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Abstract

Occupancy prediction infers fine-grained 3D geometry and semantics from camera
images of the surrounding environment, making it a critical perception task for
autonomous driving. Existing methods either adopt dense grids as scene repre-
sentation which is difficult to scale to high resolution, or learn the entire scene
using a single set of sparse queries, which is insufficient to handle the various
object characteristics. In this paper, we present ODG, a hierarchical dual sparse
Gaussian representation to effectively capture complex scene dynamics. Building
upon the observation that driving scenes can be universally decomposed into static
and dynamic counterparts, we define dual Gaussian queries to better model the
diverse scene objects. We utilize a hierarchical Gaussian transformer to predict the
occupied voxel centers and semantic classes along with the Gaussian parameters.
Leveraging the real-time rendering capability of 3D Gaussian Splatting, we also
impose rendering supervision with available depth and semantic map annotations
injecting pixel-level alignment to boost occupancy learning. Extensive experiments
on the Occ3D-nuScenes and Occ3D-Waymo benchmarks demonstrate our pro-
posed method sets new state-of-the-art results while maintaining low inference
cost.

1 Introduction

3D spatial understanding forms the foundation of autonomous systems such as self-driving cars. 3D
object detection [57, 23, 34, 33] has been the primary task that outputs bounding boxes to capture
different entities in the scene. Concise as box representation is, it cannot deal with out-of-vocabulary
or irregularly-shaped objects (e.g. trash can on the side of road, excavator with arms deployed) which
is critical for driving safety. Calling for a unified 3D representation that can handle such cases, 3D
occupancy adopts a voxel grid to partition the scene and jointly predicts the occupancy state and
semantic labels of each voxel, which provides critical information for downstream planning [22].

Previous approaches have explored regular grids like voxel [58, 63], BEV ground plane [31, 61], and
tri-perspective plane [25] to represent the scene followed by dense classification. Such approaches do
not take into account the fact that most of the voxels are empty [3, 50] and allocate equal resource for
each one, which inevitably results in severe inefficiency. To overcome such drawbacks, another line
of research [47, 53] formulate the task of 3D occupancy as direct set prediction, effectively predicting
3D occupancy as set of sparse points from sparse latent vectors. Such sparse representation avoids
spending resource to model empty regions and improves scalability. Recent works [27, 4, 10] utilize
3D Gaussians instead of points which have more spatial context, and also leverage the real-time
rendering of 3D Gaussian Splatting (3DGS) [28, 29] to either complement learning from occupancy
ground-truth or instead directly learn occupancy from 2D labels [59, 21] without relying on 3D
annotations. Such sparse query-based methods have shown great promises for occupancy prediction.
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But Is it really sensible to rely on a single set of queries to predict everything within a driving scene?
We observe that driving scenes can be universally decomposed into static background (e.g. roads,
buildings, etc.) and dynamic agents (e.g. vehicles, pedestrians, etc.), and argue that the dynamic
agents should have resources dedicated to them given their importance in occupancy prediction.
Hence, we introduce a dual Gaussian query design, consisting of two sets of Gaussian queries, to
model the static and dynamic parts of the scene for better capturing complex scene dynamics. To
establish communication between queries, we propose a simple and effective attention scheme to
achieve this. Meanwhile for Gaussian-based representation, it is critical to have a sufficient number
of Gaussians in order to have enough capacity to represent the scene. But existing methods [27, 4]
utilize a single transformer which can only handle a smaller number of Gaussians. Therefore we
propose to predict Gaussians in a coarse-to-fine manner with a series of transformer layers, enabling
the use of a much larger number of Gaussians and thereby increasing model capacity. In addition to
learning from 3D occupancy ground-truth, we leverage the efficient rendering capabilities of 3DGS to
generate the depth and semantic maps for each camera view at every stage, which are supervised by
the corresponding 2D labels and improves model consistency. Our contributions can be summarized
as follows:

* Dual Gaussian Query Design: We propose a novel dual-query architecture comprising
two distinct sets of Gaussian queries to separately model the static and dynamic parts of the
scene. A cross query attention is also introduced to establish effective interaction between
queries, enhancing 3D occupancy prediction.

* Hierarchical Coarse-to-Fine Refinement: We refine the Gaussian properties in a hierar-
chical coarse-to-fine fashion, allowing a much larger number of 3D Gaussians to be utilized,
effectively increasing model capacity and expressiveness.

¢ Multi-Stage Rendering Supervision: We enforce depth and semantic consistency through
multi-stage real-time rendering using 3D Gaussian Splatting. This allows supervision from
2D labels across views, improving spatial coherence and prediction accuracy.

