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ABSTRACT
Data harmonization is an essential task that entails integrating
datasets from diverse sources. Despite years of research in this area,
it remains a time-consuming and challenging task due to schema
mismatches, varying terminologies, and differences in data collec-
tion methodologies. This paper presents the case for agentic data
harmonization as a means to both empower experts to harmonize
their data and to streamline the process. We introduce Harmonia, a
system that combines LLM-based reasoning, an interactive user in-
terface, and a library of data harmonization primitives to automate
the synthesis of data harmonization pipelines. We demonstrate
Harmonia in a clinical data harmonization scenario, where it helps
to interactively create reusable pipelines that map datasets to a
standard format. Finally, we discuss challenges and open problems,
and suggest research directions for advancing our vision.
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1 INTRODUCTION
Extracting insights from multiple data sources remains an arduous
and time-consuming task. In fields such as biomedicine, collecting
patient data requires expensive trials that typically involve only a
few dozen to hundreds of patients [43]. Since this usually leads to
tables with many attributes but few samples, researchers need to
combine different cohorts to obtain larger sample sizes. However,
since data is often collected using differing methods, combining
them into compatible and comparable datasets often becomes a
challenge [12]. Consider these examples from cancer research.
Example 1 (Clinical Data Harmonization). To obtain a larger
dataset for a study on endometrial cancer, researchers aim to com-
bine samples from two patient cohorts collected independently
in two studies [17, 18]. These studies produced two tables con-
taining clinical data, which we refer to as 𝑇1 and 𝑇2. Each row
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Figure 1: Domain of attributes in different data sources.

in each table represents an individual patient sample. Tables 𝑇1
and 𝑇2, contain 179 and 213 columns and 153 and 190 rows, re-
spectively. The goal is to combine the data to obtain a table with
392 rows. However, even though these datasets were produced
by the same research consortium, their schemas and naming stan-
dards differ significantly. The first challenge is identifying which
columns are semantically equivalent. Once all pairs of equivalent
columns have been identified, their values must be standardized.
Figure 1 shows an example of a pair of equivalent attributes from𝑇1
and 𝑇2 – Histologic_grade and Histologic_Grade_FIGO. The
values of these attributes are represented using different termi-
nology. To produce a harmonized table, the researchers must rec-
oncile these values before merging the rows. For instance, they
may decide that the final harmonized table 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 will contain
an attribute named histologic_grade and that the format of the
value used will be from Histologic_grade, and thus we would
need to map the values of 𝑇1 to their corresponding values from
𝑇2 (e.g., "FIGO grade 1"→"G1 Well differentiated", "FIGO
grade 2"→ "G2 Moderately differentiated", and so on). Note
that different mappings can be applied to different attribute pairs.
Example 2 (Harmonizing Data to a Standard Vocabulary). In a sub-
sequent effort to foster data reuse and enable research in pan-cancer
analysis [43], researchers decided to combine 10 tables containing
cohorts of a variety of cancer types [7, 14, 18, 23, 28, 39, 49, 57, 64,
67]. They mapped all tables to the Genomic Data Commons (GDC)
standard [31], which contains attributes commonly used in cancer
research. Figure 1 shows how the values for Histologic_grade
and Histologic_Grade_FIGO map to the corresponding GDC at-
tribute tumor_grade. Once again, the acceptable values in the GDC
vocabulary differ from the values used in the tables of Example 1.
The Case for Agentic Data Harmonization.Data harmonization
involves several data integration tasks. Practitioners use spread-
sheet software, bespoke scripts, and significant manual work to
harmonize data [12]. These custom scripts are often not published
with the data and publications, creating barriers to the reproducibil-
ity and replicability of experiments [50].

https://doi.org/10.1145/3735079.3735324
https://doi.org/10.1145/3735079.3735324
https://doi.org/10.1145/3735079.3735324


NOVAS ’25, June 22–27, 2025, Berlin, Germany Aécio Santos, Eduardo H. M. Pena, Roque Lopez, Juliana Freire

Large language models (LLMs) open new opportunities to im-
prove data harmonization. They can answer questions about ter-
minology, methodologies and generate code without training data.
Recently, LLMs have shown promising results in data integration
tasks, including column type annotation, schema matching, and
entity linkage [22, 34, 44, 51, 63]. Prompting today’s frontier LLMs
with a question such as “What does FIGO grade mean?” reveals
that they do have general knowledge about many topics, including
biomedical research (the focus of our examples). This suggests that
this information can be used in data harmonization tasks.

