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ABSTRACT

This paper considers estimating nonparametric functions in a reproducing kernel
Hilbert space (RKHS) for kernel learning problems with large-scale data. Kernel
learning with large-scale data is computationally intensive, particularly due to the
high cost and complexity of tuning parameter selection. Existing sampling methods
for scalable kernel learning, such as the leverage score-based sampling method
and its variants, are designed to sketch the kernel matrix to minimize the expected
global (in-sample or out-of-sample) prediction error. In complement to existing
methods, this paper proposes an optimal informative sampling method to estimate
nonparametric functions pointwise when the subsample size is potentially small.
Our method is tailored for scenarios where computational resources are limited,
yet accurate pointwise prediction at each test location is desired. It also serves
as a complement to existing fast kernel learning algorithms, such as the Nystrom
method and FALKON, which rely on randomly selected sub-datasets. Theoretical
studies compare the efficiency of the proposed method to that based on the full data
with optimally selected tuning parameters. Numerical experiments demonstrate
the statistical efficiency of the proposed method over some existing methods based
on randomly sampled data.

1 INTRODUCTION

Large-scale data sets that have a large number of records with a great variety of resources are
increasingly common in many applications such as genomics and genetics, neuro-imaging, and
finance. While the increasing amount of data size brings tremendous potential for discoveries and
makes it possible to fit complex models such as deep neural network models, it also brings tremendous
challenges to many existing algorithms to process and analyze data quickly and efficiently. This paper
is on large-scale data sets with large sample sizes. With increasing complexity and heterogeneity,
nonparametric models are reliable and realistic because of their flexibility in the assumption and
structure of the model. This paper focuses on nonparametric regularizations in an RKHS or the
so-called kernel machine methods |Wahba| (1990); Wang| (2011); |Gu/(2013); |L1u et al.| (2007).

The statistical properties of the kernel machine methods have been well-documented. However, the
computation of the kernel machine method can be challenging for large-scale data sets. It is well
known that the computational cost is at the order of O(NN?) using a direct computation, where N
is the sample size. To address the computational challenge, Zhang et al.|(2015) developed a divide-
and-conquer approach. The divide-and-conquer approach |Chen et al.| (2021); L1 et al.|(2013) has
been one of the most frequently used strategies. It first breaks down large-scale data into independent
processable subsets, sending them to distributed machines for processing to obtain intermediate
results, and these intermediate results are merged into final results. Besides the divide-and-conquer
approach, there have been various approximation methods developed in the literature, including
random Fourier features |Yang et al.|(2012); Rahimi & Recht|(2007), the Nystrom method [Williams &
Seeger| (2001), FALKON Rudi et al.|(2017) and EigenPro method MA & Belkin|(2017); Abedsoltan
et al.|(2023). While random Fourier features approximate the functions in an RKHS using a smaller
number of randomly sampled basis functions, Nystrém method applies the idea of sketch to replace
the empirical kernel matrix by a much smaller matrix with subsampled columns. The FALKON and
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EigenPro method combine the preconditioning idea and the random projection idea to speed up the
computation.

The article aims to develop a sub-data selection-based method for nonparametric function estimation
in an RKHS to achieve the best statistical efficiency when the computational resource is limited
Yao & Wang| (2021)). The goal of our sub-data selection is to select the most informative subset of
observations, which is different from the existing sketch methods based on subsampling methods,
such as leverage score-based samplingAlaoui & Mahoney|(2015); Rudi et al.| (2015} |2018)), which
have been developed to subsample columns of a kernel matrix. There exist abundant sub-data
selection approaches for data generated from parametric models. For example, Drineas et al.| (2000));
Mahoney|(2011) considered leverage sampling andWang et al.|(2019)) proposed an information- based
optimal subdata selection (IBOSS) to find subdata with the maximual information matrix under the
D- optimality for linear regression models. Ma & Sun| (2015)) developed local case-control sampling
and|Cheng et al.|(2020) generalized the idea of IBOSS for logistic regression models. In addition,
subdata selection approaches have been proposed for generalized linear models |Ai et al.| (2018)) and
quantile regression [Wang & Mal(2020). A comprehensive review of these existing subdata selection
methods for parametric models may be found in[Yao & Wang| (2021)); (Chang|(2024). However, there
are limited research on subdata selection methods targeting on nonparametric function estimation.
Recently, (Chang| (2024) developed a stratified subsampling approach for a supervised learning in a
nonparametric model setting. It is based on a partitioning estimate that is similar to the regression tree
or Nadaraya-Watson kernel estimator, which is different from the kernel machine method discussed
in this paper.

Inspired by the existing sub-data selection methods, we propose a new sub-data selection methodology
to estimate nonparametric functions in an RKHS. We first apply a clustering method such as k-means
or other clustering algorithms to select representative data points. The nonparametric function values
in each cluster are roughly approximated by the functional values at representative data points. To
decide the sampling weights for each cluster, we minimize the MSE of the nonparametric function
estimator that is constructed based on the selected representative data points. However, the sampling
weights depend on a tuning parameter which is unknown. To address this issue, we adopted a
one-step iteration procedure to choose a tuning parameter using representative data points via the
BIC criterion or cross-validation. The optimal weights depend on the cluster centers decided by the
K-means algorithm, the chosen kernel function, and the selected tuning parameter. After selecting
multiple sub-datasets using the optimal weights, we apply the kernel machine method to each selected
sub-dataset and aggregate the estimators to obtain the final estimate.

From a theoretical perspective, the proposed method is designed to select a sub-sample (with a fixed
sample size) to minimize the expected prediction error at every test data point, hence it minimizes
the expected prediction error for every test data set. It is different from existing research for sketch
method in kernel learning, which has established its optimality to minimize the expected global
prediction error. For example, Musco & Musco| (2017) consider in-sample prediction error and
Rudi et al.| (2015} [2018)); |Alaoui & Mahoney| (2015) consider the expected global generalization
(out-of-sample) prediction error. While these results are interesting and important, these results
do not directly guarantee generalization performance for every test data point. Our contribution
is to establish the rate of convergence of the proposed estimator, and demonstrate its advantage in
improving the convergence rate of the RHKS estimator based on subsamples obtained from a Simple
Random Sampling (SRS). The results are interesting since they confirm that the proposed sub-data
selection is informative in making use of the full data to improve the prediction error.

From a numerical perspective, our numerical results show that our proposed method is computa-
tionally efficient when compared with a Simple Random Sample (SRS) approach and maintains
estimation accuracy when compared with the full data approach. The integrated mean squared errors
of our proposed method are comparable to that of using full data while computational time is as
good as the SRS based approach. More importantly, the proposed approach achieves a good balance
between statistical efficiency and computational efficiency when compared with the full data-based
and the SRS-based approaches. In addition, we show that the proposed method has better MSE in
out-of-sample prediction than existing sketch algorithms, including Nystrom Williams & Seeger
(2001) and FALKON [Rudi et al.| (2017). We further compare the performance of the proposed
method with these sketch algorithms in the YearPredictionMSE data set. The proposed method has
demonstrated its superior performance in improving the prediction MSE.
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This manuscript is organized in the following way. In Section 2, we provide the basic framework, an
introduction of regularization in RHKS with full data sets, and the proposed method for regularization
in RKHS with large-scale data, with the details of our algorithm. Theoretical justification is given in
Section 3. The numerical and simulation studies are included in Section 4. Section 5 includes an
application of the proposed method to a real data set and compares it with other sketch algorithms. A
brief discussion is provided in Section 6. All the technical proofs are included in the Appendix.

2 REGULARIZATION IN REPRODUCING KERNEL HILBERT SPACES

Consider a continuous response Y; and a p-dimensional covariate vector X;, modeled as
Y= fo(X;) +e, i=1,...,N,

where ¢; are i.i.d. errors with mean zero and variance o2. We assume f, belongs to a reproducing
kernel Hilbert space (RKHS) #% induced by a symmetric, positive-definite kernel K : 2" x 2~ — R.

If 1 is a finite measure on 2" and [ K (z,2)du(x) < oo, then K (z,y) = >272, Njib; () (y),
where {¢;} form an orthonormal basis in L?(xz), A; > 0, and Z;il Aj < o0o. The RKHS is

2
J

e = {10 = et - <och

with norm [| ||, = Z;)O 165 /). To estimate fo, we solve

<.

fuar = arg min —Z )+ A7l f I

where A\r > 0 is a tuning parameter By applying representer theorem, the solution has the finite
expansion fy . () = Zz ) a1 K (z, X)), with coefficients a = (ay,...,ay)". Plugging this into
the objective yields J(a) = +[ly — Ka|? + Ara " Ka, where K € RNXN has entries K (X;, X;).