* State-of-the-Art Performance: Extensive experiments on the Occ3D [50] benchmark
demonstrates that our proposed method sets new state-of-the-art results in 3D occupancy
prediction, while maintaining competitive inference runtime.

2 Related Works
2.1 3D Occupancy Prediction

3D occupancy prediction partitions the 3D space with a voxel grid and simultaneously estimates the
occupancy state and semantic label of each voxel. Earlier methods [7, 31, 25, 58, 63] utilize dense
grids (e.g. voxel, BEV) as scene representation and learns 3D occupancy from ground-truth data.
Given the high cost [56] of curating occupancy annotations, [62, 41, 5, 44] advocates the idea of
using 2D labels projected from LiDAR or generated by vision foundation models [59, 21] to train
3D occupancy networks eliminating reliance on direct 3D occupancy annotations. Several works [8,
62, 24, 36] also explore self-supervised learning based on the photometric consistency between
neighboring frames to learn 3D occupancy. Meanwhile, multiple 3D occupancy benchmarks [3, 58,
50, 51, 13, 56, 64] have been created based on existing datasets [17, 16, 6, 45].

2.2 Set Prediction with Transformers

Direct set prediction with transformers [52, 14] for perception tasks was first introduced in DETR [9].
Follow-up works like [57, 37, 34, 33] further advanced this technique for 3D object detection and
obtained impressive results. Witnessing such success, [47, 53] adapted such set prediction paradigm
for 3D occupancy prediction and demonstrated a competitive alternative to the common pipeline
of explicit space modeling (e.g., dense grids) followed by classification. We adopt such paradigm
but different from previous works [34, 47, 53] that only use one set of queries assuming scene
homogeneity, we define two distinctive sets of queries to better handle the dynamic agents in the
scene.

2.3 Neural Rendering and 3D Gaussian Splatting

Neural rendering [48] aims to learn 3D representations from 2D data and experienced significant
growth over the past few years [49]. Neural Radiance Fields (NeRF) [40, 1, 2] is one such technique
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Figure 1: Overview of proposed ODG, where we model the dynamic and static elements of the scene with two
separate sets of Gaussian queries. Dual-query attention aggregates information across dynamic and static queries.
These queries are then decoded into 3D Gaussians, 3D points, as well as 3D bounding boxes (from dynamic
queries only), which are supervised by ground-truth depth and semantic maps through rendering, ground-truth
3D occupancy, and ground-truth bounding boxes, respectively.

and has achieved impressive results. However, NeRF-based methods suffer from slow training and
high memory cost. Recently, 3D Gaussian Splatting (3DGS) [28, 29] emerged as a rasterization
pipeline which drastically reduced rendering time while also achieving incredible rendering quality.
Earlier methods [60, 19] focused on improving per-scene rendering quality. Later generalizable
3DGS [11, 12, 46] were proposed to enable reconstructing large-scale scenes in a feed-forward
manner. Given that 3D occupancy also aims to reconstruct the scene, latest research begin exploring
3D Gaussians for occupancy prediction [26, 27, 10, 4]. GaussianFormer [26] and GaussRender [10]
voxelizes 3D Gaussians which incurs high compute cost. GaussTR [27] and GaussianFlowOcc [4]
employs a single transformer to predict Gaussian parameters from sparse queries, which can only
handle small number of Gaussians limiting model capability. In contrast, our method predicts
Gaussians in a hierarchical coarse-to-fine fashion allowing a much larger number of Gaussians,
effectively resulting in higher learning capacity.

3 Method

In this section, we present our proposed 3D occupancy approach, ODG, in which we adopt a dual
Gaussian query design to capture the respective dynamic and static elements in the scene, as discussed
in Sec. 3.2. We model object motions for the dynamic Gaussians (Sec. 3.3) and leverage attention
to enable feature interaction between the dual queries (Sec. 3.4). Finally, we describe the training
objectives in Sec. 3.5. Fig. 1 provides an overview of ODG. Next, we first provide a quick recap on
the problem of 3D occupancy prediction.

