Under review as a conference paper at ICLR 2026

RELEVAL: A STRUCTURED BENCHMARK FOR LOGICAL
AND RELATIONAL REASONING IN LI.MS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce RELEVAL, a benchmark for evaluating large language models (LLMs)
in logical reasoning over complex relational structures. Such reasoning underpins
applications where LLMs generate or query structured graphs, including network
infrastructure, knowledge bases, and business process schemas. Our framework
enables fine-grained control of task difficulty by varying the number of objects,
relations, and the depth of relational chains. RELEVAL encompasses three com-
plementary tasks: (1) Plan Generation, requiring construction of valid directed
relational graphs under structural constraints; (2) Consistency Detection, detecting
inconsistencies in relational structures; and (3) Comparison Question, assessing the
validity of queried relationships. We also test models’ self-correction by prompting
them to verify and refine their answers. We evaluate DeepSeek R1, Gemini 2.0
Pro, Gemini 2 Flash Thinking, GPT-4.5, GPT-40, Llama 3.1 405B, O3-mini, O1,
and Claude 3.7 Sonnet, finding large performance gaps linked to model scale and
architecture. While recent reasoning-focused models excel on simpler cases, they
struggle with more complex configurations requiring deeper reasoning.

1 INTRODUCTION

Recent advances in large language models (LLMs) have sparked interest in their ability to perform
complex reasoning tasks (Guo et al.,|[2025; |OpenAll 2025} Jaech et al.,|2024). While current work
showcases increased reasoning skills in math and coding skills, there are several real-world problems
which require reasoning skills that are more algorithmic in nature and often computationally expensive.
We still lack an in-depth understanding of how current models perform and how their performance
scales with the size of these problems. Logical relational reasoning falls into in this category, which
requires models to plan or validate relationships between a large number of objects. For example,
in supply chain operations research and business planning (Tsouros et al., 2023} L1 et al.l [2023]),
there exist several relational planning problems in which each object is a task or an event, and a
relationship is a constraint that specifies whether a task should occur before or after another task.
Similar examples also exist in code analysis (Neamtiu et al.,2005)), and agentic systems (Wu et al.,
2023;; [Fourney et al.| 2024)) where dependencies are introduced and task planning and orchestration
are required. LLM-based chatbots and agentic Al systems has transformed how people interact with
natural language. This evolution necessitates more rigorous evaluation of relational reasoning to
better understand the advantages and limitations of LLMs.

In this work, we introduce RELEVAL, the first benchmark specifically designed to assess both the
generation of structured relational graphs and the subsequent reasoning about them. Our framework
fills an important gap by focusing on the entire pipeline, from the autonomous construction of
relational graphs to the critical examination of their logical consistency, which is central to many
real-world applications.

The structured form of RELEVAL enables dynamically varying parameters such as the number of
objects, comparative relations, and the minimum depth of relational chains, in either symbolic relation
format or natural language converted descriptions. This facilitates a fine-grained analysis of model
performance across a wide spectrum of difficulties. This approach mirrors the challenges faced by
intelligent agents operating in unpredictable environments, where the ability to generate and validate
continuously updated relations is critical for successful deployment. Dynamic data generation also

Under review as a conference paper at ICLR 2026

offers the advantage that it allows for generating fresh or private copies of the benchmark with
controlled difficulty, in cases where benchmark memorization becomes a concern.

RELEVAL consists of three complementary tasks: (1) Plan Generation - Models must construct valid
directed graphs with comparative relations meeting specified structural constraints. (2) Consistency
Detection - Does a given graph contain cycles or contradictions? What are they?. and (3) Comparison
Question - Is a relation valid for a given graph?. Through a set of RELEVAL experiments, we present
a comprehensive evaluation of nine state-of-the-art models, encompassing both instruction-tuned and
reasoning-capable LLMs. Our analysis uncovers performance disparities that correlate with model
scale and architecture, providing valuable insights into the evolving capabilities of LLMs.

The evaluation reveals a significant gap between the reasoning-based and instruction-based models
in the Plan Generation task. This difference stems from the reasoning models’ ability to identify a
straightforward generation technique where objects maintain logical relationships, such as A > B >
-+ > Z. For the Consistency Detection and Comparison Question tasks, the gap persists, primarily
between O1 and O3-mini and the other models. In particular, Consistency Detection remains the
most difficult task, where even state-of-the-art reasoning models face challenges as the size of the
problem increases. Specifically, the performance drop for this task happens much earlier for models
like DeepSeek R1 and Gemini 2 Flash Thinking.

Overall, RELEVAL serves as both a diagnostic tool and a catalyst for future research, pushing the
boundaries of what is achievable in logical relational reasoning with LLMs. We will open source
the benchmark, the code for data generation and model evaluation to enable future research on LLM
evaluation and reasoning upon publication.

2 RELATED WORK

Logical Reasoning in LLMs. Logical reasoning has been studied as a fundamental capability of
large language models in the context of inductive reasoning, propositional and first-order logic (Patel
et al 2024; Ryu et al., 2025} |[Parmar et al.| [2024} [Xu et al., 2024), and a diverse set of logical
puzzles (Lin et al., 2025} [Shah et al.| 2024). Similarly to RELEVAL, these works often involve one
or multi-hop reasoning as a way of testing whether models can retrieve and reason upon more than
one statement or fact presented in context (Trivedi et al.| 2022} |Yang et al., 2018; [Patel et al.| 2024;
Schnitzler et al., [2024; Zhu et al.,[2024). For example, HotpotQA includes a set of linguistic facts in
each example, and then asks related factoid comparison questions. However, recent work has also
shown that the accuracy of models in conducting multi-hop reasoning drops as the length of context
increases (Levy et al.,|2024; |Balachandran et al.,|2024)) or with the number of inference rules (Patel
et al.,[2024).

Relational reasoning in LLMs has not been studied extensively yet since until recently the task
was beyond the capabilities of the state-of-the-art, especially for larger problem sizes. Preliminary
work (L1 et al., 2024} |Alotaibi et al.| 2024) with a few-hop queries has shown that larger models can
conduct simple logical queries on graphs to extract relationships between objects or their attributes.
Advancements in test-time compute and post-training (or self-training) via Reinforcement Learning
(RL) (Lightman et al., 2023; Wang et al., 2024c; |Gulcehre et al., 2023) have shown to significantly
improve general reasoning skills for problems like math and coding (Guo et al., 2025; OpenAll [2025
Jaech et al., |2024). Qualitatively, these methods lengthen the generations of models in the form of
extended reasoning traces, which contain notions of self-reflection, backtracking, and exploration. In
this work, we include several of the state-of-the-art reasoning models, to better understand whether
these techniques generalize to more complex forms of reasoning, such as inference and cycle detection
in larger graphs. More relatedly to our work, |Abbe et al.| (2024)) has shown that intermediate steps in
detailed scratchpads in transformers can help address barriers introduced by high connectivity and
longer chains in difficult queries.

Planning in LLMs. Our work can also be situated in the context of studying planning abilities
of LLMs, which has been evaluated extensively in previous work (Valmeekam et al., [2024} 2023}
Wang et al., 2024b; [Zheng et al., [2024) with benchmarks like PlanBench (Valmeekam et al., [2024),
NaturalPlan (Zheng et al., [2024)), CogEval (Momennejad et al. [2023), APR (Lin et al.| 2024).
CogEval in particular also looks at routing problems in graphs, but does not extend to cycle detection
or consistency checks of relationships. (Lin et al., 2024) uses DAGs to optimize execution time

Under review as a conference paper at ICLR 2026

and parallel vs sequential execution, but only focuses on numerical schedule outputs (minimizing
time cost)/Wang et al.|(20244a) instead formulates a task in a multimodal setting that asks multiple-
choice questions about the relationships between pairs of objects, which can be inferred from other
relationships already presented in context.

Most importantly, given the high computational complexity of the problems in RELEVAL, our
benchmark also contributes to an emerging line of work that studies how transformers solve NP-hard
and NP-complete problems (Fan et al.||2023)). With the increased generality of current architectures, it
is important to understand in detail the limitations of transformers in solving such complex problems
and how they scale with the difficulty of the problem.

