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ABSTRACT

We introduce LIFLOW, a generative framework to accelerate molecular dynamics
(MD) simulations for crystalline materials that formulates the task as conditional
generation of atomic displacements. The model uses flow matching, with a Prop-
agator submodel to generate atomic displacements and a Corrector to locally
correct unphysical geometries, and incorporates an adaptive prior based on the
Maxwell–Boltzmann distribution to account for chemical and thermal conditions.
We benchmark LIFLOW on a dataset comprising 25-ps trajectories of lithium dif-
fusion across 4,186 solid-state electrolyte (SSE) candidates at four temperatures.
The model obtains a consistent Spearman rank correlation of 0.7–0.8 for lithium
mean squared displacement (MSD) predictions on unseen compositions. Further-
more, LIFLOW generalizes from short training trajectories to larger supercells
and longer simulations while maintaining high accuracy. With speed-ups of up to
600,000× compared to first-principles methods, LIFLOW enables scalable simu-
lations at significantly larger length and time scales.

1 INTRODUCTION

Atomic transport is a fundamental process that governs the performance of materials in various tech-
nologies, including energy storage, catalysis, and electronic devices (Balluffi et al., 2005; Yip, 2023).
Solid-state electrolytes (SSEs) are a prime example, emerging as a safer and more stable alternative
to liquid electrolytes commonly used in lithium-ion batteries (Bachman et al., 2016). The study and
design of SSEs rely on fast and accurate atomistic simulation techniques to model the intricate ionic
diffusion behaviors that dictate the atomic transport in these materials. The standard method, ab
initio molecular dynamics (AIMD), involves costly density functional theory (DFT) calculations for
each propagation step in the scale of femtoseconds. Hence, their application is limited to small spa-
tiotemporal scales and a few simulations, often insufficient for characterizing diffusive dynamics or
screening candidate materials. Recently, universal machine learning interatomic potentials (MLIPs),
trained on large-scale DFT calculations, have emerged as a promising alternative (Friederich et al.,
2021; Ko & Ong, 2023). However, even with MLIPs, dynamics must be discretized in sufficiently
small time steps to ensure stable and accurate propagation (Fu et al., 2023a) and are still too slow to
enable scalable simulation to perform high-throughput screening from large material databases.

To accelerate MD simulations for small bio/organic molecules, methods such as Timewarp (Klein
et al., 2023a), Implicit Transfer Operator Learning (ITO, Schreiner et al. (2023)), Score Dynamics
(SD, Hsu et al. (2024)), and Force-Guided Bridge Matching (FBM, Yu et al. (2024)) have been
proposed. These methods leverage a generative model to propagate the conformational distribution
from time τ to time τ + ∆τ , where ∆τ is much larger than the typical MD time steps. A similar
approach has been applied to coarse-grained polymer electrolyte simulations in Fu et al. (2023b).

In the context of all-atom simulations of crystalline materials across different temperatures, these
methods do not account for symmetries or handle various atom types under various simulation
conditions. This work aims to address this by developing a tailored, flow-matching-based, gen-
erative acceleration framework designed for scalable and cost-effective simulations of crystalline
materials and diffusive dynamics in SSEs. The key objective is to construct a model capable of
accurately reproducing relevant kinetic observables, such as mean squared displacement (MSD) and
self-diffusivity of mobile ions, in comparison to long MD simulations using MLIPs or AIMD.

Our contributions are as follows:
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• We introduce the task of generative acceleration of MD for crystalline materials, formulating
it as the conditional generation of atomic displacements. Our approach accounts for periodic
boundary conditions and generalizes effectively across different supercell sizes.

• We develop a flow matching approach with a physically motivated adaptive prior to account for
chemical and thermal conditions, along with a corrector mechanism to ensure stability.

• Additionally, we contribute a trajectory dataset based on MLIPs, designed to benchmark per-
formance across diverse material systems and temperature conditions.

2 BACKGROUND

2.1 PRELIMINARIES

Crystalline materials and representation The crystal structure, assuming perfect order with
translational symmetry, can be idealized as an infinite repetition of atoms, each assigned an atom
type from the periodic table A, within a unit cell with periodic boundary conditions (Ashcroft &
Mermin, 1976). In this work, the structure of a material with n atoms in the unit cell is represented by
the tupleM = (X,L,a), where X = (x1,x2, · · · ,xn)

⊤ ∈ Rn×3 denotes the Cartesian coordi-
nates of the atoms, L = (l1, l2, l3)

⊤ ∈ R3×3 with rows defining the basis vectors of a 3-D repeating
unit cell, and a ∈ An is the atom types. We impose a graph structure on the material by connecting
pairs of nearby atoms with edges (Schütt et al., 2017), possibly across unit cell boundaries. An edge
((i, j),k) ∈ J1, nK2 × Z3 is formed between atoms i and j if the distance between atom i and atom
j, displaced by k unit cells from i, is smaller than the cutoff, i.e., ∥xj + kL− xi∥2 < rcutoff. An
a× b× c supercell ofM is defined as

(X ′,L′,a′) = (⊕abc
κ=1(X + 1n ⊗ kκ),Ldiag(a, b, c),⊕abc

κ=1a), (1)

where ⊕ denotes concatenation, ⊗ is the outer product, and kκ ∈ Za × Zb × Zc represents the
index of unit cell repetitions. Although the method is designed for general crystalline materials, the
primary application of this work is on lithium SSEs, which are further discussed in Appendix A.1.

Molecular dynamics for materials MD is a simulation methodology used to sample ensembles
of configurations or trajectories of atomistic systems by solving the equation of motion, MẌτ =
−∇U(Xτ ), over time τ ,1 where M = diag(m) is the diagonal matrix of atomic masses, m =
m(a), and U(X) is the potential energy (Frenkel & Smit, 2023). Given the initial position X0

and the velocity Ẋ0, typically sampled from the Maxwell–Boltzmann distribution, the equation of
motion is usually discretized and propagated with a time step of 0.5–2 fs, depending on the fastest
motion of the system. For organic and biomolecules with a limited number of atom types, classical
force fields with specified functional forms are routinely used to approximate the system energy
with reasonable accuracy. However, for inorganic solid systems containing various elements across
the periodic table, the parametrization of classical force fields is challenging, and U(·) is often
derived from quantum mechanical calculations (ab initio MD), which are computationally much
more expensive and scale poorly (O(n3) in theory). For more details, refer to Appendix A.2.

Machine learning interatomic potentials Due to the high computational cost of ab initio cal-
culations, machine learning interatomic potentials (MLIPs) based on graph neural networks have
been developed to approximate the results of the quantum calculations (Friederich et al., 2021; Ko
& Ong, 2023). Recent advances in universal MLIPs, such as MACE-MP-0 (Batatia et al., 2024)
and CHGNet (Deng et al., 2023), enable faster simulations and linear scaling with respect to num-
ber of atoms, but pre-trained models often tend to overestimate the kinetic properties (Deng et al.,
2024). We employed MLIPs to generate our trajectory dataset of lithium-containing materials to
demonstrate chemical transferability across different materials.

Flow matching Flow matching (Lipman et al., 2023) is a generative modeling framework in which
samples from the prior distribution x0 ∼ p0(x) are transported to samples from the data distribution
x1 ∼ q(x) by a time-dependent vector field ut(x) (t ∈ [0, 1]). The vector field generates a flow ψt

1In this work, we denote physical time by τ and flow matching time by t. For clarity, we omit the physical
time when it does not cause ambiguity, e.g., D0 and D1 correspond to t = 0 and 1, respectively.
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defined with ψ0(x) = x and (d/dt)ψt(x) = ut(ψt(x)) and a probability path pt(x) = [ψt]∗p0(x).
The data conditional vector field ut(x|x1) is available in closed form for the commonly used Gaus-
sian probability path, i.e., pt(x|x1) = N (x;µt(x1), σt(x1)

2I). The marginal vector field model
vt(x; θ) is parametrized by a neural network and learned by the following regression objective:

LCFM(θ) = Et∼U(t;0,1),x1∼p1(x),x∼pt(x|x1) ∥vt(x; θ)− ut(x|x1)∥
2
. (2)

2.2 RELATED WORKS

ML surrogates for dynamics simulation Several works have explored ML surrogates for time-
coarsened dynamics by learning transition probability densities. Timewarp (Klein et al., 2023a)
employs a conditional normalizing flow (CNF) with Markov chain Monte Carlo sampling, while ITO
(Schreiner et al., 2023) is a conditional diffusion model designed as an arbitrary time-lag propagator.
Arts et al. (2023) models coarse-grained (CG) dynamics with diffusion models, SD (Hsu et al.,
2024) learns the score function of the transition density, F3low (Li et al., 2024) models protein CG
frame transitions with flow matching, and FBM (Yu et al., 2024) uses a conditional bridge process
with a correction mechanism based on intermediate force fields. These methods are applied to
biomolecular simulations, with less chemical diversity and different symmetry requirements and
task formulations from our work. Notably, Fu et al. (2023b) targets non-Markovian dynamics in CG
polymer materials by learning the acceleration and using a score-based corrector. While CG allows
for the explicit modeling of dynamics over longer timesteps using the equations of motion, our
task requires all-atom modeling, necessitating a generative surrogate for the dynamics. Moreover,
none of these approaches considered a task-specific, physically motivated adaptive prior, which was
crucial to the improved performance in this work.

Generative models for materials As a time-hopping conditional generative model for material
structures, our approach shares design principles with crystal generation models (Xie et al., 2022;
Jiao et al., 2023; AI4Science et al., 2023; Zeni et al., 2024; Yang et al., 2024; Miller et al., 2024),
which use diffusion or flow matching to generate atomic identities and positions within a unit cell.
While these methods often handle position generation as fractional coordinates with periodic bound-
aries, our task requires modeling displacements in Cartesian coordinates directly without wrapping
positions back into the unit cell (see Appendix A.3).