3.1 Problem Definition

Given an ego-vehicle at time 7', the task of 3D occupancy prediction takes [V, multi-camera images

(with k& x N, optional history frames where k& > 0), I = {/, f:}f:];: k.c—1 and corresponding camera

parameters as input, and predicts a 3D semantic voxel grid O = {ci,ca, ..., cc W *Z where

H, W, Z denotes the grid resolution and C' is the number of classes. Formally, 3D occupancy
prediction can be defined as

where F'(-) consists of an image backbone that extract multi-camera features and transforms them into
scene representation V. G(-) is another neural network that maps V to final occupancy predictions.
Dense grids (e.g. voxel grid [58, 63], BEV/TPV grid [31, 25]) are common choices for V which
are difficult to scale and cannot differentiate different object scales. Inspired by successes in object
detection [9, 57], more recent works [35, 53] cast 3D occupancy prediction as direct set prediction
with transformers, without explicitly building V. At its core, a set of learnable queries Q and
3D points P are initialized to regress point locations and corresponding semantic class scores C
simultaneously. Such a paradigm can be described as

wia D,(P.P,) + D.(C.C,), @



where {P,, C,} is the constructed ground-truth set for occupied voxels with | Py| = |Cy| = V being
the number of occupied voxels. Each p, € P, represents the voxel center coordinate and ¢, € C,
the class label. Correspondingly, {P, C} denotes predictions where each p; € P and ¢; € C is
predicted by query ¢; € Q. D, (-) and D,(-) are geometric and semantic distances respectively.

3.2 Dual Dynamic and Static Gaussian Queries

Instead of predicting occupancy as point sets from one set of learnable queries as in Eq. 2, we define
dual Gaussian queries as shown in Fig. 1 which are detailed below.

Formally, a standard 3D Gaussian g is parameterized by a set of properties

g ={ms,ro}, 3

where 1 € R? is the mean, s € R? is the scale, r € R* is the quaternion and o € [0, 1] is the opacity.
We define two sets of Gaussian queries for static and dynamic objects, each query contains a set of
Gaussians and a feature vector

D,K
- {g1 k}z 1, k; 19 QS = {qf};S:lqu RIVI Gd {gj k}] 172:15 {q]}] 17q] € RN
(4)
where S, D is the number of static and dynamic Gaussian queries, and IV, M is the embedding
dimension of query features, K, is the number of Gaussians per query in stage . Here we set
N = M for simplicity but they can be different.

For a dynamic query g, whose intended purpose is to model the dynamic agents in the scene, what
additional information should they have on top of Eq. 3 that can effectively accomplish this? We
observe that the box representation from 3D object detection [57, 34, 33] is a good candidate that is
tailored to capture dynamic objects. Therefore we expand the standard definition in Eq. 3 and define
our dynamic Gaussian queries g¢ as

gl=g"®b, b=[lL,wh,0,v,,v,v.] Q)

where [, w, h are the spatial dimensions of the 3D box and 6 its rotation. v, vy, v, is the velocity
vector. Given for driving scenes, motion along the z-axis is negligible hence we set v, = 0 and treat
it as constant.

We initialize Gaussian means g7, and gfiu from ¢[0, 1] for both types of queries and the box attributes

b for g? but leave the rest of the Gaussian properties uninitialized. Instead we predict them using
separate MLPs with their means and query features

{s?r? ot} = CID(G:dH, QY), {s*,r*,0°} = (G2, Q%), (6)

where ® denotes respective MLPs. To enable an sufficient number of Gaussians, unlike previous
methods [27, 4] which only utilizes a single transformer that maintains the same number of points over
layers, we predict Gaussians in a hierarchical coarse-to-fine fashion through a series of transformer-
based layers T akin to [34, 53]

ng7 Cdb GZ? CZ’ QE _72( ;LéBbé 17Q£ 1,@57@7«,@ ) (7)
Géa Qéa CZ 7}( ,u,Z 13Q[ 17@9’@7.’@ ) (8)

where 1 < ¢ < L with L being the number of layers used. For each layer 7y, it takes as input
static Gaussian means Gs _, and query features Qj_, from the previous layer, and predict the
current static Gaussian means Gl € RS*Kex3 and corresponding class scores Cj € RS> KexC
where Ky_1 < Ky is the number of Gaussians per query at each stage which enables coarse-to- ﬁne
prediction. For dynamic Gaussians, besides decoding G¢ € RP*£ex3 and C¢ € RP*KexC | we
also parallelly predict box attributes and class scores GZ’b € RP*10 and C?’b € RP*C as shown
in Eq. 7. We note that we do not perform coarse-to-fine prediction for boxes given the relatively
small number of boxes that are typically present in the scene. The rest of the Gaussian properties is
predicted by separate MLPs ® as defined in Egs. 6.

