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Abstract

Large Language Models (LLMs) have shown001
remarkable capabilities, but their development002
has primarily focused on English and other003
high-resource languages, leaving many lan-004
guages underserved. We present a systematic005
approach for developing bilingual LLMs for006
English and Hindi that prioritizes computa-007
tional efficiency. Using a curated dataset com-008
posed of English and Hindi instruction data009
of 485K samples, we instruction tuned models010
such as Qwen-2.5-14B-Instruct and Phi-4 to im-011
prove performance over both English and Hindi.012
Our experiments encompassing seven different013
LLMs of varying parameter sizes and over 140014
training attempts with varying English-Hindi015
training data ratios demonstrated that it is pos-016
sible to significantly improve multilingual per-017
formance without compromising native perfor-018
mance. Further, our approach avoids resource-019
intensive techniques like vocabulary expansion020
or architectural modifications, thus keeping the021
model size small. Our models demonstrate sig-022
nificant improvements, achieving up to 3.51%023
higher average scores on Hindi tasks while024
maintaining or improving English performance.025
Our results indicate that modest fine-tuning026
with culturally and locally informed data can027
bridge performance gaps without incurring sig-028
nificant computational overhead. We release029
our training code, datasets, and models under030
mit and apache licenses to aid further research031
towards under-represented and low-resource032
languages.033

1 Introduction034

The rapid advancement of Large Language Mod-035

els (LLMs) has led to great advances in various036

natural language processing tasks. However, the037

majority of research efforts have disproportionately038

focused on English and a select few high-resource039

languages. This disparity leaves a vast number040

of languages under-served, limiting the global ac- 041

cessibility and applicability of LLM technology. 042

While the lack of readily available data for many 043

languages is a contributing factor, it is not the sole 044

reason. Economic factors and limited access to 045

computational resources also play significant roles 046

in accessibility to target audience. In this work, 047

we address the gap by developing a bilingual LLM 048

that performs well on English and Hindi tasks. We 049

focused on maintaining relatively smaller model 050

sizes and rather than resorting to resource-intensive 051

methods such as vocabulary expansion, block ex- 052

pansion, or additional layers, we employ computa- 053

tionally efficient fine-tuning methods such as Super- 054

vised Fine-Tuning (SFT) (Face, 2025)(von Werra 055

et al., 2020) with Low-Rank Adaptation (LoRA) 056

(Hu et al., 2021) through Unsloth (Daniel Han and 057

team, 2023). Our primary goal was to boost per- 058

formance over Hindi tasks while retaining similar 059

performance over English. 060

We demonstrate our method by fine-tuning 061

Qwen-2.5-14B-Instruct (Qwen et al., 2025) and 062

Phi-4 (Abdin et al., 2024) models on a mixed- 063

language dataset. Moreover, our experiments ex- 064

tend to five other LLMs : Gemma 2 9B, Gemma 065

2 2B (Team, 2024a), Llama 3.1 8B, Llama 3.1 3B 066

(Team, 2024b), Qwen 2.5 3B where over 140 fine- 067

tuning attempts were conducted by varying the 068

distribution ratios of Hindi and English samples 069

of each domain in the training data. These ex- 070

periments provide insights into how performance 071

changes with varying dataset distributions over 072

each domain. This can help in dataset cura- 073

tion to effectively balance bilingual performance. 074

The promising results suggest that enhancing low- 075

resource language capabilities doesn’t necessarily 076

require large-scale architectural changes but can be 077

achieved through targeted, efficient fine-tuning of 078

models with basic capabilities over a language. 079
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2 Related Works080

Prior studies have attempted to address this dispar-081

ity through various techniques, including vocabu-082

lary expansion/modification (Tejaswi et al., 2024)083

(Csaki et al., 2023) (Shi et al., 2024) (Balachan-084

dran, 2023), modifications in architecture (Llama-085

Nanda, 2024) like block expansion and the addition086

of extra layers to accommodate linguistic diversity,087

or continued pre-training followed by instruction088

tuning again (Mahdizadeh Sani et al., 2025) (Kuul-089

mets et al., 2024) (Cui et al., 2023) (Vo et al., 2024)090

(Luukkonen et al., 2023) (Toraman, 2024). How-091

ever, such methods often incur substantial compu-092

tational costs and lead to increase in model sizes.093

Some more closely relevant works would be094

models that are optimized for Hindi (Aryabumi095

et al., 2024), (Dang et al., 2024), (Üstün et al.,096

2024), (BigScienceWorkshop, 2023) and other097

mono-lingual and bi-lingual LLMs focused on098

Hindi (Llama-Nanda, 2024), (Gala et al., 2024),099

(BhabhaAI, 2024), (GenVRadmin, 2024), (Joshi100

et al., 2024).101

3 Datasets102

Despite the existence of datasets to cover several103

domains for Hindi (Khan et al., 2024), (Ramesh104

et al., 2022), we decided to experiment primarily105

with translated / reformatted datasets which do not106

prohibit usage for research/commercial purpose.107

This was done so that the same work can be imple-108

mented/extended to low-resource languages. For109

translation, we used GPT-4o-mini (OpenAI, 2024)110

through Microsoft Azure 1 to translate few datasets111

and benchmarks from English to Hindi : Big-112

Bench-Hard (Suzgun et al., 2022), XNLI (Conneau113

et al., 2018), Xl-Sum (Hasan et al., 2021). Some of114

the benchmarks which already have Hindi subsets115

were used directly : Global MMLU (Singh et al.,116

2024a), IndicXNLI (Aggarwal et al., 2022).Some117

of the publicly available datasets containing cul-118

tural and localized general knowledge like Indian119

legal FAQ(Aditya2411, 2024), UPSC FAQ (prnv19,120

2024), IndianTAX FAQ (msinankhan1, 2024), Indi-121

anMedicines , IndiaCuisines and IndiaTravel Guide122

(cyberblip, 2024) were used to generate instruction-123

response pairs from the tabular format data using124

GPT-4o-mini as a part of our dataset collection.125

These were first translated to the other language126

from the original language then manually verified127

1https://azure.microsoft.com/en-us/products/
ai-services/openai-service/

by multiple annotators to ensure quality in both 128

languages. We also used a few subsets from the 129

Aya collection (Singh et al., 2024b) i.e the trans- 130

lation, simplification and summarization subsets. 131

In total the collected dataset had 3.12M samples 132

with nearly 50:50 ratio of English and Hindi data. 133

Around 90K samples from these cover localized 134

and cultural knowledge. Among the rest, some 135

domains and tasks had higher proportion in the col- 136

lection. We used randomly selected subsets from 137

those datasets while maintaining equal language 138

ratios. After filtering the training data, we had 139

around 485K samples of which 20% are of local- 140

ized domain and cultural knowledge, while the rest 141

are of generic tasks like math, MCQs, reasoning, 142

summarization, rephrasing and translation. 143

4 Instruction Data Formatting 144

During Training we have appended the inputs with 145

different strings based on the task at hand. The de- 146

tails of the appended strings for each task type can 147

be seen in Table 1. The underlined portions were 148

replaced with the corresponding texts for each sam- 149

ple. This modification helped in tuning the model 150

to obey instructions well with less additional to- 151

kens needed for formatting instructions, while not 152

compromising the performance on both the lan- 153

guages. The inputs were preprocessed to replace 154

consecutive spaces with a single space, removal 155

of leading and trailing spaces and replacement of 156

double quotes with single quotes. Same chat tem- 157

plates were used as the original models with input 158

portions processed into our format. 159

Task Input Format

Natural Language Inference "Text1 ### Text2 ### NLI ### :"