Prior design While the normal distribution is commonly used in diffusion and flow-based genera-
tive models, incorporating task-specific inductive biases into the prior can improve the performance.
Lee et al. (2022) introduced data-dependent priors in diffusion models, Guan et al. (2023) used de-
composed priors for ligand generation, Jing et al. (2023) applied harmonic priors for protein struc-
ture, and Irwin et al. (2024) employed scale-based priors for molecular conformation. The common
goal in these methods is to reduce the transport cost by initializing the prior closer to the data distri-
bution. We use a physically motivated prior based on the Maxwell–Boltzmann distribution, which
additionally accounts for differences between atom types and reflects thermal and phase conditions.

3 METHODS

Molecular
Dynamics

Discretized at δτ = 1 fs  (1,000 steps)

LiFlow

Propagator flow

=

Corrector flow

=

0 ps 1 pstime τ

composition

Transferability

thermal condition

supercell size

Figure 1: LIFLOW scheme. LIFLOW is a generative acceleration framework for MD simulations for crystalline
materials, with Propagator and Corrector components leveraging a conditional flow matching scheme for
accurate generation of atomic displacements during time propagation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The LIFLOW framework is illustrated in Fig. 1. We begin by outlining the problem of generat-
ing atomic displacements to accelerate simulations and discussing the symmetry constraints nec-
essary for scalable generation. Next, we propose a physically motivated prior and a flow model
parametrization that adheres to these constraints, followed by the training and inference processes.

3.1 PROBLEM SETTING

Similar to the ML-based MD acceleration methods in Section 2.2, our goal is to model the transition
probability density of a material structure over a time interval ∆τ , conditioned on the temperature T :
p(Mτ+∆τ |Mτ , T ). For this task, we fix the lattice L (constant volume) and atom types a, and set
∆τ as 1 ps, which is 1,000 times larger than the usual MD time step of 1 fs (Marx & Hutter, 2009).
In MD simulations used to model the kinetics of materials, unwrapped coordinates are utilized,
meaning atomic coordinates are not confined to the unit cell, in order to keep track of the atomic
displacements (von Bülow et al., 2020). As a result, unlike previous ML surrogates for dynamics
of bio/organic molecules (Section 2.2) with a single connected component with the fixed center of
mass, the distribution of positions does not have a finite support. Therefore, we opt to model the
distribution of displacements over time interval ∆τ , D∆τ := Xτ+∆τ −Xτ . In summary,

Task: learn the conditional distribution of atomic displacements p(D∆τ |Xτ ,L,a, T ) from a
dataset of time-separated pairs of structures D = {((Xτ ,Xτ+∆τ ),L,a, T ))}, extracted from
MD trajectories across various material compositions and temperatures.

More details and rationale on the task design choices can be found in Appendix A.3.

3.2 CONDITIONAL FLOW MATCHING FOR TIME PROPAGATION

3.2.1 SYMMETRY CONSIDERATIONS

The conditional probability density of displacements is invariant to permutation of atomic indices,
global translation and lattice shift of atomic coordinates, global rotation applied to relevant variables,
and supercell choice (we omit the physical time τ and ∆τ here for brevity):

p(D|X,L,a, T ) = p(PD|PX,L,Pa, T ), P ∈ Sn (permutation) (3)

p(D|X,L,a, T ) = p(D|X + 1n ⊗ t,L,a, T ), t ∈ R3 (global translation) (4)

p(D|X,L,a, T ) = p(D|X +ZL,L,a, T ), Z ∈ Zn×3 (lattice periodicity) (5)
p(D|X,L,a, T ) = p(DR|XR,LR,a, T ), R ∈ O(3) (rotation/reflection) (6)

p(D|X,L,a, T ) = p(D′|X ′,L′,a′, T ), (supercell, defined as Eq. (1)) (7)

In general, to model the invariant densities with CNFs, we need an invariant base distribution and
equivariant flow vector fields (Köhler et al., 2020; Klein et al., 2023b). Translational invariances
Eqs. (4) and (5) and supercell invariance Eq. (7) are satisfied by our choice of representation for
materials (Section 2.1). For O(3) and Sn symmetries, we model our prior and flow according to the
following proposition.

Proposition 1 Given an invariant base distribution p0(D0) satisfying Eqs. (3) and (6) and an equiv-
ariant conditional vector field ut(Dt|D1) with the following properties:

ut(PDt|PD1,PX,L,Pa, T ) = Put(Dt|D1,X,L,a, T ), P ∈ Sn (8)
ut(DtR|D1R,XR,LR,a, T ) = ut(Dt|D1,X,L,a, T )R, R ∈ O(3) (9)

the generated conditional probability path pt|1(Dt|D1) is invariant. Furthermore, given that the
data distribution q(D1) is invariant, the marginal probability path pt(Dt) is also invariant.

Note that the group actions of Sn and O(3) on the optional conditional variable D1 are the same as
their actions on Dt. The proof is given in Appendix B.

3.2.2 CHOICE OF PRIOR

We consider a Gaussian prior, D0 ∼ N (D0;0,Σ⊗I3), with a diagonal covariance Σ = diag(σ)2,
where σ = σ(a, T ) ∈ Rn is equivariant to atom index permutation. This prior distribution satisfies
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the symmetry constraints Eqs. (3) to (7). In MD simulation of materials, atomic displacements tend
to be larger for lighter atoms and at higher temperatures. In the short-time, non-interacting limit, the
displacements can be expressed as Dδτ = Ẋτδτ , where the marginal distribution of velocity fol-
lows the Maxwell–Boltzmann distribution, Ẋτ ∼ N (Ẋτ ;0,diag(kBT/m)⊗I3), with kB being the
Boltzmann constant. Thus, it is reasonable to initialize the noise from a scaled Maxwell–Boltzmann
distribution with σ = σ · (kBT/m)1/2, where σ is a constant hyperparameter controlling the scale.

In the specific context of AIMD simulations in this work, where the simulations are often conducted
at elevated temperatures, the material may undergo phase transitions (e.g., from solid to liquid)
within the temperature range covered by the dataset. Additionally, for lithium-based solid-state
electrolytes, lithium atoms may exhibit displacements several orders of magnitude larger than those
of non-lithium (frame) atoms. To account for these variations, we introduce a material-dependent
adaptive scaling factor for the Maxwell–Boltzmann distribution:

σ = [σLi(M0, T ) · Ia=Li + σframe(M0, T ) · Ia̸=Li]⊙ (kBT/m)1/2, (10)

where for each species S ∈ {lithium, frame}, σS selects a scale value from the hyperparameters
{σsmall

S , σlarge
S } based on a binary classifier’s prediction of whether the displacements for S will be

small or large. The classifier utilizes temperature and the average-pooled atomic invariant features
of S, extracted from a pre-trained MACE model, based on the initial material structureM0. Further
details about the classifier model are provided in Appendix D.1.

3.2.3 FLOW PARAMETRIZATION

Conditional flow matching Following Pooladian et al. (2023), we select the linear interpolation
between the prior sample and the data sample as a conditional flow:

ut(Dt|D1) =
D1 −Dt

1− t
and Dt = ψt(D0|D1) = (1− t)D0 + tD1. (11)

This satisfies the symmetry constraints in Eqs. (8) and (9). The marginal flow approximator
vt(Dt,Xτ ,L,a, T ; θ) should also respect these symmetry constraints. We adopt the PAINN model
(Schütt et al., 2021) to balance expressiveness with inference speed. PAINN is an equivariant graph
neural network that outputs scalar and vector quantities based on the atomistic graph, incorporating
scalar and vector node features. The structure is encoded using a radial basis function expansion of
atomic distances and the unit vector directions along edges (Eqs. (26a) and (27a)). We observed that
encoding the intermediate structure Xτ + Dt significantly improves prediction performance (Ta-
ble A1). Thus, we modify the message-passing layers of PAINN to accept two structural inputs: Xτ

and Xτ+Dt. Additionally, the intermediate displacements Dt are used to construct the vector node
features. Further details on the model architecture and modifications are given in Appendix D.2.

Propagator and Corrector models While, in theory, a single generative model should suffice to
learn the density, prediction errors would arise from two sources: inaccuracies in the marginal flow
prediction and discretization errors in the flow integration. Moreover, since the trajectory generation
is performed autoregressively, applying the generative model iteratively compounds these errors
over time. To address this, in addition to the flow matching model described earlier (Propagator),
we introduce an auxiliary flow matching model named Corrector, inspired by Fu et al. (2023b), to
rectify potential errors in the predicted displacements.

Although the Corrector model is intended to correct errors in the final displacement resulting from
the integration of Propagator, directly mapping the generated output to an actual data sample to
compute the target correction value can be complex, as it may require differentiating through the flow
integration. Therefore, we decouple the Propagator and Corrector models, training the Corrector to
denoise positional noise of arbitrary small scale. Given a perturbed configuration X̃τ = Xτ +D,
where the noise displacement is sampled from D|σ′ ∼ N (D;0,diag(σ′)2 ⊗ I3) with the noise
scale σ′ ∼ U(σ′;0, σmax1n), the flow is trained to generate the possible denoising displacements
−D conditioned on X̃τ .