We aim to reduce the spatial artifacts of 3D occupancy through projective constraints. To this end, we
render depth and semantic maps of each camera view at current time (keyframe) which effectively



enforces geometric and semantic consistency. We leverage 3D Gaussian splatting [28, 29] which
offers real-time rendering:

G G
D, => Tioidi, S, =) Tiac, )
=1 1=1

where p indicates a certain pixel location and G = D + S is the number of Gaussians. ¢; is the
opacity and T} is accumulated transmittence. c; € [0, 1] is the “semantic probability” of the i-th
Gaussian and d; is the depth of the i-th Gaussian. ﬁp, Sp are the rendered depth and semantic values
at location p. We refer readers to [28] for further details regarding 3D Gaussian splatting.

3.3 Motion Modeling of Dynamic Gaussians

For each Gaussian g with g., representing its position in 3D space, it first samples 3D points
following [34, 53]. Then we sample image features by projecting sampled 3D points onto each image
feature plane using available camera extrinsics and intrinsics, and aggregate corresponding image
features. Under the setting of having history frames, it is critical to move the Gaussians according
to its motion to sample features correctly. For driving scenes we consider two types of motions: 1)
ego-motion which is the motion of the ego-vehicle as it navigates across the scene, which effectively
is camera motion, and 2) object-motion which describes how the dynamic agents themselves move in
the scene.

For static Gaussians, compensating ego-motion is enough. For the motion of dynamic Gaussians, we
adopt the approach of approximating instantaneous velocity with average velocity in a short-time
window as in [34], and warp sampling points to previous timestamps ¢_; using the velocity vector
[vz,vy] from the dynamic Gaussian queries (Eq. 5)
T =9 — vz (to —t—i), (10)
Y—i = Yo — Uy - (to — t—4), (11)
where t is the current timestamp. We note that on the z-axis, we assume there is no velocity give the
nature of driving. Then we warp each dynamic Gaussian using camera motion
T -1 T
(@49, 25,1) = P2 Po(e—iyy—ir 2—, 1)

where P_;, P, are the ego poses at timestamp ¢_; and %.

3.4 Attention across Dynamic and Static Queries

To enable effective interaction between dynamic Gaussian queries Q¢ and static Gaussian queries Q?,
we first concatenate their features representations. We then apply Self-Attention [52] to the combined
features, allowing for rich information exchange cross both query types. We refer to this mechanism
as Dynamic-and-Static (DaS) Attention. This approach not only facilitates self-attention within the
dynamic and static queries individually but also enables bidirectional cross-attention between them,
enhancing the integration of dynamic and static information.

Q = Self-Attention(Concatenate(Q?, Q°)), (12)
Q’=Q.p. Q° = Qpipss, (13)

where : here is the index operator.

3.5 Loss Functions

We supervise predicted Gaussian means G, and corresponding class scores C with Chamfer
distance [15] and focal loss [32]

L
Loce = CD(Gry,0,PY) + Y CD(G,, 0, PY) + FocalLoss(Cy, CY), (14)
=1
where CD(GY, Pg) encourages initial Gaussian means to capture global pattern of underlying data as

pointed out in [53]. For the simplicity of notation, we do not differentiate between static and dynamic
Gaussians in Eq. 14.



For box predictions by dynamic Gaussians, £1 loss is used to supervised box attributes defined in
Eq. 5 and focal loss is used to supervise corresponding box class labels

L
Liox = Z El(GZl’b, Bg) + FocalLoss(C‘;"b, Céb), (15)
(=1
where B, C, ;, denotes ground-truth. Label assignment is done using the Hungarian algorithm [30]
during training. Hence, the 3D Loss can be written as
£3d = ‘Cocc + /\Sdﬁbow7 (16)
where A3 is the weighting factor.

For rendered depth and semantic maps from Gaussians at all stages, we supervise depth with £, loss
and semantics with cross-entropy loss

L
L. =Y Li(Dy, D)+ CE(S,, 5), (17)
=1

where D, § are the rendered depth and semantic maps with D, S being the ground-truth. Here we
project LiDAR points with their ground-truth semantic labels that are available from datasets [6, 45]
onto each camera view to obtain D, S. Therefore the final loss can be written as

L= Lzq+ ALy, (13)
where ) is the weighting factor.