The solution is @ = N*1A51 (I + Nfl)\;lK)fly. Thus, for any z,

Fyoe (@) = NTIAZK (2, X1), ., K (2, X3)] (T+ N7IA'K) y.

This requires inverting an /N x [N matrix, which is computationally demanding for large N. Moreover,
performance depends on selecting A7, adding to the computational cost.

2.1 PROPOSED METHOD FOR REGULARIZATION IN AN RKHS

Given data pairs (X1,¥1), -+, (Xn,yn) for a large N, the goal is to estimate a nonparametric
function f(x) for a given x. Because N is very large, a direct application of kernel machine
method is time-consuming even not possible due to the inverse of an N x N matrix. Given a
limited computational resource, we consider a sub-data selection approach by selecting a subsample
(Xkys Ui )5+ (X, Y, ) with size n from the original sample with size N while maximizing the

statistical efficiency of the resulting kernel machine method estimator f )\( ).

Our proposed procedure makes use of the smoothness property of the nonparametric functions by
approximating the functional values of fy(x) by a set of representative data points. To find the repre-
sentative points, we firstly apply a clustering approach to cluster /N data points into L representative
clusters {Cy, - - - ,Cy}, and then re-sampling with optimal weights {wy 1,¢, - , Wy 1.} from these
L clusters to obtain these representative data points.

The optimal weights {w, 1 ¢, ,we 1 c} are chosen by maximizing the statistical efficiency of
the proposed estimator. Assume {C1,---,Cp} are centers of the clusters {Cy,---,Cp} and the
i-th cluster has N; data points so that Zz;l N,; = N, the centers of those clusters are denoted by
{C4,--+,CL}. Suppose we select a subdata set with size n, among them n; data points are from the

1-th cluster so that n; = nw, ; ¢ and Zle Wy i,c = 1. For all the data selected from the cluster C;,
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Algorithm 1 Proposed Weighted Resampling RKHS Estimator

Require: Data {(X;,y;)} ;, subsample size n, number of clusters L, number of resamples B and
kernel K
Ensure: f;A'T (2)

1: Clustering. Given X, -, X,y and subsample size n, apply a clustering method such as K-
means (or random projected k-means) to partition the dataset into L clusters Cy,--- ,Cy,. Let the
cluster centers be {Cy,--- ,CL}.

2: Tuning A*. Apply cross-validation or BIC method to find the tuning parameter \* for the RKHS
regression using the representative points {C1, -+ ,CL}.

3: Assigning weights. Using \*, compute optimal cluster weights w, - - - , wy, as defined in (1)) for
selecting clusters Cy, - - - , Cr. For the i-th cluster C; with size IV;, assign the weight for the j-th
data point in C; as w;; = wy;,c/n; for j = 1,..., n,;. Denote the resulting pointwise weights
for {X1, - -, Xn}bywi(z), -, wy(x).

4: forb=1to B do

5: Resampling with weights. Using the weights wy(x),--- ,wy(x), sample n points from
{X1,---,Xn} toobtain {X}, -, X*} and corresponding outcomes y* = (yi,--- ,y*)".

6: Fit RKHS estimator. Using the selected sample { X7, -, X*}, compute the estimator
f:(b)

7
WA

() for the b-th sampling with \* selected by a BIC approach or cross-validation, where

£ (@) = n NP K (2, X7), . K (2, X)) (T A7 K Ty

’
nAL

and K* is the n x n matrix with entries {i (X}, X7 )}7';_;.
7: end for

B
. 1 o
8: Aggregate: The final estimate of f(z) isf,, (z) = B E fnf\lf) ().
T
b=1

we approximate them as replications of the representative data centers C;. Then, the corresponding
mean model for 3; = 2?21 Yij/n; s

yi = fo(Ci) + &,
where €; = Z?’:l vi;/m; has mean zero and variance o2 /(nw,; c). We then consider the following
RKHS nonparametric estimation of fo(z) given the above model:
forl@) = LN YK (2,C), ..., K(z,C) YA+ L7IA Ky,
where K. is an L x L matrix with (¢, j)-th element {K(C;, C}) ﬁjzl andy = (g1, ,9r)-
Conditional on the centers {C1, - - - , C'}, the variance of the estimate f(z) is therefore

var{ for(z)} = o’ LA K(2,C1),..., K(z,Cp) } (I+ L_l)‘_lKC)_lDw (T+L7IATK)
X {K(.’17701)7 . ,K(x,CL)}I,

where D,, = diag(1/wyz 1,0, ,1/we.r,c). Because E(y) = {fo(C1),- -, fo(CL)}, the bias of
the estimator f;(x) is independent of the choices of w,, ; ¢’s. Therefore, to minimize the conditional

1

MSE of fSA(x), we could choose w, ; ¢’s that minimize the variance of fs,\(x):

Uy i 0 = arg w‘r’iyczor?zi:nwm,i'C:1var{ far(a)}. (1)

It is not difficult to check that var{ fs A(z)} = L=302\72 ZiLzl K2, /wy ;.c. Therefore, the optimal
weights w; ; ¢’s that minimize the variance is

L
w0 = (Kl /Y 1K, @
=1

where K ; is the i-th element of the vector K, which is defined by
K(z,Cy) K.
K,=T+L K)o — | -
K(z,Cp) K.
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Because the above optimal weights depend on the tuning parameter A, an initial tuning parameter is
needed to determine the optimal weights. We have compared an iterative algorithm with a one-step
iterative algorithm, and we found that their performance were similar. To save computational time,
we adapted the one-step iterative procedure. More specifically, our one-step iterative procedure is
shown in Algorithm

For the tuning procedure in Algorithm it requires fs A+ () which is an RKHS estimator of fq(x)
based on the centers selected. However, the estimator depends on the tuning parameter \*, which
means the inverse operation in the estimator needed to computed for every possible candidates .
This leads to a big computational burden. To mitigate computational burden for selecting the tuning
parameter \*, we apply eigen-decomposition to the kernel matrix K* = QAQ”, where @ is an
orthogonal matrix that is independent of \, and A = diag(; ), is a diagonal matrix. Then, we can

write .
foxz (z) = KIQAQTy",
where K, = (K(z, X)), isann x 1 vector and Ay~ = diag(\* + 6;)™,.

K2

3 THEORECTICAL JUSTIFICATION

3.1 ASYMPTOTIC RATE AND TUNING WITH FULL DATA

Theorem 1. Assume X has a probability density function 7(z) and E[¢)5(X)] < co. If A; decays at

the order of 5% for some k > 1 where A;j is the j-th largest eigenvalue of the positive definite K (-, -)
and k is the decaying rate. For any function in RKHS || f[|%,, = Z;’;l a?Xj, aiX; =j"%(a> 1),

. . ok . .
then the optimal rate of tuning parameter is: Ay < N~ *+¥1+(-1 and the corresponding asymptotic
integrated mean squared error is

A~ (a—1)+k
1Fx = Joll* = Op (N~ @757,
where ||g|| is the Lo norm of a function g.

The details of the proof of Theorem [I]are given in the Appendix. Comparing with the results in the
existing literature (e.g.,[Yuan & Cai (2010)), the results in Theorem [I]give a more specific rate of
convergence for the functions f € #% with a specific form specified in Theorem [T} If we consider
all the possible functions in #%, the rate of convergence is given by (letting a — 1)

A _ k.

1F 55z = foll> = Op (N7FT).
For functions in a univariate Sobolev space of order m, the eigenvalue of the corresponding reproduc-
ing kernel is at the order of A\; < j‘2m Yuan & Cai|(2010), then the rate of the convergence is given
by

PS __2m

1F5 a7 = foll> = Op(N7Z057).

The above rate is known to be optimal in the literature (e.g. [Zhang et al.|(2015)).