Multiple Choice Questions "Question ### A) a, B) b,... ### MCQ ### :"

Numeric Questions "Question ### NUMERIC ### :"

Boolean Questions "Question ### BOOLEAN ### :"

Questions seeking Long responses "Question ### LONG RESPONSE ### :"

Short responses (few words) "Input ### DIRECT RESPONSE ### :"

Coding "Input ### CODE ### :"

Text Summarization "Input ### SUMMARIZE ### :"

Paraphrasing/Rephrasing "Input ### PARAPHRASE ### :"

Translation to specified language "Input ### TRANSLATION [lang] ### :"

Text Simplification/ELI5 "Input ### SIMPLIFY ### :"

Table 1: Formats of Input Texts used in training
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Benchmarks Ratio of ARC-Challenge ARC-Easy MMLU BoolQ Context-MCQ Overall Average

Domain data used? Hindi En Hi En Hi En Hi En Hi En Hi En Hi Tot

No 10% 90.61 73.21 94.82 80.05 75.74 53.60 84.16 77.24 91.4 79.7 87.34 72.76 80.05

No 20% 90.53 73.04 94.99 80.68 75.84 53.95 83.30 75.80 90.9 79.0 87.11 72.49 79.80

No 30% 90.78 73.55 95.16 80.89 75.67 54.00 81.22 74.03 91.2 78.5 86.80 72.19 79.50

No 40% 91.13 73.29 94.95 80.64 76.09 53.85 84.25 72.29 91.1 78.1 87.50 71.63 79.57

No 50% 91.30 73.38 94.99 81.19 75.63 54.21 81.53 73.63 91.0 79.0 86.89 72.28 79.59

No 60% 91.55 75.17 95.75 81.73 75.20 54.29 85.78 75.83 91.7 79.7 88.00 73.35 80.67

No 70% 91.38 74.91 95.71 82.28 75.52 54.32 85.08 80.82 90.7 79.7 87.68 74.41 81.04

No 80% 91.13 74.66 94.99 82.37 75.87 54.53 84.19 78.07 91.4 78.8 87.51 73.68 80.60

No 90% 91.47 75.09 95.50 82.83 75.59 54.69 84.19 79.44 91.2 79.5 87.59 74.30 80.95

No 100% 91.64 74.83 95.50 82.87 75.69 54.47 85.05 79.72 91.6 80.3 87.90 74.44 81.17

Yes 10% 90.96 72.70 94.74 80.26 75.90 53.78 88.47 81.12 90.4 77.3 88.09 73.03 80.56

Yes 20% 90.87 73.29 94.82 81.10 75.89 53.77 88.69 84.27 91.1 78.1 88.27 74.11 81.19

Yes 30% 91.04 73.63 94.91 81.40 75.74 54.24 88.07 81.95 90.8 78.6 88.11 73.96 81.04

Yes 40% 90.78 74.91 94.78 81.65 76.22 54.71 88.78 83.85 90.9 78.8 88.29 74.78 81.53

Yes 50% 91.04 74.74 94.78 81.86 76.34 54.80 88.69 84.61 91.1 78.5 88.39 74.90 81.64

Yes 60% 91.04 75.00 94.87 81.86 75.96 54.76 88.62 84.58 90.9 79.0 88.27 75.04 81.65

Yes 70% 90.87 74.15 94.53 82.11 75.46 54.91 87.86 84.06 91.2 79.7 87.98 74.98 81.48

Yes 80% 90.96 76.62 94.87 82.37 76.04 54.19 88.69 84.89 90.9 78.4 88.29 75.29 81.79

Yes 90% 91.47 75.60 94.74 82.53 75.84 54.77 87.79 84.89 90.8 79.7 88.15 75.50 81.82

Yes 100% 91.21 75.94 94.61 82.70 75.79 55.00 88.29 84.55 91.6 79.7 88.30 75.58 81.94

Original 90.87 69.62 95.45 78.49 74.37 52.16 86.09 78.89 91.2 77.4 87.60 71.31 79.46

Table 2: Results (.2f) from each training attempt with 8% of our training data over Qwen 2.5 14B

Benchmarks Ratio of ARC-Challenge ARC-Easy MMLU BoolQ Context-MCQ Overall Average

Domain data used? Hindi En Hi En Hi En Hi En Hi En Hi En Hi Tot

No 10% 92.24 74.74 97.35 83.67 76.04 50.45 87.52 83.88 86.7 74.7 87.97 73.48 80.72

No 20% 92.06 75.77 97.39 84.18 76.01 51.61 87.13 83.33 87.0 75.0 87.91 73.97 80.94

No 30% 92.24 76.54 97.26 84.26 76.02 51.40 87.43 84.22 86.7 75.6 87.93 74.40 81.16

No 40% 92.15 77.30 97.35 84.97 76.08 51.76 87.16 83.79 87.2 76.1 87.98 74.78 81.38

No 50% 92.24 82.59 97.43 89.39 76.34 57.41 87.61 85.10 86.6 77.7 88.04 78.43 83.24

No 60% 92.24 77.39 97.26 84.76 75.82 51.72 87.46 83.91 86.8 75.5 87.91 74.65 81.28

No 70% 91.98 77.65 97.18 84.89 75.68 51.87 87.49 83.88 86.8 75.8 87.82 74.81 81.32

No 80% 91.21 77.30 97.31 84.64 75.75 51.59 87.31 84.34 86.2 76 87.55 74.77 81.16

No 90% 92.32 77.30 97.35 84.51 75.68 50.96 87.58 84.37 86.6 76.1 87.90 74.64 81.27

No 100% 92.41 78.16 97.39 85.35 75.87 52.12 87.58 83.88 86.1 76.4 87.87 75.18 81.52

Yes 10% 92.15 76.96 97.85 85.31 75.66 50.54 88.53 85.31 86.3 75.0 88.10 74.63 81.36

Yes 20% 92.49 77.05 97.56 85.69 75.49 50.06 88.87 85.29 86.4 74.5 88.16 74.52 81.34

Yes 30% 92.49 78.41 97.69 86.95 75.85 51.28 88.35 85.44 86.5 75.4 88.18 75.50 81.84