3.2.4 TRAINING AND INFERENCE

5
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Algorithm 1: LIFLOW Inference
Input: Initial position X0, lattice L, atom types a,

atomic masses m(a), temperature T
Output: Predicted position Xτ at τ = Nstep∆τ

Determine the prior from X0, L, a, m, and T
for iτ ← 0 to Nstep − 1 do

τ ← iτ∆τ and τ ′ ← (iτ + 1)∆τ
Sample D from the Propagator prior
for i← 0 to Nflow − 1 do

D ←D+Propagator(D,Xτ ,L,a, T, t)/Nflow

X̃τ ′ ←Xτ +D // Propagator step

Sample D from the Corrector prior
for i← 0 to Nflow − 1 do

D ←D+ Corrector(D, X̃τ ′ ,L,a, T, t)/Nflow

Xτ ′ ← X̃τ ′ +D // Corrector step
Xτ ′ ←Xτ ′ − CoM(Xτ ′ ,m) + CoM(Xτ ,m)

LIFLOW training We train the
model using time-separated pairs
of structures, ((Xτ ,Xτ ′),L,a, T )),
sampled from MD trajectories in the
training set. First, the prior dis-
placements are sampled based on
the possible choices outlined in Sec-
tion 3.2.2. The Propagator and Cor-
rector are trained to approximate the
marginal flows toward the distribu-
tions of the possible propagating dis-
placements, Xτ ′−Xτ , and denoising
displacements, Xτ ′ − X̃τ ′ , respec-
tively. These are conditioned on the
previous structure, Xτ , and the noisy
structure, X̃τ ′ , respectively. Given
interpolated displacements Dt and
the corresponding conditional vari-
ables, both models are trained to
match the ground truth conditional flow ut(Dt|D1) using the regression loss Eq. (2). Detailed
training algorithms are reported in Appendix D.3.

LIFLOW inference The inference procedure is provided in Algorithm 1. Starting from the ini-
tial atom positions X0, we alternate between Propagator and Corrector flow integration for
Nstep steps, generating the trajectory {X0,X∆τ , · · · ,XNstep∆τ}. The flow integration for both the
Propagator and Corrector begins by sampling prior displacements D0 from the chosen prior dis-
tribution. These displacements are then updated over Nflow steps using Euler’s method, based on
the predicted marginal flow. Since MD simulations are often performed with a fixed center-of-mass
(CoM) position, defined as CoM(X,m) =

∑
j mjxj/

∑
j mj , we correct for any CoM drift after

each Propagator–Corrector inference step.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Universal MLIP dataset (Section 4.2) To train a compositionally transferable generative model
for time-shifting conformational distributions, long-time simulation trajectories that span a diverse
range of compositional spaces in solid-state materials are required. A total of 4,186 stable lithium-
containing structures were retrieved from the Materials Project database (Jain et al., 2013) to capture
various modes of lithium-ion dynamics across different compositions. For each structure, 25 ps MD
simulations were performed using the MACE-MP-0 small universal MLIP model (Batatia et al.,
2024) at temperatures of 600, 800, 1000, and 1200 K, with a time step of 1 fs (25k steps per struc-
ture). The distribution of elements in these structures, shown in Fig. A1a, spans 77 elements across
the periodic table. The mean squared displacement (MSD) of lithium atoms for each structure over
the 25 ps trajectories is shown in Fig. A1b, indicating that the dataset captures a broad range of
atomic environments and dynamic behaviors. The dataset is divided into training (90%) and test
(10%) sets based on material composition, with the validation set sampled from the training portion.
Details of the simulations and dataset statistics are provided in Appendix C.1.

AIMD datasets (Section 4.3) To evaluate the ability to extend accurate atomistic dynamics from
short AIMD simulations, we employed two sets of AIMD trajectories that exhibit diffusive lithium
dynamics. The first set includes LPS (Li3PS4) simulations from Jun et al. (2024b), with ∼250 ps
trajectories for 128-atom structures of α-, β-, and γ-LPS, conducted at 600–800 K. The second set
comprises LGPS (Li10GeP2S12) simulations from López et al. (2024), which includes ∼150 ps MD
trajectories for a 2 × 2 × 1 supercell (200 atoms) of LGPS at temperatures of 650, 900, 1150, and
1400 K. We used the first 25 ps of each trajectory as the training set. Refer to Appendix C.2 for the
rationale behind system selection and further details.
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Metrics To quantify the prediction of kinetic observables, we compared the MSD of lithium and
frame atoms between generated and reference trajectories. The MSD measures the average squared
distance that particles of type S move over time τ , as defined in Eq. (12):

MSDS(τ) =
1

|S|
∑
i∈S
∥xτ,i − x0,i∥2 (12) D∗

S = lim
τ→∞

MSDS(τ)

6τ
(13)

Given the wide range of magnitudes of MSD values, we compared the log values (base 10) of MSD,
with MSD in units of Å2. We report the mean absolute error (MAE) and Spearman’s rank correlation
(ρ) for the log MSD predictions on the universal MLIP dataset.

In the long-time limit, the MSD grows linearly with time, with a rate proportional to the self-
diffusivity D∗

S (Eq. (13)). This is quantified using Bayesian regression of MSD against time (Mc-
Cluskey et al., 2024a,b). According to the Arrhenius relationship, the temperature dependence of
diffusivity follows logD∗(T ) = logD∗

0 − EA/kBT , where EA is the activation energy. Since acti-
vation energy is a key measure of the barrier to lithium diffusion in materials science literature, we
also verify whether EA is accurately reproduced in the LGPS AIMD dataset.

To evaluate the reproduction of structural features, we compare the all-particle radial distribution
function (RDF), g(r). The RDF describes how particle density varies as a function of distance from
a reference particle, revealing spatial organization and local structure in the system. It is defined as:

g(r) =
1

4πr2
1

ρn

∑
i

∑
j ̸=i

δ(r − ∥xi − xj∥), (14)

where ρ is the number density of atoms. We average the RDF over the latter parts of the simulation,
after discarding a short induction period (5 ps, 20 % of the trajectory). The accuracy is quantified by
the RDF MAE = (1/rcut)

∫ rcut

0
|ĝ(r) − g(r)|dr, with rcut = 5 Å. Note that a similar set of metrics

has been adopted in the benchmark of MLIP-based simulations (Fu et al., 2023a).

4.2 UNIVERSAL MODEL

4.2.1 SETUP AND RESULTS

Table 1: Results for the universal model. Evaluation metrics for different Propagator priors (isotropic and
uniform/adaptive scale Maxwell–Boltzmann) with or without the Corrector. Regressor†: non-generative, di-
rectly predicting displacements. Padaptive + C ∗ represents the baseline model without any ablations. Values are
colored from worst to best for each metric and T , and standard deviations are reported in Table A4.

Train
T (K)

Inference
T (K) Model log MSDLi

MAE (↓)
log MSDLi

ρ (↑)
log MSDframe

MAE (↓)
RDF

MAE (↓)
Stable traj.

% (↑)

Exp 1 | Single temperature: is Maxwell–Boltzmann prior required?

800 800
Regressor† 1.636 0.535 0.876 0.416 90.2
Pisotropic 0.498 0.753 0.318 0.113 98.6
Puniform 0.396 0.779 0.274 0.084 99.4

Exp 2 | Multiple temperatures: are adaptive prior scaling Eq. (10) and Corrector required?

All

600
Puniform 0.345 0.740 0.257 0.082 99.8
Padaptive 0.376 0.709 0.286 0.118 99.6
Padaptive + C ∗ 0.348 0.744 0.241 0.069 100.0

800
Puniform 0.417 0.737 0.307 0.091 99.8
Padaptive 0.385 0.759 0.294 0.110 99.5
Padaptive + C ∗ 0.366 0.781 0.255 0.066 100.0

1000
Puniform 0.505 0.705 0.400 0.124 98.6
Padaptive 0.456 0.746 0.374 0.126 98.6
Padaptive + C ∗ 0.429 0.769 0.332 0.071 99.8

1200
Puniform 0.448 0.788 0.493 0.168 95.5
Padaptive 0.410 0.809 0.416 0.137 98.1
Padaptive + C ∗ 0.389 0.821 0.363 0.079 99.6
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Setup For the adaptive prior, we set the scale hyperparameters as (σlow
Li , σ

high
Li , σlow

frame, σ
high
frame) =

(1, 10, 10−0.5, 100.5), based on the observation that lithium atoms are generally more diffusive than
the frame atoms. For Corrector model, we used a maximum noise scale of σmax = 0.25 and a small
uniform-scale Maxwell–Boltzmann prior with σ = 0.1. We conducted LIFLOW inference iteratively
for Nstep = 25 steps to simulate dynamics over 25 ps with a time step of ∆τ = 1 ps. Each inference
step involvesNflow = 10 flow matching iterations of both Propagator and Corrector models. During
each inference process for a given structure, we terminated when either the maximum number of
steps (Nstep) was reached or the model prediction diverged due to instabilities.

0 ps 5 ps 10 ps 15 ps 20 ps 25 ps

Li
Fl

ow
Re

fe
re

nc
e

a b c

large prior

small prior

Figure 2: Universal model inference example. (a, b) Parity plots comparing the log MSD values for (a)
lithium and (b) frame atoms in 800 K, 25 ps simulations across test materials. Data points are colored by their
respective prior scales. (c) Reference and generated trajectories for Li6PS5Br (highlighted points in a and b).

Reproducing kinetic properties For LIFLOW baseline model (Table 1, Padaptive + C ∗), we consis-
tently observed a Spearman rank correlation of 0.7–0.8 for lithium MSD in unseen test compositions.
This indicates the potential of the LIFLOW model for computational screening to identify materials
with high lithium diffusivity. The parity plot between log MSD values of reference and LIFLOW-
generated trajectories at 800 K, along with visualized example trajectories, is shown in Fig. 2. We
observed that the diffusive behavior in well-known solid-state electrolytes, such as Li6PS5Br (ar-
gyrodite), is accurately reproduced. Note that the stability reported in Table 1 refers to numerical
stability—unlike the physical stability of MD trajectories, numerically stable but physically fictitious
dynamics can be generated (as reflected in poorer kinetic metrics, see Fig. A4).