LLMs are becoming essential components for intelligent agents
across various applications due to their capabilities in language
understanding, tool utilization, and adapting to new information,
resembling human intelligence and reasoning [66, 72, 73]. These
capabilities have been surfaced by advancements in LLM prompting
techniques that elicit reasoning, such as Chain-of-Thought [70] and
ReAct [73]. These enable agents to handle complex tasks such as ta-
ble understanding tasks through structured data manipulation [69],
and generate reasoning traces and task-specific actions that are in-
terleaved to complete tasks [73]. Moreover, frameworks for building
agentic systems are now widely available, such as LangChain [40],
Camel [41], and AutoGen [71].

This paper presents our vision of intelligent agents that can in-
teract with the users and data integration algorithms to synthesize
data harmonization pipelines. Such agentic systems accept user task
requests and prompt the user with questions required to complete
a task (e.g., to request additional context or to disambiguate the
input). Similar to AutoML systems, which generate end-to-end ma-
chine learning pipelines [6, 46, 58], a data harmonization agent can
produce a data processing pipeline that takes as input user data
and outputs a harmonized table that satisfies the user requirements.
These pipelines could then be published along with research data
to document the data generation process for reproducibility.
Agentic Data Harmonization Challenges. Building agentic sys-
tems presents several challenges. First, harmonization scenarios are
inherently complex, often involving difficult tasks such as schema
matching, entity linkage, and data cleaning. These tasks require
specialized methods to achieve high-quality results, and the scal-
ability of these methods is critical for harmonizing large datasets.
While general-purpose LLMs offer broad capabilities, they lack
transparency [30] and are not optimized for these tasks, leading to
inconsistent outputs, high computational costs, and performance
bottlenecks, especially when handling large-scale datasets [21, 26].

Second, integrating algorithms for different tasks and generating
cohesive pipelines is non-trivial. Unlike in AutoML systems, data
harmonization pipeline synthesis cannot be driven by search algo-
rithms that optimize well-defined evaluation metrics (e.g., model
accuracy) since the quality of data harmonization pipelines cannot
be as easily measured using one metric. Instead, the synthesis may
need to be guided by the users, since accuracy may depend on ex-
ternal knowledge. For example, in the case of Fig. 1, deciding if the
correct match for ‘NA’ is ‘Not Reported’ or ‘Unknown’ may depend
on the data collection methodology. The agent should automate the
laborious tasks without sacrificing accuracy and without becoming
a burden: it must learn to ask questions only when necessary to
avoid overwhelming the user. To add to these challenges, LLMs are
brittle: (1) they often make mistakes (also known as hallucinations)

that must be identified and corrected by users; and (2) they are
known to be sensitive to the prompts (i.e., small prompt changes
may lead to different results) [3, 35].
Contributions. In this paper we discuss the opportunities and
challenges for the use of agents for data harmonization. We also
present Harmonia, a proof-of-concept prototype of an agentic data
harmonization system that implements part of our vision.

Harmonia leverages LLM capabilities to interact with users, or-
chestrate specialized data integration primitives, and generate cus-
tom code when existing primitives are insufficient. These prim-
itives implement efficient and well-established data integration
algorithms that can be combined to make harmonization pipelines
guided based on user feedback. Since algorithms can make mis-
takes, we use LLMs to evaluate the outputs of these primitives.
When outputs are incorrect, the agent may take additional steps to
automatically correct the errors or seek assistance from the user.
We also describe how Harmonia can be applied in a real-world use
case, highlighting the potential and limitations of its current design
and implementation. To address these limitations, we identify open
problems in this field and propose future research directions, build-
ing on previous work in machine learning and data management.

