGs, each one
associated to the assumption subspace of a single reaction
jet. No combination among such 19 (independent) SGs
needs to be actually computed in order to extract the associ-
ated traces (Remark 3), hence the computation time of
whole SG is the overall time to compute one SG of each
kind.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

4010

Clearly, when sub-monitors are defined which span mul-
tiple assumption subspaces, the SG computation may be
more expensive. For example, to compute ALMA SGs num-
ber 2-6, we need to actually conjoin the 16 above single-jet
SGs; and, to compute SGs number 8-9 we need to conjoin 3
identical SGs, each one defining the assumption subspace of
the noise signal for each sensor, before conjoining the moni-
tor defining constraint 6. On the other hand, the ALMA SG
number 10 is never computed as a whole, but is defined as
the pair of SGs number 5 and number 9 (hence, again its
computation time is the sum of the computation times of
two sub-SGs).

Overall, Table 4 shows that, even when we need to
conjoin multiple sub-SGs because of the presence of con-
straint monitors spanning several assumption subspaces,
the overall computation times are negligible when compared
with the time needed to perform any kind of simulation-
based verification of the SUV. As an example, the time
to compute the most expensive SG in Table 4 (ALMA,
number 10) equals the time to simulate just a few input
traces of the Simulink ALMA SUV model (e.g., less than
50 traces for 200 t.u. each, since simulating each of them
takes around 20 seconds).

4.3 Index-Based Trace Extraction From Scenario
Generators

The decomposed representation of an SG as a tuple of sub-
SGs is also exploited when extracting traces, by relying on
the equivalences of Remark 3 when applicable. Fig. 3 shows
the efficiency and scalability of our monitor-based approach
to scenario generation for simulation-based verification of
contracts for our CPSs. Namely, for each SG Gen(M)
reported in Table 4 and for different values for the time
horizon h, the following statistics are plotted.

Number of Traces. This is the overall number of traces of
length h entailed by Gen(M), as returned by function
nb_traces of Algorithm 1. Unsurprisingly, especially for SGs
defined as tuples of many sub-5Gs, such numbers can easy
jump to tremendously high values.

Trace Extraction Time. This is the average time (in
seconds) for the extraction of a single trace from its
unique index, i.e., the average execution time of function
trace of Algorithm 1. Average trace extraction times
have been computed by extracting 1000 same-horizon
traces uniformly at random, and include the (amortised)
time to compute maps ext and £ (whose share essentially
represents ~ 100% of the overall time). In case of SGs
defined as tuples of sub-SGs, the amortised time to
extract a single trace of horizon h is the sum of the times
to extract a single trace of horizon h from each sub-SG.
In all cases, the average trace extraction times are negligi-
ble (typically a tiny fraction of a second).

Selectivity of Conmstraint Monitors. This is the ratio
between the number of traces of length h entailed by
Gen(M) and the number of traces (of the same horizon)
entailed by the SG computed by ignoring any constraint
monitor. This measures the selectivity of the (conjoined)
applied constraint monitors, i.e., their power to narrow
down the set of traces of interest for the current verification
stage. The extremely small ratios show the crucial importance

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

of constraint monitors to restrict the set of scenarios of inter-
est to those satisfying additional requirements, and to
obtain more reasonable numbers of traces on which to tem-
porarily focus the verification activity. By defining a priority
list of such additional requirements, the verification activity
itself can be guided in a well-controlled way towards the
scenarios of interest.

SG Selectivity (Comparison Against Baseline). This sta-
tistic directly measures the benefits of computing the SG
from the starting monitor M (or collection of monitors)
before extracting traces. Namely, SG selectivity is the ratio
between the number of traces of length h entailed by
Gen(M) and the number of traces (of the same horizon)
entailed by the (possibly blocking) monitor M. Such ratio
can be very small (as small as 9% in our experiments), espe-
cially when combinations of constraints are involved.
Indeed, by skipping the construction of the SG, the verifica-
tion process (e.g., a statistical model checker sampling Mar-
kovian random walks directly on M, which can be thought
of as a baseline) could possibly need, on our examples, to
trash out as many as 91% of the sampled traces (for the FCS
case study), once discovering that they do not represent
bounded-horizon prefixes of legal infinite traces. Clearly,
such ratio can be made arbitrarily small by using more intri-
cate constraints.

