
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC NEURAL GRAPH: FACILITATING TEMPORAL
DYNAMICS LEARNING IN DEEP WEIGHT SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid advancements in using neural networks as implicit data representations
have attracted significant interest in developing machine learning methods that ana-
lyze and process the weight spaces of other neural networks. However, efficiently
handling these high-dimensional weight spaces remains challenging. Existing
methods often overlook the sequential nature of layer-by-layer processing in neural
network inference. In this work, we propose a novel approach using dynamic
graphs to represent neural network parameters, capturing the temporal dynamics of
inference. Our Dynamic Neural Graph Encoder (DNG-Encoder) processes these
graphs, preserving the sequential nature of neural processing. Additionally, we also
leverage DNG-Encoder to develop INR2JLS for facilitate downstream applications,
such as classifying INRs. Our approach demonstrates significant improvements
across multiple tasks, surpassing the state-of-the-art INR classification accuracy
by approximately 10% on the CIFAR-100-INR. The source code has been made
available in the supplementary materials.

1 INTRODUCTION

Deep neural networks have demonstrated superb capability in addressing real-world problems in
fields such as computer vision, natural language processing, and the natural sciences. While it is
generally used for learning patterns from data, recent studies have expanded its scope by treating
neural networks themselves as inputs, enabling tasks such as opt imizing networks Metz et al.
(2022), predicting the labels of the data encoded in implicit neural representations Dupont et al.
(2022), and generating or modifying their weights to alter functionality Schürholt et al. (2022).
However, processing these weight spaces presents considerable challenges due to their complex,
high-dimensional nature.

To address the difficulty, some existing methods propose to narrow the effective weight space using
a restricted training process (Bauer et al. (2023); Dupont et al. (2021); De Luigi et al. (2023)).
However, this neglects the crucial permutation symmetry property of the neural network weights
, i.e., neurons within a layer can be rearranged without altering the network’s function (Hecht-
Nielsen (1989)). Overlooking the permutation symmetry can significantly increase the search space
for optimal parameters of processing network, resulting in reduced generalization and unsatisfied
performance. By observing this, recent works (Navon et al. (2023); Zhou et al. (2024b;a)) build
permutation equivariant weight-space models named neural functionals. Unfortunately, these methods
need manual adaptation for each new architecture, and a single model can only handle one fixed
architecture. To encourage process heterogeneous architectures, Kofinas et al. (2024); Lim et al.
(2024) introduce to model neural network weights as graph, which links neural network parameters
similarly to a computation graph. This methods, while innovative, predominantly employ static
graphs. This static representation allows GNNs to process the entire graph in a single pass. However,
such an approach overlooks a critical aspect of neural network behavior during inference: the
sequential nature of layer-by-layer processing. Neural networks, by design, perform inferences in a
temporally ordered manner, where each layer’s output serves as the input for the subsequent layer.
This sequential dependency suggests that a more natural and effective modeling of neural network
parameters could be achieved through dynamic graphs. Unlike static graphs, dynamic graphs evolve
over time, capturing the temporal dynamics inherent in the forward pass process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Motivated by these observations, we propose a novel method that represents neural network parame-
ters as dynamic graphs, namely dynamic neural graph. Leveraging this dynamic graph, we introduce
the Dynamic Neural Graph Encoder (DNG-Encoder), a recurrent-like graph neural network designed
to process dynamic neural graphs. This approach mirrors the forward propagation mechanism of
neural networks, preserving the temporal characteristics of the data flow through the layers. To
facilitate downstream applications, we use the DNG-Encoder to develop INR2JLS, a method that
learns a joint latent space between deep weights and the original data. This approach provides a more
informative latent space compared to previous methods that focused solely on INR weights.

Our contribution can be summarized as follows. First, we introduce the concept of dynamic neural
graphs for modeling neural network parameters, capturing the temporal dynamics of the forward
pass. Second, we develop a novel RNN-based graph neural network to process these dynamic graphs,
effectively imitating the sequential nature of neural network inference. Third, we propose INR2JLS,
a technique that maps INR weights into a joint latent space that can benefit developing downstream
application. Finally, we show through extensive experiments to validate the effectiveness of our
method across three tasks. Notably, the performance of our method improves over the state-of-the-art
by 9% and 10% on CIFAR-10 and CIFAR-100 for classifying INR weights.

2 PRELIMINARIES ON NEURAL GRAPH

2.1 NEURAL NETWORKS AS STATIC NEURAL GRAPH

A recent study (Kofinas et al. (2024)) introduce a novel representation of neural networks, named
neural graphs, which ensures invariance to neuron symmetries. For example, in an L-layer multilayer
perceptron (MLP) M, the weight matrices are denoted as {W1, W2, ..., WL}, and the biases are
denoted as {b1, b2, ..., bL}. Each weight matrix Wl and bias bl respectively have dimensions
dl × dl−1 and dl. M can be converted to a neural graph G = (V,E), where V = {v0,v1, ...,vL}
denotes the set of nodes features, and E = {e1, e2, ..., eL} represents the set of edges features.
vl ∈ Rdl×dv and el ∈ Rdl×dl−1×de are the nodes and edges of the l-th layer in G, respectively, where
dv and de represent the dimensions of the node feature and the edge feature, respectively. In addition,
vl and el corresponds to neurons at the l-th layer of M and connections between neurons at the
l-th layer and the (l − 1)-th layer of M, respectively. Typically, edge feature matrices contain the
weights of M, while nodes are constructed using biases. Additionally, the feature matrices may not
necessarily be the original weights and biases. Some studies (Kofinas et al. (2024) Zhou et al. (2024b)
Zhou et al. (2024a)) have demonstrated improved performance by using frequency representations
of bl and Wl, such as Random Fourier Features (RFFs) (Rahimi & Recht (2007)). It is worth
mentioning that once the neural graph is defined, its structure remains unchanged throughout the
analysis or application. According to the definitions of various graphs (West et al. (2001)), this type
of neural graph can also be referred to as a static neural graph.

2.2 EXPRESSIVITY OF PROCESSING NEURAL GRAPHS WITH GRAPH NEURAL NETWORKS

A pioneer (Navon et al. (2023)) in deep weight processing suggest that if a model can simulate the
forward pass process of its input neural network, then it has the ability to exhibit the expressiveness of
the input neural network. Following the suggestion, Kofinas et al. (2024) use graph neural networks
(GNNs) in the form of message passing neural network (MPNN)1 (Gilmer et al. (2017)).

Before we start discuss the expressively of GNNs for neural graphs, first, we recall the forward pass
of neural network. Given an input x ∈ Rd0

for M, an i-th activation a1i of the first layer in M can be
obtained as follows:

a1i = σ(b1
i +

∑
j

W1
ijxj), (1)

where σ is an activation function.

Given a MPNN with K ∈ R1 layers in total, we have vl(k) and el(k) to represent the nodes and
edges at the l-th layer of the neural graph under the processing of k-th layer of MPNN . Usually, we

1Please refer to Appendix B in Kofinas et al. (2024) for detailed discussions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

 v0(0) e1(0) v1(0) e2(0) v2(0)

 x W1 b1 W2 b2

...

 v1(1) v2(1)

 b1+W1x b2+W2b1

...

v2(2)

(b2+W2b1) + W2(b1+W1x)

...

Initial Static Neural Graph The First MPNN Layer The Second MPNN Layer

Figure 1: An illustration of the limitations in processing static neural graphs. As the processing of
the static neural graph goes into deep layer, the updated nodes may contain additional information
that is not desired, such as the W2b1 in (a).

have K = L. The message-passing process of the first MPNN layer can be written as:

v1
i (1) = ϕ1

u(v
1
i (0),

∑
j∈Ni

ϕ1
m

(
v1
i (0) , e

1
ij (0) ,v

0
j (0)

)
, (2)

where i and j represent the index of the target node and the source node. Ni represents the neighbors
of node vi. For simplicity, here we assume these indexes match that of network parameter.

By comparing the Equation 1 and 2, the authors in Kofinas et al. (2024) emphasize that the MPNN
can approximate the feed-forward procedures on input networks of the first layer in MPNN as follows.
Please be noted that v1

i (0), e
1
ij(0), and v0

j (0) are the initial representations directly derived from
b1
i , W1

ij , and xj , respectively. The function ϕ1
m is the message function of the first MPNN layer,

capable of approximating the scalar product W1
ijxj . The function ϕ1

u represents the node update
function of the first MPNN layer. It can easily approximate the operation of adding b1

i to W1
ijxj and

applying the activation function σ. In this way, the MPNN is capable of approximating feed-forward
procedures of input networks.

2.3 LIMITATIONS OF STATIC NEURAL GRAPHS

As is well known, neural networks perform inference sequentially, where each subsequent layer
requires the activation produced by all preceding layers to function correctly. In the static neural
graph (Kofinas et al. (2024)), a node only connects to its adjacent nodes, either in the preceding
or succeeding layers. Therefore, when updating a node, it can only reference information from its
neighboring nodes. This updating rule contradicts the sequential updating pattern of neural networks.
Moreover, we also identify a significant issue when employing multi-layer graph neural networks
discussed below.

Following the message-passing process of the first MPNN layer on the first set of MLP nodes in
Equation 2, the message-passing process of the first MPNN layer on the second set of MLP nodes is
as v2

i (1) = ϕ1
u(v

2
i (0),

∑
j∈Ni

ϕ1
m

(
v2
i (0) , e

2
ij (0) ,v

1
j (0)

)
. Since this graph update uses the same

ϕ1
u and ϕ1

m as those in Equation 2, according to the expressivity of GNN, each node v2
i (1) in the

second layer of the MLP should be updated to b2
i +W2

ib
1. For clarity, we omit including σ.

Now, we move to the second layer of MPNN. When we examine the update of node v2
i (2) in this layer,

we have: v2
i (2) = ϕ2

u(v
2
i (1),

∑
j∈Ni

ϕ2
m(v2

i (1), e
2
ij(1),v

1
j (1)). Again, following the expressivity of

GNN, we can assume this calculation completes: b2
i +W2

ib
1︸ ︷︷ ︸

(a)

+W2
i (b

1
i +W1

ix)︸ ︷︷ ︸
(b)

, where part (b) is

approximated by ϕ2
m, and adding part (a) to (b) is done by ϕ2

u. However, if we strictly follows the
forward pass of neural network, the desired computation should be: b2

i︸︷︷︸
(c)

+W2
i (b

1
i +W1

ix)︸ ︷︷ ︸
(d)

. In this

case, besides the approximation of addition operation, ϕ2
u needs to do additional work to extract b2

i
from the summarized result b2

i +W2
ib

1. This may seem like an easy task, but technically it is not.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

v0 e1 v1 v2 v3e2 e3

Static Neural Graph Dynamic Neural Graph

Figure 2: Left: static neural graph. Right: dynamic neural graph. A static neural graph has a fixed
structure and set of connections, while dynamic neural graph evolves over time, with changes in its
structure and node connections.