Our contributions can be summarized as follows: (1)We present a
vision for agentic systems that help users create data harmonization
pipelines by combining LLM-based reasoning, interactive user inter-
faces, and data integration primitives. (2) We introduce Harmonia,
a prototype data harmonization agent that integrates bdi-kit [4],
a library of data integration algorithms, to efficiently construct
harmonization pipelines. When existing functions are insufficient,
Harmonia leverages the LLM to dynamically generate custom code.
(3)We demonstrate a real-world use case where Harmonia is applied
to map clinical data to the GDC standard [31], addressing common
issues such as differing terminology and schema. (4) We discuss
challenges in designing data harmonization agents and propose a
research agenda with steps to address open problems.

2 PRELIMINARIES
Broadly speaking, data harmonization refers to the practice of com-
bining and reconciling different datasets to maximize their compara-
bility or compatibility [12]. Although data harmonization goals can
vary greatly depending on the data modalities and goals involved,
this paper focuses on the following problem:
Definition 1 (Tabular Data Harmonization). Given a set of source
tables 𝑇1, 𝑇2, ..., 𝑇𝑛 and a target schema 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 composed of a set
of attributes, each attribute specifying its acceptable values, i.e., a
domain, the goal is to derive a computational pipeline P that takes
as input the source tables and applies transformation functions to
values and combines tables (e.g., using union and join operations)
to generate an output table 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = P(𝑇1,𝑇2, ...,𝑇𝑛) that adheres
to the given target schema 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 .

Note that instead of aiming at maximizing an objective measure
of comparability or compatibility between input and target, we
assume the existence of the canonical data representation 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 .
As seen in Examples 1 and 2, this specification 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 consists of
a set of attribute names and domain specifications that can either
come from a standard data vocabulary (such as the GDC) or could
be derived from the existing data in the source tables.
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Figure 2: (a) Components of an interactive agentic data harmonization system. Solid lines represent components implemented
in Harmonia (see Section 4) while dashed lines represent components not yet implemented. (b) The LLM agent loop: given a task,
the LLM will repeatedly execute actions (call tools or ask questions to the user) until the task is completed. (c) A sequence
diagram illustrating an example of the communication workflow between the user, agent, and primitives.

Data harmonization pipelines can be of multiple forms. A simple
example is a linear sequence of data processing operations (e.g., as
in scikit-learn pipelines [59] or Jupyter Notebooks [33]). However,
they can also be declaratively represented as direct acyclic graphs
(DAG), such as in AutoML systems [46, 58]. In practice, data har-
monization pipelines are typically complex, custom scripts created
iteratively through a trial-and-error process [12]. It is challenging
to code and manually explore the space of pipelines to identify
the most effective one for a given task. For subject matter experts
without programming experience, creating these pipelines is simply
out of reach. We envision that LLM-based agents can help address
these challenges as we elaborate next.

3 AGENTIC DATA HARMONIZATION
We propose using LLM-based agents to facilitate the interactive
construction of harmonization pipelines through natural language
and visual interfaces. We aim to simplify the harmonization process
and empower domain experts to harmonize their data effectively.

Our approach has three main components: harmonization primi-
tives, harmonization agents, and human-agent interaction (Figure 2a).
The system supports a two-way interaction between users and agent.
While users drive the system and define the tasks to be performed,
the agent aims to automate the harmonization tasks, leaving to
users only decisions that need external context. By recording user-
agent interactions and the derived computational pipelines, we
maintain provenance of the harmonization process, supporting
transparency and reproducibility and making it possible to publish
the harmonized data with the pipeline used to derive it.
Harmonization Primitives. The bottom of Figure 2a shows a
library of components that we refer to as data integration primi-
tives. These are algorithms or routines that solve well-defined data
integration tasks such as schema matching and value mapping.
Some of these are lower-level routines that support other higher-
level tasks, e.g., column-type annotation may be a component of
schema-matching algorithms [22], while entity resolution and dedu-
plication may be key to performing data standardization [13]. The
set of primitives can be heterogeneous and evolve to support the
system capabilities. An important requirement is that they need to
be composable and invoked by both user and AI agents.