3 RELEVAL CONSTRUCTION AND DATA GENERATION

Our approach focuses on developing a dynamic benchmark to probe the logical and relational
reasoning capabilities of LLMs. RELEVAL is designed to ensure broad coverage of reasoning
tasks while maintaining control over the complexity of relational structures. We adopt a strategy
that synthesizes relational graphs with controllable complexity. By varying parameters like object
count, relation density, and chain depth, we create diverse, scalable tasks to systematically evaluate
reasoning.

3.1 PLAN GENERATION

The Plan Generation task is motivated by real-world applications where models must autonomously
construct complex relational structures—such as network topologies or business process mod-
els—without human intervention. The primary goal is to evaluate the models’ ability to produce
consistent, accurate, and complete plans that adhere to specified constraints.

Task Design: In this task, each model generates a relational graph based on given specifications
(i.e., number of objects and relations). The evaluation covers three dimensions: the overall accuracy
in generating the required relations, logical consistency of the constructed graph, and the absence
of redundant relations. This evaluation framework ensures that the models are not only capable of
constructing a plan but also of maintaining structural integrity and coherence as the complexity of the
task increases.

Data Generation: We generated datasets of varying complexity using a Python program that system-
atically pairs the number of object with the number of relations. The dataset comprises pairs with
object counts ranging from 3 to 50. For each object configuration, we varied the number of relations
from minimal (equal to the object count) to dense (approaching n(n — 1)/2, with practical upper
limits), creating a diverse testbed for evaluating language model performance on graph-structured
generation tasks.

3.2 CONSISTENCY DETECTION

In many applications, especially those involving critical infrastructure or knowledge management,
identifying inconsistencies such as cycles or contradictory relations is important. The Consistency
Detection task is designed to assess a model’s ability to scrutinize a given graph and pinpoint logical
errors.

Task Design: In this task, models are presented with relational graphs that may contain cycles or
contradictions. The evaluation focuses on two main aspects: the model’s ability to detect the presence
of inconsistencies, and to correctly identify and extract these inconsistencies. This involves assessing
the effectiveness in detecting true inconsistencies while minimizing false alarms, and providing a
balanced measure of its detection capabilities. By varying the number of objects, relations, and the
minimum cycle length (how many steps are needed for the cycle to close), we challenge the models
with increasingly complex scenarios, ensuring a comprehensive assessment of their verification
capabilities.

Data Generation: We use the Python NetworkX library to construct relational graphs, including both
positive (acyclic, consistent) and negative (cyclic, inconsistent) cases. Graphs are generated with
controlled complexity, varying the number of objects and the density of relations while ensuring

Under review as a conference paper at ICLR 2026

complete connectivity. For cyclic cases, we enforce minimum cycle lengths in the graph to assess
multi-step reasoning abilities. These graphs are converted into randomized textual statements where:
(1) object labels are arbitrary and unrelated to their structural positions, (2) relations use mixed
notation (randomly choosing between > or <), and (3) statement order is shuffled. This design
prevents shortcut pattern matching, and requires logical reasoning to reconstruct the complete relation
network and identify cycles regardless of their surface representation. An example base graph is

shown in in Appendix.

3.3 COMPARISON QUESTION

The Comparison Question task simulates scenarios where models must interpret a pre-existing
relational graph and make informed judgments about specific relations. This task is pivotal for
applications such as automated reasoning in databases or dynamic knowledge base querying.

Task Design: In this task, models are required to evaluate relational statements and categorize them
as True, False, or Unknown. The Unknown category is particularly significant as it assesses a model’s
ability to handle incomplete information, i.e., situations where the given graph is insufficient to answer
the query about the specified relation. We challenge the models with increasingly complex problems
by examining performance based on the number of objects, relations, and the required inference
depth. This design tests not only direct reasoning capabilities but also the model’s decision-making
process in complex and edge cases.

Data Generation: We use the same graph generation algorithm as the Consistency Detection task.
For each graph, object pairs are randomly selected at specific path distances and labeled as True if the
comparison matches the graph, False if it contradicts it, or Unknown if no path exists between them.

3.4 SELF CORRECTION

We also evaluate models’ self-correction, or their ability to assess and revise outputs. This reveals
how internal confidence shapes decisions and is essential for developing models that reason reliably
and adapt under uncertainty.

Task Design: Following the completion of the Consistency Detection and Comparison Question tasks,
models are given a follow-up prompt: Are you sure?. We assess two key aspects: the degree to which
initial decisions are revised, and the impact of these revisions on overall accuracy. Specifically, we
examine whether self-correction leads to improved outcomes or introduces additional errors.

3.5 NATURAL LANGUAGE FRAMING

In real-world scenarios, relational information is often conveyed in unstructured or natural language
form. To better evaluate model performance in such settings, we assess their ability to interpret and
reason over inputs expressed in natural language, rather than in mathematical form.

Task Design: We recast the Consistency Detection and Comparison Question tasks from their original
symbolic format (> and <) into natural language descriptions grounded in real-world scenarios. The
prompts are rewritten to establish the scenario-specific context. We test two scenarios: detecting
circular dependencies in software packages and identifying dependency risks in financial institutions.

4 EVALUATION

In this section, we evaluate RELEVAL across a range of state-of-the-art models. Unless noted
otherwise, all experiments use five independent runs, reporting average performance to account for
non-determinism and improve robustness. Models are tested under their respective settings, with

detailed configurations in (Appendix).
Instruction-based models: Llama 3.1 405B, Gemini 2.0 Pro, GPT-40, GPT-4.5.

Reasoning models: O1, O3-mini, DeepSeek R1, Gemini 2 Flash Thinking, Claude 3.7 Sonnet.

We employ task-specific metrics to rigorously assess performance under varying computational
demands:

Under review as a conference paper at ICLR 2026

DeepSeek R1

Gemini 2 Flash Thinking
Gemini 2.0 Pro

GPT-4.5 Preview

GPT-40

Accuracy

Llama 3.1 405B

o1

03-mini- -97.9 o
| PP PSP LS PSS SL PSSP
O RN AN S AN SCIS AN RN RSN # N
0 10 20 30 40 50 G0 70 80 90 100 2078 D7 oS 07007 o PP
Accuracy Groups
(a) Overall Accuracy. (b) Accuracy Per Group.

Figure 1: Overview Accuracy of different models for the Plan Generation task.

Plan Generation. For the Plan Generation task, we use Accuracy—the proportion of correctly
generated plans. A perfect score (100%) means the model produces the required number of relations
and objects without inconsistencies and duplications. Accuracy is further broken down into:

*» Consistency: whether generated relations are logically consistent (100% = no inconsistencies).
* Duplicates: absence of repeated relations (100% = no duplicates).

* Object Numbers and Relation Numbers: match between generated counts and task specifications
(100% = full compliance).

Consistency Detection. For the Consistency Detection task, we use the F/ score, derived from
Precision and Recall, to assess decision correctness. We evaluate: (1) whether the model correctly
detects the presence or absence of inconsistencies, and (2) when present, whether it identifies all of
them. Specifically:

* Precision: for consistency cases, whether the model correctly reports consistency; for inconsistency
cases, the proportion of reported inconsistencies that are correct.

* Recall: for consistency cases, always 1 (as there is no inconsistency to find in the ground truth); for
inconsistency cases, the proportion of ground-truth inconsistencies correctly identified.

Comparison Question. For the Comparison Question task, we use Accuracy to evaluate whether the
model correctly determines the truth of given relations:

* True: the comparison statement is entailed by the graph.
* False: the graph entails the comparison in the opposite direction.

» Unknown: the graph provides insufficient information to determine the relation, capturing the
model’s ability to handle ambiguity or incompleteness.

Self Correction. For the Consistency Detection and Comparison Question tasks, we evaluate self-
correction by adding a second-turn prompt—Are you sure’—and measuring changes in the model’s
output. The output format and evaluation metrics remain consistent in the second turn.

Natural Language Framing. Finally, we recast Consistency Detection and Comparison Question
inputs from symbolic (> and <) to natural language descriptions. To ensure comparability, we retain
the same output format and metrics.

4.1 PLAN GENERATION RESULTS

We begin with the Plan Generation task as a warm up task. In this task, each model generates a
consistent list of relations based on the number of objects and relations specified in the prompt, and
is evaluated over three independent runs. Our dataset comprises 142 examples, with objects ranging
from 3 to 50 and relations ranging from 3 to 300. For each group of object numbers, the number
of relations is incrementally increased from a minimum edge with a minimal step to a maximum
reach evenly. Detailed configurations of these 142 examples and prompt template are provided in
Appendix.