Yes 40% 92.66 82.25 97.77 90.36 75.86 56.32 88.65 85.92 86.7 78.3 88.33 82.25 83.48

Yes 50% 93.17 82.93 97.85 91.07 76.52 57.87 88.31 85.22 87.1 78.7 88.59 79.16 83.88

Yes 60% 92.49 78.83 97.51 87.07 75.91 52.04 88.07 84.21 86.6 75.9 88.11 75.61 81.86

Yes 70% 92.40 79.18 97.64 86.70 75.94 51.84 88.31 83.97 86.1 75.8 88.08 75.49 81.79

Yes 80% 92.66 79.35 97.56 87.75 76.04 52.05 88.13 84.34 85.9 76.6 88.06 76.02 82.04

Yes 90% 92.58 79.69 97.60 87.96 76.06 52.49 88.23 84.25 86.3 76.4 88.15 76.16 82.16

Yes 100% 92.49 80.12 97.69 87.58 75.95 52.55 88.32 84.52 86.0 76.2 88.09 76.19 82.14

Original 92.41 79.18 97.31 86.87 74.67 53.24 86.30 82.72 86.3 75.7 87.40 75.54 81.47

Table 3: Results (.2f) from each training attempt with 8% of our training data over Phi 4 14B
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5 Initial Evaluation160

Before proceeding to train over the full dataset, we161

have first experimented through several attempts by162

training on a subset of our data with/without includ-163

ing training data of benchmarks’ domains and by164

varying ratio of each language in the dataset used.165

The subsets contain at most 2000 samples from166

each dataset source for both languages combined.167

We used normalized next-token log probabilities168

for MCQs and Boolean benchmarks during the ini-169

tial evaluation stage to evaluate the models. We170

then compared how the scores changed with these171

variations and compared with the original models172

to gather insights into optimal final dataset sam-173

pling approaches. The results over Qwen-2.5-14B174

and Phi-4 can be seen below in Table 2 and Table 3175

respectively. The results for the rest of the models176

can be found in Appendix C.177

6 Dataset Distribution and Ordering178

The performance of models from initial tests didn’t179

vary significantly with/without being trained on180

math data. The performance on Math subsets of181

MMLU as well remained similar on both languages182

with/without being trained on math samples. Since183

we would be training on a large number of samples,184

we decided to still use a considerable amount of185

math samples. A significant performance gap was186

observed over boolean benchmarks with a nearly187

3% increase in English and 5% increase in Hindi.188

Hence, we decided to use a slightly higher amount189

of boolean questions’ samples in the final dataset.190

The language ratios for each domain in the final191

dataset were determined based on the initial train-192

ing data ratios that gave the best results. The sam-193

ples of the final dataset were sorted over input194

lengths in ascending order with a certain number195

of longest samples placed in the beginning. This196

number was set equal to the total effective batch197

size (i.e the product of batch size and gradient ac-198

cumulation steps). The samples related to local199

and cultural knowledge were then placed such that200

they are evenly spread out in the dataset except the201

initial batch. More info on the dataset can be found202

in Appendix B. The training methods and details203

can be found in Appendix A.204

7 End Evaluation205

Apart from the benchmarks seen in Table 2 and206

Table 3, we perform evaluations over additional207

benchmarks like : MMLU-Pro (Wang et al., 2024), 208

BigBench-Hard (Suzgun et al., 2022), MuSR 209

(Sprague et al., 2024), GPQA (Rein et al., 2023), 210

MATH-Hard (Hendrycks et al., 2021). We used 211

open-llm-leaderboard 2 (Fourrier et al., 2024) for 212

evaluation over some of the benchmarks through 213

eval-harness framework(Gao et al., 2021). Table 7 214

demonstrates The performance of our models in 215

comparison with the original models over several 216

benchmarks. We did observe variations in the 217

scores from open-llm-leaderboard and the corre- 218

sponding benchmark scores which were self re- 219

ported for the original models. We used the scores 220

from the leaderboard for all models over those 221

benchmarks for reproducibility a fair comparison. 222

The evaluation methods used can be seen in Table 4. 223

Benchmark Eval Criteria Eval Framework

ARC-C 0-Shot log probabilities

ARC-E 0-Shot log probabilities

BoolQ 0-Shot log probabilities

CMCQ 0-Shot log probabilities

MMLU 0-Shot log probabilities

MMLU-Pro 5-Shot eval-harness

BBH 3-Shot eval-harness

GPQA 0-Shot eval-harness

MATH Hard 4-Shot eval-harness

MuSR 0-Shot eval-harness

Table 4: Benchmarks used for evaluation and their de-
tails

224

8 Comparisons 225

For additional comparisons, we compare the per- 226

formance of our models with other Hindi bilin- 227

gual LLMs and other open-source LLMs which are 228

optimized for Hindi. Due to the large variations 229

in number of parameters of our models and other 230

comparable models, we compare average bench- 231

mark performance versus the model size in terms 232

of VRAM requirement. The comparisons over En- 233

glish and Hindi benchmarks along side our Qwen 234

and phi models can be seen in Table 5 and Table 6. 235

The comparison of size of models to average of 236

benchmarks scores can be seen in Figure 1. Over 237

the benchmarks of higher difficulty, our models 238

have consistently outperformed models over twice 239

their size as seen in Table 5. 240

2https://huggingface.co/spaces/
open-llm-leaderboard/open_llm_leaderboard
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Figure 1: Model Performance (Avg. benchmark score) VS Model Size for English (left) and Hindi (right)

Model ↓ ARC-C ARC-E BoolQ CMCQ MMLU Average* MMLU-Pro GPQA MuSR BBH MATH

AryaBhatta-GemmaUltra-8.5B 22.70 25.04 22.95 62.23 23.70 31.32 22.66 25.34 42.72 41.12 2.95

Airavata-7B 25.09 30.47 25.31 62.17 33.20 35.25 16.35 27.43 37.57 36.00 13.60

sarvam-1-2B 30.03 33.25 62.17 42.80 27.90 39.23 - - - - -

Nemotron-4-Mini-Hindi-Instruct 55.80 71.63 62.11 68.10 43.20 60.17 25.95 30.87 41.53 40.11 2.04

Llama-3-Nanda-10B-Chat 65.36 80.64 82.29 67.60 50.61 69.30 - - - - -

Krutrim-2-12b-instruct 67.32 81.10 84.74 76.30 56.10 73.11 - - - - -

aya-expanse-8b 74.06 87.08 86.45 83.30 56.89 77.56 30.04 30.29 37.17 49.42 7.02

aya-expanse-32B 85.41 95.08 90.43 89.80 69.71 86.08 41.30 32.55 38.62 56.29 13.37

Our Qwen Model (14b) 90.61 94.82 88.53 90.70 75.00 87.93 52.63 36.24 44.84 64.97 25.08