4 Experiments

4.1 Experiment Setup

Datasets: We evaluate our model on the Occ3D benchmark [50] which bootstraps the nuScenes [6]
and Waymo-Open [45] dataset.! nuScenes consists of 1,000 scenes with a split of 700/150/150 for
training, validation and testing. Occ3D-nuScenes annotates 3D occupancy ground-truth providing 17
semantic classes. The voxel grid range is [—40m, —40m, —1m, 40m, 40m, 5.4m] along the X, Y and
Z axis with a grid resolution of 200 x 200 x 16 and voxel size of 0.4m. The original image resolution
is 900 x 1600. Waymo Open [45] has 798 training scenes and 202 validation scenes. Occ3D-Waymo
provides 3D semantic occupancy ground-truth of 15 semantic classes with 1 class being General
Object (GO). The voxel grid resolution and voxel size is the same as Occ3D-nuScenes. On Waymo,
the original image resolution is 1280 x 1920 for the front, front-left and front-right cameras. For the
side-left and side-right cameras, the original image resolution is 1040 x 1920.

Evaluation Metrics: We evaluate our model under the mloU and RayloU [47] metric:

PNG P.NG,

| | ., RayloU = Lrcr B 0 Gl ,

|PUG]| Yorer |Pr UG

where P, GG are the set of occupied voxels in prediction and ground-truth respectively. R is the set of

all emulated LiDAR rays, and P,., G, are the sets of occupied voxels intersected by ray r in prediction
and ground-truth respectively.

mloU =

Implementation Details: We implement our proposed method in PyTorch [42]. Following previous
works [35, 53, 4], we use ResNet-50 [20] as image backbone to extract multi-camera image features.
On nuScenes, we resize input images to the resolution of 256 x 704. On Waymo, all input images are
resized and padded to 640 x 960. For Ours-tiny, we set number of static Gaussian queries .S = 500
and number of dynamic Gaussian queries D = 100. For Ours-large, we set S = 4000 and D = 800,
respectively. We use L = 6 transformer layers to conduct coarse-to-fine prediction. We set A3y = 0.2
to balance box loss Ly, and occupancy loss L,... For rendering loss L,., we set A = 0.05 for stage
£=1,6,and A = 0.01 for the rest. We use AdamW [38] as the optimizer with weight decay of 0.01.
We train all our models with an initial learning rate of 2 x 10~% and decays with CosineAnnealing [39]
schedule. For experiments on Waymo, we sample 20% of the data matching practices in previous
works [53, 50]. Unless otherwise specified, we train all our models with a global batch size of 8
for 100 epochs using NVIDIA A100 GPUs. During inference, we adopt the standard practice and
make use of the camera visibility masks provided by the dataset [5S0] and only evaluate in unoccluded
regions. Inference runtime is measured on a single idle A100 GPU with PyTorch £p32 backend.

'nuScenes is under a CC BY-NC-SA 4.0 license and Waymo license terms can be found here: https:
//waymo . com/open/terms/.
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Table 1: 3D semantic occupancy results on Occ3D-nuScenes validation set [6, 50]. Cons. Veh stands for
“Construction Vehicle” and Dri. Sur stands for “Drivable Surface”. We note that for fair comparison, both
ODG-T and ODG-L here are trained without using future frames. Bold/Underline: Best/second best results.
*indicates self-supervised methods.
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Figure 2: Visualization of ODG prediction on the Occ3D-nuScenes [50, 6] validation set. The ODG
can capture all the vehicles on a gloomy rainy day.

4.2 Evaluation Results

In this section, we report evaluation results on the Occ3D benchmark [50] and compare with latest
state-of-the-art methods.

nuScenes Our results on Occ3D-nuScenes is summarized in Tab. 1. One can see that our method
achieves new state-of-the-art results in terms of both mloU and RayloU, while maintaining competi-
tive inference speed even when compared to latest efficient approaches. Specifically, ODG-T (8f)
achieves an mloU of 35.54 with a RayloU of 39.2, outperforming OPUS-T (8f) who has an mloU
of 33.2 (-2.34) and a RayloU of 38.4 (-0.8), while still having an inference runtime of 20.1 FPS.
Similarly, ODG-T also easily outperforms both SparseOcc (8f), SparseOcc (16f) and GaussRender
with significant margins. Meanwhile, our heavy variant ODG-L sets new best result eventually
obtaining an mloU of 38.18 with a RayloU of 42.3, surpassing previous best with a definitive margin
of +1.98 and +1.1, respectively.

It is worth noting that given our specific design to attend to the dynamic agents in the scene, we show
significant improvement when examining the key dynamic object classes. As shown in Tab. 2, for
the classes of Bus, Car, Construction Vehicle (Cons. Veh), Motorcycle, and Truck, ODG-L carries a
significant lead of +4.13 for mloU, once again demonstrating the efficacy of our proposed strategy of
handling dynamic agents.

Table 2: Occupancy prediction results over key dynamic object classes on Occ3D-nuScenes [50] validation set.
ODG achieves consistent improvement across all dynamic categories. Bold/Underline: Best/second best results.