Under review as a conference paper at ICLR 2026

DeepSeek R1 38.8
Gemini 2 Flash Thinking 28.8
Gemini 2.0 Pro; 7.1 100
GPT-4.5 Preview 34.1 80
GPT-40 2.8 B [60 E
Llama 3.1 4058 7.5 a0 @
o1 I B N =
] o
03-minh =8 %u%g/@j/wa;,w/h
0 10 20 30 40 50 60 70 80 90 100 Y VYUYV WSV ARG B DD A1 aD7
F1 score NumObjs_NumRelations_MinCycleLength
(a) Overall F1 Score. (b) F1 Score Per Group.

Figure 2: Overview F1 Score of different models for the Consistency Detection task.

Overall Results. We first present the overall accuracy (averaged across all runs) for each model, as
shown in The figure highlights a substantial performance gap between reasoning models
and instruction-based ones. For instance, the O3-mini and O1 models achieve notable accuracies of
97.9% and 97.2%, respectively, while DeepSeek R1 attains 88.0%. Interestingly, the Gemini 2 Flash
Thinking model, despite being a reasoning model, only achieves 30.8%, which is significantly lower.
However, it still performs approximately twice as well as the best instruction model GPT-4.5.

Next, we present a more fine-grained analysis of accuracy by dividing the settings into bins and
reporting each model’s performance, as illustrated in[Figure Tb] In this figure, the x-axis is labeled
as x_y represents groups covering the number of objects between (z;_1, ;] and the number of
relations between (y;_1, ;|- This analysis reveals that reasoning models consistently exhibit strong
performance, even as the number of relations and objects increases. Conversely, instruction-based
models perform well only with limited numbers of relations and objects. In particular, when the
number of objects is fixed, instruction-based models consistently perform worse as the number of
relations increases.

Analysis. Manual inspection of the reasoning models’ outputs reveals noticeable patterns. For
Gemini 2 Flash Thinking, most failures are due to struggling in relation counting such as providing a
lower number of relations, and producing duplicate relations, specially when the number of required
relations increases. The presence of duplicate relations in the models’ output can be found in

Appendix

For other reasoning models, they tend to employ a straightforward algorithm for ordering objects,
suchas A > B > C > D, and so on. This strategy allows the models to generate an arbitrary
number of consistent relations. To further test their robustness, we provide a list of objects as random
strings (e.g., “dctc”, “udj2”, “r0c8”). Remarkably, the models maintain the simple ordering algorithm
and produce consistent relations, demonstrating their robustness in maintaining logical consistency.
Furthermore, we did not mention anything related to graphs in our prompt, yet approximately 88%
of the DeepSeek R1 responses include the word “DAG”, indicating the model understands the Plan
Generation task is a graph problem. Albeit this is only one example, from an algorithm discovery
perspective, the fact that models were able to figure out a straightforward solution for the generation,
is an interesting indication that longer step-by-step traces can practically facilitate the discovery and
execution of algorithmic approaches to problem solving.

4.2 CONSISTENCY DETECTION RESULTS

Next, we evaluate the Consistency Detection task. For this task, we consider 20 different groups, each
defined by varying numbers of objects, relations, and the minimum depth of cycles. For example, in a
list containing cycles suchas A > B >C > A, A> B> A,and B > D > A > B, the minimum
cycle depth is 2, with objects A and B involved in the shortest cycle A > B > A. For consistent
relations, we set the minimum cycle length as 0 in the group name. For each group, we generate
20 different plans, resulting in a total of 400 samples. For each sample, the model is tasked with
detecting any cycles/contradictions and, if present, outputting all of them. More details on the data
groups and the prompt template can be found in Appendix.

Under review as a conference paper at ICLR 2026

Overall Results. Average F1 scores are shown in[Figure 2a] Unlike the Plan Generation task, this
task is more challenging for both reasoning and instruction-based models. The performance gap
between the O3-mini and O1 models and the next best model (DeepSeek R1) is significant, almost
2x. Interestingly, in this task, GPT-4.5 achieves better performance than Gemini 2 Flash Thinking,
indicating that an instruction-based model can outperform a reasoning model. However, the remaining
instruction-based models perform significantly worse (by more than 3.8x) than the closest reasoning
model.

Next, we report the fine-grained F1 scores for each model and configuration independently in
In this figure, the x-axis is labeled as x_y_z represents groups covering the number of
objects, the number of relations, and the minimum cycle length in the graphs. Note that every graph
has a randomized numbers of cycles (capped at a maximum value), with the enforcement on the
minimum cycle length. The average number of cycles across all samples is 4.37. Similar to the Plan
Generation task, the larger the number of objects, relations and cycle length, the more challenging
the task becomes for the models. This is evident when comparing settings with a minimum length of
0 (highlighted with red rectangles in the figure) to its subsequent columns.

Analysis. Upon inspecting model outputs, we observe that reasoning models (and GPT-4.5) often
perform data cleaning and reformatting before answering—specifically, converting all <” relations to
>” despite our intentional format shuffling for robust testing. Applying this cleaning step to GPT-40
raises its score from 2.8 to 12.9. Similarly, since DeepSeek R1 sometimes misinterprets relation
direction mid-reasoning, the same trick boosts its score from 38.8 to 62.2.

Most failure cases are due to the errors in the transitive leaps (A > B > C implies A > C), and
the errors scale with the chain length. DeepSeek R1 tends to have more errors than other reasoning
models from this aspect. Furthermore, DeepSeek R1 fails to adhere to a consistent algorithm to
traverse the entire graph, it tends to jump to construct another part of the graph without completing
all possibilities, resulting in an increased error rate when the graph is bigger and denser. This is
unlike other successful cases such as O3-mini. where we observe that the model tries to traverse the
complete graph before answering from its limited leaking reasoning tokens.

In addition to the patterns observed in the reasoning models, most instruct models favor a “complete”
answer by producing an answer with multiple cycles even though the graph is consistent. This results
in a high failure rate in tests with a consistent graph. We experiment with changing the “check
contradictions” prompt by explicitly asking if the graph is consistent, but no significant change of
behavior is monitored.

Self Correction. We then report the self-correcting performance of the models for the Consistency
Detection task after prompting them with Are you sure?. To reduce the cost, we perform one run
with all samples for all models. shows that most models improve their performance
upon re-evaluation, with Gemini 2 Flash Thinking achieving a notable gain of over 10%. However,
some models exhibit minimal change, such as O1 (0.02% reduction), while others experience a
performance drop, like Llama 3.1 405B and Gemini 2.0 Pro, by 1.4% and 3.8%, respectively, the
latter corresponding to a factor of 2.4x.

Further investigation of the breakdown of output changes shows that most models do not exhibit a
significant change in decision most of the time (> 75%), Notably, Gemini 2 Flash Thinking shows
the highest correction improvements over 19% of all samples, while Gemini 2.0 Pro demonstrates the
most considerable performance decrease on 11.5% of all samples.

Natural Language Framing. Finally, reports F1 score changes after translating the tests
into natural language across different scenarios. Notably, DeepSeek R1’s performance dropped
substantially in both settings, with a greater decline in the consistency graph test group. Analysis
of its reasoning traces reveals a marked reduction in tokens like “wait” and “?”, suggesting less
deliberation. We also observe more frequent directional errors (i.e., flipping A > B to B > A), which
persist and degrade the performance. O1 and O3-mini perform comparably in the code dependency
scenario but struggle with the financial risk detection task.

4.3 COMPARISON QUESTION RESULTS

Finally, we evaluate the Comparison Question task. In this task, models are provided with a list of
relations and a comparison statement, and are asked to determine whether the statement is True, False,

Under review as a conference paper at ICLR 2026

Claude 3.7 Sonnet
Thinking

DeepSeek R1

DeepSeek R1
Gemini 2 Flash Thinking

ini 2 Flash Thinki

ini 2.0 Pro
Gemini 2.0 Pro
GPT-4.5 Preview
GPT-4.5 Preview
GPT-40
GPT-40

Llama 3.1 405B Llama 3.1 405B

01— o1
03-mini Js8, 03-mini 838,
0 10 20 30 40 50 60 70 80 90 100 30 37 44 51 58 65 72 79 86 93 100
F1 Score Accuracy
mm 1st Prompt m Are you sure? s 1st Prompt Are you sure?
(a) Task Consistency Detection. (b) Task Comparison Question.