Composability is the ability to combine different primitives to cre-
ate a data harmonization pipeline. For instance, output from schema
matching primitives, which generates source-target attribute pairs,
can feed into value mapping primitives that find equivalences be-
tween the values of those source and target attributes. Finally, the

output of value mapping primitives can be used to create a harmo-
nization specification that describes the transformation of source
tables 𝑇𝑖 into a target output table 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 .
Data Harmonization Agents. An agent senses its environment
and acts upon it [55]. In our context, we define a data harmonization
agent as a program that interacts with its environment (e.g., data,
primitives, users) to autonomously complete harmonization tasks.
Agents can operate at various levels of autonomy [52], from offer-
ing minimal user assistance to fully independent harmonization.
In Section 4, we focus on interactive agents that respond to user
queries, though more autonomy is possible within our framework.

To fulfill user requests, the agent must first decompose the prob-
lem into a series of actions of various types, including (1) the exe-
cution of existing integration primitives (tool calling) or (2) code
generated on demand. To decompose the problem and decide on
what action to take, the harmonization agent leverages an LLM,
which is given descriptions of the task and integration primitives
available for use. The LLM then repeatedly returns actions (e.g., a
code snippet) that can be executed in a runtime environment (e.g.,
a Python kernel). Action outputs are fed back into the LLM, which
decides if additional actions are needed. As illustrated in Figure 2b,
this loop executes until the task is deemed complete.

The main loop is orchestrated by a driver code that takes inputs
from the user (i.e., prompts) that describe the task to be performed.
This driver is also responsible for (1) communicating with users to
request inputs (e.g., when the LLM asks for task clarification or user
preferences) and (2) managing the state (memory) of the agent. For
example, it can also track and store the history of actions and user
interactions in a Provenance DB. This data can support decisions
about future actions, and transparency, and be used to generate
harmonization specifications or scripts to reproduce the results.

Given the complexity of harmonization tasks, it is crucial to have
high-level primitives available as building blocks for the pipeline.
This allows encoding prior knowledge and using efficient algo-
rithms known to be effective for a specific task. These primitives
encompass algorithms for tasks such as schema matching, entity
resolution, and value mapping. Of course, primitives can go beyond
hard-coded functions that implement deterministic algorithms. For
instance, they can be workflows that use LLMs to perform specific
tasks such as in [44] or they could generate code on demand (e.g.,
to extract data from or to transform attribute values [10]).
Human-Agent Interaction. A key aspect of our architecture is
the interaction between users and agents. In Section 4, we show
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that our current prototype is proficient in text-based conversational
interactions: it can parse users’ input and act on them. However, to
make systems more effective, we argue that future systems need
to support graphical user interfaces that help users (1) to reason
about the input data and the agent’s output, and (2) to refine the
task definition and pipelines derived by the agent. For example, as
done in interactive AutoML tools [56], the system could guide the
user through the harmonization process, recommend the available
actions, track progress, and provide data visualizations to help the
user better make sense of the data. This may help prevent common
issues in natural language such as ambiguity [19, 74].

In complex tasks like harmonization, user interaction is crucial
because many decisions—such as whether two terms represent
the same concept—can be difficult even for domain experts. These
judgments often depend on context not captured in the data, such
as how it was collected or the purpose of the harmonization. Fur-
thermore, as in any automated data integration system, LLM-based
agents can make mistakes. When combined with well-designed user
interfaces, users are better equipped to guide the agent, providing
guardrails and safety mechanisms that neither users nor interfaces
could achieve as effectively on their own.