4.2.2 ABLATION EXPERIMENTS

Effect of the prior choice First, in Table 1 (Exp 1), we compare the isotropic prior (Pisotropic,
σ = σ · 1n), to the scaled Maxwell–Boltzmann prior (Puniform, σ = σ · (kBT/m)1/2), to evaluate
the impact of atom-type-specific scaling on the prior. To focus solely on the relative scale between
atoms, we vary the scaling factor σ for both the isotropic and Maxwell–Boltzmann priors at a fixed
temperature (800 K), then compare the relevant metrics for the optimal σ in each case. The best re-
sults for isotropic (σ = 10−1.5) and Maxwell–Boltzmann (σ = 1) priors are shown in the first row of
Table 1, and the results across all scales are provided in Table A3. The scaled Maxwell–Boltzmann
prior outperforms the isotropic prior in reproducing all kinetic metrics (log MSD), confirming that
the relative scaling of priors among elements is crucial for performance across a wide range of
compositions. Additionally, note that the poor performance of direct regression-based displacement
prediction (Regressor) highlights the necessity of generative modeling.

Next, in Table 1 (Exp 2), we apply the scale for Puniform determined in the previous experiment to
the training and inference on trajectories across all temperatures, and compare to the adaptive scale
Maxwell–Boltzmann prior (Padaptive, Eq. (10)). With the exception of the lowest temperature (600
K), where the prior classifier is mostly ineffective (see Fig. A2), the model using the adaptive prior
outperforms the one with the uniform scale prior. This suggests that the mixture-of-priors approach
effectively guides the flow model in capturing the scale of atomic movements.

Effect of the Corrector model In Table 1 (Exp 2), we then compare the Propagator-only model
(Padaptive) and Propagator + Corrector model (Padaptive + C ∗). We observed improved reproduction
of static structural features, indicated by lower RDF MAE, across all temperatures when using the
Corrector model. Notably, all kinetic metrics also showed improvement with the use of Corrector.
Since the Propagator is a generative model of displacements conditioned on the current time step
structure Xτ , correcting errors in the conditional structure improves the accuracy of the predicted
cumulative displacements, as reflected in the MSD metric.
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4.3 AIMD MODELS

Setup Since we are training on the same composition, the Propagator error is expected to be
smaller than that for the universal dataset, and we accordingly use a smaller maximum noise scale
for the Corrector. Corrector inference can also be simplified by reducing Nflow, as detailed in
Appendix E.3. For each dataset (LPS and LGPS), a single Propagator and Corrector model is
trained on the first 25 ps of trajectories across temperatures (and polymorph structures for LPS).
Additional training and inference settings are provided in Appendix D.4.

a b c

II

Li
Ge
P

S

2×2×1 4×4×4

I

Figure 3: Reproducing diffusivity from AIMD models. (a) Lithium D∗ for polymorphs of LPS (Li3PS4).
Values are derived from AIMD (25 ps training and ∼250 ps full trajectories) and 250 ps LIFLOW inference.
(b) Lithium D∗ is plotted as a function of 1000/T for LGPS (Li10GeP2S12). 2 × 2 × 1 supercell results from
AIMD (25 ps training and ∼150 ps full trajectories) and 150 ps LIFLOW inference. Shaded region represents
95% confidence intervals (CIs) for the Arrhenius fit (1/T vs. logD∗(T )) from 25 ps AIMD data. (c) 4×4×4
supercell results from fine-tuned MLIP and LIFLOW inference (1 ns).

Reproducing kinetic properties Fig. 3a shows the reference diffusivity values for LPS from the
AIMD simulations (25 ps for training and∼250 ps full dataset) alongside the 250 ps LIFLOW infer-
ence results. Overall, the LIFLOW results match the order of magnitude of the reference simulations,
successfully reproducing the diffusivity differences among the LPS polymorphs. This suggests that
the model can detect subtle local structural variations between polymorphs and generate displace-
ments accordingly. In cases where diffusive behavior is expected but not sufficiently captured in a 25
ps trajectory to yield robust diffusivity statistics, LIFLOW can infill the correct diffusive dynamics
based on other simulations (Fig. 3a, box I). However, when lithium hopping events become ex-
ceedingly rare, as in γ-LPS at lower temperatures, the generative model suffers from mode collapse
towards non-diffusive displacements, resulting in an underestimation of D∗ (Fig. 3a, box II).

Table 2: Activation energies for LGPS. Arrhe-
nius fit based on the data in Fig. 3b.

Method EA [eV] 95% CI [eV]

AIMD (25 ps) 0.173 (0.141, 0.205)
AIMD (all) 0.192 (0.175, 0.205)
LIFLOW 0.185 (0.181, 0.190)

Fig. 3b similarly presents the diffusivity values for
LGPS from AIMD simulations and LIFLOW infer-
ence. For the 2× 2× 1 supercell (Fig. 3b), the tem-
perature dependence of D∗, characterized by an ac-
tivation energy of EA = 0.185 eV, is consistent with
the reference AIMD value (0.192 eV, Table 2). Al-
though the 25 ps AIMD EA (0.173 eV) lies outside
the 95% CI of the longer AIMD, LIFLOW success-
fully matches the longer AIMD result and produces more reliable statistics with lower variance,
owing to its extended simulation rollouts.

Large-scale inference By modeling the distribution of atomic displacements, the generative
model can naturally generalize across different supercell sizes, as indicated by the supercell invari-
ance (Eq. (7)). We evaluated scalability and temperature transferability using a 4× 4× 4 supercell,
performing LIFLOW inference over 1,000 steps (1 ns), with the resulting D∗ values presented in
Fig. 3c. For temperatures below the maximum training temperature (1400 K), the LIFLOW model
generates stable trajectories that extend far beyond the 25 ps length of the training set trajectories
(25 ps). When compared to the reference dynamics from Winter & Gómez-Bombarelli (2023) on
LGPS, which used extensive simulations with a fine-tuned MLIP, D∗ values predicted by LIFLOW
closely match the reference values within the interpolative regime (i.e., the training temperature
range). However, as we extend to lower T (higher 1000/T ) beyond the training range, D∗ decreases
much more slowly than the reference values (Fig. A3), indicating fictitious diffusive behavior when
extrapolating to lower T . This behavior is expected, as the model was trained primarily on larger
displacements of lithium atoms at higher T .
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Reproducing structural features While reproducing kinetics is the main objective of this study,
we additionally examined the reproduction of structural features, such as diffusion traces and proba-
bility densities of lithium positions. The diffusion traces indicate generalization beyond memoriza-
tion, with the model exploring symmetrically related sites (Fig. A5). The probability densities are
well reproduced, with slight deviations and smoothing at higher temperatures due to the increased
complexity of diffusion behavior (Fig. A6). A detailed discussion is provided in Appendix E.2.

4.4 COMPUTATIONAL COST

Table 3: Prediction speed. Time required to pre-
dict the 1 ns trajectory for LGPS (†extrapolated).

Method Supercell # atoms Time

AIMD† 2× 2× 1 200 340 days
MLIP 2× 2× 1 200 5.8 hrs

2× 2× 1 200 48 sLIFLOW
4× 4× 4 3,200 352 s

The computation time for 1 ns of inference using the
methods investigated in this paper is reported in Ta-
ble 3. MLIP-based simulations significantly reduce
the time required for materials simulations (days to
hours), and the LIFLOW model accelerates this even
further (hours to seconds). Even taking into account
the training time of the LIFLOW model (≲ an hour),
it remains significantly more efficient than AIMD
simulations (see Appendix D.5). Given that AIMD
scales as O(n3) in theory, while both LIFLOW and MLIPs scale as O(n) for large systems (as-
suming graphs with radius cutoffs), the LIFLOW model enables efficient large-scale modeling of
atomistic dynamics, as demonstrated in this work.

5 DISCUSSION

Conclusion and outlook We proposed the LIFLOW model, a generative acceleration framework
designed to accelerate MD simulations for crystalline materials, with a focus on lithium SSEs. The
model consists of two key components: a Propagator, which generates atomic displacements for
time propagation, and a Corrector, which applies denoising. Both components utilize a conditional
flow matching scheme, and we introduced a thermally and chemically adaptive prior based on the
Maxwell–Boltzmann distribution and modified the PAINN model as a marginal flow approximator,
both of which were critical for the accurate reproduction of dynamics. In our analysis of lithium-
containing material trajectories, we consistently observed a Spearman rank correlation of 0.7–0.8
for lithium MSD in unseen compositions. This indicates the potential of the LIFLOW model for
computational screening to identify materials with high lithium diffusivity. Furthermore, we demon-
strated the ability to extend short-length accurate AIMD trajectories by training the LIFLOW model.
This allowed us to infill insufficient observations, reproduce accurate temperature dependencies, and
maintain high accuracy when scaling up to much larger supercells. Compared to simulations using
MLIPs and AIMD, LIFLOW offers significant speedups of 400× and 600,000×, respectively. This
provides a practical means of scaling MD simulations to larger spatiotemporal domains.