Figure 3: Self correction results for the Consistency Detection and Comparison Question tasks.

Claude 3.7 Sonnet
Thinking

DeepSeek R1

Gemini 2 Flash Thinking
Gemini 2.0 Pro

GPT-4.5 Preview

GPT-40

Accuracy

Llama 3.1 405B
o1

03-mini

o D 0]
0 7 e A 4 W07 0760760 o0 o
30 40 50 60 70 80 920 100 IO YDV a7 iU VA 17 1 U /5 17 s UsS /S oS oS

Accuracy NumObjs_NumRelations_DepthofComparison

(a) Overall Accuracy. (b) Accuracy Per Group.

Figure 4: Overview Accuracy of different models for the Comparison Question task.

or Unknown. For this task, we only consider consistent graphs. During data generation, we ensure
diversity in graph topology, object names, and the number of > and < relations. We categorize the
data into 23 different groups, each defined by varying numbers of objects, relations, and the minimum
steps required to prove the relation in the question. In the group names, a depth of comparison of 0
indicates that the relation cannot be determined, hence the answer should be Unknown. This setup
results in a total of 460 samples, with 20 for each group. More details on the data groups and the
prompt template can be found in Appendix.

Overall Results. displays the overall accuracy. Interestingly, for this task, the O1 model
drops from its second-place ranking in the previous tasks to below the Gemini 2 Flash Thinking model.
Additionally, the top-performing models are much closer in performance for this task, with less than
a 10% gap between the first and fifth models. Notably, GPT 4.5 outperforms other instruction-based
models, and indicates a smaller performance gap between reasoning and instruction-based models
in this task. However, it is important to note that the baseline for random guessing is %; thus, while
GPT-40 achieves 49.9% accuracy, this is only approximately 16.6% better than random guessing.

Next, we present the fine-grained grouped results in [Figure 4b] In this figure, the x-axis is labeled as
x_y_z represents groups covering the number of objects, the number of relations, and the depth of the
comparison inference steps. Specifically we name the groups with Unknown comparison statement as
0 at z. Similar to the other tasks, as the number of objects and relations increases, the task becomes
more challenging. It is also noteworthy that for instruction-based models such as Llama 3.1 405B,
GPT-40, and Gemini 2.0 Pro, it is easier to determine the correct answer when it is not Unknown, i.e.,
when the depth of comparison is greater than 0 in the chart.

Analysis. Analyzing the models’ outputs, we found common success and failure patterns. Firstly,
again, the top models rewrite mixed “<”” and “>" inputs into a consistent direction before reasoning.
We test GPT-40 by providing pre-aligned relations which raises its accuracy from 49.9% to 61.7%.

Under review as a conference paper at ICLR 2026

Table 1: Performance changes after converting the input format from symbolic (> and <) to natural
language descriptions for Consistency Detection and Comparison Question tasks.

Model >/< format | Natural Language Model >/< format | Natural Language
DeepSeek R1 DeepSeek R1
(Code Dependency) 38.8 22.0 (Code Dependency) 87.7 85.9
(Financial Risks) 38.8 20.2 (Financial Risks) 87.7 574
[e)] [e)]
(Code Dependency) 71.3 74.2 (Code Dependency) 83.2 79.8
(Financial Risks) 71.3 51.8 (Financial Risks) 83.2 84.3
O3-mini 0O3-mini
(Code Dependency) 75.8 78.7 (Code Dependency) 89.9 81.6
(Financial Risks) 75.8 51.3 (Financial Risks) 89.9 85.7
(a) F1 score in Consistency Detection task (b) Accuracy in Comparison Question task

A common algorithm that models tend to follow is to first list relations relevant to the two query
nodes, then iteratively extend only those chains and prune irrelevant relations as it goes. Most models
performe these two steps, however the main difference in result is the number of hallucinations,
including incorrect chaining and picking the wrong or irrelevant evidence, both occurring more
frequently with denser interconnected graphs.

Furthermore, GPT-40 frequently terminates the analysis after 2-3 hops of reasoning, concluding
no direct connection exists. This results in acceptable performance at a 2-step distance but nearly
complete failure at 4 and 6 steps.

Self Correction. To reduce the cost, we perform one run with all samples for all models.
displays both the original results and those obtained after asking Are you sure?. Surprisingly, for
this task, Gemini 2.0 Pro, which performed the worst in self-correction during the Consistency
Detection task, shows the best improvement, with a gain of 17.8%, while Llama 3.1 405B continues
to perform poorly after the self-check, with a drop of 11.5%. Other models slightly improve, except
for DeepSeek R1 and Gemini 2 Flash Thinking, which show slight degradations.

Additionally, we inspect fine-grained changes for all models, and find the instruction-based models
exhibit the most incorrect changes to Unknown, with Llama 3.1 405B and GPT-4o0 incorrectly
converting 14.3% and 6.7% of the correct decisions to Unknown, respectively.

Natural Language Framing. Finally,[Table 1b|presents the changes in accuracy after we convert all
tests to natural language descriptions across different scenarios. Unlike Consistency Detection, we
did not observe significant performance changes from baseline except for DeepSeek R1 in financial
risks dependency scenario. Similar to the Consistency Detection task, the performance degradation of
DeepSeek R1 is primarily due to incorrect chaining and confusion about logical directionality when
interpreting the natural language descriptions.

5 CONCLUSION

In conclusion, our work demonstrates that while current LLMs have made notable strides in handling
structured relational reasoning, significant performance gaps remain—particularly as task complexity
increases. RELEVAL not only reveals the limitations of instruction-based models in generating
logically consistent plans but also highlights the robust, albeit varied performance of dedicated
reasoning models. This benchmark serves as both a diagnostic tool and a catalyst for future research,
guiding the development of more sophisticated architectures and self-correction strategies that can
better tackle real-world, complex logical planning problems.

REPRODUCIBILITY STATEMENT

Implementation. All our experimental pipelines are implemented using an open-source evaluation
framework. We will make all data generation scripts publicly available upon publication, which
will also enable sampling other versions RELEVAL with different problem sizes. The open source
framework we use supports parameterized scripts that not only facilitate reproducibility but also
allow for the generation of more challenging and customized setups tailored to specific scenarios,

Under review as a conference paper at ICLR 2026

Table 2: List of models studied in this study and corresponding temperature and maximum token
limits used for all experiments.

Model temp. | max token | reasoning
Claude 3.7 Sonnet Thinking 2025-02-19 (Anthropic}, 2025) | 1.0 32,768 y
DeepSeek R1 (Guo et al.;[2025) B 0.6 32,768 y
Gemini 2.0 Pro Exp 2025-02-05 (Google, [2025a) 1.0 4,096 n
Gemini 2 Flash Thinking Exp 2025-01-21 (Google][2025b) | 1.0 32,768 y
01 2024-12-17 (Jaech et al,[2024) - NA 32,000 y
03-mini 2025-01-31 (high) (OpenAlL[2025)) NA 32,000 y
GPT-40 2024-08-06 (Hurst et al., [2024)) 1.0 4,096 n
GPT-4.5 Preview 2025-02-27 (Hurst et al.[[2024) 1.0 4,096 n
Llama 3.1 405B (Dubey et al.[2024) 1.0 4,096 n

such as particular object names and varying plan lengths. Additionally, the inference configurations
used for all tasks are presented in Table 2] and the prompts used for each task are detailed in[A.2] We
experiment with different rephrasing of the prompts but found no significant effect on the outcomes.
For all experiments we run, Top_p is set to 0.95, presence_penalty is set to O by default if the model
supports this.

Note on experimental results. Our experiments on Gemini 2.0 Pro for Comparison Question were
interrupted after four runs as the model was softly deprecated upon the release of Gemini 2.5 Pro on
March 25, 2025. Tasks Plan Generation and Consistency Detection instead include results for five
runs for Gemini 2.0 Pro. Additionally, due to restrictive rate limiting imposed by Claude, we were
unable to complete all planned runs with Claude models before this submission. The result presented
in Comparison Question is only based on one run on Claude 3.7 Sonnet with thinking model enabled.