5 RELATED WORK

Several approaches, both explicit (see, e.g., [25], [70]) and
symbolic (see, e.g., [2], [17]) have been proposed to sample
uniformly at random finite paths from a finite-state combi-
natorial structure (automaton, combinatorial circuit, or SAT
instance). Differently from such methods, since we focus on
finite prefixes of infinite paths, we first need to restrict the
input monitor (a FSM or a collection thereof) to its non-
blocking portion, via the concept of Scenario Generator, by
essentially computing the most liberal supervisory control-
ler of it.

Automatic generation of admissible operational scenar-
ios to support simulation-based verification of CPSs has
been investigated in [42], [44], [45], [46], [48] as for fully gen-
eral Simulink models, and in [67] as for ESA SIMSAT mod-
els. We note however that the above approaches need to
generate upfront all scenarios of a given length satisfying
the assumptions of the SUV contract in order to be able
to select a subset thereof at random. When the number
of the admissible scenarios is very large (our case) this
can be impossible. Also, in case of blocking combinations
of assumptions and filtering conditions, each generated
scenario should be checked after being generated to
avoid to waste time to simulate the SUV model on not-
truly-admissible scenarios. As shown in Section 4, this
may cause major loss of efficiency of the verification pro-
cess. The approach proposed in this article solves this
problem, by delivering a scenario generator that can effi-
ciently extract scenarios satisfying the SUV contract
assumptions (plus, possibly, additional constraints) of
any length (possibly dynamically revised during verifica-
tion) in any given order (e.g., uniformly at random, or as
a randomised enumeration). This, in turn, enables an

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

1050 |-
1070 |
109 L 1 107 b
10% | -
10 | -

10% L — p
102 |- -
101

MANCINI ET AL.: ANY-HORIZON UNIFORM RANDOM SAMPLING AND ENUMERATION OF CONSTRAINED SCENARIOS FOR SIMULATION-BASED... 4011
1 —— 2 —%— 3 4 5 6—©— 7@ 8—4A— 9 —4A— 10 —v— 11
— 100
10710 N -
X 075
10-20 b -
1 10-% | I i 050 4
I —
S — = 10740 025 1
10-50 b 4
! ! 0.00 . !
50 100 200 100 50 100 200 100

I 1 L
50 100 200 400 50 100 200 400

horizon horizon

Number of traces Trace extraction time [s]

horizon horizon

Constraint monitors selectivity SG selectivity

Fuel Control System

1000 [
10 |
1000 |
100 |
100 |
100 |
102 g — =

100

10-20 [

1040 |
10-60 |

10-50 | *\\\ 1 025 |

10-100 |

200 400
horizon

50 100 200 400
horizon

Number of traces Trace extraction time [s]

50 100 200 400 50 100 200 400

horizon horizon

Constraint monitors selectivity SG selectivity

Buck DC/DC Converter

10900

1080 |
1070 |
10600 |
1050 |
10100 |- 1
10%0 | —
10200 F E——

10100

100 ==

10-100 =
10-200

10-300 |
10-400 |

10-500 |

10-600 |

L
50 100 200 50 100 200
horizon horizon

Number of traces Trace extraction time [s]

10-700 L L
50 100 200 50 100 200

horizon

horizon

Constraint monitors selectivity SG selectivity

Apollo Lunar Module Digital Autopilot

Fig. 3. Number of entailed traces, amortised trace extraction time (over 1000 traces), constraint monitor as well as SG selectivity (showing savings
with respect to a Markovian random walk generator in the input monitors, our baseline) for different horizons (one curve per SG of Table 4).

embarrassingly parallel SUV contract
verification.