Method mloU

Bus
Car
Cons. Veh
Motorcycle
Truck

GaussRender [10] | 33.69 | 43.76 4637 1949 252  33.65
OPUS-T (8f) [53] | 32.68 | 39.76 4525 2341 21.80 33.20
OPUS-L (8f) [53] | 34.64 | 4095 4724 2386 2589 3528

ODG-T (8f) 36.22 | 46.75 49.33 2579 23.63 35.61
ODG-L (8f) 38.77 | 48.77 52.09 26.79 28.05 38.17




Table 3: 3D semantic occupancy results on Occ3D-Waymo validation set [45, 50]. GO stands for “General
Object”. Traf. Light stands for “Traffic Light” and Cons. Cone stands for “Construction Cone”.
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Figure 3: Visualization of ODG prediction on the Occ3D-Waymo [50, 45] validation set.

Waymo We further evaluate our ODG on the Oce3D-Waymo dataset and the results are presented in
Tab. 3. We note that Occ3D-Waymo is a much less well evaluated occupancy benchmark especially for
camera-only methods, given its challenging conditions (e.g. almost no view overlap between cameras).
We train ODG-L of with 20% of the training data following practice in previous methods [53, 54].
To the best of our knowledge, the most comprehensive source which compiles vision-only methods
are from [50, 53], hence we use them for comparison. It is clear from Tab. 3 that our ODG
obtains a definitive lead of +2.35 for mloU and +1.2 for RayloU when compared to OPUS. Upon
further examining Tab. 3 one can see that ODG establishes far surpass the second-best under class
Vehicle(+3.25), Bicyclist(+3.01) and Pedestrians(+8.91), which are all critical traffic agents, once
again proving the superiority of our modeling of dynamic objects.

4.3 Visualization

We showcase visualizations of predicted occupancy of ODG on nuScenes and Waymo in Fig. 2
and Fig. 3. In Fig. 2, under gloomy rainy weather where the ground-truth is sparse especially in
object-centric categories (e.g. cars in this case), ODG effectively outputs dense predictions capturing
all the cars in the scene. In Fig. 3, ODG also captures all the traffic agents. We attribute this attractive
behavior to our dynamic Gaussian queries dedicated to modeling the dynamic scene agents.

4.4 Ablation Studies

In this section, we conduct multiple ablation studies to analyze the effects of various components in
our proposed ODG. For all our ablation studies, we adopt ODG-T and train on the Occ3D-nuScenes
for 24 epochs.

Temporal Alignment As pointed in Sec. 3.3, in order to sample features correctly from the history
frames, it is critical to move the Gaussians according to their respective motions before projecting
them onto image feature plane. Hence, here we study the effects of performing different type of
motion compensation. As shown in Tab. 5b, if we merely correct ego-motion (camera-motion) for the
dynamic Gaussians, both mIoU and RayloU suffers a noticeable drop of -0.71 and -0.5 respectively.
This demonstrates it is essential to compensate object motion for dynamic agents.

Query Interaction Given we have dynamic and static Gaussians modeling the scene, it is important
to make them aware of each other. We analyze the effect of different attention mechanisms in Tab. 5a.
In our experiments, we first tried performing cross attention with dynamic query features serving as
queries, and static query features as keys and values, which gave us a modest improvement. A more
straight-forward way is to concatenate the dynamic and static query features together, and perform
self attention on top of concatenated features. This lead to further better results as shown in Tab. 5a.



Table 4: Impact of different components inside ODG on model performance.

Motion compensation =~ Query attention ~ Rendering Sup mloU RayloU, RayloU, RayloU,,,

30.80 27.9 36.6 42.0
v 31.78 28.7 37.3 42.6
v v 32.13 29.3 37.8 43.1
v v v 32.82 31.1 40.5 438

Table 5: Ablation studies on components related to dynamic Gaussian queries.

(a) Effects of Query Attention. (b) Effects of Motion Compensation.
Query Attention mloU  RayloU Ego Comp. Dyn. Comp mloU RayloU

Cross Attn 31.95 36.3 v 31.17 35.7
Self Concat Attn | 32.13 36.7 v v 31.78 36.2

We posit that running self attention on all features in an exhaustive manner makes all queries become
aware of each other therefore facilitating more information flow, leading to improved results.