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Colin Sandon, and Omid Saremi. How far can trans-
formers reason? the globality barrier and inductive scratchpad. Advances in Neural Information
Processing Systems, 37:27850-27895, 2024.

Fatimah Alotaibi, Adithya Kulkarni, and Dawei Zhou. Graph of logic: Enhancing 1lm reasoning with
graphs and symbolic logic. In 2024 IEEE International Conference on Big Data (BigData), pp.
5926-5935. IEEE, 2024.

Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/news/
claude—3-7-sonnet, 2025. Accessed: 2025-03-17.

Vidhisha Balachandran, Jingya Chen, Neel Joshi, Besmira Nushi, Hamid Palangi, Eduardo Salinas,
Vibhav Vineet, James Woffinden-Luey, and Safoora Yousefi. Eureka: Evaluating and understanding
large foundation models. arXiv preprint arXiv:2409.10566, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. Nphardeval: Dynamic
benchmark on reasoning ability of large language models via complexity classes. arXiv preprint
arXiv:2312.14890, 2023.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
multi-agent system for solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

Google. Gemini 2.0 pro experimental. https://deepmind.google/technologies/
gemini/pro/, 2025a. Accessed: 2025-03-17.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://deepmind.google/technologies/gemini/pro/
https://deepmind.google/technologies/gemini/pro/

Under review as a conference paper at ICLR 2026

Google. Gemini 2.0 flash thinking. |https://deepmind.google/technologies/
gemini/flash-thinking/} 2025b. Accessed: 2025-03-17.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length on
the reasoning performance of large language models. ACL, 2024.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai Menache. Large language
models for supply chain optimization. arXiv preprint arXiv:2307.03875, 2023.

Zhiming Li, Yushi Cao, Xiufeng Xu, Junzhe Jiang, Xu Liu, Yon Shin Teo, Shang-Wei Lin, and Yang
Liu. Llms for relational reasoning: How far are we? In Proceedings of the Ist International
Workshop on Large Language Models for Code, pp. 119-126, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
Clark, and Yejin Choi. Zebralogic: On the scaling limits of 1lms for logical reasoning. arXiv
preprint arXiv:2502.01100, 2025.

Fangru Lin, Emanuele La Malfa, Valentin Hofmann, Elle Michelle Yang, Anthony Cohn, and Janet B.
Pierrehumbert. Graph-enhanced large language models in asynchronous plan reasoning, 2024.
URLhttps://arxiv.org/abs/2402.02805.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid
Palangi, Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large
language models with cogeval. Advances in Neural Information Processing Systems, 36:69736—
69751, 2023.

Iulian Neamtiu, Jeffrey S. Foster, and Michael W. Hicks. Understanding source code evolution using
abstract syntax tree matching. ACM SIGSOFT Software Engineering Notes, 30:1 — 5, 2005.

OpenAl Openai 03-mini system card. https://openai.com/index/
o3-mini-system—card/, 2025. Accessed: 2025-03-17.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
Arindam Mitra, and Chitta Baral. Logicbench: Towards systematic evaluation of logical reasoning
ability of large language models. ACL, 2024.

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna Budhiraja, Mutsumi Nakamura, Neeraj
Varshney, and Chitta Baral. Multi-logieval: Towards evaluating multi-step logical reasoning
ability of large language models. arXiv preprint arXiv:2406.17169, 2024.

Hyun Ryu, Gyeongman Kim, Hyemin S Lee, and Eunho Yang. Divide and translate: Compositional
first-order logic translation and verification for complex logical reasoning. ICLR, 2025.

11

https://deepmind.google/technologies/gemini/flash-thinking/
https://deepmind.google/technologies/gemini/flash-thinking/
https://arxiv.org/abs/2402.02805
https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/

Under review as a conference paper at ICLR 2026

Julian Schnitzler, Xanh Ho, Jiahao Huang, Florian Boudin, Saku Sugawara, and Akiko Aizawa.
Morehopqga: More than multi-hop reasoning. arXiv preprint arXiv:2406.13397, 2024.

Kulin Shah, Nishanth Dikkala, Xin Wang, and Rina Panigrahy. Causal language modeling can elicit
search and reasoning capabilities on logic puzzles. arXiv preprint arXiv:2409.10502, 2024.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539-554, 2022.

Dimos Tsouros, Hélene Verhaeghe, Serdar Kadioglu, and Tias Guns. Holy grail 2.0: From natural
language to constraint models. arXiv preprint arXiv:2308.01589, 2023.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. Advances in Neural Information
Processing Systems, 36:75993-76005, 2023.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can Irms? a
preliminary evaluation of openai’s ol on planbench. arXiv preprint arXiv:2409.13373, 2024.

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, and Neel Joshi. Is a picture
worth a thousand words? delving into spatial reasoning for vision language models, 2024a. URL
https://arxiv.orqg/abs/2406.14852.

Kevin Wang, Junbo Li, Neel P Bhatt, Yihan Xi, Qiang Liu, Ufuk Topcu, and Zhangyang Wang. On
the planning abilities of openai’s ol models: Feasibility, optimality, and generalizability. arXiv
preprint arXiv:2409.19924, 2024b.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
Math-shepherd: Verify and reinforce llms step-by-step without human annotations. ACL, 2024c.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversation. arXiv preprint arXiv:2308.08155, 2023.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. Faithful logical
reasoning via symbolic chain-of-thought. arXiv preprint arXiv:2405.18357, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking 1lms on
natural language planning. arXiv preprint arXiv:2406.04520, 2024.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqgiang Gong, Diyi Yang, and Xing Xie. Dyval:
Dynamic evaluation of large language models for reasoning tasks, 2024. URL https://arxivl
org/abs/2309.17167.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS
We use LLMs as proof-writing assistants to enhance clarity and polish the text, identifying and

correcting grammatical or stylistic issues. We also employ Al coding agents to implement the figure
visualizations, with human reviewers carefully validating the results.

A.2 DETAILED EVALUATION SETTINGS

We first present a detailed list of various object and relation numbers, together with other settings for
each task.

12

https://arxiv.org/abs/2406.14852
https://arxiv.org/abs/2309.17167
https://arxiv.org/abs/2309.17167

Under review as a conference paper at ICLR 2026

A2.1

PLAN GENERATION

The combination of the number of objects and the number of relations for Plan Generation task:

Plan Generation data groups:
NumObjects_NumRelations

3_3,
5.5, 5.7, 5_9,
10_10, 10_15, 10_20, 10_25, 10_30, 10_35, 10_40, 10_45,
15_15, 15_24, 15_34, 15_43, 15_53, 15_62, 15_72, 15_81, 15_91
, 15_100,
20_20, 20_29, 20_38, 20_47, 20_56, 20_65, 20_74,
20_83, 20_92, 20_101, 20_109, 20_118, 20_127, 20_136,
20_145, 20_154, 20_163, 20_172, 20_181, 20_190,
25_25, 25_34, 25_43, 25_53, 25 62, 25_71, 25_80, 25_89,
25_99, 25.108, 25_117, 25_126, 25_136, 25_145, 25_154,
25 163, 25_172, 25_182, 25 191, 25_200,
30_30, 30_39, 30_48, 30_57, 30_66, 30_75, 30_84, 30_93,
30_102, 30_111, 30_119, 30_128, 30_137, 30_146, 30_155,
30_164, 30_173, 30_182, 30_191, 30_200,
40_40, 40_49, 40_58, 40_67, 40_76, 40_85, 40_94, 40_103,
40_112, 40_121, 40_130, 40_139, 40_148, 40_157, 40_166,
40_174, 40_183, 40_192, 40_201, 40_210, 40_219, 40_228,
40_237, 40_246, 40_255, 40_264, 40_273, 40_282, 40_291, 40
300,
50_50, 50_59, 50_67, 50_76, 50_84, 50_93, 50_102, 50_110,
50_119, 50_128, 50_136, 50_145, 50_153, 50_162, 50_171,
50_179, 50_188, 50_197, 50_205, 50_214, 50_222, 50_231,
50_240, 50_248, 50_257, 50_266, 50_274, 50_283, 50_291, 50
_300
U J

The prompt template we use with these groups in task Plan Generation:

13

Under review as a conference paper at ICLR 2026

Plan Generation task prompt template

You are tasked with generating a list of logical and
consistent

relationships between objects:

— Each object should have a unique name.