System-Level Formal Verification (SLFV) of CPSs via
simulation-based bounded model checking has been stud-
ied in many contexts. Here are a few examples. Simulation-
based reachability analysis for large linear continuous-time
dynamical systems has been investigated in [9]. A simula-
tion based data-driven approach to verification of hybrid
control systems described by a combination of a black-box
simulator for trajectories and a white-box transition graph
specifying mode switches has been investigated in [24]. For-
mal verification of discrete time Simulink models (e.g.,
Stateflow or models restricted to discrete time operators)
with small domain variables has been investigated in, e.g.,
[15], [55], [64], [68]. We note, however, that none of the
above approaches supports simulation-based bounded
model checking of arbitrary simulation models, starting
from contracts defined via monitors.

Simulation-based approaches to SMC have been also
widely investigated, e.g., [11], [14], [16], [26], [28], [29], [35],
[36], [72], [73]. Simulink models for CPSs have been studied
in [21], [74], mixed-analog circuits have been analysed in
[18]. Smart grid control policies have been considered in
[32], [50], [51], [52], biological models have been studied in

approach to

[53], [56], [61], [66]. Our scenario generators are indepen-
dent of the SMC technique employed and can be seamlessly
applied to any of them. Also, thanks to the possibility to
sample the set of scenarios without replacement, our algo-
rithm (differently than Monte Carlo-based SMC) is able to
answer a contract verification problem with certainty in
those cases where a not-too-large number of bounded-hori-
zon scenarios is enough to consider, and enough time is
allocated to simulate all of them (see, e.g., [43], [47]).

Parallel approaches to SMC have been investigated, e.g.,
in [5] in the context of probabilistic properties. Our approach
enables embarrassingly parallel verification. This is because,
once a SG has been generated and a verification horizon has
been selected, the range of indices of admissible traces can be
split upfront into subintervals, and independent verification
processes can be run in parallel on each of them.

Simulation-based falsification of CPS properties has been
extensively investigated for Simulink models. Examples are
in [1], [3], [6], [33], [59]. In particular, [1] falsifies a metric tem-
poral logic property through Monte Carlo optimisation
guided by a robustness metric defined by the property.
Although [1] does not provide a quantification of the level of
assurance achieved when no counterexample is found (as
instead SMC does), we note that the search strategy in [1] can

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

4012

falsify properties that would take too long to falsify using uni-
form sampling. Developing methods that can provide the
benefits of both approaches is, to the best of our knowledge,
an open problem and an important direction for future work.

The supervisory control problem has been introduced in
[57], [58] in a language-theoretic setting. The work in [10]
(respectively, [65]) presents a symbolic (OBDD-based) algo-
rithm for the synthesis of (optimal) supervisory controllers
for finite state systems. Since then, supervisory control the-
ory has been used in many settings, e.g., analysis of data-
base transaction execution [40], concurrent programs
synthesis [34], confidentiality-enforcing in security [22],
model-based system engineering [7], synthesis of control
software [4], [54]. An up to date overview is in [71]. In this
article, we use supervisory control theory through an explicit
(since we face with possibly black-box monitors) implemen-
tation of the symbolic algorithm in [10].

6 CONCLUSION

In this article we focused on the (possibly uniform) random
sampling and (randomised) enumeration of constrained
input scenarios of any horizon for the simulation-based veri-
fication of non-terminating Cyber-Physical Systems (CPSs).

By relying on finite state machines as a succinct, flexible,
and practical means to define constraints to be satisfied by the
System Under Verification (SUV) input scenarios (where such
constraints stem from requirements on the SUV inputs, e.g.,
assumptions and a definition of its operational environment, as
well as from additional conditions aiming at dynamically
restricting the focus of the verification process, e.g., to exercise
some requirements or to counteract vacuity in their satisfac-
tion), we showed how to exploit and combine together results
from supervisory control theory and combinatorics in order
to synthesise a data structure (Scenario Generator, SG) from
which any-horizon scenarios can be efficiently sampled (possi-
bly uniformly at random) or (randomly) enumerated.