Rendering Supervision To reduce spatial artifacts through projective constraints, we leverage 3D
Gaussian Splatting and render depth and semantic maps to each camera view. As shown in Tab. 4, this
resulted in a noticeable improvement both in mloU and RayloU, with mIoU+0.69 and RayloU+0.70.
By injecting the auxiliary supervision signals from LiDAR points projected onto each camera view
(keyframes only, constrained by sensor calibration), it effectively enforces geometric and semantic
consistency especially during the early stages of rendering, which helps the model learn more
effectively for the regions that the 3D occupancy ground-truth are ambiguous or noisy. It is worth
noting that during inference, we turn off rendering hence incurring no extra computation cost, reaping
the benefit with zero increase in inference latency.

We summarize the effect of the different components in our proposed method in Tab. 4. It is evident
that by progressively enabling different modules in ODG, the model performs increasingly well,
validating the soundness of the designs that we incorporated into our system.

5 Conclusions and Discussions

In this paper, we present ODG, a novel approach to 3D occupancy prediction based on dual Gaussian
queries. ODG defines two distinctive sets of queries consisting of dynamic and static Gaussian
queries, aiming to better model dynamic scene agents. To make ODG attend to moving objects, we
expand the standard 3D Gaussian properties of dynamic queries with 3D bounding box attributes,
which effectively guides queries to dedicate resource to capture complex scene dynamics. Self
attention is utilized to establish connection between dynamic and static queries. To enable sufficient
model capacity, ODG adopts a coarse-to-fine prediction paradigm when it comes to predicting the
Gaussian parameters, which allows a large number of Gaussians to be utilized. To reduce spatial
artifacts in 3D occupancy, we enforce projective constraints through rendering depth and semantic
maps to each camera view leveraging 3D Gaussian Splatting, supervised by projected LiDAR points.
Our extensive experiments on the Occ3D-nuScenes and Occ3D-Waymo benchmark demonstrates
ODG sets new state-of-the-art results while maintaining highly competitive efficiency.

Limitations. However, as promising as ODG is, it does not come without limitations. Readers
might have observed that currently the Gaussian parameters other than mean (namely scale, rotation
and opacity) is only optimized through rendering loss, rather than for instance, aggregating nearby
Gaussians to get occupancy and learn from occupancy ground-truth as well, albeit such aggregation
incurs significant cost. Therefore exploring ways to improve optimization of Gaussians would be an
interesting research direction.

Broader Impacts. Our proposed ODG provides more accurate 3D occupancy prediction while
maintaining inference efficiency, which is beneficial to safe, energy-efficient autonomous driving.
Furthermore, given the versatility and efficiency of our ODG, we think it is a promising venue towards
building a unified perception and prediction module for autonomous driving, which will improve
the homogeneity of the entire stack that will in turn lower overall operating cost, yielding economic
benefit. On the other hand, during the development of this work, several experiments did not make it
into the paper (e.g. due to lack of time), which incurred extra energy consumption.
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Appendix
We provide more experiment analysis regarding various aspects of ODG.

A. Coarse-to-fine Prediction of Gaussian Parameters

We present details of the coarse-to-fine refinement used in ODG. For notation simplicity, we denote
motion compensation, feature sampling, cross and self attention, along with dual query-attention

presented in Figure 1 as a single layer 71, rest of the notations are the same as defined in Section 3.2.
To further enhance clarity, since coarse-to-fine refinement doesn’t apply to bounding box attributes

(i.e. Ky = 1 throughout all the layers 77), we have omitted them in Algorithm 1 below.

Input: images features F; static Gaussian queries {G¢, Q§ }; dynamic Gaussian queries

{Gi, Qi)
Output: refined Gaussian queries {G?3 , Q3 }, class predictions C$ ; refined dynamic Gaussian

queries {G¢,Q¢%}1, class predictions C¢.

Function ODGRefine(F, G§, Q35, G&, Q4)
G3, 0 € RSXKOXS 14(0,1), Ko = 1
G, ) € RP*Fox3 14(0,1), Ko =1
// initialize Gaussian means with uniform distribution; rest of the Gaussian parameters left uninitialized

for/ < 1to L do
# static .

Gfu,l’ Q. Cj = W(G:sp,l—vals—h i—1)
5o = ®(G?,;, Qp) // rest of Gaussian params predicted by MLP
INGs,, € RS*Kix3, G, € RS> EKx10 Cs ¢ RSXKIXC K | < K # coarse-to-fine
# dynamic
G:Ciz,l’ Q?> Cf = W(Gi,l—l’ Q?—lv C?—l)
G, = ®(GY, ,, Q) // rest of Gaussian params predicted by MLP
/] Gfiu,l c RDXK[XS, GZ:,I c RDXKlXIO’ C;l c RDXKlXC,Kl_l < Kl
# coarse-to-fine

end
return {GiﬂQi’ i}’{G%’Q%’C%}
Algorithm 1: Coarse-to-fine refinement in ODG.