4 SYSTEM PROTOTYPE & USE CASE
We implemented a proof-of-concept of our vision (Figure 2a). In
what follows, we illustrate how it works with a concrete example.
Data Integration Primitives. We used data harmonization primi-
tives from bdi-kit [4], an open-source Python library that we de-
signed with the explicit goal of composability. Currently, it includes
implementations of multiple schema matching and value mapping
algorithms using a composable API. It also includes several classic
algorithms from Koutras et al. [38] and language model-based algo-
rithms [44, 45]. Most functions take as input a source parameter
that represents the user’s input DataFrame and returns the output
formatted as another DataFrame. The target parameter can either
be a string representing a target standard schema (e.g., ‘gdc’) or
a target DataFrame, this allows switching between the two tasks
described in Examples 1 and 2. Figure 3 shows a sample of functions
integrated in Harmonia. The source code is on GitHub [24].
LLM Agent & User Interface. Implementing an agent entails
writing carefully crafted function and task descriptions that are
combined to assemble system prompts fed to the LLMs. For our
prototype, we implemented tool wrappers for each of the bdi-kit
functions, along with descriptions of when each should be used.
We also provide descriptions of the data harmonization steps, when
the LLM should request help from the user, and output formatting
instructions. These descriptions are available in the code [24].

match_schema(source, target, method, ...)
Maps the schema of a source table to a target schema (table or predefined standard
like gdc) using a specified method.
top_matches(source, column, target, top_k, method, ...)
Finds the top-kmatches between a source column and columns of a target schema.
match_values(source, target, column_mapping, method, ...)
Matches values between columns of a source and a target using a specified method,
returning one or more result tables.
materialize_mapping(input_table, mapping_spec) → DataFrame
Transforms a source table into a new table using a mapping specification.

Figure 3: Some bdi-kit functions integrated in Harmonia.

To implement tool calling, we used the Archytas [2], an open-
source library for building AI agents based on the ReAct frame-
work [73], and used the GPT-4o model (i.e., no fine-tuning is in-
volved). Instead of using a fixed pipeline that invokes the LLM, we
implement a dynamic agentic loop, as described in Figure 2b. The
LLM has the flexibility to break down the task into multiple tool
call instructions needed to complete the task. The user interface is
implemented using Beaker [5] and is currently limited to a chat-
based interface and workflow that resembles a Jupyter notebook.
The system renders markdown-formatted outputs in the browser,
displays the reasoning steps taken by the agent, and collects user
inputs using text input boxes and feeds them back to the agent. A
video demonstrating these interactions is available online [25].
Use Case: Harmonizing a Dataset with the GDC Schema. To
demonstrate the ability to produce good data harmonization plans,
we present a use case that harmonizes a dataset from Dou et al. [18]
(described in Example 1) with the GDC standard. Below, we show
message exchanges between the user ( ) and the agent (Æ), along
with explanations of the actions taken by the agent to answer user
queries. As the interactions show, Harmonia chooses proper tools
to solve the task, which includes generating and executing Python
code, as well as bdi-kit functions with the appropriate parameters.

The user starts by requesting the system to load a CSV file that
contains the attributes of interest:

  Load the file dou.csv as a dataframe and subset it to the following columns:
Country, Histologic_Grade_FIGO, Histologic_type, FIGO_stage, BMI, Age, Race,
Ethnicity, Gender, Tumor_Focality, Tumor_Size_cm.

As a response, the agent shows a success message and a table pre-
view. To produce this result, the agent automatically (1) generates
Python code using the Pandas library that loads and selects the
requested columns and (2) executes the generated code to load the
CSV file into memory. This example illustrates the capability of
on-demand code generation to accomplish a requested task.

Next, the user requests the system to perform schema matching
between the table loaded and the attributes from the GDC standard:

  Match this to the GDC schema and fix any results that don’t look correct.