— The relationships use either the "<" (smaller than)
or ">" (larger than) operator.

— The relationships must be logically consistent and acyclic
(i.e., no cycles like A > B > A).

— Not all objects need to be directly related, but all
relationships must be wvalid.

Now generate a logical and consistent list of {{num_relations

H}

relationships with {{num_objects}} objects.

Output Format:
Return only a valid JSON object after the <RESPONSE> tag,
structured as follows:
<RESPONSE>
{
"relationships": [
"<object> <operator> <object>",
"<object> <operator> <object>",

"<object> <operator> <object>"

]
}
</RESPONSE>

A.2.2 CONSISTENCY DETECTION

We provide the groups of the number of objects, the number of relations, and the minium cycle length
of the directed graph. We generate 20 unique graphs for each group.

Consistency Detection data groups:
NumObjects_NumRelations_MinCycleLength

10_15_0, 10_15_3, 10_15_6,
10_30_0, 10_30_3, 10_30_s6,
20_30_0, 20_30_6, 20_30_12,
20_60_0, 20_60_6, 20_60_12,
30_45_0, 30_45_6, 30_45_12, 30_45_24,
30_90_0, 30_90_6, 30_90_12, 30_90_24

. J

The prompt template we use in task Consistency Detection:

14

Under review as a conference paper at ICLR 2026

Consistency Detection task prompt template

Here is a list of relationships {{relationships}}, your job
is to decide

if there are any contradictions or cycles in them, if yes (
meaning there

are contradictions in the list), list all cycles that cause

the
contradiction after the yes or no answer. Don't write code to
solve
this problem. You can do whatever analysis that you need at
the
beginning, but make sure to always finish your response with
the
following format example, after starting with the OUTPUT tag,
don't add
any additional text or comments.
OUTPUT:
Yes or No (Yes means there are contradictions, No means there
is not)

1. Cycle: <A, B, C, D, E, A>
2. Cycle: <cycle>

N. Cycle: <cycle>

Consistency Detection task self-correction prompt template

Are you sure? You can do whatever analysis that you need at
the

beginning, but make sure to always finish your response with
the

following format example, after starting with the OUTPUT tag,

don't add any additional text or comments.

OUTPUT:

Yes or No (Yes means there are contradictions, No means there

is not)
1. Cycle: <A, B, C, D, E, A>
2. Cycle: <cycle>

N. Cycle: <cycle>

. J

As an example, illustrates an example of the graph used in the benchmark dataset. The
relations represented in the prompt are C > D,O > LM > H M < L,D > P,C > O,D <
JD<HC>KB>LL>K,K<D,B>P,0O< P,C> B. This graph contains a single
cyclewith6nodes: M >H >D >P>0>L>M.

For natural language framing, here is one converted example of the software package dependency
scenario:

15

Under review as a conference paper at ICLR 2026

Figure 5: An example graph for the Consistency Detection task.

Consistency Detection task natural language framed prompt

Here is a list of relationships described in natural language
protoflux executes before refcast, fluxmarshal
initializes after diskshade, nexusbloom is a prerequisite
for protoflux, shadevault depends on refcast, nexusbloom
is a prerequisite for diskshade, tickroll requires
shadevault to be available first, fluxmarshal starts only
after nexusbloom, modprobe initializes after threadmint,
jetcache needs modprobe to be ready first, fluxmarshal
must be loaded after tickroll, shadevault needs jetcache
to be ready first, jetcache is needed by nexusbloom,
diskshade initializes after Jjetcache, tickroll executes
after threadmint, refcast executes before diskshade.

These relationships describe dependencies between software
components or packages in a codebase. Your job is to
decide if there are any contradictions or cycles in them.

A cycle occurs when there is a circular dependency - for
example, 1if package "authcore" depends on "datautil", "
datautil"”™ depends on "logger", and "logger" depends on "
authcore”, then there is a cycle: authcore datautil
logger authcore.

In software development, circular dependencies are
problematic because they create impossible build orders
and can lead to compilation errors or runtime issues.
Each component should have a clear dependency hierarchy
without circular references.

Analyze these package dependency relationships carefully to
identify any such circular dependencies. If yes (meaning
there are contradictions/cycles in the list), list all
cycles that cause the contradiction after the yes or no
answer. Don't write code to solve this problem. You can
do whatever analysis that you need at the beginning, but
make sure to always finish your response with the
following format example, after starting with the OUTPUT
tag, don't add any additional text or comments.

OUTPUT:

Yes or No (Yes means there are contradictions, No means there

is not)

1. Cycle: <packagenamel, packagename2, packagename3,
packagenamel>

2. Cycle: <cycle>

N. Cycle: <cycle>

16

Under review as a conference paper at ICLR 2026

A.2.3 COMPARISON QUESTION

We provide the groups of the number of objects, the number of relations, and the steps between two
objects in the comparison statement.

\

Comparison Question data groups:

NumObjects_NumRelations_DepthofComparison

10_15_0, 10_15_2, 10_15 4, 10_15_6,
10_30_0, 10_30_2, 10_30_4,

20_30_0, 20_30_2, 20_30_4, 20_30_6,
20_60_0, 20_60_2, 20_60_4, 20_60_6,
30_45_0, 30_45_2, 30_45_4, 30_45_6,
30_90_0, 30_90_2, 30_90_4, 30_90_6

The prompt template we use in the task Comparison Question:

Comparison Question task prompt template

Given a set of relationship statements:
{{relationships}}

And a comparison statement to evaluate:
{{comparison}}

Your task is to determine if the comparison is True, False,
or Unknown based solely on the provided relationships.

Guidelines for evaluation:
— True: The comparison can be logically deduced from the
given
relationships
— False: The comparison can be proven incorrect using the
given
relationships
— Unknown: There is insufficient information in the
relationships
to definitively prove the comparison true or false

Important notes:

— Use ONLY the information provided in the relationships

— Do not make assumptions beyond what is explicitly stated

— If there are multiple possible interpretations, mark as

Unknown

- You can do whatever analysis that you need in the response,
but your response must end with the OUTPUT format below

- Do not add any additional text after the output

Required output format:
OUTPUT:
True/False/Unknown

17

Under review as a conference paper at ICLR 2026

Comparison Question task self-correction prompt template

Are you sure?

Note: You can do whatever analysis that you need in the
response,

but your response must end with the OUTPUT format below.

Do not add any additional text after the output.

Required output format:

OUTPUT:

True/False/Unknown

L J

For natural language framing, here is one converted example of the software package dependency
scenario:

18

Under review as a conference paper at ICLR 2026

Comparison Question task natural language framed prompt

You are a software engineer analyzing code dependencies in a
large codebase. You have been given a set of module
dependency constraints that must be satisfied during the
build process:

ghostbind must be loaded before indexmorph, fluxmarshal runs
before nodemerge can execute, fluxmarshal comes earlier
than cargowrap, indexmorph executes after logshard,
cargowrap depends on prefx, fluxmarshal comes earlier
than indexmorph, fluxmarshal executes before indexvisor,
hookmesh must be ready before logshard starts, nodemerge
comes earlier than ghostbind, hookmesh is needed by
ghostbind, nebulock initializes after nodemerge,
fluxmarshal initializes after logshard, nebulock executes

before ghostbind, logshard must be loaded before prefx,
fluxmarshal initializes after prefx.

A colleague has asked you the following question about the
dependency order:

Do we need to load cargowrap before indexmorph?

Your task is to determine if the answer is True, False, or
Unknown based on the dependency constraints provided
above.

Analysis Guidelines:

— True: The dependency relationship can be definitively
proven from the given constraints (either directly stated

or through transitive dependencies)

— False: The dependency relationship contradicts the given
constraints or would create a circular dependency

— Unknown: The given constraints do not provide sufficient
information to determine the dependency relationship

Important considerations:

— Dependencies are transitive: if A depends on B and B
depends on C, then A indirectly depends on C

— Circular dependencies are not allowed in the build system

— Only use the explicitly stated dependency constraints - do
not make assumptions about unstated relationships

— Consider all possible dependency paths when determining
transitivity

- If the constraints lead to ambiguous or conflicting
dependency chains, answer Unknown

Please analyze the dependency relationships step by step,
then provide your final answer in the required format
below.