Our Phi Model (14b) 97.39 92.24 87.65 87.40 75.59 88.05 52.39 39.77 49.07 66.97 23.11

Table 5: Metrics (.2f) of our and other LLMs over several English benchmarks

*Averages for English were calculated using just the first 5 benchmarks for similar comparison with Hindi

The best and second best for each benchmark are highlighted as bold+underlined and underlined respectively

Model ↓ ARC-C ARC-E BoolQ CMCQ MMLU Average

AryaBhatta-GemmaUltra-8.5B 22.70 25.08 22.95 62.17 23.80 31.34

Airavata-7B 22.87 25.13 23.28 62.17 33.20 33.33

sarvam-1-2B 32.76 35.06 62.16 47.10 24.22 40.26

Llama-3-Nanda-10B-Chat 45.99 60.56 71.96 54.70 36.35 53.91

Nemotron-4-Mini-Hindi-4B-Instruct 50.68 63.72 68.74 51.30 37.18 54.32

Krutrim-2-12b-instruct 56.83 70.66 78.86 64.10 46.51 63.39

aya-expanse-8b 57.42 72.90 80.42 69.00 43.39 64.63

aya-expanse-32B 73.29 85.48 87.73 79.70 56.96 76.63

Our Qwen Model (14b) 74.06 81.23 84.07 78.20 53.85 74.82

Our Phi Model (14b) 81.74 89.06 86.02 78.70 56.39 78.38

Table 6: Metrics (.2f) of our and other LLMs over several Hindi benchmarks

The best and second best for each benchmark are highlighted as bold+underlined and underlined respectively
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Benchmark Lang Qwen-2.5- Our Qwen Change Phi-4 Our Phi Change
14B-Instruct

ARC-Easy
En 95.45 94.82 ▼ 0.63 97.31 97.39 ▲ 0.08
Hi 78.49 81.23 ▲ 2.74 86.87 89.06 ▲ 2.19

ARC-Challenge
En 90.87 90.61 ▼ 0.26 92.41 92.24 ▼ 0.17
Hi 69.62 74.06 ▲ 4.44 79.18 81.74 ▲ 2.56

BoolQ
En 86.09 88.53 ▲ 2.44 86.30 87.65 ▲ 1.35
Hi 78.89 84.07 ▲ 5.18 82.72 86.02 ▲ 3.30

Context-MCQ
En 91.20 90.70 ▼ 0.50 86.30 87.40 ▲ 1.10
Hi 77.40 78.20 ▲ 0.80 75.70 78.70 ▲ 3.00

MMLU
En 74.37 75.00 ▲ 0.63 74.67 75.59 ▲ 0.92
Hi 52.16 53.85 ▲ 1.69 53.24 56.39 ▲ 3.15

Average En 87.60 87.93 ▲ 0.33 87.40 88.05 ▲ 0.65
Hi 71.31 74.82 ▲ 3.51 75.54 78.38 ▲ 2.84

Overall 79.46 81.38 ▲ 1.92 81.47 83.22 ▲ 1.75

Table 7: Performance of our models compared to originals over each benchmark : evals through log likelihoods

Benchmark Lang Qwen-2.5- Our Qwen Change Phi-4 Our Phi Change
14B-Instruct

MMLU-Pro En 49.04 52.63 ▲ 3.59 53.78 52.39 ▼ 1.39
MATH hard En 00.00 25.08 ▲ N/A 12.31 23.11 ▲ 10.80

GPQA En 32.21 36.24 ▲ 4.03 33.72 39.77 ▲ 6.05
MuSR En 40.87 44.84 ▲ 3.97 41.01 49.07 ▲ 8.06

BigBench-Hard En 63.74 64.97 ▲ 1.23 68.60 66.97 ▼ 1.63
Average 37.17 44.75 ▲ 7.58 41.88 46.26 ▲ 4.38

Table 8: Performance of our models compared to originals over each benchmark : evals through eval-harness

8.1 Domain wise Performance change241

The performance of our models compared to the242

original versions over MMLU-pro can be seen in243

Table 9. The type of questions the models faced244

through MMLU-Pro maybe of of the same domain245

but were of different subdomains and task types246

compared to those in our datasets. For example,247

The CS benchmarks’ questions were MCQs about248

various areas of computer science while our train-249

ing data over CS was solely from MBPP (Austin250

et al., 2021) which consists of a text input and a251

python code as an output. Further the only source252

of training data we used for economics consist of253

TAX filing FAQs over Indian context and primarily254

in Hindi. Hence such domains’ data usage was255

mentioned as N/A. The domains which had a per-256

formance boost in our models without being in257

training data had questions of the form of fill-mask258

or text completion which were similar to the train-259

ing data taken from Winogrande-XL (Sakaguchi260

et al., 2021) and PIQA (Bisk et al., 2020) spanning261

several domains.262

8.2 Model biases over choices 263

The observations from domain wise performance 264

changes by Phi and Qwen were significantly dif- 265

ferent. The domains which were well represented 266

in our training data had a significant boost on both 267

languages of MMLU. Despite training on MCQs 268

which consist of 2-4 options, similar results of im- 269

provement were seen over MMLU-Pro which has 270

upto 10 options. On the other hand, Phi-4 had a 271

higher performance boost over MMLU which has 272

the same number of options as the samples in the 273

training data, but the performance over MMLU-Pro 274

dropped irrespective of domain. The distribution 275

of choices made by each of our LLMs and the cor- 276

responding original implementation can be seen in 277

Figure 2. The instruction tuning dataset we used 278

had an equal distribution of each of the choices 279

among MCQ samples. The original Qwen model 280

overwhelmingly chose from the final two options 281

while our model was able to generalize well de- 282

spite not being trained on MCQs with 10 choices, 283

with an inclination towards the 5th option. On the 284
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Model → Qwen-2.5-14B Change PHI-4 Change Training
Domain ↓ Original Ours Original Ours Data Used

Health 60.39 65.65 ▲ 5.26 65.40 65.40 ▲ 0.00 Yes
Biology 76.15 79.36 ▲ 3.21 80.89 81.03 ▲ 0.14 Yes

Engineering 38.08 46.85 ▲ 8.77 47.06 44.17 ▼ 2.89 Yes
Math 39.53 44.78 ▲ 5.25 41.01 38.79 ▼ 2.22 Yes

Physics 39.80 41.96 ▲ 2.16 42.80 39.11 ▼ 3.69 Yes
Chemistry 35.78 38.25 ▲ 2.47 36.75 35.69 ▼ 1.06 Yes

Law 37.78 41.42 ▲ 3.64 48.14 47.14 ▼ 1.00 Yes
Philosophy 53.51 57.92 ▲ 4.41 62.32 59.72 ▼ 2.60 N/A
Psychology 70.05 73.81 ▲ 3.76 76.32 76.82 ▲ 0.50 N/A