As shown in Figure 2c, the system interacts with an LLM multiple
times to answer this request. First, it sends the initial user’s prompt
to the LLM, which recognizes that the function match_schema
is adequate to solve the request, and thus returns a tool calling
instruction containing the match_schema function name alongwith
the needed parameters. After receiving the instruction, the system
executes the function, collects matches, and returns them to the
LLM. Note that the LLM interprets the user’s query and correctly
identifies the function arguments: it uses gdc as the target schema
and a default value for the method parameter in match_schema().
Alternatively, the agent also supports requesting a specific method
in the prompt, offering experts greater control and customization.s

After analyzing the column match results received in the follow-
up prompt, the LLM detects a mapping mistake for the column
Histologic_type, which is incorrectly mapped to roots. To fix
the error, the LLM triggers a tool calling instruction that uses the
primitive function top_matches to find the top-10 alternative candi-
dates for Histologic_type. After analyzing the results, it suggests
using primary_diagnosis as a correction to the user.
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Æ The current mapping for ‘Histologic_type’ is ‘roots’, which seems incorrect.
The top alternatives are:
- history_of_tumor_type
- primary_diagnosis
- sample_type
I suggest using ‘primary_diagnosis’. Do you agree with this choice?

This exemplifies an important benefit of the agent in augmenting
and improving the effectiveness of the underlying libraries: using
its knowledge, it is able to detect the error; then, it leverages the
library to identify alternative choices. This also shows an example
of complex task planning enabled by the agentic loop (Figure 2b).

The agent then displays a table of column mappings, where the
“Source Column” contains columns from the source table (dou.csv),
“Target Column” contains a column match from the GDC standard,
and “Corrected?” indicates whether the LLM has corrected the
original bdi-kit match.

Æ Result:
Source Column Target Column Corrected?
[...] [...] [...]
Country country_of_birth No
Histologic_Grade_FIGO tumor_grade No
Histologic_type primary_diagnosis Yes, from “roots”
Tumor_Size_cm tumor_depth_measurement No

Since the user is a domain expert familiar with the GDC stan-
dard, they ask for better matching options for Tumor_Size_cm. The
system updates the previous list with a more appropriate match
found using the top_matches function:

  Find alternative mappings for Tumor_Size_cm.

Æ Result:
Source Column Target Column Corrected?
[...] [...] [...]
Tumor_Focality tumor_focality No
Tumor_Size_cm tumor_largest_dimension_diameter Yes, from "tumor_depth...

After finding correct matches for all source columns, the next step
is to find value mappings for each column match. The following
prompt requests the agent to find such mappings:
  Find value mappings for the columns Country, Histologic_Grade_FIGO,
Histologic_type, FIGO_stage, Race, Ethnicity, Gender, Tumor_Focality. If
there are any errors in the mappings, please provide suggestions.

As in the previous prompts, finding value mappings requires mul-
tiple LLM interactions. First, the LLM call the match_values()
function for each of the source-target column pairs using the de-
fault method tfidf (an efficient algorithm that chooses matches
based on the tf-idf similarity over n-grams). After receiving the
value mappings, the LLM verifies if they are correct and fixes the
erroneous entries. To do so, it calls another function to discover the
list of acceptable values in a GDC attribute and picks the correct
one. A snippet of the result is shown next (we omit part of the
output due to lack of space):
Æ [...]

Histologic_Grade_FIGO → tumor_grade

Source Value Target Value Corrected?
FIGO grade 1 G1 Yes, from "Low Grade"
FIGO grade 2 G2 Yes, from "Low Grade"
FIGO grade 3 G3 Yes, from "Low Grade"

[...]

FIGO_stage → figo_stage

Source Value Target Value Corrected?
IIIB Stage IIIB No
IIIA Stage IIIA No
II Stage II Yes, from "Stage III"

Note that the LLM detects and corrects errors automatically without
user intervention. For example, it corrects thematch ⟨II, Stage III⟩
to ⟨II, Stage II⟩. This shows how we can leverage efficient algo-
rithms to perform most of the work while resorting to LLMs as
evaluators that can identify and fix mistakes only when needed.