Limitations and future directions First, although we have demonstrated the importance of de-
signing the prior for the flow matching process, determining the appropriate prior scale remains
a hyperparameter. A theoretical analysis of the optimal prior distribution would provide a more
principled approach to designing priors tailored to specific acceleration tasks and material systems.
This also applies to the choice of time step ∆t: we used a fixed time step based on observation
(Appendix A.3), but given the site-to-site hopping nature of atomistic transport, our method may
benefit from adaptive or controllable time stepping (e.g., Schreiner et al. (2023)). Additionally,
while LIFLOW performs well within the trained temperature range, it struggles to extrapolate be-
yond the training regime, where system dynamics may differ significantly from the training data. As
a result, the current approach lacks the broad generalizability seen in universal MLIP models, which
preserve the physical dynamics of systems while approximating the potential energy landscape. To
improve reliability and develop a model capable of capturing emergent system behaviors, genera-
tive approaches would benefit from incorporating thermodynamic principles more explicitly (Tiwary
et al., 2024; Dibak et al., 2022; Herron et al., 2023). Lastly, the accuracy of LIFLOW is inherently
limited by the accuracy of the reference dynamics. Given the variety of MD simulation methods and
their trade-offs between accuracy and speed, transfer learning or multi-fidelity frameworks could be
considered for efficient training in practical applications.
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REPRODUCIBILITY STATEMENT

The code and trajectory dataset necessary to reproduce the results will be made publicly available
upon acceptance of this work. The sources of the external AIMD trajectories are provided in Ap-
pendix C.2.

ETHICS STATEMENT

This work raises ethical considerations related to the general use of machine learning in scientific
simulations, particularly in the context of molecular dynamics. While the model presented, LIFLOW,
is intended to accelerate dynamics simulations for materials science, there is a potential for misuse
in harmful applications, such as the development of dangerous materials or chemicals. Although un-
likely in the current form of our methodology, we acknowledge the following potential scenarios for
misuse, as ML-driven simulations could be misused to design materials with undesirable properties,
such as highly reactive compounds that may be hazardous to health or the environment:

• Environmentally harmful materials: Simulations could lead to the creation of materials that,
when manufactured or disposed of, could pose long-term environmental risks, such as non-
biodegradable or highly polluting compounds.

• Unstable materials: Inaccurate predictions or malicious use of this framework could result
in the generation of materials with undesirable or unstable properties, such as those prone to
explosive reactions or dangerous degradation.

• Chemical weapons: Simulations may be applied to develop advanced nanomaterials with toxi-
cological risks or harmful capabilities, including those used in biological or chemical warfare.

To mitigate these risks, we commit to working closely with materials experts to ensure responsible
usage and oversight of the methodological developments. Additionally, no human subjects, sensitive
data, or privacy-related issues are involved in this study, and there are no conflicts of interest or
external sponsorships associated with this work.
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Cibrán López, Riccardo Rurali, and Claudio Cazorla. How concerted are ionic hops in inorganic
solid-state electrolytes? J. Am. Chem. Soc., 146(12):8269–8279, 2024. URL https://doi.org/
10.1021/jacs.3c13279. (cited on pages 6 and 20)

Edward J. Maginn, Richard A. Messerly, Daniel J. Carlson, Daniel R. Roe, and J. Richard Elliot.
Best practices for computing transport properties 1. self-diffusivity and viscosity from equilibrium
molecular dynamics [article v1.0]. Living Journal of Computational Molecular Science, 1(1):
6324, 2018. URL https://doi.org/10.33011/livecoms.1.1.6324. (cited on page 17)

14

https://openreview.net/forum?id=EjMLpTgvKH
https://openreview.net/forum?id=EjMLpTgvKH
https://proceedings.neurips.cc/paper_files/paper/2023/file/bc827452450356f9f558f4e4568d553b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bc827452450356f9f558f4e4568d553b-Paper-Conference.pdf
https://doi.org/10.1038/s43588-023-00561-9
https://doi.org/10.1038/s43588-023-00561-9
https://proceedings.mlr.press/v119/kohler20a.html
https://proceedings.mlr.press/v119/kohler20a.html
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1021/acs.chemmater.2c02458
https://doi.org/10.1021/acs.chemmater.2c02458
https://openreview.net/forum?id=_BNiN4IjC5
https://arxiv.org/abs/2405.00751
https://openreview.net/forum?id=PqvMRDCJT9t
https://doi.org/10.1021/jacs.3c13279
https://doi.org/10.1021/jacs.3c13279
https://doi.org/10.33011/livecoms.1.1.6324


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Arumugam Manthiram, Xingwen Yu, and Shaofei Wang. Lithium battery chemistries enabled by
solid-state electrolytes. Nat. Rev. Mater., 2(4):1–16, 2017. URL https://doi.org/10.1038/
natrevmats.2016.103. (cited on page 17)

Dominik Marx and Jürg Hutter. Ab Initio Molecular Dynamics: Basic Theory and Advanced Meth-
ods. Cambridge University Press, 2009. (cited on pages 4 and 17)

Andrew R. McCluskey, Samuel W. Coles, and Benjamin J. Morgan. Accurate estimation of diffusion
coefficients and their uncertainties from computer simulation, 2024a. URL https://arxiv.org/
abs/2305.18244. (cited on page 7)

Andrew R. McCluskey, Alexander G. Squires, Josh Dunn, Samuel W. Coles, and Benjamin J.
Morgan. kinisi: Bayesian analysis of mass transport from molecular dynamics simulations.
J. Open Source Softw., 9(94):5984, 2024b. URL https://doi.org/10.21105/joss.05984.
(cited on pages 7 and 24)

Benjamin Kurt Miller, Ricky T. Q. Chen, Anuroop Sriram, and Brandon M Wood. FlowMM:
Generating materials with Riemannian flow matching. In Ruslan Salakhutdinov, Zico Kolter,
Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.),
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Pro-
ceedings of Machine Learning Research, pp. 35664–35686. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/miller24a.html. (cited on page 3)
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A ADDITIONAL BACKGROUND

A.1 SOLID-STATE ELECTROLYTES

While lithium-ion diffusion in most solid-state materials is generally slow, solid-state electrolytes
are a special class of materials in which lithium ions can undergo fast diffusion, often referred to as
superionic conductors (Manthiram et al., 2017; Jun et al., 2024a). They serve as a key component for
all-solid-state batteries, where enhanced safety is anticipated by replacing flammable organic liquid
electrolytes with solid-state alternatives. A major class of solid electrolytes discussed in this work
consists of inorganic crystalline materials, which have long-range atomic ordering. In most of these
inorganic crystalline solid electrolytes, the anions (Wang et al., 2015) and the non-lithium cations
(Jun et al., 2022) remain immobile, selectively permitting the translational motion of the lithium
ions. This allows lithium ions to percolate through the crystal structure with a flat energy landscape
(or low migration barrier), resulting in a high diffusion coefficient and ionic conductivity.

A.2 AIMD SIMULATION

Ab initio MD AIMD simulations are typically carried out using the Born–Oppenheimer molecular
dynamics (BOMD) approach (Marx & Hutter, 2009), as defined with the following equation of
motion (Eq. (15)) and the time-independent Schrödinger equation (Eq. (16)):

MẌ = −∇X min
Ψ0

⟨Ψ0|H(X)|Ψ0⟩ , (15)

E0Ψ0 = H(X)Ψ0, (16)

where H(X) represents the electronic Hamiltonian, Ψ0 is the ground state wavefunction, and
⟨Ψ0|H(X)|Ψ0⟩ denotes the quantum mechanical expectation value. At each time step, the ground
state wavefunction is obtained by solving Eq. (16), after which the forces are computed as a deriva-
tive of the ground state energy with respect to atomic coordinates (Eq. (15)).

For crystalline materials, Eq. (16) is typically solved using Kohn–Sham density functional theory
(DFT, Kohn & Sham (1965)), where the ground state energy is expressed as

min
Ψ0

⟨Ψ0|H(X)|Ψ0⟩ = min
{ϕi}

EKS[{ϕi};X] (17)

with EKS being the Kohn–Sham energy functional and {ϕi} denoting a set of auxiliary functions
called Kohn–Sham orbitals, which depend on the electron positions. The functional optimization in
Eq. (17) is equivalent to solving the set of coupled Kohn–Sham equationsHKSϕi = ϵiϕi, whereHKS

is the one-particle Hamiltonian and {ϵi} are the Kohn–Sham eigenvalues. Solving these eigenvalue
equations, which involves diagonalizing the Hamiltonian, scales asO(n3) with respect to the system
size n, defined by the number of atoms (as in the main text) or electrons.

Thermostat choice To maintain a constant temperature T in the system, the dynamics is cou-
pled with an external control mechanism known as a thermostat. We used Nosé–Hoover thermostat
(Nosé, 1984; Hoover, 1985) for dataset generation. To avoid thermostat-dependent dynamical arti-
facts, velocity scaling thermostats (e.g., Berendsen, Nosé–Hoover, and stochastic velocity rescaling)
should be used instead of velocity randomization thermostats (e.g., Langevin and Andersen). The
latter may lead to reduced diffusivity values due to rapid decorrelation of velocities (Basconi &
Shirts, 2013).

A.3 TASK DESIGN

Fixing the volume In AIMD simulations for solid electrolytes, or in general when modeling the
transport properties of atomistic systems, simulations are typically conducted under the NVT (con-
stant volume) ensemble. Although real materials are often under constant pressure conditions, em-
ploying a barostat in simulations to control pressure modifies cell volume, potentially leading to
significant changes in particle positions and dynamics (Maginn et al., 2018). In practice, AIMD
simulations are initiated after energy minimization of the material structure (with respect to both
atomic coordinates and cell dimensions) under the assumption that thermal expansion of the cell
does not significantly affect the transport properties.
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Unwrapped coordinates In atomistic systems with periodic boundary conditions (PBCs), parti-
cles that exit one side of the simulation box effectively reenter from the opposite side. A straightfor-
ward way to handle this is to use wrapped coordinates, where the positions are continuously confined
within the simulation box. However, this introduces jumps in atomic positions during long-range
motions, which can distort the calculation of kinetic properties such as MSD and diffusivity. To
avoid this, the coordinates must be unwrapped before computing such properties. Alternatively,
particle positions can be propagated using unwrapped coordinates from the start, without wrapping
them back when crossing the cell boundaries.