Theorem [1|serves for multi-purposes. First, the rate of convergence results of Theorem 1| can be
used as a basis for defining an efficiency index to compare different methods. The efficiency index
is design to measure the trade-off between computational and statistical efficiency for the full data
method, so that the efficiency index is roughly constant for all the sample sizes N. This would
facilitate the comparison among different methods. Based on the results in Theorem[I} we may define
the Efficiency Index as IMSE~(?m+1)/(2m) N=1/3  Details are given in Section 4. Second, Theorem
[[]provides a general guidance about the order of tuning parameter choices subject to a constant. Given
the optimal order of the tuning parameter was given in Theorem |1} we might specified a range for the
tuning parameter Ap. However, it is subject to a constant. To pin-down the constant, we adapted a
commonly used method based on the BIC criterion Liu et al.|(2007)). Specifically, for a full data set,
we might choose A by minimizing the following BIC criterion:

BIC(\r) = Nlog [(y — fnar) T (y — faag)] + log(Nu[N TN K(I+ NTIGK) 7,

where fxx,. = (fnag (1), faag (@n))’. Similar to the full data method, we can also apply BIC
criterion to select \* for the proposed method. Third, the rate of convergence in Theorem [I]enables
us to compare between the estimator based on the full data and the proposed estimator in Theorem 2]
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3.2 ASYMPTOTIC RATE AND TUNING WITH RESAMPLING UNDER PROPOSED METHOD

For any given z¢, the proposed resampling weights and any sample z; € C; where C; is the 1-
th cluster with its corresponding center C; and its cluster size n;, the weight/probability of z;
to be selected is: w;(xg) = N, way,1,c, Where wy 1 ¢ was defined in . For each zg, define

Wao,j = E Zivzl wi(xo) 1/)? (xl)} Denote the resampling subset of size n for the given ¢ is

S (xo) = {=F,...,x}}. Then the proposed estimator of f(z) is anT,zo (z0), which is given by:

Foxpan = arg min {157 (= f(@0) 4 Nl f -

FEA AN )
Define the functional fn A, of the proposed estimator by collecting the estimators at all g € 2
together fn,\/T = { fn Ny o (x0) 120 € X }, where 2 is the space of the predictor/feature x.
Theorem 2. Assume X has a probability density function 7(z) and E[¢)5(X)] < co. If A; decays at

the order of j =" for some k > 1 where ); is the j-th largest eigenvalue of the positive definite K (-, -)

and k is the decaying rate. For any function in RKHS [ f||3,, = Z;’il aZXj, a3\ =7 “(a>1).

Assume wy,, ; = 428 for 23 < k < 4f3. Then, the optimal rate of tuning parameter is: DY

_k—28 . . . 2 .
n~ «#2-15  and the corresponding asymptotic IMSE of the estimator f;, y; is

f 2 — DTy
g = fol " = Op(n ' .

Detailed proof of Theorem[2]is given in the Appendix. Based on the results in Theorem [2] the rate of
convergence of the proposed estimator is H fn Ay — f0H2 = Op(n_ I (F=18) ) for any functions
in the RKHS 7% (by letting a — 1). Because k < 473, the rate of the proposed estimator is faster
than the rate of the RKHS estimator sampled by the SRS with the same subsample size, which is

__k . . . . . .
given by n~ ®+1. The improvement of the estimator rate is due to the informative sampling, where
the sampling weights carry the information of the full data set.

4 SIMULATION STUDY

4.1 PROPOSED VS. SIMPLE RANDOM SAMPLE VS. FULL DATA

Starting with the simplest case, we evaluate the numerical performance of our proposed method in
estimating the unknown function fo(x) = 5 cos z, and compare it with that based on the full data and
data sampled using a simple random sampling (SRS) strategy. The full sample size is denoted by N
and the subsample size is denoted by n. We consider N = 1000, 5000, 10000 and n = N/10, N/5
with kmeans centers of size L = n to compare estimation performance as the subsample size varies.

The random errors €1, . .., €, ~ N(0,0.5) i.i.d.. The kernel function K (-, -) was Gaussian, with its
dispersion parameter set to the sample standard deviation. Tuning parameters for the nonparametric
estimation were selected using the BIC criterion. Results are based on 100 replications, and B = 1
was used for the proposed method.

To evaluate each method, we compute the integrated mean squared error (IMSE) and record the
computational time. To compare methods A and R, we use relative efficiency (RE):

_ Efficiency,  (IMSE4)~*(Timey4) ™

 Efficiency,  (IMSEg)—2(Timeg)—#’

where R is the full-data estimator and we choose o = 5/4, 5 = 1/3 . RE < 1 indicates method A

performed worse than the full data method; RE > 1 indicates method A performed better than the
full data method.

RE

Table E] summarizes IMSE, computation time, and RE for three methods: full-data, proposed, and
SRS. Times are averaged per replication; EI is baseline-scaled to full data. The simulation study was
implemented in an R environment.
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Table 1: IMSE, average timing (hr:min’sec”), efficiency index (EI), and relative efficiency (RE) for
fo(z) = 5cos(x).

Full Data Proposed SRS

N n  IMSE Time | IMSE Time RE | IMSE Time RE
1000 100 0.0034 0:0°2 | 0.0074  0:000 2.20 | 0.0297  0:00 0.68
1000 200 0.0034 0:0°2 | 0.0046 0:000 2.66 | 0.0152  0:0°0 0.89
5000 500 0.0008 0:3°35 | 0.0017 0:000 3.26 | 0.0067 0:0°0 0.85
5000 1000 0.0008  0:3°35 | 0.0011  0:0°’3 2.72 | 0.0036  0:0'2 0.76
10000 1000 0.0005 0:22°16 | 0.0009  0:0'3 3.49 | 0.0036  0:02 0.76
10000 2000 0.0005 0:22°16 | 0.0006 0:0°26 2.98 | 0.0020 0:0’14 0.81

4.2 SIMULATION STUDY: FALKON VS. PROPOSED VS. NYSTROM

To assess the performance of our proposed K-means—based resampling method in higher dimensional
case, we conducted a simulation study comparing it with two existing methods: (i) FALKON |Rudi
et al.[(2017), a fast kernel ridge regression (KRR) solver combining Nystrom approximation with a
preconditioned conjugate gradient (PCG) scheme; (ii) a Nystrom KRR baseline [Williams & Seeger
(2001).

Data generation. Let X = (X1,..., X20)7 be a 20-dimensional predictor with X % Unif [0,1].
The response is generated by

Y = f(X4,...,X5) +¢, f(z) = 10sin(rz29) + 20(z3 — 0.5) + 1024 + 55,

with independent noise ¢ ~ N(0,0.12). Only the first five variables are relevant; the remaining 15 are
nuisances. For each replicate we draw a training set of size N € {2000, 5000, 10000} and evaluate
on a single fixed test set of size 100 (shared across all reps and settings). We run 100 replications
per (N, n). All methods use the RBF kernel. To enforce an equal computational budget, we choose
subsample size or the number of sketch columns n € {100, 500, 1000}.

We report test MSE in prediction and the average computational time (in seconds), including both
tuning and final training. Note that all three methods in this simulation study are implemented in
MATLAB to make sure the comparison among computational cost is fair, since the FALKON code
provided by Rud1 et al.|(2017) is in MATLAB.

Hyperparameter tuning. To keep the comparison fair, each method uses an 8% hold-out split
from the training data for tuning to achieve the best performance.

* FALKON. We choose the Nystrom landmarks by uniform subsampling with M = n. The
bandwidth is tuned over {yo % 0.5, 79, Y0 X 2}, where 7 is the median-heuristic computed
from a training subsample. The ridge parameter is tuned over A € {0.5,1.0,...,4.0} /N to match
FALKON’s 1/N loss scaling. We run 300 PCG iterations.

* Proposed. We resample n data points with proposed weights, and final predictions average over
B = 3. For each replicate we run MATLAB’s builtin k-means on the full training inputs with
k-means++ initialization to obtain n centers. We set the center bandwidth peepeers to the median
squared distance among the centers and, on each resampled subset, use a slightly broader kernel

psub = 2 X (median squared distance). We tune the parameter A over {1074 1073,...,101} on
the 8% hold-out.
* Nystrom KRR. We use M = n random landmarks and tune the unscaled ridge over

{1074,1073,...,10'} on the same 8% hold-out.