Extracting b2
i from b2

i +W2
ib

1 constitutes a typical inverse problem, which is inherently ill-posed
and challenging to solve. Consequently, training a network to perform this task can lead to difficulties
in convergence and may result in suboptimal solutions. To facilitate understanding, we show the
problem in Figure 1.

3 NEURAL NETWORKS AS DYNAMIC GRAPH

To address the above limitations of static neural graphs, we propose converting the input neural
network into dynamic graphs. This conversion incorporates the inherent temporal processing charac-
teristics of neural networks directly into the graph structure, enabling subsequent models to effectively
capture and utilize these temporal relations during graph processing. In the following, we discuss the
conversion of both MLPs and CNNs into dynamic neural graphs.

3.1 MLPS AS DYNAMIC NEURAL GRAPHS

We define a dynamic graph converted from an L-layer MLP M as a dynamic neural graph GT =
(Gt0 ,O[t1:tL]), where Gt0 only contains v0 that corresponds to inputs of M. The definitions of vl and
el in the dynamic neural graph are the same as those in the static neural graph from Section 2.1. Since
the inputs to neural networks are not fixed, we treat them as learnable vectors. To keep the dimensions
of all node embeddings consistent, we set their dimensions to be the same as the dimensions of
the embeddings of other nodes. We simulate the forward pass process of M by defining the graph
update event O. We define four graph operations, i.e., edge addition (+E), edge deletion (−E), node
addition (+V) and node deletion (−V). Specifically, a graph update event Otl at time tl is:

Otl =

{
{(+V,vl, tl), (+E, el, tl)} if l = 1,

{(+V,vl, tl), (+E, el, tl), (−V,vl−2, tl), (−E, el−1, tl)} if 1 < l ≤ L,
(3)

where (+V,vl, tl) denotes adding the nodes vl to Gtl at timestamp tl. (+E, el, tl) represents adding
edges el to to Gtl at timestamp tl. The edges el connect nodes vl−1 to the newly added nodes vl.
When t1 < tl ≤ tL, we delete nodes vl−2 and edges el−2, and adding incoming nodes and edges.

Similar to many previous approaches to process weight space parameters (Zhou et al. (2024b)Zhou
et al. (2024a)Kofinas et al. (2024)), we use the Random Fourier Features (RFFs) of weights Wl

and biases bl in M to initialize vl and el. By the above definition of O, the snapshot Gtl =
({vl−1,vl}, el) at timestamp tl can be considered a fully connected static bipartite directed graph
(Bang-Jensen & Gutin (2008)). This graph consists of two sets of nodes, vl−1 and vl, with the
direction of edges el from nodes vl−1 to nodes vl. In this way, the structure of Gtl complies with the
topology of the l-th forward pass step of M. To better illustrate the procedure of converting an MLP
to a dynamic neural graph, we show an example in Figure 2.

Besides, Kofinas et al. (2024) prove that the natural symmetries in the graphs align with neuron
permutation symmetries in neural networks. For example, permuting the nodes of the neural graph
adjusts the adjacency matrix in a way that connections between same neurons remain the same. In our

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

dynamic neural graph, this still holds as our graph operations does not change the original connection
between neurons.

3.2 CNNS AS DYNAMIC NEURAL GRAPHS

A convolutional neural network (CNN) typically consists of convolutional layers and linear layers
2. We propose a method to convert convolutional layers and linear layers in CNNs to modules in
dynamic neural graphs.

A 2D convolutional layer at the l-th level of the CNN includes filter Wl ∈ Rcl×cl−1×hl×wl

and
bias bl ∈ Rcl , where cl−1 and cl respectively denote the depth and the number of filters in the l-th
convolutional layer. Typically, cl−1 strictly matches the number of input channels, and cl controls the
number of output channels. hl and wl represent the width and height of the kernel.

Naturally, we can treat the biases as node features similarly to how we handle them in an MLP.
However, kernels cannot be treated as edge features in the same manner because their spatial
dimensions differ from those of MLP weights. To address this problem, Kofinas et al. (2024) propose
to flatten spatial kernels to vectors, which forms cl−1 × cl edges from the l-th convolutional layer
with each edge represented by a channel of kernel. Considering the fact that the kernel size might
be different across convolutional layers, to ensure the consistency in the dimension of edge features,
they further propose to pad the vectors to the maximum of hl × wl.

In contrast, we regard each weight scalar as an independent edge. Specifically, we construct edges
between nodes of adjacent layers, vl−1 and vl, by a number of cl−1 × cl × hl ×wl edges, with each
edge corresponding to a scalar in Wl and each pair of nodes is connected by hl × wl edges. To
maintain consistency in the number of edges between each pair of nodes within the dynamic neural
graph, we perform padding by adding additional zero edges between a pair of nodes to reach the
maximum of hl × wl.

4 LEARNING INVARIANT LATENT SPACE ON DYNAMIC NEURAL GRAPH

4.1 RNN-BASED GRAPH NEURAL NETWORK

...
...

...
...

...
...

Figure 3: An illustration of multi-head message
function, formallized in Equation 5 .

As we discuss above, modeling neural networks
as dynamic graphs aligns more closely with
the forward-pass nature of neural network in-
ference. Notablely, Rossi et al. introduced an
encoder framework called Temporal Graph Neu-
ral Network (TGN), which has demonstrated
considerable potential in enabling dynamic neu-
ral graphs to more effectively approximate the
forward pass process of neural networks. They
define the states of nodes in the graph at different
timestamps as their memories, which continu-
ously update based on observed events relevant to them. Consequently, the encoder can produce
temporal embeddings from the node memories at any timestamp. Typically, in TGN framework, Mes-
sage Function and Message Aggregator modules generate messages received by the node, Memory
Updater module updates the node memory based on its received messages, and Embedding Module
generate the temporal embedding of the node from its memory. Since the Memory Updater module
in TGN employs a RNN to update node memory, it can be categorized as an RNN-based dynamic
graph encoder (Kazemi et al. (2020)). Following the setting of TGN, we customize an RNN-based
dynamic graph encoder for processing dynamic neural graphs. We call it Dynamic Neural Graph
Encoder (DNG-Encoder) .

Message Passing. Inspired by the process of multiplying activations by weights in a DNN, we
use the linear complexity conditional scaling mechanism from FiLM (Perez et al. (2018)) to define
the Message Function for the DNG-Encoder. Notablely, unlike the original FiLM and the method

2Since the CNNs utilized in our experiments do not incorporate the flattening layer and residual connections,
we discuss them in Appendix G.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

proposed by Kofinas et al. (2024), we do not include information about the target nodes and the shift
module in our operation.

Below we present the Message Function for the case where there is only one edge between a pair of
nodes (i.e., for the dynamic neural graph converted by an MLP):

mi(t
l) = ϕtl

m(sj(t
l−), eij(t

l)) =
∑
j∈Ni

W tl

m1eij(t
l)⊙W tl

m2sj(t
l−) (4)

where eij(t
l) denotes the edge between the target node vi and the source node vj at time tl. sj(tl−)

represent the memories of vj just before time tl. W tl

m1 and W tl

m2 are two linear layers to perform
linear tranformation.

For the case of a pair of nodes connected by multiple edges, saying N edges (i.e. for the dynamic
neural graph converted by a CNN), we map the source node memory to N heads. Each head interacts
with one edge to generate multiple messages. Finally, we merge these messages through an MLP ϕh:

mi(t
l) =

∑
j∈Ni

ϕtl

h

(
Concat

(
head1ij(t

l), . . . , headNij (t
l)
))

,

where headnij(t
l) = W tl

m1eij,n(t
l)⊙W tl

n sj(t
l−).

(5)

We illustrate the multi-head message passing function in Figure 3. It is worth noting that a similar
operation, referred to as “multiple towers” in Gilmer et al. (2017), was proposed to address the
computational challenges that arise when the dimensionality of node embeddings becomes excessively
large. In contrast, our multi-head message function is primarily designed to ensure that a source
node can transmit N distinct messages to a target node through N edges, thereby more effectively
simulating the forward propagation process of a convolutional layer.

Recurrent Memory Updating. Recent works, such as DAGNN (Thost & Chen (2021)) and GHN
(Zhang et al. (2018)), have demonstrated the effectiveness of using Gated Recurrent Units (GRUs) to
capture complex dependencies during node representation updates. Inspired by these approaches, we
similarly employ GRUs to update the memory of target nodes vl

i, enabling the capture of sequential
dependencies between the layers of neural networks:

si(t
l) = ϕtl

u

(
mi(t

l),vi(t
l)
)
= GRU

(
mi(t

l),vi(t
l)
)
, (6)

Since the proposed DNG-Encoder processes the dynamic graph in a sequential manner, it differs from
the MPNN used for static graphs (Kofinas et al. (2024)). Therefore, we can omit the introduction of
the “inverse problem” discussed in Section 2.3. For a comprehensive explanation of how our method
addresses these limitations, please refer to Appendix D.

It is worth mentioning that we do not update edge representations using the DNG-Encoder. For our
dynamic neural graph framework, each edge is only utilized for message passing under a specific
timestamp. Other than this timestamp, the edge is not included in the graph structure, meaning the
same edge is not reused for multiple message-passing steps. For example, in Figure 2 (right), the
edges in Gt1 are not present in the following processing timestamp. Therefore, updating edge features
does not affect message passing process of our model. Additionally, the introduced dynamic neural
graph allows us to simplify the temporal graph neural network framework by removing the message
aggregator and embedding module, enhancing computational efficiency. The main reason is that
each node in our dynamic neural network interacts only with the graph features at the current time,
avoiding the memory staleness issue identified in Kazemi et al. (2020), which is typically managed
by the embedding module. This property also eliminates the need for a memory aggregator, usually
employed to integrate messages received by a node from distinct events at various timestamps.

5 INR2JLS: LEARNING A JOINT LATENT SPACE FROM DATA AND WEIGHTS

Recent works such as INR2VEC (De Luigi et al. (2023)) and INR2ARRAY (Zhou et al. (2024b)) have
made great progress on the learning of latent representations of implicit neural representations (INRs)
for downstream tasks like classification. While INR2VEC requires shared initialization of input INRs,
INR2ARRAY make substantial improvements so that it can work with randomly initialized INRs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

DNG-
Encoder

Latent
Generator

Decoder

Figure 4: An overview of INR2JLS.