It is possible to unwrap trajectories during the post-processing of AIMD simulations, assuming that
no particles move more than half the cell dimensions between time steps. This condition generally
holds for typical AIMD simulations, which use small time steps. However, in the case of LIFLOW
modeling in this work, particle displacements can exceed half the box size because (1) we simu-
late with a much larger time step ∆τ , and (2) AIMD simulation cells are typically small due to
high computational costs (see Appendix A.2). Hence, we use unwrapped coordinates directly when
formulating the displacement modeling task for LIFLOW.

Choice of ∆τ Since the goal of generative displacement modeling in this work is to efficiently
accelerate MD simulations, the propagation time step ∆τ must be significantly larger than the MD
time step δτ . However, due to the high cost of generating data, ∆τ should not be so large that the
modes of atomic displacements are not adequately covered by the training set trajectories.

To determine ∆τ , we consider the time evolution of lithium MSD for typical lithium-ion solid-state
electrolytes. For small ∆τ values (< 0.1 ps), the MSD grows approximately as MSD ∝ ∆τ1.42,
reflecting the ballistic and vibrational motion of lithium ions (He et al., 2018). In this regime, the
benefit of generative modeling is limited, as the evolution of atomic positions is closely related to
the initial velocities. For larger ∆τ (≳ 1 ps), the MSD grows linearly as MSD ∝ ∆τ , indicating the
onset of diffusive motion, as described by Eq. (13). Given that our training trajectories span 25 ps,
we select ∆τ = 1 ps to ensure that the generative model captures a diverse range of displacement
modes present in the training data.

Units The atomic unit system is adopted in this work. Unless stated otherwise, the units are
as follows: length is in Å, temperature in K, mass in atomic mass units (u), and energy in eV.
For example, the scaling factor for the Maxwell–Boltzmann prior has an implied unit of Å · (eV ·
K/u)−1/2 for converting (kBT/m)1/2 into positions.

B PROOF FOR PROPOSITION 1

Proposition 1 Given an invariant base distribution p0(D0) satisfying Eqs. (3) and (6) and an equiv-
ariant conditional vector field ut(Dt|D1) with the following properties:

ut(PDt|PD1,PX,L,Pa, T ) = Put(Dt|D1,X,L,a, T ), P ∈ Sn (18)
ut(DtR|D1R,XR,LR,a, T ) = ut(Dt|D1,X,L,a, T )R, R ∈ O(3) (19)

the generated conditional probability path pt|1(Dt|D1) is invariant. Furthermore, given that the
data distribution q(D1) is invariant, the marginal probability path pt(Dt) is also invariant.

Proof. We will prove for the O(3) symmetry, with a similar approach applying to Sn. We omit
the conditional variables (X,L,a, T ), as their transformations under group actions are implied by
those of D1, either remaining invariant or transforming equivariantly. The first part of the proof
follows from Theorems 1 and 2 in Köhler et al. (2020), with additional conditional variables. The
conditional flow generated by the conditional vector field is

ψt(D0|D1) = D0 +

∫ t

0

us(Ds|D1) ds. (20)
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Now, we apply R ∈ O(3):

ψt(D0R|D1R) = D0R+

∫ t

0

us(DsR|D1R) ds

= D0R+

∫ t

0

us(Ds|D1)R ds

=

(
D0 +

∫ t

0

us(Ds|D1) ds

)
R

= ψt(D0|D1)R. (21)

Thus, the conditional flow ψt is also equivariant with respect to R. Now, the conditional probability
path pt|1(Dt|D1) is obtained as the pushforward of the prior distribution p0 under ψt:

pt|1(Dt|D1) = [ψt]#p0(D0) = p0
(
ψ−1
t (Dt|D1)

) ∣∣∣∣det ∂ψ−1
t

∂Dt
(Dt|D1)

∣∣∣∣ . (22)

Again, we apply R ∈ O(3):

pt|1(DtR|D1R) = p0
(
ψ−1
t (DtR|D1R)

) ∣∣∣∣det ∂ψ−1
t

∂(DtR)
(DtR|D1R)

∣∣∣∣
= p0

(
ψ−1
t (Dt|D1)R

) ∣∣∣∣det ∂ψ−1
t

∂(DtR)
(DtR|D1R)

∣∣∣∣
= p0

(
ψ−1
t (Dt|D1)

)
|det In ⊗R|

∣∣∣∣det ∂ψ−1
t

∂Dt
(Dt|D1)

∣∣∣∣ |det In ⊗R|−1

= p0
(
ψ−1
t (Dt|D1)

) ∣∣∣∣det ∂ψ−1
t

∂Dt
(Dt|D1)

∣∣∣∣
= pt|1(Dt|D1), (23)

where we used the fact that |det In ⊗R| = |detR|n = 1. Therefore, the resulting conditional
probability path pt|1 is also invariant with respect to R.

Now, for the marginal probability pt(Dt) =
∫
pt|1(Dt|D1)q(D1)dD1,

pt(DtR) =

∫
pt|1(DtR|D1R)q(D1R) d(D1R)

=

∫
pt|1(Dt|D1)q(D1) |det In ⊗R|dD1

=

∫
pt|1(Dt|D1)q(D1) dD1

= pt(Dt), (24)

which concludes the proof of the invariance of the marginal pt. □

C DATASET DETAILS

C.1 UNIVERSAL DATASET

We fetched 4,186 lithium-containing structures from Materials Project (Jain et al., 2013) with the
criteria of (1) more than 10% of the atoms are lithium, (2) band gap > 2 eV, and (3) energy over
the convex hull < 0.1 eV/atom. These criteria are designed to sample various modes of lithium-ion
dynamics across different compositions, while maintaining minimal requirements for the solid-state
electrolytes. After building a supercell of the structure in order to ensure that each dimension is
larger than 9 Å and minimizing the structure, we conducted NVT MD simulations with MACE-MP-
0 small model (Batatia et al., 2024) at 600, 800, 1000, and 1200 K for each structure. The initial
velocities were assigned according to the temperature, and the system was propagated for 25 ps with
the time step of 1 fs (25,000 steps) using Nosé–Hoover dynamics (Nosé, 1984; Hoover, 1985) as
implemented in ASE (Larsen et al., 2017). We recorded the atom positions every ten steps.
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a
c

db

e

Figure A1: Dataset statistics. (a) Elemental count distribution across the unit cells of the structures in the
dataset. (b) Histogram of lithium MSD values from 25-ps MD simulations at different temperatures. (c)
Distribution of atom counts (in the constructed supercell) per structure. (d) Distribution of element counts per
structure. (e) Space group distribution of the structures (visualized with Pymatviz (Riebesell et al., 2022)).

C.2 AIMD DATASETS

LPS dataset Among the three LPS polymorphs, α- and β-LPS are fast lithium-ion conductors that
remain stable at high temperatures, whereas the γ-phase is a slower lithium-ion conductor (Kimura
et al., 2023; Lee et al., 2023). These polymorphs provide an excellent system to evaluate the ca-
pability of our model, as their crystal structures are quite similar—primarily differentiated by the
orientation of the PS4 tetrahedra and the corresponding lithium-ion sites—yet they exhibit drasti-
cally different lithium transport properties. We obtained the LPS trajectories from Jun et al. (2024b)
directly from the authors. Supercell sizes of 2 × 2 × 2, 1 × 2 × 2, and 2 × 2 × 2 were used for
α-, β-, and γ-Li3PS4, respectively. For each structure, five trajectories at temperatures of 600, 650,
700, 750, and 800 K were used. The reference trajectories used a time step of δτ = 2 fs, which
we subsampled every five steps to reduce redundancy in the training and test datasets. We set the
LIFLOW time step ∆τ to 500 steps (1 ps).

LGPS dataset LGPS is a prototypical lithium superionic conductor discovered in 2011 (Kamaya
et al., 2011). We utilized AIMD trajectories for LGPS from López et al. (2024), accessible at
https://superionic.upc.edu/. The reference simulations employed a time step of δτ = 1.5 fs,
with snapshots recorded every ten steps (15 fs). To align with this, we set the LIFLOW time step ∆τ
to 670 steps (1.005 ps).

D MODEL AND TRAINING

D.1 PRIOR SELECTOR

The prior selector model σS(M0, T ) for species S (lithium or frame) is a binary classifier that
predicts whether the atom of the given species S will exhibit large or small displacements based on
the initial structure of materials. The same training and test splits were used for the universal dataset.

20

https://superionic.upc.edu/


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Labels for large and small displacements were determined by the criterion MSDS/τ < 0.1 Å2/ps,
computed over the reference simulation (τ = 25 ps). The input features for the classifier are the
atomic invariant features (128 dimensions) averaged over atoms of S, extracted from a pre-trained
MACE-MP-0 small model (Batatia et al., 2024) given the initial structure (X0,L,a), along with
the temperature (T/1000 K, a scalar). These features are concatenated and fed into a multi-layer
perceptron with hidden layers of size 32 and 16, which is trained on the training set materials. The
histograms of the MSDS/τ distribution annotated with predicted labels are reported in Fig. A2.
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Figure A2: Prior selector model performance. Histogram of the target values, log10(MSDS/τ), for lithium
and frame atoms, colored by the predicted prior scale (small or large) for the test set materials. The intended
classification threshold (−1.0) is marked by a vertical dotted line.