Results. Tablereports the test MSE and total time averaged over 100 replications for each (N, n).
The proposed method attains the lowest MSE for all the sub-data considered in the simulation,
reflecting the benefit of informative resampling. FALKON remains the fastest, especially at small
n, while Nystrom is competitive but Typically trails the Proposed estimator in accuracy under the
similar computational budget.
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Table 2: Simulation results: mean squared error (MSE) and total time (seconds) averaged over 100
replications. n is the shared subset size (M for FALKON/Nystrom and n for Proposed). B = 3 for
Proposed. Times include tuning and final training.

MSE Time
N n  FALKON Proposed Nystrom FALKON Proposed Nystrom

2000 100 6.7196 5.7745 6.5325 0.0615 0.1241 0.0166
2000 500 4.1357 2.2412 2.5114 0.3186 0.7966 0.5946
2000 1000 3.6189 1.7058 2.0939 0.8643 3.2982 1.2725

5000 100 6.4308 5.7397 6.2693 0.1898 0.1805 0.0234
5000 500 2.9266 1.8134 2.3298 0.6127 1.6280 0.6692
5000 1000 2.4558 1.2729 1.9035 1.5446 7.1565 1.6389

10000 100 6.3071 5.7606 6.2087 0.2486 0.3953 0.0365
10000 500 2.3723 1.6411 2.0700 1.0347 3.0601 0.7498
10000 1000 2.0695 1.0393 1.7595 23338  13.2765 1.9417

5 REAL-DATA STUDY: YEARPREDICTIONMSD WITH FEATURE SELECTION

We evaluate our proposed estimator in real data prediction by comparing it with the same two methods
using the YEARPREDICTIONMSD dataset, which include 90 features and a continuous response.

Data and preprocessing. We use the standard split: the first 463,715 rows form a large training
pool and the remaining rows a held—out test pool. For each experiment we sample train N &€
{2000, 5000, 10000, 20000} for training and fix testing dataset of size 1,000. All randomization is
seeded (rng (42) ) for reproducibility.

Feature selection. Before fitting, we perform a filter step on the training data by ranking features
by absolute Pearson correlation with the response and keep the top K € {30, 60,90}, with K=90
meaning “all features”.

Methods and shared budget. We use an RBF kernel for all three methods. Additionally, the
proposed estimator is also tested under Matérn-3/2 and Laplace kernels. We impose a shared subset
budget and pair training set of size N and number of landmarks/subsamples.

For FALKON and Nystrom KRR, the center/landmark budget equals M = n. For the proposed
method, the subsample size equals to n.

* Proposed. We compute 500 clustering centers on the selected features using RP-k-means (random
projection to 32 dimensions followed by k-means). At estimation time we average B=3 resamples
of size n, with bandwidths set by the median distance rule. We fix Awning=1 and report results
for three kernels: Gaussian RBF (Prop(G)), Matérn-3/2 (Prop(M)), and Laplace (Prop(L)). For
runtime, we report the total cost across these three kernels with the center selection time.

e FALKON. We draw M uniform landmarks from the training sets and run the PCG solver for iters
= 20 steps with regularization A = 10~%. FALKON always uses the Gaussian RBF kernelwith
o = 6 as decribed in |Rudi et al.| (2017).

* Nystrom KRR. We sample M landmarks uniformly, compute a low—rank decomposition, and
solve ridge regression with the same (v, A, M) as FALKON, again restricted to Gaussian RBF.

Results. Table 3] summarizes the test MSEs and runtimes. The proposed method is consistently
competitive with (and often outperforms) FALKON and Nystrom in accuracy, particularly at larger
budgets, while remaining efficient. The Laplace and Matérn variants provide additional robustness,
with Gaussian RBF performing strongest in some settings. Reported runtimes confirm that the
proposed approach scales well even for N=20k with n=2000, where total time cost remains on the
order of 20 seconds.
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Table 3: YearPredictionMSD data using kernel learning with 1,000 testing data points. Proposed
method uses random-projection-k-means centers (L=500), B=3, fixed A=1, with three kernels:
Prop.G = Gaussian RBF, Prop.M = Matérn-3/2, Prop.L. = Laplace. Times for Proposed are averaged
across these three kernels and shown as total with centers-time in parentheses. FALKON and Nystrom
use Gaussian RBF (o0=06).

MSE Time (s)
N n K Prop.G Prop.M Prop.L. FALKON Nystrém| Proposed FALKON Nystrom

2000 500 30 100.67 97.76 96.48  122.42 124.54| 1.32(0.16) 0.12 0.11
60 96.26 93.87 94.14 105.75 109.25| 1.22 (0.08) 0.06 0.05
90 96.96 95.36 95.34 96.65  98.38| 1.12(0.07) 0.06 0.06

5000 1000 30 94.55 92.80 91.44 108.61 116.52| 4.10(0.17) 0.10 0.14
60 9537 9256 9298 105.11 105.20| 3.95(0.18) 0.09 0.16
90 87.35 88.98 89.07 91.57  91.59| 3.25(0.16) 0.13 0.16

5000 2000 30 81.39 81.22 80.51 113.93 154.15/15.05 (0.20) 0.26 0.61
60 78.45 78.79 78.42 95.62  99.60|14.19 (0.17) 0.26 0.63
90 76.38 76.62 77.18 86.14  88.08|14.13 (0.16) 0.25 0.68

10000 1000 30 92.90 92.33 92.22 97.37 101.36| 4.58 (0.41) 0.13 0.27
60 91.16 89.99 91.14 97.00  93.86| 4.50 (0.45) 0.13 0.18
90 88.38 88.53 9141 90.63  91.26| 4.56 (0.44) 0.10 0.18

10000 2000 30 96.52 95.73 95.16 11034 115.29(15.83 (0.48) 0.27 0.71
60 88.77 89.86 90.75 94.10  95.96|15.48 (0.42) 0.31 0.72
90 8731 86.63 88.73 87.63  87.38|15.47 (0.50) 0.26 0.73

20000 1000 30 97.05 96.24 95.75 97.44  99.82| 9.84 (1.45) 0.22 0.23
60 9693 96.82 95.11 96.95  98.38|10.38 (1.40) 0.15 0.25
90 94.05 9442 95.14 95.02  97.59|10.13 (1.38) 0.15 0.25

20000 2000 30 98.24 98.25 98.34 10548 110.94|20.56 (1.42) 0.33 0.92
60 98.50 99.32 97.92 101.90 103.28|20.38 (1.27) 0.33 1.00
90 94.17 9297 94.23 98.11  93.95|19.79 (1.34) 0.33 0.93

6 DISCUSSION

Kernel machine methods are powerful for nonparametric learning, but face computational limits on
large data. We developed a sub-data selection approach to overcome computational difficulties. The
proposed method was designed to select an informative small subset from a large-scale sample, which
is different from the sketch algorithms designed to sample columns from a large-scale kernel matrix.
Although we do not use the entire full data set, we have shown that the proposed method performed
better in the out-of-sample prediction than some existing sketch algorithms such as FALKON and
Nystrom methods, while maintaining the computational cost at a relatively low level. We have
also shown that the proposed method has a better IMSE in estimating the unknown nonparametric
function than that based on the SRS, and it has a comparable IMSE with the estimator based on full
data. The proposed method aims to optimize the sub-data selection for prediction at every given test
data points so that the overall prediction is minimized. We have also shown theoretically that the
proposed sampling method can effectively uses the information from the full data to improve the rate
of convergence of the proposed estimator.
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A PROOF OF THEOREM 1]

In this proof, we derive the asymptotic mean squared error of the nonparametric estimator for full
data. First, we recall that, the objective function to estimate fo(z) is given by:

N
; . 1 2
fnap =arg min {N ; (yi = flxi))” + )‘T”f”?%f;(} ;
where the norm of any function f in % is:

150 = yjj => N ) % < 0.
j=1 j=1

So the objective function is equivalent to:
N

A . 1 9 i c?
fyae = arg min 3= (i = f(z:)) +ATJ§::A—J,

=1

To investigate the asymptotic mean squared error, we will decompose the MSE of the estimator into

deterministic error and stochastic error. More specifically, the estimation error between f Nap and the
true function fj can be decomposed as

fAN/\T - fO = (fNAT - fOOAT) + (fwAT - fO)

where we refer f Nip — foo A as stochastic error and foo ar — fo as deterministic error. Here foo A
is the solution of the following objective function:

foors = arg Join {loo(f) + Ml fl3e }

where the loss function lo(f) is the limit of [y (f) = + Zf\]:l (i — f(x;))°. Thatis

loo(f) == E(In(f)) = E (y — f(z))”
=0 + E[f(z) — fo(z)].