Business 37.90 45.63 ▲ 7.73 40.94 38.91 ▼ 2.03 N/A
CS 50.73 53.17 ▲ 2.44 60.00 58.78 ▼ 1.22 N/A

Economics 66.71 66.47 ▼ 0.24 68.84 69.08 ▲ 0.26 No
History 58.01 57.74 ▼ 0.27 63.78 62.73 ▼ 1.05 No
Other 54.44 53.68 ▼ 0.76 57.47 56.71 ▼ 0.76 No

Table 9: Domain wise performance changes over MMLU-Pro (English) with our models

Figure 2: Distribution of each model’s choices over MMLU-Pro

other hand the original phi-4 was able to perform285

better than its counterpart, but despite being fine-286

tuned with equal distribution of choices, the model287

displayed an inclination towards the first choice288

among the list of options. The extent of this bias289

varied between each domain significantly. More290

on this can be seen in Appendix D. As our models291

were fine-tuned from the original models’ instruct 292

variants, the biases were assumed to have been car- 293

ried forward. Our models were able to respond 294

well with less biases in choices over the domains 295

whose samples are present in large quantities in 296

our training data. To further look into this, we 297

tried to fine-tune the base version of qwen-2.5-14B 298
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rather than the instruct model to see the choices299

made on MMLU-Pro, while most of our dataset’s300

samples of MCQs were having 4-5 samples, it was301

reflected in the choices made as seen in Figure 3302

which demonstrates the issue within the original303

model similar to previous works demonstrating sen-304

sitivity on models’ sensitivity to order of choices305

(Pezeshkpour and Hruschka, 2024). But a well306

balanced instruction tuning dataset can minimize307

this issue or an evaluation independent of order of308

choices (Zheng et al., 2023). A slight tilt from left309

to right in Figure 2 and Table 2 can be expected as310

not all questions are accompanied by 10 options311

with a considerable amount having less.

Figure 3: our custom instruction tuned model’s choices
over MMLU-Pro

312

9 Conclusion313

We demonstrate that enhancing low-resource lan-314

guage capabilities in LLMs is possible through tar-315

geted fine-tuning rather than complex architectural316

changes. Our work shows that a 12-15B param-317

eter LLM provides an effective balance between318

performance and accessibility, requiring just 30GB319

RAM in bf16 or 10GB of RAM in 4-bit quanti-320

zation. The performance analysis reveals that our321

Phi-4 model excels in general-purpose tasks, while322

the Qwen model shows stronger adaptation to spe-323

cific domains, as evidenced by the domain-wise324

performance changes in Table 9. Our approach325

of using primarily translated datasets, except for326

culturally specific knowledge, makes this method327

readily adaptable to other low-resource languages.328

To further push the research in low-resource lan-329

guages, we release our training code, datasets, and330

models under commercially permissible licenses.331

Figure 4: Emissions : open-llm-leaderboard evaluation

9.1 Scalability to other languages 332

As not every language has readily available datasets 333

of even a few domains, we took an approach of us- 334

ing just translated datasets for all domains other 335

than those used for localized and cultural knowl- 336

edge addition. This would enable reusing the ap- 337

proach to build bi-lingual LLMs optimized for 338

other languages as long as a proficient LLM sup- 339

ports the language to translate the texts fluently. 340

9.2 Model Efficiency 341

Unsloth’s version of phi-4 (Unsloth AI, 2023) with 342

llama architecture led to an improved performance 343

but increased emissions. Our model resulted in 344

lesser emissions during evaluation over the open- 345

llm-leaderboard, while improving the model’s per- 346

formance. A comparison of our model to the orig- 347

inal and unsloth’s phi-4 can be seen in Figure 4. 348

349

10 License 350

Our Qwen and Phi models are available through 351

the same licenses as the models we used as a base 352

i.e apache-2.0 and mit respectively. the models can 353

be accessed here 3,4 The training code and datasets 354

are publicly available here 5,6. All datasets used for 355

training the models have either a copyleft license, 356

with the rest having no license and are publicly 357

available on huggingface. 358

3Our Phi-4 model :
4Our Qwen model :
5Code :
6Datasets :
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Limitations359

Our models, although demonstrating robust perfor-360

mance across multiple benchmarks, may produce361

inaccurate, incomplete, or irrelevant outputs due to362

knowledge cutoffs in its training data. The models363

although working well directly with the original364

chat template are better optimized for our prompt365

formats. The approach presented has been tested366

in several attempts with Hindi, we believe a similar367

boost can be obtained over other languages as well,368

but has not been tested yet.369
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A Model Replication717

The hyper-parameters used for training can be seen718

below in Table 10. The inital training attempts us-719

ing a portion of the data (i.e 8% samples) were done720

on various different devices, the final models were721

trained on a single H200 SXM for 55,56,54 hours722

each using Qwen2.5-14B-Instruct, Phi-4, Qwen2.5-723

14B-base respectively.

Hyperparameter Value
Seed Row Shuffling 1024

Dataset Sampling 1024
Training 1024

Random State 1024
Epochs 1

Total Batch Size 600
Batch Size 40

Gradient Accumulation 15
Learning Rate 2e-5
Weight Decay 1e-2
Warmup Steps 0

Table 10: Training hyper-parameters used

724
The initially collected dataset sources, sample 725

sizes and the later used sample counts can be seen 726

in Table 11 along with the ratios of each language. 727

The sampling within each dataset is done at random 728

using the seed specified in Table 10. The samples 729

were sorted in ascending order based on input size 730

and the longest 600 samples in terms of input token 731

count were added in the beginning of the training 732

data. 733

B Datasets and Benchmarks Info 734

The benchmarks used can be seen in Table 12 along 735

their features like domain, original source, total 736

number of samples, number of samples used and 737

the ratio of Hindi samples among those used. 738

C Results from other attempts 739

The results from other attempts with a smaller 740

sized LLMs can be seen in Llama-3.1-8B: Table 14, 741

Llama-3.2-3B: Table 15, Gemma-2-9B: Table 16, 742

Gemma-2-2B: Table 17, Qwen-2.5-3B: Table 13. 743

744

D Model Choices 745

The choices selected by each of the models over 746

each domain of MMLU-Pro can be seen in the 747

below images Figure 5 to Figure 18. 748
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Domain Dataset Total Used Hindi Original
Samples Samples Ratio Source

Legal FAQ India Law 51,210 51,210 N/A (Aditya2411, 2024)
Cooking Recipes India Recipe 13,742 13,742 * **

Travel FAQ India Travel 2,000 2,000 N/A (cyberblip, 2024)
Tax FAQ India TAX 2,235 2,235 N/A (msinankhan1, 2024)

General Knowledge India UPSC 620 620 N/A (prnv19, 2024)
General BoolQ 18,799 18,799 N/A (Clark et al., 2019)
General Context MCQs 18,505 18,505 N/A (Lai et al., 2017)