B. Runtime Efficiency

We profiled ODG-L at inference time with DeepSpeed [43]. Results are summarized in Table 6a
below.

Table 6: Runtime analysis of ODG-L (FP32).

(a) Runtime of different components in ODG-L (b) Runtime of different components in ODG-L
transformer.
Component Runtime (ms)  Percentage
img_backbone (ReNet50) 33.82 16.58% Component Runtime (ms) ~Percentage

img_neck (FPN) 9.83 4.82% Self-attention 70.77 44.14%
ODG-L transformer 160.32 78.59% Point sampling 25.88 16.14%
Cross-attention 24.06 15.01%
FFN 8.55 5.33%

We can see that the transformer part takes up most of the inference cost in ODG-L. We provide further
profiling results on ODG-L transformer in Table 6b above. Evidently query self-attention takes up
almost half the runtime. One straight-away optimization can be replacing self-attention with efficient
attention schemes such as linear attention [55] or state space models (SSMs) [18]. We plan to look
into this as part of future work.
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C. Evaluation of Prediction from Each Layer

To provide further insight of the coarse-to-fine scheme in ODG, we evaluate predictions of all 6
layers of ODG-T against ground-truth occupancy. The results are summarized in Table 7 below. In
the beginning since the prediction is too coarse, the model behaves poorly in terms of mloU and
RayloU. Then with our coarse-to-fine refinement, ODG starts gradually learning the scene and gives
progressively better results, which validates the effectiveness of our coarse-to-fine refinement design.

Table 7: Evaluation of each layer’s prediction in ODG-T.

ODG-T = #Predicted Gaussians mloU RayloU;, RayloU,, RayloUs, RayloU

layer 1 600 0.35 1.9 2.8 3.8 2.8
layer 2 2400 3.17 9.5 13.5 16.3 13.0
layer 3 9600 18.68 259 32.6 36.6 31.7
layer 4 12800 26.48 29.9 37.9 422 36.6
layer 5 38400 31.02 30.5 39.9 43.3 37.9
layer 6 76800 32.82 31.1 40.5 43.8 385

D. Ablation on Supervision Signals

In Table 8, we show how ODG performs when there is only occupancy labels available. Compared
to full supervision with bbox and rendering labels, ODG suffers a slight drop in terms of mloU and
rayloU, but still delivers strong performance, which validates our design.

Table 8: Ablation on supervision signal.

Supervision mloU  rayloU

Occupancy only 31.46 36.1
Occupancy & bbox & rendering supervision | 32.82 38.5

E. Effect of Query Composition

We study the effect of utilizing different types of queries. The results are summarized in Table 9.

Table 9: Effect of query composition on model performance.

Method # Queris mloU RayloU FPS
OPUS-T [53] 600 (static) 332 38.4 224
OPUS-L [53] 4800 (static) 36.2 41.2 7.2
ODG-T 500 (static)+100 (dynamic) 355 39.2 20.1
ODG-L 4000 (static)+800 (dynamic) | 38.2 423 4.9
ODG-T* 600 (dynamic) 34.8 389 17.6
ODG-L* 4800 (dynamic) 37.6 42.1 3.7

One can see that by taking into account object motion, ODG definitely outperforms baseline
OPUS [53] which only considers ego motion. Interestingly, when we treat all our queries as dynamic
(denoted as ODG-*), it still performs better than OPUS. We attribute this gain to the object detection
task present in our system which effectively improves dynamic object predictions, and through
rendering constraint we also learn better 3D geometry.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:
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made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the paper, we have provided sufficient details for reproducing our work,
including detailed design and experiment setups.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We will aim to release the code, which will be subject to our institution’s
review and approval. The datasets used in our experiments are publicly available.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In this paper, we have specified all the training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: In our experiments, we use established benchmarks and training & testing
protocols, which do not include reporting of error bars or statistical significance tests. In the
literature, it is not a common practice to report error bars in the 3D occupancy prediction
problem considered in this paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

18


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have provided information on the compute resources in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics, and our research conforms
with it.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed the potential societal impacts of this work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not introduce data or models that have a high risk for misuse
and as such, poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: In the paper, we have cited the original papers that produced the data or models,

and have mentioned/provided links to the licenses and terms of use. We have properly
respected the licenses and terms of use of the data and model used in this work.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not introduce new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

21


paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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