Define the functional f ~Nap of the population estimator by collecting the estimators at all xyp € X
together fN Ap = { fN ar(To) i 20 € X }, where X is the space of the predictor/feature x. Define
the norm:

I fvae — FIIP = / < fnag — £, K (0,7 >3 m(xo)dxo

= / < faae = 1 At (o) >, m(0)dag
j=1
= /(Z Aj < fvae = 05 () > (o)) (o) do
Jj=1
=3 N < fvar = £5() >
j=1

oo
Z & — )L, vy >

M2 TlMg

2/ 2 2
Aj (65 —¢j)” <y, ¥ >0

<.
Il
—

(& — )™

M

<.
Il
—

We will prove the theorem using parts A.1-A.3 given below.
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A.1 ASYMPTOTIC ORDER FOR DETERMINISTIC ERROR fOOAT — fo.

Write fo(z) = 3272, ajibj(x) and f(x) = 3272, cjibj(x), then we have

f)=o? "‘Z(CJ
j=1

By the orthogonality of the eigenfunctions, we have | R Yi(x)*n(x)de =
S i (@)Y (z)m(x)dz = 0, then we can derive

lso(f) = 0 + E[f(X) — fo(X)]?

=o? + E)_ejyi(X) = ) an(X
=1

j=1

=0+ ED Y (¢ —aj)(c — a);(x)ihi(x)]

j=11=1

=02+ ) (¢j—aj)? 2+ Z —a;)(a — a)Ej(x)(z)]
Jj=l J#l

=02+ (¢; —aj) /wj dIJrZ Cl*al/iﬁj Y (z
J=l J#l

8

=0+ ) (¢j—ay)

<.
I
—

Then the corresponding objective function can be expressed as:
00 oo 2
— cs
Foorr (¢)) = argmin{Quo(c;)} = argmin{o?® + Zﬂcj — ;)" + At Z s
= —
We then take derivative w.r.t. ¢; and obtain
QLo (cj) = 2¢; — 2a; + 2)\T)\;10

It follows that the minimizer of the above objective function can be written as:

oo

fooAT zCﬂ/}] mej( )

j=1
where ¢; = a; /(1 + )\T)\j_l).

1 and

(z)dx

To bound the deterministic error, assume a2\ ! = J % witha > 1and \; < j*k (k > 1), so

3N
a? = j(atk) .

2
) 0 = [ ApA;t < ( ra \
_ 2~:§ *,_,222 R B 2 T 2,
HfOO)\T fO” . (CJ aj) <1+)\TA_1> a] - <>\+)\T) a]

j=1 j=1
Let J solve Ay < Ap so J < )\_l/k Split the sum at J:

AT 22 ) bea _ 2 gltha atk=1
S (520) 4 S BT = Tt = g
J<J i<J J j<J
M\ e 2 —(a+k) (a+k—1) =t
> (520) @ 8 D = T = e <
j>J i>J i>J
Therefore,
_ 9 a+§—1
HfOOkT - fOH = AT (Cl > 1, k > 1)
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A.2 ASYMPTOTIC ORDER FOR STOCHASTIC ERROR fN,\T — fooAT.

Recall that
1
N <4

3

In(f) = lyi — f(z)]°,

N
=1

and the objective function for fN A, Can be written as:

Frar = argmin{Qu (1)} = argmin{lx (1) + Az 2, }-

Note that the functional derivatives of the objective function with respect to f is stochastic, which leads
to a stochastic denominator in the solution of the above objective function, and it is not straightforward
to handle a stochastic denominator. To avoid such difficulty, we define an intermediate quantity

~ _ 1 _
f = fOO)\T - iG;;DlN/\T(fOO)\T)

where G, = 2 D%lox, (foors ). Then we could write:

2
Fnae = Foore = (Fvae = F) 4 (F = Foorr)- 3
To find the orders of the above two terms, we need the functional derivatives given below. For

functions 7, g € ¢ and define the dot product 1 - ¢ =< 1,9 >,

N

DlN(f) = Z(yz_ <f+h"7aK(xi,')>WK)2‘h:0

S
2=

q
Il
_

d 1 2
= e S = U K i Do — b K (1, o

Dloo(f) = —2 / n(@)(folx) — () ()da

N
DRy ()19 = % (1 K w1, ori b9, K i Do
DP1c() -9 =2 [ (0, K 0. ) o K (o () g)

D|fl% -n=2 _ N fs i) e (0, 05) e and

j=1
D[ 130 - m-9=2D_ X {g:¥) o (1, ) -
j=1
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A.2.1 EVALUATE THE ORDER OF fNAT — fOOAT.

Starting from the second term f Nip — foo A 10 equation ( . because the functional derivatives to the
penalty terms Ap|| f||3,, are the same for Inx,. (f) and loox, (f). and f is the minimizer of loox, (f)

that satisfies that DI, (f) = 0. So, we have

DIy (f) = Dinar(f) = Dlooar (f) = DIn(f) = Dlso(f).

For any function 1, we have

E[Dlyx. (f) -m)* = E[DIn(f) - n — Dlso(f) - n)?

By the definition of G, we have
G _1 2 — lDlz EDQ 2
1109 = 5 D5 g = g DI(F) -9+ S D7l fll5e, 19

D
2
= Z 3<Tla%>%x<9ﬂ/)g R e +Z>‘T>‘ < 7771/}1 > < 9, 7/’] > Sy

Jj=1 Jj=1
:Z)\?(l—i_)\ 1)‘T)<9a¢1>%<<777%>
=1

Let n = ¢, gives
<G>\Tga'l/}m>%”x = ()\m + )\T) <g7wm>3f1<v

which leads to
<G;;g’ wm>‘%0K = (/\m + )‘T)il <97 d)m>3ﬁ(

Then, we can bound the second term in (3 by:

2

E||fnxe — Foorr |I? EH%GX;DZNAT (foorr)

_ iE{Z)\Q <G;;DlN)\T(fOO)\T)7wj>;K:|
Jj=1
ZLE§§V44L44DmAfA>w> |
! j=1 T (N + Ar)? rfoors e
[} 22 _ 2
_ iZWE[<DZNAT(J(AOO)\T)’¢1><%K:|
j=1
S LS N ing B((Dlas (7). ) = N
Sy 2 ()\] +)\T)2 NAr IR ]
1 [ 1
L ———dj (since \; < F k>1)
N J; (1+)\Tjk>2 ’ Y
1
< < Ann.
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A.2.2 EVALUATE THE ORDER OF fNAT — fNAT.

Next we need to find the stochastic order of the second term f NAp — f Np in the expression .
Note that, f = fn, is the solution of the following first order equation

DlN)\T(f) = DZN)\T(f_) + D2lN)\T(f_) : (f - f) =0
and by the definition of f Nap, We have

DZN/\T(f) + D2 OOAT(f) (fNAT - f) =0
From the above two equations, we can find:

D2ZN)\T(f_) ' (f_ f_) = D2loo>\T(f_) : (f_ f)

Then we can write:

D2loors () - (fne = ) = Dloorr (F) - (Fnne — ) + D?loorg () - (f = )
= D?looxr (f) - (fvrr = F) = D lwrg () - (fvag — F)
= Do (f) - (fnre — F) = D2 (F) - (Fvre — ).

Using the definition of G, we have

fnne—f = *G DLy ()-(fvar—F) = 1 Gy Y D?loa () (Frre =) =DIn (F)-(fiae—F)}-
Using the similar steps in evaluating E|| f — fsox, 124, we have
I Fnae = FIIP
. 2
= |56 (P2 DF = D) = D2 (D = )

= 1SRG DA - ) - D (P - ) )

=1

<.