Our methods can be seamlessly exploited in virtually all sim-
ulation-based approaches to CPS verification, ranging from simple
random testing to statistical model checking and formal (i.e.,
exhaustive) verification (e.g., bounded model checking).

ACKNOWLEDGMENTS

Authors are grateful to: The anonymous reviewers for their
comments; Michele Laurenti, who contributed to initial
investigations and developed a first prototype of our FMU-
based SG computing software as part of his B.Sc. thesis;
Vadim Alimguzhin, for discussions and technical assistance
on our implementation.

REFERENCES

[1] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivanci¢, and A.
Gupta, “Probabilistic temporal logic falsification of cyber-physical
systems,” ACM Trans. Embedded Comput. Syst., vol. 12, no. 2s, pp.
95:1-95:30, 2013.

[2] D. Achlioptas, Z. S. Hammoudeh, and P. Theodoropoulos, “Fast
sampling of perfectly uniform satisfying assignments, “in Proc.
21st Int. Conf. Theory Appl. Satisfiability Testing, 2018, pp. 135-147.

[3] A. Adimoolam, T. Dang, A. Donzé,]J. Kapinski, and X. Jin,
“Cassification and coverage-based falsification for embedded con-
trol systems,” in Proc. 29th Int. Conf. Comput. Aided Verification,
2017, pp- 483-503.

[4]

[5]

[6]

[7]

[8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci,
“Linearizing discrete-time hybrid systems,” IEEE Trans. Autom.
Control, vol. 62, no. 10, pp. 5357-5364, Oct. 2017.

M. AlTurki and]. Meseguer, “PVeStA: A parallel statistical model
checking and quantitative analysis tool,” in Proc. 4th Int. Conf.
Algebra Coalgebra Comput. Sci., 2011, pp. 386-392.

Y. S. R. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranar-
ayanan, “S-TaLiRo: A tool for temporal logic falsification for
hybrid systems,” in Proc. 17th Int. Conf. Tools Algorithms Construc-
tion Anal. Syst., 2011, pp. 254-257.

J. C. M. Baeten, J. M. van de Mortel-Fronczak, and J. E. Rooda,
“Integration of supervisory control synthesis in model-based sys-
tems engineering,” in, Complex Systems. Berlin, Germany:
Springer, 2016, pp. 39-58.

C. Baier and J. -P. Katoen, Principles of Model Checking (Representa-
tion and Mind Series). Cambridge, MA, USA: MIT Press, 2008.

S. Bak and P. S. Duggirala, “Simulation-equivalent reachability of
large linear systems with inputs,” in Proc. 29th Int. Conf. Comput.
Aided Verification, 2017, pp. 401-420.

S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F.
Franklin, “Supervisory control of a rapid thermal multiproc-
essor,” IEEE Trans. Autom. Control, vol. 38, no. 7, pp. 1040-1059,
Jul. 1993.

A. Basu, S. Bensalem, M. Bozga, B. Caillaud, B. Delahaye, and
A. Legay, “Statistical abstraction and model-checking of large het-
erogeneous systems,” in Proc. Int. Conf. Formal Techn. Distrib. Syst.,
2010, pp. 32—46.

1. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection
of vacuity in temporal model checking,” Formal Methods Syst. Des.,
vol. 18, no. 2, pp. 141-163, 2001.

A. Benveniste et al., “Contracts for system design,” Found. Trends
Electron. Des. Autom., vol. 12, no. 2/3, pp. 124-400, 2018.

J. Bogdoll, L. M. F. Fioriti, A. Hartmanns, and H. Hermanns,
“Partial order methods for statistical model checking and simu-
lation,” in Proc. Int. Conf. Formal Techn. Distrib. Syst., 2011,
pp. 59-74.

P. Bostrom and J. Wiik, “Contract-based verification of discrete-
time multi-rate Simulink models,” Softw. Syst. Model., vol. 15, no.
4, pp. 1141-1161, 2016.

B. Boyer, K. Corre, A. Legay, and S. Sedwards, “PLASMA-lab: A
flexible, distributable statistical model checking library,” in Proc.
10th Int. Conf. Quantitative Eval. Syst., 2013, pp. 160-164.