(Welbl et al., 2017b)
General ARC challenge 2,835 2,835 N/A (Clark et al., 2018)
General ARC Easy 5,637 5,637 N/A (Clark et al., 2018)
General Winogrande XL 82,973 10,000 85 (Sakaguchi et al., 2021)
Biology Camel Biology 39,990 39,990 N/A (Li et al., 2023)
Biology Bio Instruct 49,956 49,956 N/A (Tran et al., 2024)
Coding MBPP 928 928 N/A (Austin et al., 2021)

Chemistry Camel Chemistry 39,975 39,975 N/A (Li et al., 2023)
NLI XNLI/IndicXNLI 395,192 20,000 80 (Conneau et al., 2018)

(Aggarwal et al., 2022)
Math MATH QA 68,583 10,000 50 (Amini et al., 2019)
Math Math Hard 4,593 4,593 N/A (Hendrycks et al., 2021)
Math Math Easy 14,953 14,953 N/A (Hendrycks et al., 2021)
Math GSM8K 14,937 14,973 N/A (Cobbe et al., 2021)
Math Camel Math 99,626 10,000 50 (Li et al., 2023)
Math META Math 199,782 20,000 80 (Yu et al., 2023)
Math Orca Math 399,847 10,000 50 (Mitra et al., 2024)

Medical MedMCQA 372,779 20,000 70 (Pal et al., 2022)
Paraphrasing Aya Paraphrase 1,001 1,001 N/A (Singh et al., 2024b)

Physics Camel Physics 39,995 39,995 N/A (Li et al., 2023)
Reasoning PIQA 35,396 35,396 N/A (Bisk et al., 2020)
Reasoning SIQA 65,630 20,000 80 (Sap et al., 2019)

Simplification Aya Simplify 994,944 10,000 60 (Singh et al., 2024b)
Summarization XLSum 79,625 10,000 50 (Hasan et al., 2021)

Translation Aya Translate 1,156 1,156 N/A (Singh et al., 2024b)
3,117,450 485,469

Table 11: Sources of our training dataset’s samples and their distributions

* indicates that the original dataset had a language mix of English and Hindi. Among the rest, initial sample counts
were 50:50 for each language and were later individually sampled based on the ratios mentioned for each dataset.

** The dataset at the time of data collection was publicly available on hf without a restrictive license, but is currently
made private.
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Benchmark Source Processed Dataset
ARC Easy (Clark et al., 2018)

ARC Challenge (Clark et al., 2018)
Context MCQs (Lai et al., 2017), (Welbl et al., 2017b)

BoolQ (Clark et al., 2019)
MMLU (Hendrycks et al., 2020), (Singh et al., 2024a)

MMLU-Pro (Wang et al., 2024)
MATH-HARD (Hendrycks et al., 2021)

GPQA (Rein et al., 2023)
MuSR (Sprague et al., 2024)

Bigbench-Hard (Suzgun et al., 2022)

Table 12: Benchmarks used and links to thier processed versions of Hindi and English

Benchmarks Ratio of ARC-Challenge ARC-Easy MMLU BoolQ Context-MCQ Overall Average

Data used? Hindi En Hi En Hi En Hi En Hi En Hi En Hi Tot

No 10% 78.07 39.51 88.97 47.98 59.42 35.44 62.26 62.25 82.0 56.4 74.14 48.31 61.23

No 20% 77.65 40.19 88.72 50.00 59.92 34.63 62.35 62.28 75.9 53.2 72.91 48.06 60.48

No 30% 77.65 39.51 88.51 49.79 59.33 34.76 62.32 62.16 76.9 55.5 72.94 48.34 60.64

No 40% 77.56 40.44 88.59 50.63 59.92 34.38 62.39 63.35 76.1 52.5 72.91 48.04 60.48

No 50% 78.16 41.89 88.72 50.55 60.97 35.23 62.35 62.31 77.5 54.2 73.54 48.83 61.18

No 60% 78.50 41.81 88.72 50.46 61.00 35.40 62.35 62.31 78.2 54.7 73.75 48.93 61.34

No 70% 78.33 42.06 88.89 50.46 60.85 35.37 62.35 62.31 78.1 54.9 73.70 49.02 61.36

No 80% 78.24 42.32 88.59 50.55 60.86 35.36 62.35 62.31 78.1 55.3 73.62 49.16 61.39

No 90% 76.79 39.76 88.34 45.92 57.91 32.35 62.23 62.19 77.9 50.6 72.63 46.16 59.39

No 100% 75.77 38.91 87.88 45.54 57.76 31.98 62.26 62.19 76.7 50.8 72.07 45.88 58.97

Yes 10% 78.50 42.32 89.86 50.93 60.03 35.39 71.25 62.74 80.6 56.3 76.04 49.53 62.79

Yes 20% 77.99 39.93 88.80 50.25 59.74 34.51 62.54 62.07 74.5 53.2 72.71 47.99 60.35

Yes 30% 77.82 40.53 88.76 50.42 59.47 34.57 62.75 62.19 74.0 50.9 72.56 47.72 60.14

Yes 40% 77.82 40.53 88.64 50.38 59.67 34.09 62.72 62.22 71.3 49.3 72.03 47.30 59.67

Yes 50% 78.16 41.13 88.59 51.18 60.72 34.95 62.66 62.28 75.2 52.3 73.06 48.36 60.71

Yes 60% 78.50 41.47 88.72 50.42 60.68 35.17 62.45 62.34 76.3 53.1 73.33 48.50 60.91

Yes 70% 78.50 42.06 88.68 50.51 60.71 35.12 62.45 62.37 76.2 53.5 73.30 48.71 61.01

Yes 80% 78.58 42.24 88.72 50.51 60.76 35.24 62.42 62.37 76.6 53.6 73.41 48.79 61.10

Yes 90% 77.22 42.15 88.85 49.87 57.39 30.28 64.86 64.03 69.0 43.7 71.46 46.00 58.73

Yes 100% 75.77 38.91 87.88 45.54 57.76 31.98 63.79 62.80 72.1 43.7 71.46 44.58 58.02

Original 77.73 41.21 88.26 49.20 60.25 34.26 62.20 62.25 76.3 52.7 72.94 47.92 60.43

Table 13: Results (.2f) from each training attempt with 5% of our training data over Qwen2.5-3B-Instruct
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Benchmarks Ratio of ARC-Challenge ARC-Easy MMLU BoolQ Context-MCQ Overall Average

Data used? Hindi En Hi En Hi En Hi En Hi En Hi En Hi Tot

No 10% 73.89 61.06 85.94 66.66 62.30 42.11 64.13 61.06 82.8 64.4 73.81 57.52 65.67

No 20% 75.43 55.72 87.37 69.40 63.09 42.95 63.94 61.49 83.2 65.3 74.60 58.97 66.78

No 30% 75.40 55.97 87.04 69.95 62.98 43.03 62.69 59.90 83.2 65.8 74.26 58.93 66.60