=iZ HAT 5 (DD = F)s05) = (D2 (D = D), %MK)Q

oo

Z (14 ArA; " << Do (F)(f = 1)y 05 > — < DAN())(f = )5 >%?y(>2

A < = ot >0 < it >0,

M8

1 + /\T>\ (2

,MH
H'Mg Il

~

1

M8
M8

i

i=1

iz 1+/\T)\ (

NN < = ot >0 < 0500k > 1/}1(%)%(%))2

Z\M
T
I\
ol
I

Z\N
“-
e ™

Il
-

N < f— Fo > e, Elbj(zi)di(z;)]

7 =1

9 N oo ) B
-5 ZZ V< f = Fot>oe iz ()
=1 =1
fe%e) %) N
ZZ (1+ArA;" {%Z N < f = T > e M| Y Bl (@i)n() Zz/)]xlwm]
j=1 =1 1=1

hE

< N2 Z M1+ ArA )72

Jj=1 l

N
No< f=fi >§go,,] [Z A Z [ ()i (1)) — Z%(M)%(%)F]

1 i=1
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%) N
= N72Y N+ AN ) = Fli2e, lZAzZ [ () vn@a)] =Y () (i) | -

j=1 =1 =1 i=1

Term A

For Term A, we can expand it as:

oo N 2
ppY (Z (B (i) u(wi)] — lffj(ffi)l/fl(zi)))

= SN |3 (Bl )] - w»wl(mf]
=1 =1

=1 itk
N
=X QB (@) - ¢5 (@)
+ ZM Z [ (@i)hi(:)] = by (o) u ()] [E (s (@) (k) — 5 (wn)ihi(ze)] -
=1 itk

Term 2

To find the orders of Term 1 and Term 2, we evaluate the expectation of Term 1 and the variance of
Term 2, which are given below:

B[, Z[E(%Q‘(l’i)) — 3 (xi))’]
=F )\]Z 331 —1 +Z)\lz % T4 wl(xz))

i=1 I#j i=1
= M NE[2(2;) — 12+ NE [Z Azw?(xi)w?(xi)}
1]

< A NVarlid () + N{B( 3 ak@) + Var(fjxlwl (@)} (@)}
=1 =

= N\ NVar[y? ()] + N{E[K(fv,w)JQ +Var(K(z,2)) | (B} (2)))?
= N.

[es) N
Var[ 3703 (Bl (i) — w5 (i) (Bl (on) )] — s (on) (o) |

I=1 i#k

< SOOFN = D2E[ (Bl (wa)u()] - yz)inlwn)) | B (B (e)in@n) - s (edun@)’? |
=1

Y NN = D) Var(y;(@)i(x))Var (b ()b, («))

l#v

= (N =123 NVar(y;(a +Zm N = 1)*Var(y;(x)pi(x))Var (i (x)p, (z))
=1 l#v
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< (V=12 D2 A Var (s (@wn(@)) + (30 A (O AD Var(v; (@)vn(@) Var (i (2)v, (x)
=1 v=1

=1

= 9(N — 1)2(/oo l*%dl) ~ N2,
1

Now we found that Term 1 is at the order of N and Term 2 is at the order of vV N2 = N, therefore we
can write:

IFnne = 20, = N7 X200+ 0007 2f = Fli2e,

j=1

=N-1/1 (A2 — Fli2e,

_ —1/k, p ra

= NGV = Fli2e,

Now, it follows that
s = iN-1/ky 7 7
I Fnvar = Fl2e, = Op(NTINZYRIF = fli2e,)-
It NI 0,
I fvar = Fli2e, = 0p(If = Fllee) = 0p(DIIf = Flloe -
Observed that
1f = Fl2e, = I1f = fl%e, — IIf = fl%, = (1 —op(W)If = fli%, .

then A ~ o Uk
1f = FiI2, = Op(If = Flloey) = Op(N~IALT5).

A.3 ASYMPTOTIC ORDER FOR MSE AND TUNING.

Combining the results in previous steps, we can express the order of MSE by:

atk—1
k

1f = foll? = Op(N"IAZYF 4 A7),

To find the optimal order of A7, set M(d) = N~*d~1/* 4 d*%— . Then
M/(d) = —Sn-1gw-t L OER T e
k k
which yields
atk -1 __k_
d+x <N = Ap X N otk
Also check

—1/k _atk—1

NTIAME = NN etk N~ 50 (a>1, k> 1).

Therefore, .
If = foll* = Op(N =T &%).
This completes the proof of Theorem T}

B PROOF OF THE PROPOSED METHOD

For any given zq, the proposed resampling weights and any sample x; € %; where % is the I-th
cluster with its corresponding center C; and its cluster size n;, the weight/probability of x; to be
selected is:

wi(z0) = 1] 'Weo 1,0

18
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So we have:
N L 1 L
Zwi(wo) = ZZ oy o€ = Zwmo,z,c =1L
=1 =1 1i€¥¢ =1
Denote the resampling subset of size n for the given g is .7 (zg) = {7, ..., z} }, with replacement

using probabilities {w;(zo)}. Let I;(zo) be the count of how many times index ¢ appears in .’ ()
so E[I;(x0)] = nw;(xg). Define
1 1< 2
2
Inao(f) == Z (yi — f(z:))” = o Zfi(ffo) (yi — flwi))"

i€ (x0) 1=1

Recall that the proposed estimator of f () is f, A4z (%0), which is given by:

ST (i F@)) + Nl fl,

R . 1
fn,\/T@O = arg fmm — |
1€ (o)

€Sk n

Define the functional fn ;. of the proposed estimator by collecting the estimators at all zp € X

together An,\/ = An)\/ 2 (T0) : xo € X ¢, where X is the space of the predictor/feature x. Define
g T Y p p

the norm:

| fax, — £I? = / < fanypo = K (w0,7) >, 7(x0)dag

= / < Fanpzo — f,z)\jwj(')%‘(xo) > m(x0)do

j=1
= /(Z Aj < Faxgao = F1005() > 15(20)) (0 dero.-
j=1

Here I (f) is the limit of {,,(f), with conditioning made explicit:

S (i - flw)?

1€S (x0)

1 & 2 N
—E|E| =~ 3" ifwo) (4 — f(w:))? | o},
L i=1

S|

loo(f):=E

=E %ZE[L‘(%O) | {aiHil] (vi — f(xi))zl

N

=E sz’(xo) (yi — f(ilivi))Q] (E[Li(x0) | {z:}] = nwi(xo))

[ N
=E|Y wi(zo) {0 + (f(w:) - fO(xi))2}]
Li=1

N
=0? + E Zwi(mo) (f = Jo, K(“fi"»jfx] '

To evaluate the MSE of our proposed method, we evaluate the deterministic error and stochastic error
separately by decomposing it in the following way:

fxo —fo= (fzo - fwo) + (f-Lo - f0)7

where f,, is the solution of the following objective function

fao = argminleo(f) + Apll 13 -

19
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First, we evaluate the functional derivatives for the empirical loss I, 4, (f) = £ 3. (o) i —
F(x:))? and for its population limit oo (f) = 0% + E[ I w;(wo) (f(2:) — folw:))?].

d N 2
Dl (f) - [sz zo) (f(@i) + hn(x;) — fO(IZ)) ]
h=0
N
2E Zwi(xo) n(xs) (f(zi) — fo(%))}
'L;Vl
2E Zwi(xo) <777K($i,')>ij (f = fo, K(w,- >% ]

D21 (f)

sz zo) (n, K xu')>3ﬁ< <97K(35i")>(m<]
sz xo) ¥j(z;) 1 .

=i Weg,j

= Z <77a¢j o 971/)]

For the empirical loss,

Dln,xo(f)~?7=%% S (o U+ K )|

€S (xo) h=0
= Z <777 (i, > ( —(f,K (1‘&7)>%K)
'Le./(xo)

D2ln,zo(f) n-g= Z <777 K(xm ')>Jﬁ( <g7 K(x“ ')>yfk

€S (xo)

S

2 > s
= ; Z (Z)\] nij S '1/1] Ty )(Z wk(xz))
€S (xg) J=1 k=1
2
= D A ) (98 V().
i€ (wo) §,k>1
For the RKHS penalty,
DIf13¢, -1 =2(f.n) s
D3| f1%0 19 =2(n.9) Z 105) s $9505) e

To evaluate the stochastic error, we use a similar method in the proof of Thgoremmby defining an
intermediate quantity fi, = fu, — %Gz D, (). with G, = %Dzo)\,T (fzo)- Then, we define

fn = {fwo tXo EX}.

and decompose anT — f, into
fn)\'T - fn = (fn)\’T - fn) + (fn - .]Fn)

20
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B.1 ASYMPTOTIC ORDER FOR STOCHASTIC ERROR.

To figure out the order for stochatic error, we finish the proof in 2 steps.

B.1.1 STEP 1: EVALUATE THE ORDER OF fn — fn.