Besides, both INR2VEC and INR2ARRAY map
INR weights into a latent space using an encoder-
decoder setup. Similar to the image recon-
struction, they propose to reconstruct the INR
weights that can function equivalently to the in-
put INRs. As we previously discussed, deep
weights are high-dimensional in nature and hard
to handle. Similarly, generating INR weights
from a latent space can be extremely difficult,
potentially increasing the optimization difficulty.
The optimization difficulty can lead to poor network convergence and a suboptimal latent space.

To this end, we introduce INR2JLS, a novel framework that supports randomly initialized INRs and
provides a more informative latent space. Compared with the INR2VEC and INR2ARRAY, the main
innovation of our INR2JLS is that we introduce a joint latent space between deep weights and the
original data. To be specific, INR2JLS utilizes an encoder-decoder architecture to map INR weights
to a latent representation capable of capturing both spatial and semantic information inherent in the
original image. To achieve this, we do not decode the latent representations back to INR weights.
Instead, we decode the latent representation to the original image represented by the input INR. We
provide an overview of INR2JLS in Figure 4.

Our encoder, ENCθ, is built with the DNG-Encoder defined in 4.1 and a Latent Generator ϕg. By
transforming the input INR weights to dynamic neural graphs, we first employ DNG-Encoder to
recurrently process the graph and obtain the last recurrent memory s(tL). As discussed earlier, s(tL)
should inherit all the information contained in a complete forward pass of INR. However, directly
decoding an image from s(tL) is extremely difficult. One potential reason is that s(tL) may store
very little spatial information of the original image. Inspired by the positional encoding technique, we
introduce a set of learnable spatial vectors {θ1s , ..., θNs }, where N = hs×ws denotes the dimensional
of latent representation. For generating a single latent vector, we have:

Fn = ϕg(Concat(s(tL), θns)) (7)

where Fn ∈ Rd is the feature vector at the index n. We conduct Equation 7 over all the set
{θ1s , ..., θNs }. In this way, we have a set of feature vectors {F1, ...,FN}. Then, we reshape the set of
feature vector to form a 3D feature map F ∈ Rhs×ws×d. Each latent vector in the F corresponds to a
spatial area in the original image.

Finally, we use transposed convolutional layers as a decoder DECθ to decode F. The objective is to
minimize the difference between the decoded outputs and the original images Iimg . We use MSE as
the loss function:

L(θ,W) = MSE(DECθ(F), Iimg)), (8)
where F = ENCθ(W) (9)

In image processing, implementing data augmentations is a common method to improve the gen-
eralization of trained networks. Current data augmentation techniques for deep space processing
either encode augmented images into implicit neural representations (INRs) (Kofinas et al. (2024);
Zhou et al. (2024a)) or directly modify the INR weights (Shamsian et al. (2024)). With the pro-
posed INR2JLS, we introduce a distinct augmentation method that can be easily implemented in
our framework. Specifically, we generate different views of the original images using the decoder.
By encouraging the INR2JLS to generate diverse views of the image Iimg, the model can learn
representations Faug that are more robust and invariant to such transformations. A more detailed
discussion can be found in Appendix H.4.

6 EXPERIMENTS ON DOWNSTREAM APPLICATIONS

To demonstrate the effectiveness of the proposed approach, we conduct a comprehensive evaluation
of our method in accordance with Kofinas et al. (2024); Navon et al. (2023); Zhou et al. (2024a). This
evaluation involves a series of experiments across multiple tasks, each designed to utilize deep neural
network weights as inputs. Specifically, these tasks include: (1) classifying INRs; (2) manipulating

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy (%) for the INR classification task utilizing 10 views of input INRs as data
augmentation across various datasets. #Params denotes the number of parameters required in the
inference. We adopt 64 probe features for NG-GNN and NG-T, and expanding their size to match a
comparable number of inference parameters as our model.

#Params MNIST FashionMNIST CIFAR-10 CIFAR-100
NFN ∼135M 92.9±0.38 75.6±1.07 46.6±0.13 20.55±0.93

INR2ARRAY(NFT) ∼59M 98.5±0.00 79.3±0.00 63.4±0.00 31.30±0.04

NG-GNN ∼6M 97.3±0.02 86.53±0.58 55.11±1.43 26.50±1.32

NG-T ∼6M 96.83±0.06 85.24±0.13 57.7±0.36 31.65±0.28

INR2JLS(ours) ∼6M 98.6±0.01 90.6±0.07 73.2±0.28 42.4±0.32

INR weights to facilitate image transformations; and (3) assessing the generalization capabilities of
CNN classifiers by analyzing their weights. We compare the proposed one with several state-of-the-
arts, including NFN (Zhou et al. (2024a)), NFT (Zhou et al. (2024b)) and NG-GNN/NG-T (Kofinas
et al. (2024)). More implementation details of all experiments are provided in Appendix H.

6.1 CLASSIFYING INRS WITH INR2JLS

Experiment Setup. There are mainly two steps in order to use our proposed framework for INR classi-
fication. First, we utilize the INR2JLS framework introduced in Section 5, which uses DNG-Encoder
proposed in Section 4.1 along with a proposed augmentation strategy to generate a permutation-
invariant implicit feature map, Faug, that captures diverse semantic information from images via
reconstruction. Our augmentation involves five transformations, including clockwise rotations of 90,
180 and 270 degrees, as well as horizontal and vertical flips. This increases the channels of Faug to
six times of a single latent feature F, represented as Faug ∈ Rhs×ws×6d.

Second, we keep the DNG-Encoder and the Latent Generator fixed and add additional classification
CNN that takes Faug as inputs. During training, given a set of INR weights and their corresponding
label, the DNG-Encoder processes the INR weights to produce Faug . Then Faug is used as input to
the classification CNN, and we optimize the CNN using cross-entropy loss to learn a mapping from
latent space to label space. It is worth emphasizing that during the training for classifying INRs, we
do not directly optimize our encoder to encourage it extracting label-relevant features from input
INRs. Instead, we employ a pre-trained encoder, which has learned in a self-supervised manner. In
this case, the performance of classification can indicate the quality of the learned latent space.

We conduct the classification task on the public datasets introduced by Zhou et al. (2024a), i.e.,
MNIST INRs dataset, FashionMNIST INRs dataset, and CIFAR-10 INRs dataset. Besides, to
further compare our method with the state-of-the-arts, we perform the INR classification on the more
challenging CIFAR-100 INRs dataset. Each image in all datasets contains INRs with 10 views.

Comparison Results. Table 1 presents a comparison between our method and several state-of-the-art
approaches on the test sets of the four aforementioned datasets. Our method consistently exhibits
superior performance compared to all other approaches. Notably, as the difficulty of the dataset
increases, our method not only outperforms the best existing method but does so by an increasingly
larger margin. Particularly noteworthy is the performance on the challenging CIFAR-10 and CIFAR-
100 datasets, where our method surpasses other models by at least 9% and 10%, respectively. This
indicates that our method effectively extracts representative features from deep weight spaces.

6.2 EDITING INRS

The objective of the INR editing task is to directly manipulate the weight space of the INR. The
manipulation can result in a desired transformation of the encoded image, such as image dilation or
erosion. Previous approaches utilized the permutation-equivariance property of the model to learn a
bias ∆(W) from the weight space parameters W, which can be added to W to produce a modified
weight space parameters W′. Finally, the transformed image can be generated using the INR W′.

However, as discussed in Section 4, our method does not require updating edge representation for an
improved implementation efficiency. Therefore, the typical method of modifying W by adding a
learned offset ∆(W) is not directly applicable in our framework. To facilitate editing, we employ

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Test MSE loss (lower is better) for MNIST erosion/dilation/gradient, and FashionMNIST
gradient tasks with 10 views of input INRs as data augmentation.

NFN (HNP) NFN (NP) NFT NG-GNN NG-T DNG-Encoder (ours)
MNIST (erosion) 0.0217±0.0004 0.0214±0.0007 0.0194 ±0.0002 0.0417±0.0004 0.0193±0.0007 0.0071±0.0004

MNIST (dilation) 0.0628±0.0009 0.0628±0.0001 0.0510±0.0004 0.0547±0.0003 0.0486±0.0003 0.0125±0.0005

MNIST (gradient) 0.0541±0.0011 0.0537±0.0006 0.0484±0.0007 0.0907±0.0020 0.0484±0.0004 0.0153 ±0.0007

FashionMNIST (gradient) 0.0843±0.0020 0.0857±0.0001 0.0800±0.0002 0.1002±0.0013 0.0777±0.0006 0.0434±0.0015

Table 3: Kendall’s rank correlation coefficient τ for various models in predicting the generalization
performance of CNN classifiers on the CIFAR-10-GS and SVHN-GS datasets.

NFN(HNP) NFN(NP) NFT NG-GNN NG-T DNG-Encoder(ours)
CIFAR-10-GS 0.934±0.001 0.922±0.001 0.926±0.001 0.930±0.001 0.935±0.000 0.936±0.000

SVHN-GS 0.931±0.005 0.856±0.001 0.858±0.000 - - 0.867±0.002

a more efficient approach by using the INR2JLS framework with DNG-Encoder directly on W to
generate the desired transformed images.

Table 2 presents a comparison of the performance of our model with previous models on tasks of
MNIST erosion, MNIST dilation, MNIST gradient, and FashionMNIST gradient. It is evident that
our model outperforms other models significantly across all tasks.

6.3 PREDICTING CNN CLASSIFIER GENERALIZATION

The above experiments evaluate the capability of our model to handle dynamic neural graphs built
from the weight space of INRs. Here, we aim to evaluate the performance of our method on processing
dynamic neural graphs built with CNN architecture. It is worth emphasizing that the objective of this
experiment is to predict the test accuracy of a trained CNN classifier using its parameters. Following
Zhou et al. (2024a), we conduct this experiment on the Small CNN Zoo (Unterthiner et al. (2020))
dataset. This dataset contains thousands of CNNs trained on the public image classification datasets.
We follow Zhou et al. (2024a) to evaluate the CNNs trained on CIFAR-10-GS and SVHN-GS datasets.

We employ the DNG-Encoder to process the dynamic neural graph derived from the input CNNs.
Subsequently, we add an MLP to map the recurrent memory s(tL) of the last graph layer at the final
timestamp to the predicted test accuracy of the CNN. We use binary cross-entropy loss in the training.

Table 3 shows the test performance of different models on the CIFAR-10-GS and SVHN-GS datasets
using the rank correlation τ (Kendall (1938)) as the metric. It can be observed that our model
outperforms all other methods on the CIFAR-10-GS dataset. However, we underperforms the
NFN(HNP) model on the SVHN-GS dataset. As suggested in Zhou et al. (2024b), HNP designs may
be naturally better suited to this task.