S. Chakraborty, A. A. Shrotri, and M. Y. Vardi, “On uniformly
sampling traces of a transition system,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Des., 2020, pp. 1-9.

E. M. Clarke, A. Donzé, and A. Legay, “On simulation-based
probabilistic model checking of mixed-analog circuits,” Formal
Methods Syst. Des., vol. 36, no. 2, pp. 97-113, 2010.

E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cam-
bridge, MA, USA: MIT Press, 1999.

E. M. Clarke, T. A. Henzinger, and H. Veith, Handbook of Model
Checking. Berlin, Germany: Springer, 2016.

E. M. Clarke and P. Zuliani, “Statistical model checking for cyber-
physical systems,” in Proc. 9th Int. Symp. Autom. Technol. Verifica-
tion Anal., 2011, pp. 1-12.

J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control
for opacity,” IEEE Trans. Autom. Control, vol. 55, no. 5, pp. 1089—
1100, May 2010.

G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic
specifications for continuous-time signals,” Theor. Comput. Sci.,
vol. 410, no. 42, pp. 4262-4291, 2009.

C. Fan, B. Qj, S. Mitra, and M. Viswanathan, “DryVR: Data-driven
verification and compositional reasoning for automotive systems,”
in Proc. 29th Int. Conf. Comput. Aided Verif., 2017, pp. 441-461.

M. C. Gaudel, “Counting for random testing,” in Proc. 23rd IFIP
Int. Conf. Testing Softw. Syst. 2011, pp. 1-8.

T. Gonschorek, B. Rabeler, F. Ortmeier, and D. Schomburg, “On
improving rare event simulation for probabilistic safety analysis,”
in Proc. 15th ACM-IEEE Int. Conf. Formal Methods Models Syst. Des.,
2017, pp. 15-24.

E. Gradel ef al., Finite Model Theory and its Applications. Berlin,
Germany: Springer, 2007.

R. Grosu and S. A. Smolka, “Quantitative model checking,” in Proc.
1st Int. Symp. Leveraging Appl. Formal Method, 2004, pp. 165-174.

R. Grosu and S. A. Smolka, “Monte Carlo model checking,” in
Proc. 11th Int. Conf. Tools Algorithms Construction Anal. Syst., 2005,
pp- 271-286.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

MANCINI ET AL.: ANY-HORIZON UNIFORM RANDOM SAMPLING AND ENUMERATION OF CONSTRAINED SCENARIOS FOR SIMULATION-BASED...

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous data flow programming language LUSTRE,” Proc. IEEE,
vol. 79, no. 9, pp. 1305-1320, Sep. 1991.

K. Havelund and G. Rosu, “Synthesizing monitors for safety
properties,” in Proc. 8th Int. Conf. Tools Algorithms Construction
Anal. Syst., 2002, pp. 342-356.

B. Hayes, I. Melatti, T. Mancini, M. Prodanovic, and E. Tronci,
“Residential demand management using individualised demand
aware price policies,” IEEE Trans. Smart Grid, vol. 8, no. 3,
pp. 1284-1294, May 2017.

B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric
temporal logic properties in model based design for cyber-physi-
cal systems,” Int.]. Softw. Tools Technol. Transfer, vol. 20, no. 1,
pp- 79-93, 2018.

M. V. Iordache and P.]. Antsaklis, “Concurrent program synthesis
based on supervisory control,” in Proc. IEEE Amer. Control Conf.,
2010, pp. 3378-3383.

C. Jegourel, A. Legay, and S. Sedwards, “A platform for high per-
formance statistical model checking-plasma,” in Proc. 18th Int.
Conf. Tools Algorithms Construction Anal. Syst., 2012, pp. 498-503.
C. Jegourel, A. Legay, and S. Sedwards, “Importance splitting for
statistical model checking rare properties,” in Proc. 25th Int. Conf.
Comput. Aided Verification, 2013, pp. 576-591.