Assume that wy, ; = E [Zfil wi(xo)zﬁ?(xi)} . To this end, we first obtain the eigenvalues of the

operator G/\'T

Gy ng==D% ., n-g=<DE(f) 0 g+ =D fl2, 19
Ar PR 27 2 o

N

Zwi(%)lﬂf(ﬂfz‘)]

=1

(oo}
+ Z ArAj <05 > < 9,05 >
j=1

o

<
Il
_

A2 <y > < 9,05 > B

oo
xo,]A_? < naw] >%K< g7¢j >.9f1( +Z>\T)\J < 777¢] >ﬁf1{< 971/)_7 >.9f1<
=1

.

<.
Il
—

tnqg

(Wag s AT + /\T>\‘) <N V5 > < G,V >

<.
Il
—

A2 (Wag,j + /\T>‘ Y <y >mc< 9.0 > -

<
Il
—

.Mg

Let n = 1, gives
<GA'T97 wm>fk = )‘ (wrg m Tt )\T )<ga ¢7n>

which leads to ,
(G0, Umd e = At (@aoum + ArAn) ™HG, Yom) e

Using the expression of the norm and the expression of the operator G, , we have the following:
T

2

1F- 2l =3 [ "N < Gl (Fr).thy > ) | (el

Jj=1

oA 4 NeAT Y < Dl (Fo)e g o (o) | o)

N

r 2

30 o + AN < Dl (o). 5 3t 5(00) | (o)

=1

N

L B; (IU) D; (Io)
o 2

/ ZB@(?)Dj<xo>¢ij<xo> (o)

] =

IN
=

/ ZA;lB?(xo)D?(xo) Z)\jw (20) | m(20)dao
j=1

/K To, To Z/\ Hwap, +/\/T>‘j_1)72 < Dln,\’T(fxo)ij >%e (wo)m(wo)dao.
j=1

RNy

21
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To find the asymptotic order of || f,, — f;,
1)72 and E[< DlnA;(f$o)a¢] ><9f9{]

ArA;

2
I, we need to derive wy, ;. the coefficients 377 | A;

Derivation for E[< DlnA’T (fz0)s ¥ >3f,g]

E[<Dl

n)\/T(fzo)ij>;K:|

_ E|:<Dln(.fmo) — Dloo(fy), wjm]z

_E{—i Do (i = Fao (@) s +2sz 20) B (fo(:) — fwsi))wj(mlwi]}

_ E{_izmm (0= Fraw)y(w) + 2

iEY(wo) i=1

Z]i(l‘o)(fo(xz) fwo(xz))wj( i)

N 2
]E{Z (Li(wo) — nwi(x0)) (Yi — fro (%))%‘(%)} (since B[1;(z0) | i, y:] = nwi(wo))

- 2 gE {(i —nwi(x0)) (Yi — fao (ilfi))q/’j(xi))z Ii’yi}}

=—E Var(ZL-(xo) a; xi»yi) + (E[EN: Ii(wo) ai | xi,yi] — nzN:wi(xO)aiY]
i=1 i=1 =t

= _F Var(i_vjfi(xo) a; wi»yi)}

where we denoted a; := (y; — fx, (2i));(x;). Using the multinomial covariance, Var(I; | z;) =

nw;(1 — w;) and Cov(I;, It | ) = —nw;wy, for i # k, we get
N N
Var(ZIi(xo) a; xi,yi) = Za? Var(I; | z;) + 2 Z a;ja, Cov(l;, I, | x)
i=1 i=1 1<i<k<N
=n sza - nz Z Wi WG A

i=1 k=1
N

N
:n(Zwiaf— (Z%‘%’) > < nZwia?.
i=1 i=1 i=1

Therefore,

1 -
= Y o) B[l — o (20 (0]

4 2]:\71 P 2
= 2 w0 B ((folw) — Feolw)) + )" vy (x]
:iiu 0 E|[((folwe) = fau ) +0%) vy

N
<§{“22 i(20) E [t () +sz (w0) E[(fo() - fmui))%(n)ﬂ}
i=1

22

Ail(wzoﬁj—’_

2
xuyz‘| }

~
=S
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Derivation for the coefficients Z 1A Nwap,j + )\T)\ )72, Assume \; < j7F with k > 1,

aiA; ! = j~% with a > 1, and there exists 3 € [0, k/2) such that, w,,_ juniformly in zo, then we
assume

Wzo,j = 5, equivalently, \jw,, ; = j2B=k,
Define
o0
_ ’ _ 2
S(xo) = Z)\j 1((““}107]' + >‘T)\j 1) .
j=1
Then
o0
S(zg) =< S .
(0) ;(26+A/ Z] (k 2ﬂ)+)\/)

Let J solve j~(*=28) < \'. so we have J =< (A T)—l/(k—2/3)' Then

J '—k J _ k+1-48
Z Z —43 ~ Jk 48+1 - )\ k—28
j:1 —(k=28) + N, ) j=1
oo —k k+1—4p3
J Z —k _ y/—2 7—(k=1) _ /7T %—28
> — JiTE = NPT = Ar
T (G720 4 XT) ( j=J+1
Therefore,
k+1—48
Sz )7O(>\ b=z ) 0<28< k.
. . 3 71 .
Using this bound and E[(DI ( Jao)s 330 ] =< n~!, we obtain

-2

”fn fn||2 — 4/K .230,3?0 Z)\ 1 wlod +/\T)‘ ) E[<Dln,/\’T(ro)7¢j>3fK] W(xo)dxo
Jj=1

j_k+1-48 1

= (/K(xomvo)ﬂ(a:o) dl“o) Ay

1/~ 5
=Op<n A )

n

B.1.2 STEP 2: EVALUATE THE ORDER OF anT — fn

By definition of fzo, we know Dl ( fzo) = 0. We now check the following equation:

Dl?’b)\T (fa:o) = Dl'”)\T (.flo) + DZZH}\T (-fwo)(fwo - fwo) =0. 4)
Using the functional derivatives derived above, we have
2 _ _
Dloyy === % K@) (i < fao: K@) >omc) + 27 < fagr >0

€S (zo0)

&)

DanAT(fwo)(.fAﬁfo_fﬂfu):% Z <f3?0_f3307K(xi7') > K(xiy')+2>\T<fxo_fxm'>%

€5 (o)

(6)
Adding (3) and (6) together, we obtain:

2 A .
+@:_E Z K(xiv')(yi_<fxoaK(xi7') >WK)+2)‘T<JC3?07'>%K

€S (o)
= Dl'”)\T (fwo) =

23
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Using the definition of fzo, we have
Dln}\T(fxo) + DQlOO/\T(fwo)(fwo - fwo) =0.

Combining with the equation: Dl,,x,. (fuy) = Dlpxg (Feo) + D2ling (Fro) (feo — fuo) = 0, we get
D2l org (fio)(fro — fro) = D%l (fzo)(fro fxo)- Then, we can derive:

DleOAT(fTIo)(fio - fro) = D2 OO)\T(fIO)(fIO - fmo) + D2100>\T(f_xo)(fzo - f~$0)
= DleO)\T(jTIO)(fIO - ffo) - Dzln)\T(ijo)(fxo - fro)
= Dzlw(ﬁco)(fxo - fTaco) - Dzln(fxo)(fxo - f_xo)

Then fl.o — f,o can be expressed as
o ~ 1 _ o _ _ ~ _
fafo - fxo = iG;Tl [D2l<><>(fxo)(fxo - f:co) - D2ln(fxo)(fxo - fxo) .
So we write:
an,/\’T _fn,XTuz
= /<fn>\’T,.'r0 — Fargzor K (@0, )>;K (o) dxo

o] 2
= / (Z Aj <fn)\/T,;Eo - anT,Iov wj>%K 1/13(»’50)) 7T(Z‘0) dl‘o
j=1

-1/

8

N \

j=1

(Z N (G (D%1oe g (Feo) = D2l (Fan)) [Frg = o) ) wj<xo>> (o) dag

) 2
<Z Waog T+ /\/ i ) 1 <<D2l°° AT (foo)(fxo fxo 7¢j>%ﬂK ) wj (x0)> Tr(xO) o
j=1 — (D%l xr (Foo) (fro — F20)s3) s

i/ (Z Waog + ATA; )71 Aj(xo)d)j(xo)) m(20) dzo, .1

Aj (Jfo) <D ZOO)\ (fﬂ?o)(fivo _fﬂ)) ’(/)J> <D2 n,\p. (fwo)(fwo fwo)awj>ij

:22)‘5 <f1?0 f107¢€>%K %,W lzwz Zo we 1

{=1

_z Z Z)?(fmg Faor¥k) s (8 Uk e Vit (i)