7 FURTHER EMPIRICAL ANALYSIS

To further demonstrate the effectiveness of each module/components in the proposed INR2JLS, we
present a comprehensive analysis below. Additional empirical results on positional encoding and
non-linearity embedding are provided in Appendix I.

Analysis of the Data Augmentation. We conduct an analysis on the effectiveness of the augmentation
strategy introduced in Section 5. By comparing the third and fifth row in Table 4, it can be found
that the rotation and flip augmentation can help improve the classification accuracy significantly.
For example, on complex datasets such as CIFAR-10 and CIFAR-100, using rotation and flip
augmentations can improve over baseline by approximately 7% and 9%.

The Importance of Image Reconstruction in the INR2JLS. First, we conduct an experiment
to compare the performance of two frameworks, our proposed image reconstruction framework
(INR2JLS), and the INR-weight reconstruction framework (INR-INR), on the INR classification
task. For the INR-INR framework, we employ the DNG-Encoder but use two MLPs to map the
node memory, generated by the encoder, to the weights and biases of an INR. Subsequently, we
adopt a methodology same as the NFT (Zhou et al. (2024b)) to compute the loss between the image

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Test accuracy (%) of INR classification using INR2JLS, with/without data augmentation.

MNIST FashionMNIST CIFAR-10 CIFAR-100
No Augmentation 98.5±0.00 89.5±0.07 66.4±0.19 32.9±0.31

Adding Noise Augmentation 98.4±0.01 89.5±0.06 67.3±0.38 33.0±0.24

Rotation&Flip 98.6±0.01 90.6±0.07 73.2±0.28 42.4±0.32

Table 5: Top: Ablation study on the image reconstruction in the INR2JLS. Bottom: Ablation study
on the importance of different modules (DNG-Encoder, Latent Generator) in INR2JLS. Results are
shown in classification accuracy (%).

Method MNIST FashionMNIST CIFAR-10 CIFAR-100

Recon. Study INR2JLS (Ours) 98.6±0.01 90.6±0.07 73.2±0.28 42.4±0.32

INR-INR 98.6±0.08 88.3±0.04 56.3±0.25 30.6±0.16

Modules’ Study
DNG-Encoder 96.6±0.09 78.4±0.61 54.0±0.07 25.7±0.12

INR2JLS w/o Latent Generator 98.4±0.08 88.9±0.28 54.5±0.51 28.1±0.43

INR2JLS (Ours) 98.6±0.01 90.6±0.07 73.2±0.28 42.4±0.32

obtained by the reconstructed INR and the original image. Finally, an MLP is employed to classify
the INR based on the node memory output from the pretrained encoder. Table 5 (Top) shows
the classification performance of the two frameworks on INR datasets. Our INR2JLS outperforms
INR-INR, highlighting the significance of learning a joint space between INR and the original images.

Ablation Study of Key Components in INR2JLS. We here conduct ablation experiments to assess
the individual contributions of the two modules (Decoder and Latent Generator) within the INR2JLS
framework towards enhancing performance in the INR classification task. In the first ablation
experiment, we remove the decoder from INR2JLS and directly add an MLP classifier on the output
of the encoder (node memory). In the second ablation experiment, we remove the Latent Generator
from the INR2JLS framework, and employ an MLP decoder to directly map the node memory
obtained from the DNG-Encoder to images for the reconstruction task. We then utilize another MLP
to classify the node memory generated by the pretrained DNG-Encoder. Table 5 (Bottom) shows
the experimental results. Our INR2JLS significantly outperforms its two variants with component
removal, further demonstrating the necessity of the proposed Decoder and Latent Generator.

Efficiency analysis. Table 6 compares running time, memory usage, and computational complexity
for processing a single INR. INR2JLS is significantly faster than other methods, with slightly higher
memory usage than NG-GNN but much lower than NFN and NFT, and has the lowest computational
complexity overall. We believe these advantages make INR2JLS a efficient choice for processing
neural network weights.

Table 6: Inference efficiency comparison for INR classification on MNIST INR dataset. Results are
based on the inference of a single INR by each method.

NFN NFT NG-GNN NG-T INR2JLS (Ours)
Running Time (s) 0.0082±0.00009 0.0527±0.00170 0.0124±0.00070 0.0092±0.00041 0.0047±0.00018

Memory (MB) 273.08 241.15 27.40 29.77 29.17
Comp. Cost (GFLOPs) 2.58 10.60 2.13 14.82 1.31

8 CONCLUSION

In this paper, we have introduced a novel method to model neural network weights as dynamic graphs.
To process dynamic neural graphs, we propose Dynamic Neural Graph Encoder (DNG-Encoder)
to handle the temporal dynamics intrinsic to neural network inference, maintaining the sequential
flow of data through the layers. We further enhance our model’s utility with INR2JLS, which maps
INR weights into a joint latent space, providing a more informative and robust representation for
downstream tasks. Extensive experiments demonstrate the effectiveness of our method.

Limitation and Future Work. Despite the significant improvements on classifying INRs using our
method, its performance still lags behind that of CNNs on analogous image-space tasks. Developing
a more powerful variant of temporal GNNs could potentially lead to further improvements. Moreover,
since our experiments were primarily conducted on 2D images, extending the proposed approach to
handle neural radiance fields would significantly broaden its potential applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

To ensure the reproducibility of our work, we have made all necessary resources and documentation
available in both the main paper and supplementary materials. The full details of our model architec-
ture, training setup, and experimental protocols are outlined in Section 6 and Appendix H. The source
code for our proposed method, along with scripts to reproduce all experiments, has been anonymized
and made available in the supplementary materials.

REFERENCES

Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications. Springer
Science & Business Media, 2008.

Matthias Bauer, Emilien Dupont, Andy Brock, Dan Rosenbaum, Jonathan Richard Schwarz, and
Hyunjik Kim. Spatial functa: Scaling functa to imagenet classification and generation. arXiv
preprint arXiv:2302.03130, 2023.

Jie Chen, Aldo Pareja, Giacomo Domeniconi, Tengfei Ma, Toyotaro Suzumura, Timothy Kaler, Tao B
Schardl, and Charles E Leiserson. Evolving graph convolutional networks for dynamic graphs,
December 27 2022. US Patent 11,537,852.

Jinyin Chen and Xueke Wang. Graph convolution embedded lstm for dynamic link prediction. arXiv
preprint arXiv:1812.04206, 2018.

Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, and
Luigi Di Stefano. Deep learning on implicit neural representations of shapes. arXiv preprint
arXiv:2302.05438, 2023.

Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative models as distributions of functions.
arXiv preprint arXiv:2102.04776, 2021.

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data to
functa: Your data point is a function and you can treat it like one. arXiv preprint arXiv:2201.12204,
2022.

Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. Deep structured
implicit functions. arXiv preprint arXiv:1912.06126, 2:2, 2019a.

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas
Funkhouser. Learning shape templates with structured implicit functions. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 7154–7164, 2019b.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regular-
ization for learning shapes. arXiv preprint arXiv:2002.10099, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Robert Hecht-Nielsen. Neurocomputing. Addison-Wesley Longman Publishing Co., Inc., 1989.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. Journal of Machine
Learning Research, 21(70):1–73, 2020.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J Burghouts, Efstratios Gavves,
Cees GM Snoek, and David W Zhang. Graph neural networks for learning equivariant representa-
tions of neural networks. arXiv preprint arXiv:2403.12143, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Learning dynamic embeddings from temporal
interactions. arXiv preprint arXiv:1812.02289, 2018.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Derek Lim, Haggai Maron, Marc T. Law, Jonathan Lorraine, and James Lucas. Graph metanetworks
for processing diverse neural architectures. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=ijK5hyxs0n.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022.

Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Baktashmotlagh, and Anders Eriks-
son. Implicit surface representations as layers in neural networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4743–4752, 2019.

Apurva Narayan and Peter HO’N Roe. Learning graph dynamics using deep neural networks.
Ifac-Papersonline, 51(2):433–438, 2018.

Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equiv-
ariant architectures for learning in deep weight spaces. In International Conference on Machine
Learning, pp. 25790–25816. PMLR, 2023.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 165–174, 2019.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arxiv 2020. arXiv
preprint arXiv:2006.10637.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-representations
as generative models: Sampling unseen neural network weights. Advances in Neural Information
Processing Systems, 35:27906–27920, 2022.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In Neural Information Processing: 25th
International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceed-
ings, Part I 25, pp. 362–373. Springer, 2018.

Aviv Shamsian, Aviv Navon, David W Zhang, Yan Zhang, Ethan Fetaya, Gal Chechik, and Haggai
Maron. Improved generalization of weight space networks via augmentations. arXiv preprint
arXiv:2402.04081, 2024.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Veronika Thost and Jie Chen. Directed acyclic graph neural networks. arXiv preprint
arXiv:2101.07965, 2021.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal reasoning
for dynamic knowledge graphs. In international conference on machine learning, pp. 3462–3471.
PMLR, 2017.

12

https://openreview.net/forum?id=ijK5hyxs0n

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International conference on learning representations,
2019.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predicting
neural network accuracy from weights. arXiv preprint arXiv:2002.11448, 2020.

Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River,
2001.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search.
arXiv preprint arXiv:1810.05749, 2018.

Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel Sokota, J Zico Kolter,
and Chelsea Finn. Permutation equivariant neural functionals. Advances in Neural Information
Processing Systems, 36, 2024a.

Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota, J Zico Kolter,
and Chelsea Finn. Neural functional transformers. Advances in Neural Information Processing
Systems, 36, 2024b.

A RELATED WORK

Implicit Neural Representations. Recent works employ a neural network as a continuous function
to implicitly represent the objects or shapes (Park et al. (2019)Genova et al. (2019a)Genova et al.
(2019b)Michalkiewicz et al. (2019)Gropp et al. (2020)). This function takes an input (often a point
coordinate) and outputs the corresponding feature value or property. SIREN (Sitzmann et al. (2020))
is a continuous implicit neural representation that utilizes sine as a periodic activation function. It
excels at fitting complex signals, including natural images and 3D shapes. In our experiments, the
INRs in the datasets we used with the form of SIRENs.