Required output format:

OUTPUT:

True/False/Unknown

A.3 DETAILED TASK RESULTS

A.3.1 DETAILED PLAN GENERATION TASK RESULTS

[Figure 9] [Figure 10} [Figure 11]and [Figure 12|show the detailed result of Plan Generation task. The
rows are the number of objects, and the columns are the number of relations prompted to the model.
The empty cells are the combinations that are not covered in this test. Each colored cell shows the
average accuracy result of 3 runs.

19

Under review as a conference paper at ICLR 2026

1.0
DeepSeek R1 .
3
Gemini 2 Flash Thinking 1 0.8%
Gemini 2.0 Pro s
: 0.63
GPT-4.5 Preview U=
c
GPT-40 0.4 §
Llama 3.1 405B | B B H
01/ O.ZE.
03-mini- o on
IR DK IPXN JIPK S\ I\ PR\ JpK DA\ JPK RPN SN\ RPN\ JIPK\ I\ A })
”?:9 Z??q??o 3’00 '}9")0?0 3’00 '}909?0 ?’Qo'}'oo?oe ?o 700 /oo >
ke) Ll il 99 9
Groups

Figure 6: Plan Generation Relation Duplications in Model Output

We also notice that some models are easier to output duplicated relations in general, like Gemini
models. And some models get easier to output duplicate relations as the task gets harder, such
as GPT-40 and Llama 3.1 405B. shows the detailed results of the average existence of
duplications (True of False) in model’s output for each model and task groups.

A.3.2 DETAILED CONSISTENCY DETECTION TASK RESULTS

Figure 7|shows the detailed result for Consistency Detection task. The average F1 score is aggregated
based on the group of the number of objects, the number of relations and the minimum cycle length in
the provided relations to the model. We performed 5 runs for each model, and calculated the average
F1 score.

A.3.3 DETAILED COMPARISON QUESTION TASK RESULTS

[Figure 8 shows the detailed result for Comparison Question task. The average accuracy is aggregated
based on the group of the number of objects, the number of relations and the depth of the provided
comparison statement to the model. Except for Claude 3.7 Sonnet, We performed 5 runs for each
model, and calculated the average.

20

Under review as a conference paper at ICLR 2026

100
920
8
7
6
5

T oA
21035 T4

21035 T4

NumObjs_NumRelations_MinCycleLength

NumObjs_NumRelations_MinCycleLength

ing

i 2 Flash Think

ni

(b) Gem

(a) Deepseek R1

24035 T4

N ,bb-

d A O O
Yol P s”
90007
DS

o ©
’

h
®
(54
e

ehs]
o
=3

21035 T4

NumObjs_NumRelations_MinCycleLength

(d) GPT-4.5 Preview.

NumObjs_NumRelations_MinCycleLength

mini 2.0 Pro.

(c) Ge

S O @K ©IT MmN

21035 T4

26.4

21035 T4

NumObjs_NumRelations_MinCycleLength

(f) Llama 3.1 405B Instruct.

NumObjs_NumRelations_MinCycleLength

(e) GPT-4o.

8
H
5
2

21035 T4

_MinCycleLength

(h) O3-MINIL

NumObjs_NumRelations

NumObjs_NumRelations_MinCycleLength

(2) Ol

d

mue

Task - Cont

ion

Detailed Average F1 Score of Consistency Detect

Figure 7

21

Under review as a conference paper at ICLR 2026

1134
1135
1136

lations_De

G ®~N©MmSm

100

Aoeandoy

N O O ~
M MO M < < <
- - - - -
- -

0o 000900000000
N oA

1143
1144
1145

pthofComparison

umRelations_De|

pthofComparison

(a) Claude 3.7 Sonnet Thinking.

(b) Deepseek R1.

l

Koeandoy

1146
1147
1148
1149
1150
1151
1152

umRelations_De

1153
1154
1155

pthofComparison
0 Pro

(d) Gemini 2

on
g
=
=
g
=
=
<
2}
<
=
8%
a
g
=
Q
&)
~
®)
N~

100
9
8
7

1156
1157

Kdeandoy

Q D
n
-
-

1160
1161
1162
1163
1164
1165
1166

ison

T-40.

pthofComparison

(e) GPT-4.5 Preview.

lations_De

(f) GP

Aoeandoy

1167
1168
1169

1170
1171
1172
1173
1174
1175
1176

pthofComparison

o
a
)
£
S
2
£
T
<
E
H

(h) Ol

(g) Llama 3.1 405B Instruct.

Aoeandoy

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

ison

(i) O3-MINIL

Question Task

1S0n

Detailed Average Accuracy of Compar

Figure 8

22

Under review as a conference paper at ICLR 2026

k

10n tas

(b) Gemini 2 Flash Thinking.

Detailed average accuracy of Plan Generat

Figure 9

Mmoo R 1[0E Mmoo 2=
NoH i 1[F NO 0 [N
N m — N m)
NN — NN =
NN 5 NN)
NRm 5 NNm =
N © — N ©)
N] N 5
Nin~ — Nin~ S
N0 10 — N0 10 D)
NS o [N o 0
NS © 5 NS © —
NSO — NSO ™
N~ — N~ D)
N ~ N =
NN] NN ~
NN — NN =
NH o — NH o)
NS) NeS g
NHO — NHO S
Nown — Nown n
No — No~ o
Noo |~ Noo R
Hon~ — o~ n
HoN m HoN L
o = |0 HoH ~ s
oo — oo —
0o — oo &
Hoom — Hoom =
HoN [~ HoN S [=
oA — "o
-~ o = =N o =3
AN I AN =
HANm — ANm S
AN = = ANN EEE
AN = AN S
Hoo© = Ho© =
How 05 How n
Hom = = Hom Gl
HonN — HoN
=i~ —~ =i~ =]
=i — =inin —
—in g = = —in < = | n
—inm — —inm
<0 m < =3
) —) =
< EN — < S S
- mo — o S
Hm~ — Hm~ =
Hmo EN — Mo — [~)
= mo — =mo =
HN® — — AN® — S
AN~ — — AN~
0N — Q‘ N m
ks S ksl =3
o B — % oo = =
k) — 5] e
e N — «K e N ™
k] S 8—' AeN —
lakal S o lakal N
Heo —~ Q Heo =
oo I oo —
= O o0 — fc@ O D)
Hom — ~ Hom D)
Hon — — Hon 0 0
Hor — "o =
Hoo — Hoo
X ~ X =
D & — h =
X — —~ X 2 2
X 0 X
Xal s Xal —
oo — CX)
© 1 — ® 1)
o< ~ ~ ©< R
©m — om
© — CXal =
LX) 3 ® o 53
~o = [~ ~o =l ~
N~ & ~n 3
< — < n
NN — NN —
N — N L)
o~ -~ o~ = |
©© — X3
©n — ©wn
o~ — — oN S o)
n o — n o —
10 — 1 0
n~ — i~
n© — n©
1nm [— nm 3
no — no 53
<o — <o
<+ — <+
+~ — +~
<0 — <0 —
< m — = <+ m — 0
<o — — <o M n
mo — 0o m
Mo ~ ™o =
00 — min —
m< — — m< =3 —
mo — — mo = =
~No — N =
~Nn 5 — ~Nin = —
N — N —
) — =) 0 =
—in — |~ =in — |~
Ho = —o S
) —) —
~ — ~ —
n n 0
) — ™ =
cm(o(m(a(e]e cm(o(mlal[e]e
m|w|d|la|a|[n|m|[s |0 m|w|d|ld|[d|[n|m|s |0