Y. J. Kim, O. Choi, M. Kim, J. Baik, and T. -H. Kim, “Validating
software reliability early through statistical model checking,”
IEEE Softw., vol. 30, no. 3, pp. 35-41, May/Jun. 2013.

Y.J. Kim and M. Kim, “Hybrid statistical model checking tech-
nique for reliable safety critical systems,” in Proc. 23rd IEEE Int.
Symp. Softw. Rel. Eng., 2012, pp. 51-60.

O. Kupferman and M.Y. Vardi, “Vacuity detection in temporal
model checking,” Int.]. Softw. Tools Technol. Transfer, vol. 4, no. 2,
pp- 224-233, 2003.

S. Lafortune, “Modeling and analysis of transaction execution in
database systems,” IEEE Trans. Autom. Control, vol. 33, no. 5,
pp. 439-447, May 1988.

F. Maggioli, T. Mancini, and E. Tronci, “SBML2Modelica: Integrat-
ing biochemical models within open-standard simulation
ecosystems,” Bioinformatics, vol. 36, no. 7, pp. 2165-2172, 2020.

T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Trondi,
“System level formal verification via model checking driven simu-
lation, in Proc. 25th Int. Conf. Comput. Aided Verification, 2013,
pp- 296-312.

T. Mancini, F. Mari, A. Massini, I. Melatti, I. Salvo, and E. Trondi,
“On minimising the maximum expected verification time,” Inf.
Process. Lett., vol. 122, pp. 8-16, 2017.

T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci,
“Anytime system level verification via random exhaustive hard-
ware in the loop simulation,” in Proc. 17th Euromicro Conf. Digit.
Syst. Des., 2014, pp. 236-245.

T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, “System
level formal verification via distributed multi-core hardware in
the loop simulation,” in Proc. 22nd Euromicro Int. Conf. Parallel Dis-
trib. Netw.-Based Process., 2014, pp. 734-742.

T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Trondi,
“SyLVaaS: System level formal verification as a service,” in Proc.
23rd Euromicro Int. Conf. Parallel Distrib. Netw.-Based Process., 2015,
pp- 476-483.

T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci,
“Anytime system level verification via parallel random exhaustive
hardware in the loop simulation,” Microprocessors Microsyst.,
vol. 41, pp. 12-28, 2016.

T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Trondi,
“SyLVaaS: System level formal verification as a service, Funda-
menta Informaticae, vol. 149, no. 1/2, pp. 101-132, 2016.

T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, “On
checking equivalence of simulation scripts,”]. Log. Algebr. Methods
Program., vol. 120, 2021, Art. no. 100640.

T. Mancini ef al., “Demand-aware price policy synthesis and veri-
fication services for smart grids,” in Proc. IEEE Int. Conf. Smart
Grid Commun., 2014, pp. 794-799.

T. Mancini et al., “Parallel statistical model checking for safety ver-
ification in smart grids,” in Proc. IEEE Int. Conf. Smart Grid Com-
mun., 2018, pp. 1-6.

T. Mancini et al., “User flexibility aware price policy synthesis for
smart grids,” in Proc. IEEE 18th Euromicro Conf. Digit. Syst. Des.,
2015, pp. 478-485.

[53]

[54]

[55]

[56]

[571]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

4013

T. Mancini, E. Tronci, I. Salvo, F. Mari, A. Massini, and I. Melatti,
“Computing biological model parameters by parallel statistical
model checking,” in Proc. 3rd Int. Conf. Bioinf. Biomed. Eng., 2015,
pp. 542-554.

F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Model based synthesis
of control software from system level formal specifications,” ACM
Trans. Softw. Eng. Methodol., vol. 23, no. 1, pp. 1-42, 2014.

B. Meenakshi, A. Bhatnagar, and S. Roy, “Tool for translating
Simulink models into input language of a model checker,” in Proc.
8th Int. Conf. Formal Eng. Methods., 2006, pp. 606—620.