Dynamic Graphs. Dynamic graphs can be categorized into two main types: continuous-time dynamic
graphs (CTDGs) and discrete-time dynamic graphs (DTDGs). A DTDG represents snapshots of a
dynamic graph captured at regular time intervals, where each snapshot represents the graph structure
at a specific timestamp and can be treated as a static graph. A CTDG can be represented by an
initial state of a dynamic graph (essentially a static graph) and a sequence of events occurring
at different timestamps. To address the complex structure and temporal information in dynamic
graphs, substantial research has focused on the dynamic graph neural network. A common approach
involves employing an encoder-decoder structure (Kazemi et al. (2020)). Here, the encoder is
responsible for learning node embeddings, while the decoder utilizes these embeddings to perform
downstream tasks. There has been a lot of work to handle DTDG and CTDG using neural networks,
and one line of notable approach is leveraging recurrent neural networks (RNNs) to capture temporal
dependencies and dynamics within the graph structure, such as methods for processing DTDG
(Seo et al. (2018)Narayan & Roe (2018)Chen & Wang (2018)Chen et al. (2022), and methods for
processing CTDG Rossi et al.Kumar et al. (2018)Kumar et al. (2019)Trivedi et al. (2017)Trivedi et al.
(2019)).

Learning in Deep Weight Spaces. The intricate and high-dimensional nature of weight spaces
in implicit neural representations (INRs) presents substantial challenges for extracting meaningful
information about the encoded data. To tackle these challenges, some pioneers have focused on
narrowing the effective weight space through constrained training processes (Bauer et al. (2023);
Dupont et al. (2021); De Luigi et al. (2023)). However, Navon et al. (2023); Zhou et al. (2024a) argue
that these methods overlook the permutation symmetry property of neural network weights. Ignoring
this symmetry can expand the search space for optimal parameters, leading to decreased generalization
and performance. To address this issue, they introduced permutation equivariant weight-space models.
To further improve performance, Zhou et al. (2024b) recently introduced a transformer structure to
address the problem. However, these methods require manual adaptation, which can be a burden to
developers. To facilitate the processing of heterogeneous architectures, Kofinas et al. (2024) proposed
modeling neural network weights as graphs, linking parameters similarly to a computation graph.
Similarily, Graph Metanetworks (GMNs) Lim et al. (2024) also leverages graph neural networks to

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

process neural network weights as input, offering a generalizable, expressive, and symmetry-aware
solution for diverse architectures, including multi-head attention, normalization layers, ResNet blocks,
and group-equivariant layers. These approach, though innovative, mainly employs static graphs. In
this paper, we suggest considering the temporal nature of neural networks’ inference. We propose
converting neural networks into dynamic graphs and introducing a temporal graph neural network to
handle them.

B DYNAMIC NEURAL GRAPH SYMMETRY

B.1 BACKGROUND AND DEFINITIONS

B.1.1 NEURON PERMUTATION SYMMETRY IN NEURAL NETWORKS

Consider an L-layer Multilayer Perceptron (MLP) M with weight matrices {Wl}Ll=1 and biases
{bl}Ll=1. The network computes activations as:

hl = σ
(
Wlhl−1 + bl

)
, for l = 1, 2, . . . , L, (10)

where h0 is the input and σ is an activation function.

Neuron Permutation Symmetry: Permuting the neurons within a hidden layer l and appropriately
adjusting the corresponding rows and columns of the weight matrices and biases leaves the function
represented by the network unchanged. Formally, for any permutation πl of the neurons in layer l,
there exists a transformed network M̃ such that:

W̃l = Pπl

Wl
(
Pπl−1

)⊤
, b̃l = Pπl

bl, (11)

where Pπl

is the permutation matrix corresponding to πl.

B.2 OBJECTIVE

Our goal is to prove that the dynamic neural graph GT is equivariant to neuron permutations in the
MLP M. That is, permuting the neurons in any layer l corresponds to permuting the nodes vl in GT ,
and the graph update operations Otl are consistent under such permutations.

B.3 PROOF OF EQUIVARIANCE

B.3.1 DEFINING PERMUTATIONS IN NEURAL NETWORKS AND GRAPHS

Let πl be a permutation of the neurons in layer l of the MLP, and let Pπl

be the corresponding
permutation matrix. The permutation acts on the weights and biases as in Equation 11.

In the dynamic neural graph, the permutation πl acts on the nodes vl and edges el as follows:

• Nodes: The permuted nodes are ṽl = Pπl

vl.

• Edges: Each edge from node i in vl−1 to node j in vl becomes an edge from node πl−1(i)
to node πl(j) after permutation.

B.3.2 NODE PERMUTATIONS CORRESPOND TO NEURON PERMUTATIONS

Since each node vl
i corresponds to neuron i in layer l of the MLP, permuting the neurons directly

corresponds to permuting the nodes:

ṽl
i = vl

πl(i). (12)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.3.3 EDGE ADJUSTMENTS UNDER PERMUTATION

Edges el represent the connections (weights) between nodes in vl−1 and vl. The adjacency matrix
Al corresponding to edges el is related to the weight matrix Wl.

Under permutations πl−1 and πl, the adjacency matrix transforms as:

Ãl = Pπl

Al
(
Pπl−1

)⊤
. (13)

This ensures that the structure of the graph remains consistent with the permuted network.

B.3.4 EQUIVARIANCE OF GRAPH UPDATE OPERATIONS

The graph update operations Otl are defined independently of node identities and depend only on the
layer structure. Therefore, they are consistent under permutations:

Õtl = Otl . (14)

Applying permutation πl to Gtl after the graph update operations yields:

G̃tl = πl (Gtl) . (15)

B.3.5 INDUCTIVE PROOF OVER LAYERS

We use mathematical induction over the layers l to show that the graph remains equivariant under
permutations.

Base Case (l = 1) At t1:

• The graph Gt1 consists of input nodes v0 and nodes v1.
• Permuting v1 corresponds to permuting neurons in layer 1.
• The update operations Ot1 are equivariant under π1.

Inductive Step Assume Gtl−1 is equivariant under permutations up to layer l − 1. At tl:

• Applying Otl to Gtl−1 adds nodes vl and edges el.
• Under permutation πl, nodes and edges are permuted as per Equations 12 and 13.
• Thus, Gtl remains equivariant under the combined permutations πl−1 and πl.

By induction, GT is equivariant under neuron permutations at each layer.

C EQUIVARIANCE OF THE DNG-ENCODER ON DYNAMIC GRAPHS

In this section, we prove that our proposed DNG-Encoder, when applied to dynamic graphs, is
equivariant under node permutations. This property ensures that if the nodes of the input graph are
permuted, the output will be permuted in the same way, maintaining consistency regardless of the
node ordering.

C.1 DEFINITION OF EQUIVARIANCE

A function F operating on graphs is said to be equivariant to node permutations if, for any permuta-
tion π and input graph G, the following holds:

F (π · G) = π · F (G), (16)

where π · G denotes the graph obtained by permuting the nodes of G according to π, and similarly for
π · F (G).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.2 EQUIVARIANCE OF THE MESSAGE PASSING FUNCTION

Our message passing function is defined differently for single-edge and multi-edge cases.

Single-Edge Case For the case where there is only one edge between a pair of nodes (i.e., for the
dynamic neural graph converted from an MLP), the message function is defined in Equation 4 as:

mi(t
l) = ϕtl

m(sj(t
l−), eij(t

l)) =
∑
j∈Ni

W tl

m1eij(t
l)⊙W tl

m2sj(t
l−), (17)

Proof of Equivariance:

Let π be a permutation of the node indices. Under permutation π:

• Node i becomes π(i).

• The neighbor set Ni becomes Nπ(i) = {π(j) | j ∈ Ni}.

• The edge from j to i becomes the edge from π(j) to π(i).

• Node states and edge features are permuted accordingly:

s′π(j)(t
l−) = sj(t

l−), e′π(j)π(i)(t
l) = eji(t

l). (18)

The message for node π(i) after permutation is:

m′
π(i)(t

l) =
∑

k∈Nπ(i)

W tl

m1e
′
kπ(i)(t

l)⊙W tl

m2s
′
k(t

l−)

=
∑

k=π(j)

W tl

m1e
′
π(j)π(i)(t

l)⊙W tl

m2s
′
π(j)(t

l−)

=
∑
j∈Ni

W tl

m1eji(t
l)⊙W tl

m2sj(t
l−)

= mi(t
l).

(19)

Therefore, we have:
m′

π(i)(t
l) = mi(t

l), (20)

which shows that the message passing function is equivariant under node permutations in the single-
edge case.

Multi-Edge Case For the case where there are multiple edges between a pair of nodes (i.e., for the
dynamic neural graph converted from a CNN), the message function is:

mi(t
l) =

∑
j∈Ni

ϕtl

h

(
Concat

(
head1ij(t

l), . . . , headNij (t
l)
))

, (21)

where each head is defined as:

headn
ij(t

l) = W tl

m1eij,n(t
l)⊙W tl

n sj(t
l−). (22)

Proof of Equivariance:

Under permutation π, similar reasoning applies:

• Edge features are permuted: e′π(j)π(i),n(t
l) = eji,n(t

l).

• Node states are permuted: s′π(j)(t
l−) = sj(t

l−).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The message for node π(i) is:

m′
π(i)(t

l) =
∑

k∈Nπ(i)

ϕtl

h

(
Concat

(
head1

π(i)k(t
l), . . . , headN

π(i)k(t
l)
))

=
∑

k=π(j)

ϕtl

h

(
Concat

(
head1π(i)π(j)(t

l), . . . , headNπ(i)π(j)(t
l)
))

=
∑
j∈Ni

ϕtl

h

(
Concat

(
head1ij(t

l), . . . , headNij (t
l)
))

= mi(t
l).

(23)

Thus, the message passing function remains equivariant under node permutations in the multi-edge
case as well.

C.3 EQUIVARIANCE OF THE RECURRENT MEMORY UPDATING

The recurrent memory update function is defined as:

si(t
l) = ϕtl

u (mi(t
l),vi(t

l)) = GRU(mi(t
l),vi(t

l)), (24)

where vi(t
l) is the feature of node i at time tl.

Under permutation π, node features are permuted:

v′
π(i)(t

l) = vi(t
l). (25)

Messages are permuted:
m′

π(i)(t
l) = mi(t

l). (26)

Therefore, the updated memory state for node π(i) is:

s′π(i)(t
l) = ϕtl

u (m
′
π(i)(t

l),v′
π(i)(t

l))

= GRU(mi(t
l),vi(t

l))

= si(t
l).

(27)

This shows that the memory update function is equivariant under node permutations.

C.4 EQUIVARIANCE OF GRAPH UPDATE EVENTS

Our dynamic graph evolves through graph update events defined at each time tl, as specified in
Equation 3. These events include node addition (+V), edge addition (+E), node deletion (−V), and
edge deletion (−E).

Under permutation π:

• Added nodes vl become vl′ = {π(i) | vl
i ∈ vl}.

• Added edges el become el′ = {(π(i), π(j)) | (vl−1
i ,vl

j) ∈ el}.
• Deleted nodes and edges are permuted similarly.

Since the graph update operations are applied consistently to the permuted nodes and edges, the
sequence of graph updates remains equivariant under node permutations.