The final step is to generate a harmonized table:

  Please create a final harmonized table based on the discovered column and
value mappings and save it at "dou_harmonized.csv".

Æ The harmonized table has been successfully created and saved as
‘dou_harmonized.csv’.

Here, the agent uses materialize_mapping to generate a table and
save file ‘dou_harmonized.csv’. The LLM first creates a declara-
tive mapping specification according to the bdi-kit’s format used
to describe a harmonization plan. Figure 4 shows a snippet of the
generated harmonization plan, which includes a declarative speci-
fication of the mappings in JSON. In this example, we only show
dictionary-based transformations that map source values into target
values. However, bdi-kit also supports other types of transforma-
tions, such as custom mappings that take as input a custom Python
function (or lambda). This can potentially be used along with the
on-demand code generation.

The main advantage of using a declarative language to describe
harmonization plans is that it enables reproducibility: once a plan
is created, users can feed the plan along with the source data into
materialize_mapping function to recreate the harmonized data.
This does not require re-running any LLM-based interactions, since
all transformations are encoded in the harmonization plan.

[
[...]
{ "source": "Histologic_Grade_FIGO",
"target": "tumor_grade",
"matches": [ ["FIGO grade 1", "G1"],

["FIGO grade 2", "G2"],
["FIGO grade 3", "G3"] ] },

[...]
]

Figure 4: A snippet from themapping specification generated
that is passed to materialize_mapping() function.

Evaluation.We conducted a preliminary evaluation and compared
Harmonia against baseline methods from bdi-kit executed with-
out agent support. The results, summarized in Table 1, show that
Harmonia achieved the best performance across both tasks. For
schema matching, Harmonia successfully associated the column
‘Histologic_type’ with ‘primary_diagnosis’, which contains
2,625 unique values in the GDC. For value mapping, Harmonia was
able to correct values such as ‘FIGO grade 1’ to ‘G1’.

Table 1: Performance comparison for schema matching and
value mapping tasks.

Task Method Accuracy Precision Recall F1

Schema Baseline 0.88 0.78 0.78 0.78
Matching Harmonia 1.00 1.00 1.00 1.00

Value Baseline 0.58 0.58 0.59 0.57
Mapping Harmonia 0.68 0.69 0.69 0.68
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5 RESEARCH OPPORTUNITIES
Harmonia shows the potential of LLM-based agents to orchestrate
actions, evaluate function outputs, detect errors, and generate addi-
tional functions. However, there are still open research questions
to expand the system’s capabilities and improve its effectiveness
and usability, which we outline below.
Agent Evaluation&Benchmarks.Most existing evaluation bench-
marks are focused on isolated tasks, such as schema matching
or entity linking [38, 44, 65]. However, agentic systems create a
need for end-to-end evaluation benchmarks and metrics to measure
progress effectively. Recently, researchers have started developing
benchmarks for evaluating agents in various tasks, including data
analysis and ML engineering [8, 27, 29, 76]. To spur and measure
the progress in data harmonization, we need to create benchmarks
tailored for this task.
Data Integration Primitives. Uncertainty quantification and ex-
planations should be exposed by the primitives to guide decision-
making [16]. Uncertainty in data integration arises from factors
like ambiguous schema mappings and data values [68]. Harmonia
tackles this by exposing similarity scores through its primitives. For
example, a value matcher can return similarity scores so that the
agent can trigger complementary primitives (e.g., value mapping)
for deeper analysis. A key challenge is conveying the meaning of
uncertainty measures from diverse primitives to LLMs and end
users and instructing LLMs on how to use them [1].