N. Miskov-Zivanov, P. Zuliani, E. M. Clarke, and]J. R. Faeder,
“Studies of biological networks with statistical model checking:
Application to immune system cells,” in Proc. ACM Conf. Bioinf.
Comput. Biol. Biomed. Inform., 2013, pp. 728-729.

P.]J. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM |. Control Optim., vol. 25, no. 1,
pp- 206-230, 1987.

P. J. G. Ramadge and W. M. Wonham, “The control of discrete
event systems,” Proc. IEEE, vol. 77, no. 1, pp. 81-98, Jan. 1989.

S. Sankaranarayanan, S. A. Kumar, F. Cameron, B. W. Bequette,
G. Fainekos, and D. M. Maahs, “Model-based falsification of an
artificial pancreas control system,” ACM SIGBED Rev., vol. 14,
no. 2, pp. 24-33, 2017.

S. Sinisi, V. Alimguzhin, T. Mancini, and E. Tronci, “Reconciling
interoperability with efficient verification and validation within
open source simulation environments,” Simul. Modelling Pract.
Theory, vol. 109, 2021, Art. no. 102277.

S. Sinisi, V. Alimguzhin, T. Mancini, E. Tronci, and B. Leeners,
“Complete populations of virtual patients for in silico clinical tri-
als,” Bioinformatics, vol. 36, no. 22 /23, pp. 5465-5472, 2020.

W.-C. So, C. K. Tse, and Y.-S. Lee, “Development of a fuzzy logic
controller for DC/DC converters: Design, computer simulation,
and experimental evaluation,” IEEE Trans. Power Electron., vol. 11,
no. 1, pp. 24-32, Jan. 1996.

E. D. Sontag, Mathematical Control Theory: Deterministic Finite
Dimensional Systems, 2nd ed. Berlin, Germany: Springer, 1998.

S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating dis-
crete-time Simulink to Lustre,” ACM Trans. Embedded Comput.
Syst., vol, 4, no. 4, pp. 779-818, 2005.

E. Tronci, “Optimal finite state supervisory control,” in Proc. 35th
IEEE Conf. Decis. Control., 1996, pp. 2237-2242.

E. Trondi ef al., “Patient-specific models from inter-patient biologi-
cal models and clinical records”, in Proc. IEEE 14th Int. Conf. For-
mal Methods Comput.-Aided Des., 2014, pp. 207-214.

G. Verzino et al., “Model checking driven simulation of sat
procedures,” in Proc. 12th Int. Conf. Space Operations, 2012,
Art. no. 1275611.

M. W. Whalen, D. D. Cofer, S. P. Miller, B. H. Krogh, and
W. Storm, “Integration of formal analysis into a model-based soft-
ware development process,” in Proc. 12th Int. Workshop Formal
Methods Ind. Crit. Syst., 2007, pp 68-84.

M. W. Whalen, A. Rajan, M. P. E. Heimdahl, and S. P. Miller,
“Coverage metrics for requirements-based testing,” in Proc. Int.
Symp. Softw. Testing Anal., 2006, pp. 25-36.

H. S. Wilf, “A unified setting for sequencing, ranking, and selec-
tion algorithms for combinatorial objects,” Advances Math., vol. 24,
no. 3, pp. 281-291, 1977.

W. M. Wonham, Supervisory Control of Discrete-Event Systems.
Berlin, Germany: Springer, 2015, pp. 1396-1404.

H. L. S. Younes, M. Z. Kwiatkowska, G. Norman, and D. Parker,
“Numerical vs. statistical probabilistic model checking,” Int.].
Softw. Tools Technol. Transfer, vol. 8, no. 3, pp. 216-228, 2006.

H. L. S. Younes and R. G. Simmons, “Probabilistic verification of
discrete event systems using acceptance sampling,” in Proc. 14th
Int. Conf. Comput. Aided Verification., 2002, pp. 223-235.

P. Zuliani, A. Platzer, and E. M. Clarke, “Bayesian statistical
model checking with application to Stateflow/SIMULINK ver-
ification,” Formal Methods Syst. Des., vol. 43, no. 2, pp. 338-367,
2013.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on June 29,2024 at 19:24:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