C.5 CONCLUSION

By demonstrating that each component of our DGN-Encoder, we establish that the entire model
maintains equivariance when applied to dynamic graphs. This property ensures that the model’s
outputs are consistent regardless of the node ordering, capturing the intrinsic structure of the graph
without being influenced by arbitrary node labels.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D HOW DOES THE DNG-ENCODER EXHIBIT THE EXPRESSIVENESS OF
NEURAL NETWORKS?

Using the DNG-Encoder to update nodes in dynamic neural graph ideally simulates the sequential
updating pattern of neural networks. This approach effectively avoids the inverse problem typically
encountered in static neural graphs as discussed in Section 2.3, so as can better exhibit the expres-
siveness of neural networks. Below, we discuss how the DNG-Encoder model better represents the
expressiveness of MLPs compared to the static neural graph-based model.

An MLP M can be transformed into a dynamic neural graph GT or a static neural graph Gs. In GT ,
we update node representations asynchronously at each layer by modifying the graph structure at each
timestamp to align with the forward pass process of M. The graph structure under each timestamp of
GT is a layer-by-layer snapshot taken from Gs. It contains the neurons involved in the computation
of the neural network in each forward pass step and simulates the topology of these neurons. For
example, the graph state Gtl (0 < l ≤ L) of GT only contains nodes at the l-th layer and the (l− 1)-th
layer of Gs and edges at the l-th layer of Gs. The initial representations of all nodes and edges
present in GT over the time span T = [t0 : tL] can be defined as {v0(t0),v1(t1−), ...,vL(tL−)}
and {e1(t1−), ..., eL(tL−)}, where tl− denotes the timestamp immediately before tl. Similar to
Gs, these nodes and edges represent the biases and weights of each layer in M. According to
DNG-Encoder defined in Section 4.1, a node representation vl

i(t
l) at timestamp tl can be obtained by

using the following equation:

vl
i(t

l) = ϕu(v
l
i(t

l−),
∑
j∈Ni

ϕtl

m

(
elij

(
tl−

)
,vl−1

j

(
tl−

))
, (28)

where ϕtl

m is the message function at tl, corresponding to the Message Function in the DNG-Encoder.
ϕu is the node update function shared for all timestamps, corresponding to the GRU module in
DNG-Encoder. For example, at the first timestamp t1, e1ij(t

1−) is an initial representation of an edge
newly added at t1, corresponding to W 1

ij in Equation 1, while v0
j (t

1−) corresponds to the input xj

in Equation 1. From Equation 4, we know that ϕt1

m can approximates the multiplication operation
between two given inputs. Thus, given e1ij(t

1−) and v0
j (t

1−), its output can represent W 1
ijxj in

Equation 1. v1
i (t

1−) is the initial representation of a newly added node at t1, corresponding to b1i in
Equation 1. From Equation 6, given the aggregation of the outputs of ϕt1

m and v1
i (t

1−), ϕu can easily
approximate the computation of adding b1i to

∑
j W

1
ijxj and then applying an activation function. In

this way, we say that v1
i (t

1) can directly represent a1i .

According to the discussion in Section and 2.2 and 2.3, it is evident that the static neural graph-based
model can also approximate the first forward pass step of M easily using one MPNN layer. However,
it faces challenges in approximating subsequent forward pass steps due to the emergence of the
“inverse problem”. The following demonstrates how the DNG-Encoder avoids the inverse problem
during computation, thereby enabling it to easily approximate the forward pass process for all steps
of M. We here define the process of M to obtain the i-th activation ali at the l-th layer as follows:

ali = σ(bli +
∑
j

W l
ija

l−1
j). (29)

At any timestamp tl, vl
i(t

l−) in Equation 28 is the initial representation of the newly added node,
corresponding to bli in Equation 29. Smilarly, elij(t

l−) in Equation 28 is the initial representation
of the newly added edge, corresponding to W l

ij in Equation 29. Besides, vl−1
j (tl−) in Equation 28

corresponds to al−1
j .

Following the expressivity in Kofinas et al. (2024), this suggests that the message functions
ϕtl

m, . . . , ϕtL

m , which have the same structure at all timestamps, along with the shared update function
ϕu, can accurately model all forward pass steps of M. Since the inputs to the message/update
functions are simple and do not contain extra complex terms, the approximation is straightforward,
eliminating the risk of inverse problems. Therefore, the proposed DNG-Encoder can maximally
approximate the forward pass of M.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 5: The Mean Squared Error (MSE) for fitting the activations of each layer of an MLP using
the static neural graph-based model and the dynamic neural graph-based model, respectively.

E EXPERIMENT FOR COMPARING STATIC AND DYNAMIC NEURAL GRAPH

E.1 ABILITY TO APPROXIMATE THE FORWARD PASS PROCESS.

The following experiment evaluates the capability of static and dynamic neural graph-based models
to approximate the forward pass of an input neural network by comparing their performance in fitting
activations across varying numbers of layers in MLPs.

To initiate the experiment, we randomly generate the weights and biases for 1000 three-layer MLPs as
training data, followed by the generation of 500 MLPs with identical structures as testing data. Then,
we randomly generate data for 1500 MLPs. We use the generated data as input for the generated
MLPs and save the activation values for each network across different inputs.

Our objective is to employ an MPNN on both static and dynamic neural graph to generate node
embeddings, fitting these embeddings with their corresponding activations. A better fit for activations
means that the model better approximates the forward pass of the MLP. To highlight the impact of
static and dynamic neural graph framework on fitting results, we employ identical message function
ϕm and node update function ϕu as defined in Section 2.2 on both types of neural graphs. ϕm

concatenates the source node feature and edge feature, then utilizing a two-layer MLP to generate a
message. ϕu concatenates the aggregation of the messages with target node feature, then utilizing
a two-layer MLP to generate the target node embedding. For the static neural graph, we adopt
the method proposed by Kofinas et al. (2024), which employing an L-layer MPNN to simulate the
forward pass process of an L-layer MLP. We also utilize their approach to update edges. For the
dynamic neural graph, we use the method defined in Section 3.1 to construct the dynamic neural
graph and use ϕm and ϕu to update the node embeddings layer by layer as the timestamps evolve.

Figure 5 illustrates the MSE loss of models based on two types of graphs fitting activations across
three different number of layers on the test set. It is evident that the dynamic neural graph-based
model consistently performs well in fitting the activations across all three layers. However, the
performance of the static neural graph-based model closely matches that of the dynamic neural
graph-based model only when fitting the activations of the first layer. In contrast, at the second layer,
the fitting performance of the static model declines significantly compared to the dynamic model,
with this discrepancy becoming more pronounced as layer depth increases.

The above observation aligns with our discussion in Section 2.3, indicating that the method proposed
by Kofinas et al. (2024), which is based on static neural graphs, is primarily effective for simulating
only the initial forward pass of the input neural network. However, it may fail to approximate the
functionality of subsequent layers. In contrast, our proposed dynamic neural graph framework is
capable of accurately simulating all forward pass steps of the input neural network.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Test accuracy (%) for the INR classification task utilizing 10 views of input INRs as data
augmentation across various datasets. #Params denotes the number of parameters required in the
inference. We do not use probe features for NG-GNN and NG-T. Our DNG-Encoder consistently
outperforms static graph-based classifiers across all three datasets.

#Params MNIST FashionMNIST CIFAR-10
NFN ∼135M 92.9±0.38 75.6±1.07 46.6±0.13
NG-GNN ∼0.3M 79.6±1.3 71.1±0.42 43.94±0.06
NG-T ∼0.4M 83.43±0.12 72.13±0.51 44.69±0.03
DNG-Encoder(ours) ∼0.4M 96.6±0.04 78.4±0.61 54.0±0.07

E.2 COMPARISON ON CLASSIFYING INRS

The following experiment presents the performance of two graph frameworks, dynamic graph and
static graph, on the INR classification task. To emphasize the impact of the graph framework on
classification results, we use only the DNG-Encoder from INR2JLS framework as the dynamic
graph-based classifier. For the static graph-based classifiers, we employ NG-GNN and NG-T Kofinas
et al. (2024) without utilizing probe features. Probe features, which are intermediate outputs generated
by different inputs during the forward pass of neural networks, are excluded from this analysis. This
is because probe features accurately capture the forward pass process of neural networks, directly
representing the expressiveness of the neural networks. As a result, they may potentially prevent
us from observing the ability of static graphs themselves to exhibit the expressiveness of the neural
networks. Table 7 presents the classification performance of the three models on the MNIST INRs
dataset, FashionMNIST INRs dataset and CIFAR-10 INRs dataset. It is evident that the DNG-Encoder
significantly outperforms both NG-GNN and NG-T, indicating that dynamic graphs can better exhibit
the expressiveness of neural networks compared to static graphs.

F ANALYSIS ON COMPUTATIONAL COST

Since our method does not require a decoder for inference, we focus this analysis on providing
theoretical results for the computational costs during the inference within the encoder.

To determine the time complexity of applying an L-layer Message Passing Neural Network (MPNN)
on a graph, we consider the following characteristics:

• Number of nodes per MLP layer: n. For simplicity, we assume each MLP layer has n
neurons.

• Dimension of node/edge features: d. For simplicity, we assume the dimensions of edge
and node features are the same.

• Number of MLP layers: L.

F.1 TIME COMPLEXITY OF OUR METHOD

1. Message Computation (Equation 4):
• Per edge computation: O(d2) (including edge feature transformation).
• Total edges computation: O(n2 · L · d2). There are n2 edges in an MLP layer, and L

total layers.

2. Aggregation (Equation 4):
• Per node aggregation: O(n · d). Each node aggregates messages from its n neighbors

in the graph from the previous time step.
• Total nodes: O(n2 · L · d).

3. Recurrent Memory Updates (Equation 6): O(n · L · d2).

Total Computational Complexity: O(n2 · L · d2 + n2 · L · d+ n · L · d2)
Analysis: For large input networks, the term O(n2 ·L · d2) dominates the overall computational cost.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F.2 SPACE COMPLEXITY OF OUR METHOD

1. Node and Edge Features: O(n2 · d+ n · d). We store the node and edge features of the
graph from the previous time step, corresponding to the previous MLP layer.

2. Memory (Equation 6): O(n · d).

Total Space Complexity: O(n2 · d+ n · d)

G NEURAL NETWORKS AS DYNAMIC NEURAL GRAPHS

G.1 ADDITIONAL COMPONENTS IN CNNS AS DYNAMIC NEURAL GRAPHS

In Section 3.2, we outlined how to convert the fundamental modules of CNNs - the convolutional
layers and the linear layers - into modules within the dynamic neural graph. In modern CNNs, besides
convolutional and linear layers, there are often additional components like the flattening layer and
residual connections (He et al. (2016)). To ensure our dynamic neural graph framework is applicable
to a wide range of CNN architectures, we define how to convert flatten layers and residual connections
to the modules in dynamic neural graphs.