No 40% 73.63 54.86 86.66 68.56 62.34 42.25 63.91 61.76 82.2 65.2 73.74 58.52 66.13

No 50% 74.23 55.89 86.66 70.12 62.60 42.35 64.80 61.79 82.4 65.0 74.13 59.02 66.58

No 60% 72.70 54.86 84.81 67.97 60.65 42.06 64.46 60.97 82.1 65.2 72.94 58.21 65.58

No 70% 75.26 56.23 88.80 69.82 62.53 42.27 65.72 60.14 82.2 64.9 74.90 58.67 66.79

No 80% 74.23 54.69 86.24 68.10 62.18 42.62 64.53 61.27 81.5 64.9 73.73 58.31 66.02

No 90% 73.81 54.95 85.90 67.89 61.81 42.33 63.88 61.39 81.3 63.5 73.34 58.01 65.68

No 100% 73.81 55.03 86.07 68.64 61.57 42.30 63.88 57.48 80.8 64.3 73.22 57.55 65.38

Yes 10% 79.27 59.13 91.50 75.59 63.91 42.49 83.98 74.49 83.5 66.0 80.43 63.54 71.98

Yes 20% 79.35 58.79 91.41 76.47 64.01 43.65 85.96 79.66 84.5 66.6 81.05 65.03 73.04

Yes 30% 79.01 61.69 92.47 76.43 64.04 43.17 84.95 77.82 83.4 66.8 80.77 65.18 72.98

Yes 40% 79.18 61.35 91.62 76.68 63.62 43.27 84.98 74.79 83.7 65.6 80.62 64.34 72.48

Yes 50% 78.92 60.92 91.67 76.18 62.95 43.15 85.26 78.19 83.8 67.5 80.52 65.19 72.85

Yes 60% 77.39 60.07 92.00 75.97 63.44 43.43 85.02 78.37 82.2 66.5 80.01 64.87 72.44

Yes 70% 78.33 61.35 91.71 76.09 63.67 43.41 83.36 75.28 82.7 66.0 79.95 64.45 72.20

Yes 80% 76.79 58.79 89.73 75.42 62.84 42.91 83.27 74.27 82.2 66.4 78.97 63.56 71.26

Yes 90% 76.88 59.81 90.40 75.00 62.69 43.06 83.03 73.97 82.0 65.7 79.00 63.51 71.25

Yes 100% 76.54 59.81 89.73 75.72 62.54 43.70 82.35 77.00 81.2 67.5 78.47 64.74 71.61

Original 75.34 53.92 84.76 65.78 61.69 43.32 65.17 62.16 78.4 67.1 73.07 58.45 65.76

Table 14: Results (.2f) from each training attempt with 5% of our training data over LLama 3.1 8B

Benchmarks Ratio of ARC-Challenge ARC-Easy MMLU BoolQ Context-MCQ Overall Average

Data used? Hindi En Hi En Hi En Hi En Hi En Hi En Hi Tot

No 10% 60.83 41.97 75.71 55.47 51.60 33.69 65.44 62.71 68.6 49.1 64.44 48.59 56.51

No 20% 60.75 43.60 76.85 55.80 52.79 33.86 65.01 62.55 69.2 51.1 64.92 49.38 57.15

No 30% 60.66 42.32 76.26 55.13 53.28 33.84 64.64 62.19 68.4 51.0 64.65 48.89 56.77

No 40% 60.49 41.97 75.46 55.13 52.28 33.67 64.46 62.61 69.7 50.9 64.48 48.86 56.67

No 50% 60.41 44.28 76.09 55.51 51.71 31.63 65.20 62.77 68.0 52.3 64.28 49.30 56.79

No 60% 60.49 45.56 76.34 56.43 51.24 32.36 65.29 62.98 68.7 51.8 64.41 49.82 57.12

No 70% 62.20 45.64 77.31 57.23 52.50 32.01 64.98 62.49 68.9 51.5 65.18 49.78 57.48

No 80% 61.94 44.88 76.85 56.18 52.48 33.06 65.56 61.76 70.4 53.7 61.94 49.91 57.68

No 90% 63.31 46.84 77.99 58.21 49.12 30.54 63.70 62.28 68.6 52.8 64.54 50.13 57.34

No 100% 62.71 45.98 77.98 58.83 52.07 33.01 65.38 62.09 70.4 54.3 65.71 50.84 58.28

Yes 10% 69.45 48.37 84.34 62.03 55.20 33.56 72.75 72.52 72.0 53.1 70.75 53.92 62.33

Yes 20% 68.08 47.01 84.13 61.32 54.30 33.34 70.15 69.65 72.3 52.8 69.79 52.82 61.31

Yes 30% 67.91 47.52 84.13 62.28 54.46 34.80 72.47 73.17 71.8 55.5 70.15 54.65 62.40

Yes 40% 68.08 47.44 83.58 62.41 53.88 33.69 70.36 71.67 72.6 53.8 69.70 53.80 61.75

Yes 50% 69.11 48.38 83.88 63.26 54.00 34.05 73.58 74.30 71.1 54.0 70.33 54.80 62.57

Yes 60% 67.15 47.86 83.37 62.92 53.61 33.34 75.16 75.55 70.9 53.0 70.04 54.53 62.28

Yes 70% 67.15 47.95 83.16 62.75 53.55 34.17 73.57 72.77 71.6 54.3 69.80 54.39 62.10

Yes 80% 67.58 46.08 82.95 62.54 51.69 32.10 73.12 73.66 70.0 51.7 69.06 53.21 61.14

Yes 90% 63.91 47.18 79.88 60.35 48.89 31.31 69.51 62.96 68.7 54.0 66.18 51.16 58.70

Yes 100% 68.00 48.63 83.12 62.96 52.87 35.91 70.06 67.85 71.8 55.8 69.17 54.23 61.70

Original 62.12 40.70 74.12 52.48 50.37 31.30 62.72 62.22 68.6 41.2 63.58 45.58 54.58

Table 15: Results (.2f) from each training attempt with 5% of our training data over Llama 3.2 3B
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Benchmarks Ratio of ARC-Challenge ARC-Easy MMLU BoolQ Context-MCQ Overall Average

Data used? Hindi En Hi En Hi En Hi En Hi En Hi En Hi Tot

No 10% 86.52 75.25 94.52 87.24 68.53 53.93 86.82 83.69 86.7 79.0 84.62 75.82 80.22

No 20% 87.11 75.68 94.57 87.11 68.46 53.89 86.66 83.42 86.9 78.6 84.74 75.80 80.27

No 30% 86.34 75.42 94.86 87.28 68.74 53.85 86.91 83.94 87.2 78.4 84.81 75.42 80.29

No 40% 86.86 75.85 95.32 87.45 68.88 54.36 86.60 83.76 86.8 78.1 84.89 75.91 80.40

No 50% 86.86 75.51 95.11 87.41 68.49 53.96 86.82 84.06 87.1 77.8 84.88 75.75 80.31