D.2 FLOW MODEL ARCHITECTURE

We adapt the PAINN model (Schütt et al., 2021) to parametrize the marginal flow approxima-
tor vθ(Dt|Xτ ,L,a, T ) for both the Propagator and Corrector. Schreiner et al. (2023) em-
ployed a modified version of the PAINN model, named CHIROPAINN, for a similar task for small
biomolecules, introducing cross products during message passing in order to break reflection sym-
metry. Their modification was necessary due to their use of coarse-grained protein representation
(Cα coordinates), where the mirror image of a Cα trace does not correspond to the mirror image of
the full-atom structure. In contrast, we represent the material structure using all atomic coordinates
without coarse-graining, preserving the reflection symmetry of the atomistic system. As a result, we
chose to modify the original PAINN architecture instead of CHIROPAINN.

Node input features The model employs a learnable atomic embedding function, fatom : A →
Rdf , to map atomic species to feature vectors, where df is the feature dimension. For continuous
values, the embedding function fcont : R→ Rdf/2 is defined using a sinusoidal encoding:

[fcont(x)]i =

{
sin

(
2πf⌊i/2⌋x

)
i odd,

cos
(
2πf⌊i/2⌋x

)
i even,

(25)

where fi (i ∈ J1, df/4K) are frequencies sampled from a standard normal distribution N (0, 12)
and fixed during training. The invariant node embedding for atom j is computed as fatom(aj) +
(fcont(T/1000) ⊕ fcont(t)), for temperature T and flow matching time t. Rather than initializing
equivariant node features to zeros as in the original model, they are initialized from the current step
displacement as Dt ⊗w ∈ Rn×3×df , where w ∈ Rdf is a learnable weight vector.

Message passing For clarity and ease of comparison, we use the notation from the PAINN paper
(Schütt et al., 2021) for this part. As described in the main text, we leverage information from two
sets of coordinates, Xτ and Xτ + Dt, during message passing. A similar approach using two
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sets of edge information was previously employed by Hsu et al. (2024). To simplify computation,
we define the edges using a radius cutoff graph based on Xτ , avoiding the need to reconstruct the
neighbor graph at each flow matching step t. When expanding distances into radial basis functions,
we shift the distance by 0.5 Å. Unlike physically realistic atomistic systems, during flow integration,
the structure Xτ + Dt may experience atomic clashes. Since Bessel function values change most
significantly at small radii, shifting the distances helps reduce variance in the edge features.

In the message functions that use continuous-filter convolutions, we apply elementwise addition of
the filters corresponding to the two distances, ∥r⃗ij,1∥ and ∥r⃗ij,2∥. To avoid introducing unintended
permutation symmetry between two geometries, we use two distinct filters (W ′

vs,k in Eq. (27b)) for
the respective unit vector directions. The invariant message update Eq. (26a) (Eq. (7) in the original
paper) is modified as Eq. (26b):

∆smi =
∑
j

ϕs(sj) ◦Ws(∥r⃗ij∥), (26a)

∆smi =
∑
j

ϕs(sj) ◦ [Ws(∥r⃗ij,1∥) +Ws(∥r⃗ij,2∥)] , (26b)

and the equivariant message update Eq. (27a) (Eq. (8)) in the original paper) is modified as Eq. (27b):

∆v⃗m
i =

∑
j

v⃗j ◦ ϕvv(sj) ◦Wvv(∥r⃗ij∥) +
∑
j

ϕvs(sj) ◦W ′
vs(∥r⃗ij∥)

r⃗ij
∥r⃗ij∥

, (27a)

∆v⃗m
i =

∑
j

v⃗j ◦ ϕvv(sj) ◦ [Wvv(∥r⃗ij,1∥) +Wvv(∥r⃗ij,2∥)]

+
∑

k∈{1,2}

∑
j

ϕvs,k(sj) ◦
[
W ′

vs,k(∥r⃗ij,1∥) +W ′
vs,k(∥r⃗ij,2∥)

] r⃗ij,k
∥r⃗ij,k∥

. (27b)

Table A1: Effect of PAINN modification. Evaluation metrics for the Propagator model using a uniform scale
(σ = 1) Maxwell–Boltzmann prior distribution. Standard deviations are from three independent generations.

Train
T (K)

Inference
T (K) Model log MSDLi

MAE (↓)
log MSDLi

ρ (↑)
log MSDframe

MAE (↓)
Stable traj.

% (↑)

800 800 PAINN 0.976±0.008 0.344±0.005 1.217±0.009 38.1±1.3

Modified PAINN 0.396±0.006 0.779±0.009 0.274±0.003 99.4±0.1

Performance comparison Since we use Dt to initialize the vector node features, the additional
positional input Xτ + Dt could be omitted without losing information, allowing the use of the
original PAINN model. Table A1 presents a comparison of the metrics from Table 1 between the
original and modified PAINN models. The results show a significant difference between the two
models, highlighting the importance of incorporating the intermediate structure Xτ +Dt.

D.3 TRAINING ALGORITHMS

The training algorithms for the Propagator and Corrector are shown in Algorithms A1 and A2,
respectively. When training on the universal dataset, material compositions are sampled uniformly
by assigning a sampling weight inversely proportional to the number of materials in the training set
with that specific composition.

D.4 TRAINING AND INFERENCE HYPERPARAMETERS

The training and model hyperparameters are summarized in Table A2. Additionally, validation loss
was evaluated every 1,250 training steps, with early stopping triggered if the validation loss did not
improve after ten evaluations. The model parameters corresponding to the lowest validation loss
were used for inference.
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Algorithm A1: LIFLOW Propagator Training
Input: Dataset of time-separated material structures D
Output: Optimized Propagator parameter θ

while Training do
Sample data (Xτ ,Xτ+∆τ ,L,a, T ) ∼ D
Sample flow time t ∼ U(t; 0, 1)
Sample Propagator prior D0 ∼ N (D0;0,diag(σ)

2 ⊗ I3)
D1 ←Xτ+∆τ // True displacements
Dt ← (1− t)D0 + tD1 // Interpolated displacements (Eq. (11))
ut(Dt|D1)← (D1 −Dt)/(1− t) // Conditional flow (Eq. (11))
vt(Dt; θ)← Propagator(Dt,Xτ ,L,a, T, t; θ)
LCFM(θ)← ∥vt(Dt; θ)− ut(Dt|D1)∥2 // CFM regression objective (Eq. (2))
θ ← Update(θ,∇θLCFM(θ)) // Parameter update

Algorithm A2: LIFLOW Corrector Training
Input: Dataset of time-separated material structures D
Output: Optimized Corrector parameter θ

while Training do
Sample data (·,Xτ ,L,a, T ) ∼ D
Sample flow time t ∼ U(t; 0, 1)
Sample Corrector prior D0 ∼ N (D0;0,diag(σ)

2 ⊗ I3)
Sample noise scale σ′ ∼ U(σ′;0, σmax1n)
Sample positional noise displacement D|σ′ ∼ N (D;0,diag(σ′)2 ⊗ I3)
X̃τ ←Xτ +D // Noisy positions
D1 ← −D // True denoising displacements
Dt ← (1− t)D0 + tD1 // Interpolated displacements (Eq. (11))
ut(Dt|D1)← (D1 −Dt)/(1− t) // Conditional flow (Eq. (11))

vt(Dt; θ)← Corrector(Dt, X̃τ ,L,a, T, t; θ)
LCFM(θ)← ∥vt(Dt; θ)− ut(Dt|D1)∥2 // CFM regression objective (Eq. (2))
θ ← Update(θ,∇θLCFM(θ)) // Parameter update

For Propagator in the AIMD dataset, we replaced the prior classifier with fixed prior scale pa-
rameters for each temperature, determined based on the MSD values from the training trajectories.
Additionally, in both LGPS and LPS, the frame atoms did not exhibit diffusive behavior, so we ap-
plied a uniform prior scale for these atoms. The prior scales used were (σsmall

Li , σlarge
Li ) = (1, 10) for

lithium atoms, and σframe = 0.5 for LGPS and 1 for LPS. For the Corrector, we set the maximum
noise scale to σmax = 0.1 for the 2 × 2 × 1 supercell of LGPS and for all LPS experiments. For
the larger 4 × 4 × 4 supercell inference in LGPS, we used a Corrector trained with σmax = 0.2 to
improve trajectory stability.

We performed LIFLOW inference for Nstep = 150 steps in the 2 × 2 × 1 LGPS simulations and
Nstep = 1000 steps in the 4 × 4 × 4 LGPS simulations, with a time step of ∆τ = 1.005 ps.
This corresponds to total simulation times of 150.75 ps and 1.005 ns, respectively. For the LPS
simulations, we usedNstep = 250 steps with a time step of ∆τ = 1 ps, resulting in a total simulation
time of 250 ps. We used Euler integration with Nflow = 10 steps for all experiments. For AIMD
simulations, since the Propagator error is relatively small, Corrector inference can be simplified
without impacting simulation results—for example, by reducing Nflow to 1. Details of these ablation
studies are provided in Appendix E.3.

D.5 IMPLEMENTATION DETAILS AND COMPUTATIONAL COST

We implemented the LIFLOW model using PyTorch (Paszke et al., 2019) and PyG (Fey & Lenssen,
2019) libraries. For MLIP-based simulations, we utilized MACE-MP-0 (mace-torch package,
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Table A2: Hyperparameters for training the Propagator and Corrector models.