Flattening layer. The flattening layer in CNNs is used to convert multi-dimensional feature maps
into a single feature vector that can be accepted by fully connected layers for subsequent operations.
The dimensions of the feature map output by a convolutional layer at the l-th layer of a CNN are
hl
ft × wl

ft × cl, where hl
ft and wl

ft represent the spatial dimensions of the feature map, cl denotes
the number of channels of the feature map. Assuming we flatten the feature map to a single feature
vector of dimension dl, where dl = hl

ft × wl
ft × cl. A linear layer is then utilized at the (l + 1)-th

layer of the CNN to perform a linear transformation on this flattened feature vector, yielding a vector
of dimension dl+1.

In the dynamic neural graph, cl corresponds to the number of nodes in vl, and dl+1 corresponds to
the number of nodes in vl+1. We can conceptualize the function of the flattening layer as generating
hl
ft × wl

ft virtual vertices within each node in vl, and they are subsequently connected to nodes
vl+1. Virtual vertices do not contain any feature information, they are only used to indicate the
connection relationship between their carriers vl and nodes vl+1. Each connection between a virtual
vertex and a node in vl+1 corresponds to a single weight scalar in the weight matrix W l+1 of the
linear layer at the (l + 1)-th layer. In essence, this implies that each node in vl is linked to a node
in vl+1 via hl

ft × wl
ft edges by utilizing virtual vertices embedded within itself. In addition, to

maintain consistency in the number of edges between each pair of nodes throughout the entire CNN,
we employ the same method as proposed in Section 3.2 to pad the edges between vl and vl+1. To
provide a more intuitive understanding of the process of converting the flattening layer to the dynamic
neural graph, we present an example in Figure 6.

Residual Connections. Residual connections are used in neural networks to address the gradient
vanishing problem. Specifically, a residual connection in a neural network allows the input to bypass
one or more layers and be added directly to the output. If a residual connection is established
between the output of the l-th layer and the output of the (l + r)-th layer in a CNN, then within the
corresponding dynamic neural graph, we define events occurring at timestamp tl+r as the addition of
nodes vl at the l-th layer, in addition to the addition and deletion of nodes and edges as defined in
Section 3.2. Additionally, we add new edges to ensure that each node vl

i at the l-th layer is connected
to node vl+r

i at the (l+ r)-th layer via a single edge. Considering the potential differences brought by
residual connections with different time spans or layer spans to the update of target nodes, we define
the edge feature of each of these edges between vl and vl+r as el+r

res,i = θresr, where θres ∈ Rde is
a learnable vector.

G.2 TRANSFORMERS AS DYNAMIC NEURAL GRAPHS

In the Transformer, the core modules are multi-head self-attention layers. Assuming there are h heads
in a multi-head self-attention layer. For each head headi, the input X with a dimension of dmodel

3 is

3In general, X ∈ RL×dmodel . We omit the sequence length L here for clarity.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

virtual vertex

Figure 6: An example for converting the flattening layer to the dynamic neural graph, where edges
correspond to the weight scalar of the same color.

firstly transformed into Qi ∈ Rdk , Ki ∈ Rdk and Vi ∈ Rdv through three linear projections.

Qi = XWQ
i , (30)

Ki = XWK
i , (31)

Vi = XWV
i , (32)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk and WV
i ∈ Rdmodel×dv . The scaled dot-product attention

is then computed using Qi, Ki and Vi, producing Zi ∈ Rdv .

Zi = Attention(Qi,Ki,Vi) = Softmax
(
QiK

⊤
i√

dk

)
Vi (33)

Finally, the Zi from all heads are concatenated, and the output Y with a dimension of dmodel is
produced through a linear transformation WO ∈ Rhdv×dmodel .

To convert a multi-head self-attention layer into a dynamic neural graph while still simulating its
forward pass process, we divide the multi-head self-attention layer into three timestamps within the
dynamic neural graph.

In the first timestamp, we simulate the linear transformation from X to Qi, Ki and Vi. We begin by
adding dmodel nodes to the graph, with each node representing a dimension of the input X. Next, for
each head, we add dk + dk + dv nodes initialized as zero vectors, corresponding to the dimensions
of Qi, Ki and Vi. Additionally, we add each element of the weight matrices WQ

i , WK
i and WV

i
as a single edge to the graph, connecting the corresponding nodes. Thus, for all heads, we add
h× (dk + dk + dv) nodes and h× (dmodel × dk + dmodel × dk + dmodel × dv) edges.

In the second timestamp, we simulate the computation process of scaled dot-product attention. First,
we delete the nodes corresponding to the input and the edges corresponding to WQ, WK and
WV , keeping only the nodes representing Q, K and V. It can be observed from Equation 33
that the dot product of Qi and K⊤

i , the division by
√
dk and the element-wise multiplication with

Vi are parameter-free operations. Inspired by the method proposed by Kofinas et al. (2024), we
design a simple graph structure to fit these operations. Specifically, for each head, we augment
the graph by adding dv nodes initialized with zero vectors, corresponding to the dimensions of Zi.
Additionally, we add edges connecting each newly added node to the nodes corresponding to Qi,
Ki and Vi. These edges are defined as learnable vectors, allowing them to fit the parameter-free
operations mentioned above during training. For all heads, we add a total of h × dv nodes and
h× (dk × dv + dk × dv + dv × dv) edges in this timestamp.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

In the last timestamp, we simulate the process of mapping the concatenation of {Z1,Z2, ...,Zh} to
the output Y. The process of performing the linear transformation using WO is the same as the linear
transformation using a linear layer in an MLP. Therefore, we can use the same method employed
to convert linear layers into dynamic neural graphs in MLPs to transform this linear transformation
process.

H DETAILS OF EXPERIMENTAL SETUP

Below, we provide additional detailed explanations of the experiments outlined in Section 6.

H.1 CLASSIFY INRS WITH INR2JLS

H.1.1 DATASETS

We applied the INR2JLS framework to classify images from the open-source MNIST, Fashion
MNIST, and CIFAR-10 datasets as proposed by Zhou et al. (2024a). The INRs in these datasets
are structured as three-layer MLPs with a hidden dimension of 32, utilizing the sine function as
the activation function. These MLPs, employing the sine activation function, are commonly known
as SIRENs (Sitzmann et al. (2020)). Following the strategy of splitting the datasets proposed by
Zhou et al. (2024a), the datasets were split into 45,000 (MNIST, CIFAR) or 55,000 (FashionMNIST)
training images, 5,000 validation images, and 10,000 test images. The training set is augmented
by training 10 additional copies of SIRENs with different initializations for each training image,
and each validation and test image has a single SIREN. Furthermore, we generate the CIFAR-100
INRs dataset following the methodology used by Zhou et al. (2024a) for generating the CIFAR-10
INRs dataset. Specifically, we train three-layer SIRENs with a hidden dimension of 32 for 5000
steps, employing the Adam optimizer with a learning rate of 5e-5. Additionally, we also train 10
additional copies of SIRENs with different initializations for each training image, while each image
in the validation set and test set retains a single SIREN.

H.1.2 MODELS

In the dynamic neural graph, the Fourier size of each node feature and edge feature is set to 128, and
the Fourier scale is 3. In the DNG-Encoder of the INR2JLS framework, both the Message Function
and the GRU have hidden dimensions of 512. In the Latent Generator, each spatial vector has a
dimension of 512, and each output latent vector has a dimension of 128.

When no image augmentation is applied, we use 49 spatial vectors to generate 49 latent vectors for
the MNIST and Fashion MNIST datasets. These latent vectors are then reshaped into a feature map
with dimensions 7× 7× 128. For the CIFAR-10 and CIFAR-100 datasets, 64 spatial vectors are used
to generate 64 latent vectors, which are reshaped into a feature map with dimensions 8× 8× 128.
With image augmentation, which includes rotation and flipping, we employ 49 × 6 = 294 spatial
vectors to generate 294 latent vectors for the MNIST and Fashion MNIST datasets. These vectors are
reshaped into a feature map with dimensions 7× 7× (128× 6) = 7× 7× 768. For the CIFAR-10
and CIFAR-100 datasets, we use 64× 6 = 384 spatial vectors to generate 384 latent vectors, which
are reshaped into a feature map with dimensions 8× 8× (128× 6) = 8× 8× 768.

For the reconstruction task, we employ two transposed convolutional layers as a decoder, both
layers with the kernel size of 4, the stride of 2, and the padding of 1 for all four datasets. The out
channels of the first transposed convolutional layer are 256, the out channels of the second transposed
convolutional layer are 1 (MNIST, Fashion MNIST) or 3 (CIFAR-10, CIFAR-100). The total number
of parameters of the model is 5M for the MNIST and Fashion MNIST datasets and 6.1M for the
CIFAR-10 and CIFAR-100 datasets.

For the classification task, we fix the trained DNG-Encoder and Latent Generator from the reconstruc-
tion task and use them for generating feature maps. For the MNIST and Fashion MNIST datasets, we
utilize a classifier comprising two convolutional layers followed by a three-layer MLP. The classifier
has the hidden dimension of 256, with the dropout rate of 0.5 applied between each layer. For the
CIFAR-10 and CIFAR-100 dataset, the classifier structure maintains the same as above, except for
adjusting the dropout rate between convolutional layers to 0.2. The total parameters of the model is
5M for MNIST and Fashion MNIST, 6.7M for CIFAR-10 and CIFAR-100.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 8: A complete version of Table 2 by including training loss and standard deviation. Train
and test MSE loss (lower is better) for MNIST erosion, MNIST dilation, MNIST gradient, and
FashionMNIST gradient tasks with 10 views of input INRs as data augmentation. Our method
outperforms the state-of-the-art on all tasks.