23

Under review as a conference paper at ICLR 2026

24

Mmoo = Mmoo 2=
NoH 1= NO =2 1=
N m = N m)
NN = NN)
NN = NN)
N~ m = NN m S
N © = N © i)
N = N)
N~ = NI~ =2
N0 10 = o0 n)
NS o = N o =
NS © = NS ©)
NSO N O =
N~ = N~ =
N =] N]
NN = NN)
NN NN =
NH o = NH o 5
NS N g
NHO S NHO S
Nown = NOn 2
No S No~ S
Noo NO O 2=
Ao~ S Ao~ S
oo N = oo N =
Hod =21 Hod S [°
oo oo —
~ 00 = o L)
oo m = oo m 2
—-oN ele =HoN S|~
oA "o
ANo S ANo S
AN S AN S
Anm S Anm S
AN N S [S AN Sle
AN S AN =
—© O S O © =
O S B =1
O m ERE] - ©m Sle
HonN HoN
ETS S BT S
=0 10 =) 0 10 =
g 1 S =in < =2
—inm = —inm =
) =3) =
EEX) S) =
=<0 Ll S <0 = =
Hmo =3 —mo =
Hm~ S Hm~ S
= mo = = = mo =)
=mo 2] Hmo g
HN® S S S AN® S S
AN~ = AN~
N O S [a B} N © S
kel = o e g
o S S . oo = =
k) e
Ad~ S = A~ S
AN = o= e~ oy
akakal S E e =
O = 5] HHOo =
O o = (D oo =
- O m —_ - O <
Hom S S Hom S
AonN S S "onN S S
Hor "o
Hoo Hoo
X = X g
< = < og
X S S X S S
X X S
Xal =) Xal =
© o — X g
© 1 = © 10)
0 S ™ o< S S
©m om
© S CXal S
X [®o g
~o S ~No ==
N & N &
~< S ~< M
NN NN
~e S ~e S
o~ ele © N~ =8 "
©© =] X5 ~
©n ©wn
©onN 3 = ©onN) D)
1o 0o 3
n 0 0 oo
n N n N~ S
n© S n© ~
nm — =] nm ™~
n o = n o o0
s o — s o IR
< S LX) |
+~ +~
<1 — <10 5
< = <t m = 2
<o = to = o
mo S mo &
LX) L) o
00 min
m< < — m< —
™Mo = = mo) @)
~No N
N = = ~n o)
N L N G
N O — S) o =
= 1n = = 5]
—o —o S
) — B —
~ = ~ 5]
n n —
) — m
cm(o(m(a(e]e cm(o(mlal[e]e
m|w|d|la|a|[n|m|[s |0 wlAd|la|a|n|m|s |0

(b) GPT-4.5 Preview.

inued

k - Cont

10n tas

Detailed average accuracy of Plan Generati

Figure 10

Under review as a conference paper at ICLR 2026

d

mue

k - Cont

10n tas

(b) Llama 3.1 405B Instruct.

Detailed average accuracy of Plan Generat

Figure 11

Mmoo g1= Mmoo 2=
NoH 1= NO S
Noom S Neom
NN =) NN)
NN S NN S
NN m =]) =]
Noo© S No©
N = N)
NN = NN
N0 10 = o0 n)
NS S NS
NS © = NS ©)
NSO S NSO
N~ = N~ =
N = N
NN = NN)
NN~ = NN~
NH o = NH o)
NS g NeS g
NHO = NHO —
Nown g NOn 2
No S No~ S
Noo 2= NO O 2=
o~ =] o~ S
oo N = oo N =
Hod =21 Hod S [°
oo — oo
oo = LX) 2
oo m = Hwm 2
—-oN Sle =HoN ele
oA "o
=N o =3 =N o =]
N < N S
Anm S Anm S
NN S NN Sle
A~ S A~ S
—© O S O © =
o< = o< o
-©om o | o -©om EHIE
HonN HoN
=i~] =i~ S
=100 =] =100 5]
g = =in < =2
) =3) =
= < 0 S < =3
EEX) S) =
=<0 — | S = <0 =]
= mo = R =
M~ S M~ S
-mo =3 =3 -mo =3 =3
= mo 2] = mo =)
=N =l = =N =
AN~ AN~
=N g . HN© =
ks S o] ksl =3
k) S S <t Ado S S
Ad® F‘ Ad®
e~ =] =9 e~ =
k] =]) AeN S
lakal S lakal S
o S < o S
Hoo) ~ Ho o o)
HOo® = HOo® R
Hom = Hom S
AonN S S "onN S S
Hor "o
Hoo Hoo
X = X =
D & = h =
X S S X S S
X S X S
Xal S Xal S
XY = X g
@1 = © 10)
0 S S o< S S
wm om
© S CXal S
X = ®o g
~o S ~No ==
~ 0 g ~in 2
~< S ~< S
NN NN
~e S ~e S
o~ ele © N~ ele
©© =] © © =1
©n ©wn
on = = onN = 2
n o — n o =
n 0 0 oo
i~ =] n N~ =]
n © S n © S
1 m = 1 ;M =
1n o = n o =
< o S < o =
< = < 0 =]
+~ +~
<0 — <0 —
< m S S < m S S
<o 5 — <o = =2
mo S 0o 2
m e =] L) S
00 — min
m< =] = m< =3 <
™Mo o = mo — S
~No N —
o =)) N =
N =] N ©0
NOo = = NOo 5 =
—n ~ =10 =
- O < -Oo —
) —) —
~ — ~ —
n n —
) —) —
cm(o(m(a(e]e cm(o(mlal[e]e
m|w|d|la|a|[n|m|[s |0 m|w|d|ld|[d|[n|m|s |0

25

Under review as a conference paper at ICLR 2026

26

moo] moo
No = |~ No —
Noom — Noom —
NoN — NoN
NN — NN —
NNm — NRm
No© — No© —
Now — Now
N~ — NI~ —
N — N
Nt — N —
Nt © — Nt ©
N<¢ o — N¢ O =
N~ = N~
N = Nme —
NN® — NN®
NNN — NNN —
NHo — NHo
Neo — N —
NHOo = NHOo
Non — Nown —
Nor — No
Noo — |~ Noo
"o~ — "o~ =
Hon — HonN
o =~ o
oo = oo
oo — EEX) =
Hom — Hom
HoN — |~ HoN
o = L Xal
AN — L) =
AN = AN
ANm = ANm
AN = = AN
=] ~ AN =
Hoo© = Ho©
How = How
Hom o =] Hom
Hon = Hon =
0~ = N~
=inin — =inin
Hins = = s
—inm = Hinm =
As o — A%
Aeo = Aso
< = = — A< =
Hmo — Hmo
o~ = o~
Hmo -~ S Hmo —
Hmo — Hmo
AN — — AN® —
HN~ — AN
AN© — AN
And — AN
Hdo — — . k) —
L) — = k)
EETS = O [==r
AAn — —~ il
EE = S oo
k-] — E=k-) —
oo — Hoo
Ho® — How
Hom — —Hom
Hon — — Hon —
Hod — Hod
Hoo — Hoo
oo — oo
o< — o<
om — — am S
o — on
EXal — CXal
© o — © o
© 0 — ©1n
o = — o< =
©m — o m
© — o
0o — CX)
~N© Dl - ~N© —
~in — ~in
~N< = <
~N — ~N
N~ — ~e
o~ ol =] o~ =
©© — ©©
©in — ©in
o — — oN
0 o — n o =
0 — 0 o
0~ — i~
n © = n©
nm — — nm
n o —) =
<o — <o
<+ — <+
+~ — +~
i) — < —
<+ m — = <+ m
<o — = <o —
no — LX)
X — Mo
mn — ™0 B
o< — s
mo — — mo 5
~No — ~No
o — —) 5
N I Ne
NOo] ~ ~NOo =
—in ol =] —in —
—o — —o —
) —) —
~ — ~ —
n — n —
) — m
cm[o[bw[o[a]e R RS
m|ou|a|d|[d|n|m|[s|n wi a|d|[d|an|[m|e|n

(b) O3-MINL

inued

Task - Cont

0n

Detailed Average Accuracy of Plan Generati

Figure 12

	Introduction
	Related Work
	RelEval Construction and Data Generation
	Plan Generation
	Consistency Detection
	Comparison Question
	Self Correction
	Natural Language Framing

	Evaluation
	Plan Generation Results
	Consistency Detection Results
	Comparison Question Results

	Conclusion
	Appendix
	The Use of Large Language Models
	Detailed Evaluation Settings
	Plan Generation
	Consistency Detection
	Comparison Question

	Detailed Task Results
	Detailed Plan Generation Task Results
	Detailed Consistency Detection Task Results
	Detailed Comparison Question Task Results