No 60% 87.11 76.62 95.70 87.83 68.43 53.73 86.60 84.15 87.2 78.3 85.01 76.12 80.57

No 70% 88.65 78.07 95.16 89.27 71.32 56.13 87.76 85.01 88.3 79.1 86.24 77.51 81.88

No 80% 88.22 77.47 95.24 88.93 70.00 55.06 87.19 85.13 87.1 85.13 85.55 77.04 81.30

No 90% 86.94 76.00 95.28 87.58 69.42 54.61 86.48 84.12 87.0 79.2 85.02 76.30 80.66

No 100% 88.48 76.36 95.37 89.10 70.00 54.36 86.64 84.34 87.1 79.1 85.52 76.65 81.08

Yes 10% 87.79 78.24 95.70 90.27 68.87 54.18 86.85 84.91 87.2 79.1 85.28 77.34 81.31

Yes 20% 87.54 77.81 95.45 90.31 68.76 53.99 86.85 84.91 87.5 79.8 85.22 77.36 81.29

Yes 30% 87.88 78.41 95.87 90.10 68.87 54.60 86.81 85.19 87.4 79.3 85.37 77.50 81.44

Yes 40% 87.80 77.38 94.91 89.86 68.25 53.56 86.85 84.83 87.5 79.3 85.06 77.39 81.02

Yes 50% 87.46 77.73 95.37 90.28 68.25 53.57 86.97 84.89 87.2 79.7 85.05 77.23 81.14

Yes 60% 88.31 78.41 95.74 90.65 68.62 54.18 86.81 85.19 88.0 78.9 85.50 77.47 81.48

Yes 70% 89.16 78.84 95.20 89.56 71.17 56.20 88.04 85.56 88.5 78.4 86.42 77.71 82.06

Yes 80% 87.62 78.58 95.45 89.94 67.91 52.55 86.88 84.12 87.6 78.1 85.09 76.66 80.87

Yes 90% 88.22 78.66 95.37 90.19 68.59 53.70 86.85 84.30 87.5 79.8 85.30 77.33 81.32

Yes 100% 87.88 78.24 95.03 90.02 69.21 53.31 87.00 85.44 87.7 79.4 85.37 77.28 81.32

Original 88.74 79.18 95.33 88.76 71.00 56.14 87.89 84.67 88.2 77.3 86.23 77.21 81.72

Table 16: Results (.2f) from each training attempt with 5% of our training data over Gemma 2 9B

Benchmarks Ratio of ARC-Challenge ARC-Easy MMLU BoolQ Context-MCQ Overall Average

Data used? Hindi En Hi En Hi En Hi En Hi En Hi En Hi Tot

No 10% 65.36 45.39 80.26 58.96 49.54 35.22 77.22 75.19 64.7 54.6 67.42 53.87 60.64

No 20% 64.93 45.31 80.01 58.80 49.20 35.08 76.64 74.89 64.4 54.0 67.04 53.61 60.32

No 30% 64.68 46.67 80.35 59.43 49.53 35.17 76.06 74.92 65.0 54.6 67.12 54.16 60.64

No 40% 70.22 49.66 83.63 63.97 52.08 36.83 81.83 76.48 68.0 57.6 71.15 56.91 64.03

No 50% 61.86 45.81 79.04 57.99 48.09 34.49 76.54 75.34 63.7 54.0 65.85 53.52 59.69

No 60% 61.60 45.56 79.58 58.58 47.99 34.39 75.65 75.71 64.6 54.0 65.88 53.65 59.77

No 70% 63.22 47.78 63.22 59.42 48.26 34.33 76.97 76.13 62.9 52.9 66.33 54.11 60.22

No 80% 65.53 46.50 81.73 61.03 50.29 35.40 76.79 75.80 64.6 55.3 67.79 54.81 61.30

No 90% 65.10 46.59 81.73 60.19 50.14 35.41 76.64 75.01 65.0 54.1 67.72 54.26 60.99

No 100% 67.92 48.81 82.79 62.33 51.42 36.02 80.24 76.14 67.6 56.9 69.99 56.04 63.01

Yes 10% 66.38 48.12 82.24 62.33 49.00 34.76 75.35 72.56 64.2 54.4 67.43 54.43 60.93

Yes 20% 66.13 48.89 82.24 62.67 48.85 34.84 74.92 71.86 63.8 53.0 67.19 54.25 60.72

Yes 30% 65.53 48.46 82.15 62.25 49.11 34.87 73.91 71.03 64.2 53.1 66.98 53.94 60.46

Yes 40% 67.92 48.04 82.45 62.42 50.67 36.23 77.00 75.19 65.4 55.6 68.69 55.49 62.09

Yes 50% 68.08 51.02 83.96 64.05 47.99 34.64 76.66 74.30 63.9 54.7 68.12 55.74 61.93

Yes 60% 68.08 50.34 84.21 64.52 47.76 34.62 72.75 70.32 63.5 53.7 67.26 54.70 60.98

Yes 70% 68.25 51.45 84.55 64.73 48.31 34.78 75.87 73.35 64.6 54.3 68.31 55.72 62.02

Yes 80% 66.47 49.83 83.50 63.55 48.70 34.62 73.67 69.90 63.4 53.9 67.15 54.36 60.75

Yes 90% 67.06 49.74 83.42 63.76 49.44 35.32 73.49 69.50 64.2 53.3 67.52 54.32 60.92

Yes 100% 67.58 49.40 83.00 63.09 50.93 36.01 75.75 73.72 66.0 54.6 68.65 55.36 62.00

Original 71.50 51.62 84.05 64.31 51.13 36.49 82.69 77.12 70.9 59.2 72.05 57.74 64.90

Table 17: Results (.2f) from each training attempt with 5% of our training data over Gemma 2 2B
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Figure 5: Each model’s choice distribution over MMLU-Pro : Biology

Figure 6: Each model’s choice distribution over MMLU-Pro : Business
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Figure 7: Each model’s choice distribution over MMLU-Pro : Chemistry

Figure 8: Each model’s choice distribution over MMLU-Pro : CS
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Figure 9: Each model’s choice distribution over MMLU-Pro : Economics

Figure 10: Each model’s choice distribution over MMLU-Pro : Engineering
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Figure 11: Each model’s choice distribution over MMLU-Pro : Health

Figure 12: Each model’s choice distribution over MMLU-Pro : History
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Figure 13: Each model’s choice distribution over MMLU-Pro : Law

Figure 14: Each model’s choice distribution over MMLU-Pro : Math
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Figure 15: Each model’s choice distribution over MMLU-Pro : Other

Figure 16: Each model’s choice distribution over MMLU-Pro : Philosophy
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Figure 17: Each model’s choice distribution over MMLU-Pro : Physics

Figure 18: Each model’s choice distribution over MMLU-Pro : Psychology
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