MNIST MNIST MNIST FashionMNIST
(erosion) (dilation) (gradient) (gradient)

NFN(HNP) 0.0235±0.0010 0.0694±0.0007 0.0542 ±0.0003 0.0885±0.0006
0.0217±0.0004 0.0628±0.0009 0.0541±0.0011 0.0843±0.0020

NFN(NP) 0.0221±0.0005 0.0582±0.0003 0.0526±0.0014 0.0920±0.0003
0.0214±0.0007 0.0628±0.0001 0.0537±0.0006 0.0857±0.0001

NFT 0.0195±0.0004 0.0473±0.0006 0.0474±0.0005 0.0795±0.0009
0.0194 ±0.0002 0.0510±0.0004 0.0484±0.0007 0.0800±0.0002

NG-GNN 0.0408±0.0005 0.0512±0.0003 0.0875±0.0002 0.0986±0.0002
0.0417±0.0004 0.0547±0.0003 0.0907±0.0020 0.1002±0.0013

NG-T 0.0182±0.0002 0.0432±0.0007 0.0461±0.0008 0.0743±0.0007
0.0193±0.0007 0.0486±0.0003 0.0484±0.0004 0.0777±0.0006

DNG-Encoder(ours) 0.0045±0.0005 0.0074±0.0006 0.0100 ±0.0013 0.0318±0.0011
0.0071±0.0004 0.0125±0.0005 0.0153 ±0.0007 0.0434±0.0015

H.1.3 TRAINING

For the reconstruction task, we set the training batch size to 64 and use the Adam optimizer with a
learning rate of 1e-4. The model is trained for 400,000 steps, and we apply an early stopping strategy
that choosing the model showing the best performance on the validation set, as described by Zhou
et al. (2024a).

For the classification task, the training batch size is set to 128, and we use the AdamW optimizer
with a learning rate of 1e-4. The model is trained for 200,000 steps, and the early stopping strategy is
also employed.

H.2 EDITING INRS

We used the same MNIST INRs dataset and FashionMNIST INRs dataset as that used in the
classification task. The training set of each dataset contains 10 views of INRs. Specifically, we
applied three visual transformations to the images in these two datasets: dilation, erosion, and
morphological gradient. Dilation indicates that the size of the object in the image is increased by
adding pixels on the edge of the object, erosion indicates that the size of the object in the image
is decreased by eliminating pixels on the edge of the object, morphologic gradient represents the
edge of an object obtained by the difference between dilation and erosion. We did four experiments:
MNIST Dalation, MNIST Erosion, MNIST Gradient and fashion MNIST Gadient.

We also use the INR2JLS framework to generate images that are visually transformed. Specifically,
we use the same model and training strategy to process the input INRs as we did for the image
reconstruction task, but change the reconstructed target from the original image to the visually
transformed image. We do not use image augmentation. Table 8 shows the train loss and test loss of
our model compared to other models on the same datasets. We can see that the both train loss and
test loss of our model are much lower than other models. It is worth noting that the NFT model does
not provide a complete training code, so I use the data provided in Zhou et al. (2024b), that is, the
performance on the dataset with 1 view INRs in training set.

H.3 PREDICTING CNN CLASSIFIER

We use DNG-Encoder to generate the memory of the nodes in the last layer at the last timestamp of
the input CNNs, and then we map the memory of these nodes to a scalar value through an MLP head,
representing the test accuracy of our prediction. For DNG-Encoder, we use a multi-head Message
Function introduced in Section 5 to process the information that generates the dynamic neural graph
converted from CNNs. In the model, the hidden dimensions of the Message Function and GRU are
set to 128. The dimension of each head of the Message Function is 32. The MLP head is a three-layer

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

DNG-Encoder
& Latent Generator

Decoder

Augmented
Images

Figure 7: Data augmentation (rotation and flipping) for the INR2JLS framework.

Table 9: Test accuracy (%) for the INR classification task by using INR2JLS framework with different
data augmentation strategies on MNIST, FashionMNIST, CIFAR-10 and CIFAR-100 INR datasets.

MNIST FashionMNIST CIFAR-10 CIFAR-100
No Augmentation 98.5±0.00 89.5±0.07 66.4±0.19 32.9±0.31
Adding Noise Augmentation 98.4±0.01 89.5±0.06 67.3±0.38 33.0±0.24
Rotation&Flip 98.6±0.01 90.6±0.07 73.2±0.28 42.4±0.32

MLP, and its hidden dimension is 1024. We set the training batch size to 128, use Adam as the
optimizer with learning rate of 1e-4, train for 200 epochs, and use early stopping.

H.4 DATA AUGMENTATION FOR INR2JLS

Data augmentation for images often introduces various image transformations during training. This
allows the model to learn features and patterns under diverse conditions, enhancing its adaptability
to input images and improving overall model generalization. In our proposed data augmentation
method for the INR2JLS framework, we aim to enrich the feature map outputted by the DNG-encoder
with a broader range of features and patterns present in the original image. This enhancement
subsequently boosts the generalization ability of the classification model based on the feature map.
Specifically, we rotate and flip the image corresponding to each INR, generating multiple images for
each INR. Our model then learns a feature map Faug with increased channels from the given INR
to reconstruct multiple images. For a given input INR, we generate more latent vectors by defining
more distinct spatial vectors to fuse with the same node memory s(tL), and then permute these new
latent vectors to generate a feature map Faug with more channels. The rotation and flipping of each
image in the dataset essentially alter the spatial arrangement of the pixels of the image, reflecting
a same spatial arrangement of the input coordinates of each INR. After obtaining s(tL) containing
semantic information of the INR, we use different spatial vectors to simulate various permutations of
input coordinates, and fuse them with s(tL) in the latent space to decode the image. This process
simulates the INR use different permutations of input coordinates to output images with different
pixel arrangements. While the feature map Faug can reconstruct distinct images to some extent,
they inherently encapsulate a variety of features and patterns from these images. Consequently,
the classifier can achieve better generalization when performing classification tasks based on Faug.
Figure 7 shows how to employ data augmentation in the INR2JLS framework.

We also proposed a data augmentation method of adding noise to the image to compare with the
above proposed method of rotating and flipping the image. For the method of rotating and flipping
the image, we apply five transformations on the image, including clockwise rotations of 90, 180 and
270 degrees, as well as horizontal and vertical flips, which consistent with the settings in Section 6.1.
For the method of adding noise, we add Gaussian noise with a mean of 0 and a standard deviation of
0.06 the original image. Table 9 shows the performance improvement of the two methods for the
classification task. It can be found that adding noise has almost no significant improvement in the
performance of the model, and even get worse performance on the MNIST dataset. The rotation and
flip method can improve the performance for all datasets, especially for the more complex CIFAR-10
and CIFAR-100 datasets.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

I ADDITIONAL EMPIRICAL ANALYSIS

We also conduct additional analyses on the influence of positional encoding and non-linearity
embeddings on the INR2JLS framework.

I.1 ANALYSIS OF POSITIONAL ENCODING IN INR2JLS

In our proposed method, we employ an RNN-based GNN to process network weights recurrently,
effectively imitating the sequential nature of neural network inference. Therefore, we do not use posi-
tional encoding to indicate the positional information of layers. To gain an empirical understanding of
the importance of positional encoding in our method, we conduct an experiments to assess the impact
of positional encoding on our model (Table 10). By adding learnable positional embeddings on the
node features of different layers, we find that positional embeddings do not significantly enhance the
performance of our INR classification model across the four datasets.

Table 10: Analysis on the effect of positional encoding on INR2JLS framework. The performance is
measured by the classification test accuracy (%) of the models on MNIST, FashionMNIST, CIFAR-10
and CIFAR-100 INR datasets.

MNIST FashionMNIST CIFAR-10 CIFAR-100
INR2JLS with positional encoding 98.6±0.02 89.9±0.09 73.5±0.04 42.7±0.16
INR2JLS (Ours) 98.6±0.01 90.6±0.07 73.2±0.28 42.4±0.32

I.2 ANALYSIS OF NON-LINEARITY EMBEDDINGS IN INR2JLS

In Kofinas et al. (2024), the authors encode non-linearities as node features. This approach is necessary
because they use the update function with shared parameters for nodes in all layers of the neural
graph. Consequently, non-linear embeddings are required to specify the activation functions used
at different nodes. In contrast, as shown in Equation 4, we use independent GNN layers to process
the snapshots at each timestamp. Given the expressivity of GNNs on NNs (refer to Appendix B of
Kofinas et al. (2024)), each GNN layer can learn to provide different activation functions. Therefore,
we do not need to explicitly embed the activation functions into the graphs. To further support our
approach, we conduct an experimental analysis by adding learnable non-linear embeddings to our
method, following Kofinas et al. (2024). Table 11 shows that the addition of non-linear embeddings
does not significantly affect the performance of the INR classification across all four datasets.

Table 11: Analysis on the effect of non-linearity embeddings on INR2JLS framework. The perfor-
mance is measured by the classification test accuracy (%) of the models on MNIST, FashionMNIST,
CIFAR-10 and CIFAR-100 INR datasets.

MNIST FashionMNIST CIFAR-10 CIFAR-100
INR2JLS add non-linearity embeddings 98.4±0.16 90.4±0.01 73.2±0.12 42.6±0.04
INR2JLS (Ours) 98.6±0.01 90.6±0.07 73.2±0.28 42.4±0.32

26

	Introduction
	Preliminaries on Neural Graph
	Neural Networks as Static Neural Graph
	Expressivity of Processing Neural Graphs with Graph Neural Networks
	Limitations of Static Neural Graphs

	Neural Networks as Dynamic Graph
	MLPs as Dynamic Neural Graphs
	CNNs as Dynamic Neural Graphs

	Learning Invariant Latent Space on Dynamic Neural Graph
	RNN-based Graph Neural Network

	INR2JLS: Learning a Joint Latent Space from Data and Weights
	Experiments on Downstream Applications
	Classifying INRs with INR2JLS
	Editing INRs
	Predicting CNN Classifier Generalization

	Further Empirical Analysis
	Conclusion
	Related Work
	Dynamic Neural Graph Symmetry
	Background and Definitions
	Neuron Permutation Symmetry in Neural Networks

	Objective
	Proof of Equivariance
	Defining Permutations in Neural Networks and Graphs
	Node Permutations Correspond to Neuron Permutations
	Edge Adjustments Under Permutation
	Equivariance of Graph Update Operations
	Inductive Proof Over Layers

	Equivariance of the DNG-Encoder on Dynamic Graphs
	Definition of Equivariance
	Equivariance of the Message Passing Function
	Equivariance of the Recurrent Memory Updating
	Equivariance of Graph Update Events
	Conclusion

	How Does the DNG-Encoder Exhibit the Expressiveness of Neural Networks?
	Experiment for Comparing Static and Dynamic Neural Graph
	Ability to Approximate the Forward Pass Process.
	Comparison on classifying INRs

	 Analysis on Computational Cost
	Time Complexity of Our Method
	Space Complexity of Our Method

	Neural Networks as Dynamic Neural Graphs
	Additional Components in CNNs as Dynamic Neural Graphs
	Transformers as Dynamic Neural Graphs

	Details of Experimental Setup
	Classify INRs with INR2JLS
	Datasets
	Models
	Training

	Editing INRs
	Predicting CNN Classifier
	Data augmentation for INR2JLS

	Additional Empirical Analysis
	Analysis of Positional Encoding in INR2JLS
	Analysis of Non-linearity Embeddings in INR2JLS