Also, LLMs often lack transparency [30], so primitives must pro-
vide interpretable explanations to promote user trust. Primitives
should offer clear usage documentation and expose their decision
rationale. For instance, a matching algorithm description could doc-
ument whether its similarity scores derive from syntactic similarity,
semantic embeddings, or value distribution analysis. LLMs can also
explain their decisions based on domain knowledge and primitive
instructions, helping users better understand why a particular path
was chosen [61, 77]. A key opportunity is training agents to discern
when to rely on LLM explanations, apply alternative strategies, or
engage with the user directly.

Mapping data between schemata involves resolving entities and
transforming data [36]. LLM-based methods have proven helpful
in entity resolution [20, 51], generating or finding transformations
functions [10, 11, 15, 42, 53, 62], and evaluating LLM performance
on such tasks [48]. However, integrating these methods into agent-
based systems requires consistency across diverse data models
and alignment with broader agent goals. Also, we need methods
that allow agents to identify and recommend appropriate attribute
transformations and suitable functions for a given input dataset.
This is especially in challenging cases such as table restructuring
or non-standard formats [42].
Robustness and Reliability. LLMs have shown inconsistency
across various scenarios (e.g., as text summarization evaluators [60]),
often producing varying results when executed multiple times [3].
This variability can undermine reproducibility and reliability, partic-
ularly in critical applicationswhere consistentmappings or transfor-
mations are crucial. In our experiments, we observed that while the
LLM typically identified and fixed incorrect mappings, it occasion-
ally failed to do so (even when provided with the same prompts).

Handling large and complex tables with many attributes poses
additional challenges, as these can lead to long chat histories that
exceed the LLM context window. When this occurs, the LLM may
lose access to earlier relevant information, thereby affecting the ro-
bustness. While approaches have been proposed to mitigate context
window limitations (e.g., [32] [47]), it is not clear if they address
the issues in agent systems. Equipping agents with access to read
and store data in external databases (such as the Provenance DB
discussed in Section 3) may be an effective solution to this issue.
User-Agent Interaction and Interfaces. To improve usability,
agentic systems must go beyond natural language (NL) interfaces.
While NL is flexible, it is also often ambiguous and may lead to
under-specified task descriptions [75]. Since the same task can be
expressed in multiple unpredictable ways, a mismatch between
the user task descriptions and agent prompt specifications may
occur. Therefore, detecting when clarifications are needed may help
increase overall success [75]. These issues could also be potentially
addressed by action-oriented UIs that recommend actions linked
to predefined prompts. Moreover, using rich visual representations
may be more effective at conveying information to the user.
Provenance-Aware Agents. Provenance-enabled systems have
demonstrated promising results in data science pipelines [9, 54]. In
data harmonization pipelines, we can track all interactions that con-
tribute to obtaining a specific value mapping. For example, we could
record all user-agent and agent-primitive interactions involved in
determining the mapping of “FIGO grade 1” to “G1” (see Figure
4). This would allow tracing the lineage of all values in the output
data. Moreover, this information could potentially be used to learn
user preferences that reduce the need for user interactions [37]. By
learning from provenance and pipelines accumulated over time,
a system could further streamline the harmonization process by
automating all steps and presenting final results directly to users.
Data Harmonization Pipelines. In our system, data harmoniza-
tion is expressed as a pipeline wheremultiple primitives (predefined,
user-defined, or agent-defined) are interconnected through their
inputs and outputs to produce the final harmonized dataset. The
pipeline can have various objectives, such as maximining the num-
ber of correct column matches and value matches, minimizing the
number of interactions with users, or minimizing the computational
costs (e.g., runtime or LLM calls). Achieving these objectives repre-
sents an optimization problem, requiring the system to navigate a
complex search space and balance multiple objectives to determine
an optimal sequence of operations. This is similar to the process
used by AutoML systems that automatically synthesize end-to-end
pipelines [46]. One challenge for harmonization agents is that to
guide the search, we need to design optimizers that measure harmo-
nization success, a non-trivial tasks, and balance multiple objectives
including computational costs.
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