26.5’(:80)19 1
_ ) N
= ZA? Tj <fz0 - fwngj)%pK E Zwi(xo) T/)JQ(%)]
=1
~ 2 S N (e Fen ) )
J

i€ (o)

— 2)\J <f10 fzoij { lzwl 1’0 1/)2 ] o % Z w?(xl)} )

1€ (zo)
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plug it back into 2.1

= %/ [i (wap,j + )\fr)\;l)_l < (2 Aj <fw0 - fwoa¢j>,;fk) (wmo’j Z 1/} ;i )%(m@)] m(x0) dxg

7,65”(:60)

2
A (Weog +A7AY) Y foo — Fror i) s ¥i(@o) (nwwm - > %2(%))] m(z0) dxg

1 i€ (x0)

I
Y-
. M 8]

LJ

= [N @aog 3T (fao = Fros 03) 4, ¥5(0)

Lj=1
N 2
X (nE { Z wi(xo) Y5 (Ii)] - Z Ii(xo) 5 (%))] m(20) dxo. (2.2)
Set N N
= nE[ Y wileo) w3 ()| = D Lilao) v(e).

Since E[I;(zo) | z1,...,2Nn] = nw;(zo) and Zfil wi(zo) = 1, E[A;(20)] = 0.

For the second moment, condition on {z;}}¥, then

E[A;(zo [Var( Z I;(z0)

-1
= (S o800 (st )

< E[n;wmow;*(m]

:nE[iwi(m)w;(m} — nE[yi(x)].

Therefore,

Aj(z0) X Opy/ nE[Y] ().

Plug it back to (2.2):

M oo 2
=< 25 Z (Wao g + APA; )™ (fao = Forj) st 1/13‘(550)1 (o) dxo

M oo 2
= D (wap + AT (/\j (fao = faor Vi) ot %(1’0))] (o) do

Lj=1

D (@agg +APAS ] [ZAQ Fro = Fror¥3) 5 %/Jj(xo)Q] m(2o) dzo
j=1

o0

0o 2
Z Wag,j +)‘T)‘ ‘| [ZAJ fmo fmov¢j>z?fx ¢j(x0)‘| 7r(LL'O) dzo.

S1(zo)
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~k with k > 1 and, uniformly in o, w,, ; < j2* for some 3 € [0, k/2). Recall

(w"ﬂo it >‘T Z

1 = 2B+>‘/').

Assume \; < j

NE

Sy (zg) =

<.
Il

Let J solve j2% = \}.j*, then J < (\.)~1/(#=26) Then

J
Z(jzlgz 27( 1. _AIQZ —2kv)\k2ﬁ.

J
:Z]_4BVJ1 48 _ )\k2ﬁ
j=1

/
=1 i>J /\TJ i>J
Hence
,_1=48
Si(zo) = O(AT B2 )
Consequently,
2

an,)\/T - fn,/\'T” /Z Wag,j T >‘ [ZA fﬂﬂo f$07wj>=%px wj(xo) (o) dzg

_Sl(Io)

? fnk' 7fn>\ 7¢J>ij

( ) ||fn)\’ _fn)\/ ||2

Therefore,

; ; PRV 7L B .
oy = Forg 1P = Op(n 72X 2 1oy = Fo ).
By the triangle inequality,
”fn,)\’T - f_ln,)\’THQ < ”an,)\’T - ﬁl,)\'TH2 + an,A’T - fn,)\}HQ'

From Step 1 we have

- _ +1-48
|m%—n%wz@@*xk”).

From Step 2 we obtained

~ ~ y_1=48 _
1 faxy, = fa I? = Op (n_Q/\T T g, — fn,)\’T|2> ~

If
,_1=4p
n A, P — 0,
then
1 fany, = Fan 1P = 0p(l fany, = Fane I17) = 0p(D) [ fung, — s I
Observed that

||fn,)\/T - f_n,)\/TH2 > ||fn,)\/T - f_n,)\’TH2 - an,A’T - fn,)\’THQ = (1 - Op(l)) an,)\’T - .fn,)x'T”za

we conclude

L 2 O(lF e — Fou 12} = Ot N
”fn,)\’T fn,)\/T” - p(”fn,)\’T fn,)\/T” )* p{ T T .
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B.2 ASYMPTOTIC ORDER FOR DETERMINISTIC ERROR.

Recall

lo(f) =E[l(f)] =0> + E

N
S wileo) (F ~ for K ->>i4
i=1

=%+ iE [Wi(xO)(f(xi) - fO(xi))Q}

N 00
=0 —|—ZE (,‘.JZ xo (Z j — Qaj 7/’] zz))z
i=1 j=1
N
=0+ Y (¢ —aj)(ce—ar) Y Blwi(wo)w;(@i)the(z:)]
7, €>1 1=1

oo
= 0"+ ) way (e — ;)%
j=1

where wg, ;= E[ S0 | wi(zo)v?(2;)].

The objective function about c¢; at xy becomes

2
Qu () = Z {wﬂﬁo,j (¢j — ) + )‘ 7]}
jz1
Taking derivative,
Cj _
2wqo,j(cj — az) + 27 )\Jj =0 = (W, + /\/T)‘j 1) Cj = Wag,j A5,
hence v
_ wzo,j _
Ci(xg) = ———>——a; and c;j(xg)—a;=——"7"—+
J( 0) Wzg,j"‘)‘/T)\;l J J( 0) J wwog)\ +)\/
Recall

N
wap g = B 3 wile) (@)] = 03 (o) + s (a0).

Assume \; =< j7F with k > 1, a?)\j_l = j~* with @ > 1, and there exists 8 € [0, k/2) such that,
uniformly in zq,

Waoj < 5P (equivalently, \; wy, ; < 7 2°7F).

Now we evaluate || f,, — fol|?:

[ Foxy, = foll® : tzo — fo, K (o, )>iﬁ< m(2o) dzo

M (i = Jorts) i 5(20) ) (o) dizg

M8 2

Il
-

J

2
(¢(x0) = a;) wy(x0) ) " w(z0) dao

M8

Il
-

J

8

a; ¥, (560)) (o) dxo

Il
\\\\\

(Fur
-/
(
(J . %JA Woog N + Ap
(>

2
2ﬂ k+)\/ a; 1/)1(950)> m(x0) dxo
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2
e I
= Z%%
J + A

j=1

Set J = Np /#2950 that J 26—k < X Then

>

Jj<J

)\/jgjf(aJrk)
(G

>

i>J

-~ )\/1% Zj*(ﬂri"lﬂ*k) = )\/7% Jl*(a+4ﬂ*k),
J<J

)\/7% j—(a-‘rk)

(A7)?
at+k—1

With J = X Y/ 728) both parts scale as A" > .

_ Zj—(a+k) o Jj-(atk=1)
§>J

Therefore,
at+k—1

fur, = foll> < Ap™ 7, 0<28<k.

B.3 ASYMPTOTIC ORDER FOR MSE AND TUNING.

From the previous bounds we obtained
; 2 = U
[fnxg = foll7 = Op{ Ap™ ™" +07" Ap )

under the condition s

n‘%\?k 0,
witha > 1, k>1, 0< B <k/2.

Let
a+k—1 k+1-4p

k—25 17T Tr_28

Ms(Np) = X7 + n7'ALY, pi=

Differentiate and set to zero:

dMg /
_ p—1 —1y/—q—1 _ 'ptq _ . —1
I\ = pAp an= Ap =0 = A" xn"".
T

Hence the optimal order of tuning A/ is

’ _ 1 _ k=25

Ap X n rpRa = n ¥,
At this choice,

p atk—1 _ __p __atk—1
M X pTrhe =T eiekan nTINGT X nTERe =T e

SO
+k—1

1oy = foll? = Op(n™ 755557 ).

Additionally, the small-o condition from Step 2 holds at the optimized tuning:

1—4

o7 _o94_1-4B .
n2A, 7 < p e o 0 sincea > 1, k> 1, O§B<§.

This completes the proof of Theorem 2}
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