Parameter Value

Feature dimension 64
Radial basis functions 20
Message passing layers 3
Cutoff distance 5.0
Offset distance 0.5
Optimizer Adam (Kingma & Ba, 2014)
Learning rate 0.0003
Gradient clipping norm 10.0
Batch size 16
Maximum training steps 125,000

Batatia et al. (2024)) in combination with ASE (Larsen et al., 2017). Bayesian analysis of diffu-
sivity and activation energy was performed using the kinisi package (McCluskey et al., 2024b).
Training and inference of LIFLOW models were performed using a single NVIDIA RTX A5000
GPU. The training process for the Propagator and Corrector models, using early stopping, typically
lasts between 45,000 and 70,000 steps. This corresponds to approximately 40–60 minutes of train-
ing, extending to up to two hours if the maximum step budget is reached. For AIMD simulation in
Table 3, we used the Γ-point only version of VASP (vasp gam, Hafner (2008)) with 48 cores of an
Intel Xeon Gold 8260 CPU. The same input files used in the LGPS AIMD simulations were utilized
for the benchmark.

E ADDITIONAL RESULTS

E.1 UNIVERSAL MODEL: EXTENDED RESULTS AND CASE STUDIES

The comparison between the isotropic prior and the scaled Maxwell–Boltzmann priors are shown
in Table A3 (Page 24). The standard deviations for results in Table 1 are reported in Table A4
(Page 25). Examples of LIFLOW model inference trajectories for the universal model are presented
in Fig. A4 (Page 26).

Table A3: Effect of prior design. Comparison between the isotropic prior and the scaled Maxwell–Boltzmann
prior using different scale multipliers. Only the propagator model was used, and was trained and tested on 800
K trajectories.

Prior Scale
multiplier (σ)

log MSDLi
MAE (↓)

log MSDLi
ρ (↑)

log MSDframe
MAE (↓)

Stable traj.
% (↑)

Isotropic

10−2 0.726±0.012 0.550±0.008 0.900±0.007 99.9±0.1

10−1.5 0.498±0.003 0.753±0.008 0.318±0.008 98.6±0.2

10−1 0.531±0.008 0.713±0.008 0.454±0.012 95.9±0.2

10−0.5 0.551±0.009 0.723±0.004 0.470±0.001 100.0±0.0

100 0.626±0.005 0.712±0.004 0.408±0.002 100.0±0.0

Maxwell–
Boltzmann

10−1 0.694±0.002 0.563±0.007 0.653±0.003 88.1±1.5

10−0.5 0.511±0.004 0.682±0.006 0.419±0.004 99.8±0.2

100 0.396±0.006 0.779±0.009 0.274±0.003 99.4±0.1

100.5 0.654±0.002 0.694±0.006 0.447±0.005 99.4±0.1

101 0.577±0.007 0.709±0.009 0.339±0.007 99.9±0.1

E.2 LGPS AIMD MODEL: TEMPERATURE EXTRAPOLATION AND REPRODUCING
STRUCTURAL FEATURES

The temperature extrapolation results, which extend from Fig. 3c, are displayed in Fig. A3. As we
extend to lower T (higher 1000/T ) beyond the training range, D∗ decreases much more slowly than
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Table A4: Results for the universal model. Evaluation metrics for different Propagator priors (isotropic
and uniform/adaptive scale Maxwell–Boltzmann) with or without the Corrector. Regressor†: non-generative,
directly predicting displacements. Standard deviations are from three independent generations.

Train
T (K)

Inference
T (K) Model log MSDLi

MAE (↓)
log MSDLi

ρ (↑)
log MSDframe

MAE (↓)
RDF

MAE (↓)
Stable traj.

% (↑)

800 800
Regressor† 1.636 0.535 0.876 0.416 90.2
Pisotropic 0.498±0.003 0.753±0.008 0.318±0.008 0.113±0.0020 98.6±0.2

Puniform 0.396±0.006 0.779±0.009 0.274±0.003 0.084±0.0004 99.4±0.1

All

600
Puniform 0.345±0.003 0.740±0.009 0.257±0.006 0.082±0.0001 99.8±0.2

Padaptive 0.376±0.005 0.709±0.003 0.286±0.001 0.118±0.0002 99.6±0.2

Padaptive + C 0.348±0.004 0.744±0.012 0.241±0.002 0.069±0.0001 100.0±0.0

800
Puniform 0.417±0.007 0.737±0.011 0.307±0.003 0.091±0.0005 99.8±0.2

Padaptive 0.385±0.004 0.759±0.008 0.294±0.001 0.110±0.0004 99.5±0.0

Padaptive + C 0.366±0.005 0.781±0.005 0.255±0.004 0.066±0.0000 100.0±0.0

1000
Puniform 0.505±0.011 0.705±0.008 0.400±0.007 0.124±0.0006 98.6±0.2

Padaptive 0.456±0.024 0.746±0.008 0.374±0.003 0.126±0.0004 98.6±0.6

Padaptive + C 0.429±0.003 0.769±0.006 0.332±0.002 0.071±0.0001 99.8±0.1

1200
Puniform 0.448±0.006 0.788±0.003 0.493±0.003 0.168±0.0013 95.5±0.5

Padaptive 0.410±0.002 0.809±0.003 0.416±0.003 0.137±0.0004 98.1±0.6

Padaptive + C 0.389±0.005 0.821±0.004 0.363±0.003 0.079±0.0002 99.6±0.1

training
T range

Figure A3: Temperature extrapolation. Lithium D∗ is plotted as a function of 1000/T for LGPS
(Li10GeP2S12), extending the data from Fig. 3c to lower temperatures (higher 1000/T ).

the reference values, indicating fictitious diffusive behavior when extrapolating to lower T . This
behavior is expected, as the model was trained primarily on larger displacements of lithium atoms
at higher T .

The diffusion trace in Fig. A5 (Page 27) shows that the generated dynamics and the reference dy-
namics explore different but symmetrically related sites in unwrapped coordinates. This confirms
that the model is not merely memorizing the reference dynamics but is generalizing to physically
equivalent configurations. Additionally, 2-D log probability densities2 of lithium atoms are plotted
along the x–y and y–z planes in Fig. A6 (Page 27). The log densities are accurately reproduced
at lower temperatures, but deviate at higher temperatures, becoming noisier for LIFLOW, which re-
sults in a smoothing of the (free) energy landscape. As the displacements due to diffusion become
larger and more varied at higher temperatures, we expect it to be more challenging to achieve high
accuracy for static structural features under these conditions.

2The negative log density, scaled by kBT , F (x) = −kBT log p(x), is also known as the potential of mean
force (PMF) or the free energy surface in the chemistry and physics literature.
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Figure A4: Universal model inference example. (Top) Parity plots comparing the log MSD values for lithium
and frame atoms in 800 K simulations (reference vs. 25-step LIFLOW inference) across 419 test materials. Data
points are colored by their respective prior scales, with four annotated examples (I–IV) highlighted below. II
and III represent failed cases where lithium MSD is overestimated and underestimated, respectively. Dotted
lines indicate the classification boundary between large and small priors. (Bottom) Reference and generated
trajectories for the four annotated test set materials.
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Figure A5: Diffusion trace of lithium in LGPS simulations. The diffusion traces of lithium atoms for 150 ps
trajectories using LIFLOW and AIMD at 900 K. Different lithium sites are accessed in different simulations, as
indicated by circles: solid circles represent sites visited in the current simulation, while dotted circles indicate
sites not visited in this simulation but visited in another.
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Figure A6: Negative log densities for lithium in LGPS simulations. The negative log density − log p(x),
or potential of mean force (PMF) in units of kBT , of lithium atoms in wrapped coordinates is shown for 150
ps trajectories using LIFLOW and AIMD across different temperatures. For each method, the first and second
columns correspond to projections along x–y and y–z planes, respectively. Dotted lines indicate the supercell
boundaries.
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E.3 HYPERPARAMETER SENSITIVITY

To evaluate the impact of prior and noise distribution scale hyperparameters on predicting kinetic
properties, we perform a sensitivity analysis using the LGPS dataset. For the Propagator scales
(lithium and frame) and the Corrector noise scale, we vary the scales from ×1/2 to ×2, train the
corresponding models, and conduct a 150-step (150.75 ps) LIFLOW inference for each model as
described in the main text. Results in Fig. A7 demonstrate that diffusivity values show minor devia-
tions from their peak value at the optimal Propagator prior scales. Changing Corrector noise scale
as in Fig. A7c demonstrates that the Corrector noise scale larger than a certain threshold causes dif-
fusivities to decrease, suggesting that stronger correction enhances stability but diminishes diffusive
behavior slightly.

a b c

Figure A7: Scale hyperparameter sensitivity for LGPS models. (a) Variation of the Propagator lithium
prior scale (default: 10.0). (b) Variation of the Propagator frame prior scale (default: 0.5). (c) Variation of the
Corrector noise scale (default: 0.1). Results from AIMD reference simulations are also included.

While the Corrector significantly improves inference for materials with varying compositions (uni-
versal model, Table 1), we found that it plays a reduced role in AIMD models, where training
and inference involve the same material structure, as the Propagator is sufficiently trained to allow
simplified Corrector inference. In Fig. A8a and b, we analyze reducing Corrector flow steps and
performing Corrector inference every n Propagator steps (e.g., PPPCPPPC· · · for n = 3 versus
PCPCPC· · · for n = 1). Diffusivity values remain largely unaffected in both cases. However, when
we extend the inference to 1,000 steps (1.005 ns, Fig. A8c), we could observe that higher n values
lead to propagation instability at elevated temperatures.

a b c

Figure A8: Corrector inference ablation for LGPS models. (a) Variation of the Corrector flow steps (Nflow,
default: 10). (b) Applying the Corrector every n Propagator steps (default: 1). (c) Number of stable propaga-
tion steps over a 1,000-step inference. Results from AIMD reference simulations are also included.
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